1
|
Uszczynska-Ratajczak B, Sugunan S, Kwiatkowska M, Migdal M, Carbonell-Sala S, Sokol A, Winata CL, Chacinska A. Profiling subcellular localization of nuclear-encoded mitochondrial gene products in zebrafish. Life Sci Alliance 2022; 6:6/1/e202201514. [PMID: 36283702 PMCID: PMC9595208 DOI: 10.26508/lsa.202201514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/08/2022] Open
Abstract
Most mitochondrial proteins are encoded by nuclear genes, synthetized in the cytosol and targeted into the organelle. To characterize the spatial organization of mitochondrial gene products in zebrafish (Danio rerio), we sequenced RNA from different cellular fractions. Our results confirmed the presence of nuclear-encoded mRNAs in the mitochondrial fraction, which in unperturbed conditions, are mainly transcripts encoding large proteins with specific properties, like transmembrane domains. To further explore the principles of mitochondrial protein compartmentalization in zebrafish, we quantified the transcriptomic changes for each subcellular fraction triggered by the chchd4a -/- mutation, causing the disorders in the mitochondrial protein import. Our results indicate that the proteostatic stress further restricts the population of transcripts on the mitochondrial surface, allowing only the largest and the most evolutionary conserved proteins to be synthetized there. We also show that many nuclear-encoded mitochondrial transcripts translated by the cytosolic ribosomes stay resistant to the global translation shutdown. Thus, vertebrates, in contrast to yeast, are not likely to use localized translation to facilitate synthesis of mitochondrial proteins under proteostatic stress conditions.
Collapse
Affiliation(s)
- Barbara Uszczynska-Ratajczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland .,Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Sreedevi Sugunan
- ReMedy International Research Agenda Unit, University of Warsaw, Warsaw, Poland,International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Monika Kwiatkowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland,Centre of New Technologies, University of Warsaw, Warsaw, Poland,International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Maciej Migdal
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Silvia Carbonell-Sala
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Anna Sokol
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany,Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Cecilia L Winata
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Agnieszka Chacinska
- ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
2
|
Topf U, Uszczynska-Ratajczak B, Chacinska A. Mitochondrial stress-dependent regulation of cellular protein synthesis. J Cell Sci 2019; 132:132/8/jcs226258. [DOI: 10.1242/jcs.226258] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
ABSTRACT
The production of newly synthesized proteins is vital for all cellular functions and is a determinant of cell growth and proliferation. The synthesis of polypeptide chains from mRNA molecules requires sophisticated machineries and mechanisms that need to be tightly regulated, and adjustable to current needs of the cell. Failures in the regulation of translation contribute to the loss of protein homeostasis, which can have deleterious effects on cellular function and organismal health. Unsurprisingly, the regulation of translation appears to be a crucial element in stress response mechanisms. This review provides an overview of mechanisms that modulate cytosolic protein synthesis upon cellular stress, with a focus on the attenuation of translation in response to mitochondrial stress. We then highlight links between mitochondrion-derived reactive oxygen species and the attenuation of reversible cytosolic translation through the oxidation of ribosomal proteins at their cysteine residues. We also discuss emerging concepts of how cellular mechanisms to stress are adapted, including the existence of alternative ribosomes and stress granules, and the regulation of co-translational import upon organelle stress.
Collapse
Affiliation(s)
- Ulrike Topf
- Centre of New Technologies, University of Warsaw, Banacha 2C, Warsaw 02-097, Poland
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, Warsaw 02-106, Poland
| | | | - Agnieszka Chacinska
- Centre of New Technologies, University of Warsaw, Banacha 2C, Warsaw 02-097, Poland
- ReMedy International Research Agenda Unit, University of Warsaw, Banacha 2C, Warsaw 02-097, Poland
| |
Collapse
|
3
|
Mitochondrial presequence import: Multiple regulatory knobs fine-tune mitochondrial biogenesis and homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:930-944. [PMID: 30802482 DOI: 10.1016/j.bbamcr.2019.02.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 12/22/2022]
Abstract
Mitochondria are pivotal organelles for cellular signaling and metabolism, and their dysfunction leads to severe cellular stress. About 60-70% of the mitochondrial proteome consists of preproteins synthesized in the cytosol with an amino-terminal cleavable presequence targeting signal. The TIM23 complex transports presequence signals towards the mitochondrial matrix. Ultimately, the mature protein segments are either transported into the matrix or sorted to the inner membrane. To ensure accurate preprotein import into distinct mitochondrial sub-compartments, the TIM23 machinery adopts specific functional conformations and interacts with different partner complexes. Regulatory subunits modulate the translocase dynamics, tailoring the import reaction to the incoming preprotein. The mitochondrial membrane potential and the ATP generated via oxidative phosphorylation are key energy sources in driving the presequence import pathway. Thus, mitochondrial dysfunctions have rapid repercussions on biogenesis. Cellular mechanisms exploit the presequence import pathway to monitor mitochondrial dysfunctions and mount transcriptional and proteostatic responses to restore functionality.
Collapse
|
4
|
Bragoszewski P, Turek M, Chacinska A. Control of mitochondrial biogenesis and function by the ubiquitin-proteasome system. Open Biol 2018; 7:rsob.170007. [PMID: 28446709 PMCID: PMC5413908 DOI: 10.1098/rsob.170007] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/31/2017] [Indexed: 12/17/2022] Open
Abstract
Mitochondria are pivotal organelles in eukaryotic cells. The complex proteome of mitochondria comprises proteins that are encoded by nuclear and mitochondrial genomes. The biogenesis of mitochondrial proteins requires their transport in an unfolded state with a high risk of misfolding. The mislocalization of mitochondrial proteins is deleterious to the cell. The electron transport chain in mitochondria is a source of reactive oxygen species that damage proteins. Mitochondrial dysfunction is linked to many pathological conditions and, together with the loss of cellular protein homeostasis (proteostasis), are hallmarks of ageing and ageing-related degeneration diseases. The pathogenesis of neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease, has been associated with mitochondrial and proteostasis failure. Thus, mitochondrial proteins require sophisticated surveillance mechanisms. Although mitochondria form a proteasome-exclusive compartment, multiple lines of evidence indicate a crucial role for the cytosolic ubiquitin-proteasome system (UPS) in the quality control of mitochondrial proteins. The proteasome affects mitochondrial proteins at stages of their biogenesis and maturity. The effects of the UPS go beyond the removal of damaged proteins and include the adjustment of mitochondrial proteome composition, the regulation of organelle dynamics and the protection of cellular homeostasis against mitochondrial failure. In turn, mitochondrial activity and mitochondrial dysfunction adjust the activity of the UPS, with implications at the cellular level.
Collapse
Affiliation(s)
- Piotr Bragoszewski
- Laboratory of Mitochondrial Biogenesis, International Institute of Molecular and Cell Biology, Ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Michal Turek
- Laboratory of Mitochondrial Biogenesis, International Institute of Molecular and Cell Biology, Ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Agnieszka Chacinska
- Laboratory of Mitochondrial Biogenesis, International Institute of Molecular and Cell Biology, Ks. Trojdena 4, 02-109 Warsaw, Poland .,Centre of New Technologies, Warsaw University, Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
5
|
Golani-Armon A, Arava Y. Localization of Nuclear-Encoded mRNAs to Mitochondria Outer Surface. BIOCHEMISTRY (MOSCOW) 2017; 81:1038-1043. [PMID: 27908229 DOI: 10.1134/s0006297916100023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The diverse functions of mitochondria depend on hundreds of different proteins. The vast majority of these proteins is encoded in the nucleus, translated in the cytosol, and must be imported into the organelle. Import was shown to occur after complete synthesis of the protein, with the assistance of cytosolic chaperones that maintain it in an unfolded state and target it to the mitochondrial translocase of the outer membrane (TOM complex). Recent studies, however, identified many mRNAs encoding mitochondrial proteins near the outer membrane of mitochondria. Translation studies suggest that many of these mRNAs are translated locally, presumably allowing cotranslational import into mitochondria. Herein we review these data and discuss its relevance for local protein synthesis. We also suggest alternative roles for mRNA localization to mitochondria. Finally, we suggest future research directions, including revealing the significance of localization to mitochondria physiology and the molecular players that regulate it.
Collapse
Affiliation(s)
- A Golani-Armon
- Technion - Israel Institute of Technology, Faculty of Biology, Haifa, 32000, Israel.
| | | |
Collapse
|
6
|
Abstract
Local synthesis of proteins near their activity site has been demonstrated in many biological systems, and has diverse contributions to cellular functions. Studies in recent years have revealed that hundreds of mitochondria-destined proteins are synthesized by cytosolic ribosomes near the mitochondrial outer membrane, indicating that localized translation also occurs at this cellular locus. Furthermore, in the last year central factors that are involved in this process were identified in yeast, Drosophila, and human cells. Herein we review the experimental evidence for localized translation on the cytosolic side of the mitochondrial outer membrane; in addition, we describe the factors that are involved in this process and discuss the conservation of this mechanism among various species. We also describe the relationship between localized translation and import into the mitochondria and suggest avenues of study that look beyond cotranslational import. Finally we discuss future challenges in characterizing the mechanisms for localized translation and its physiological significance.
Collapse
Affiliation(s)
- Chen Lesnik
- a Department of Biology ; Technion - Israel Institute of Technology ; Haifa , Israel
| | | | | |
Collapse
|
7
|
Trafficked Proteins-Druggable in Plasmodium falciparum? Int J Cell Biol 2013; 2013:435981. [PMID: 23710183 PMCID: PMC3655585 DOI: 10.1155/2013/435981] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 03/12/2013] [Indexed: 01/09/2023] Open
Abstract
Malaria is an infectious disease that results in serious health problems in the countries in which it is endemic. Annually this parasitic disease leads to more than half a million deaths; most of these are children in Africa. An effective vaccine is not available, and the treatment of the disease is solely dependent on chemotherapy. However, drug resistance is spreading, and the identification of new drug targets as well as the development of new antimalarials is urgently required. Attention has been drawn to a variety of essential plasmodial proteins, which are targeted to intra- or extracellular destinations, such as the digestive vacuole, the apicoplast, or into the host cell. Interfering with the action or the transport of these proteins will impede proliferation of the parasite. In this mini review, we will shed light on the present discovery of chemotherapeutics and potential drug targets involved in protein trafficking processes in the malaria parasite.
Collapse
|
8
|
Intracellular context affects levels of a chemically dependent destabilizing domain. PLoS One 2012; 7:e43297. [PMID: 22984418 PMCID: PMC3440426 DOI: 10.1371/journal.pone.0043297] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 07/19/2012] [Indexed: 12/22/2022] Open
Abstract
The ability to regulate protein levels in live cells is crucial to understanding protein function. In the interest of advancing the tool set for protein perturbation, we developed a protein destabilizing domain (DD) that can confer its instability to a fused protein of interest. This destabilization and consequent degradation can be rescued in a reversible and dose-dependent manner with the addition of a small molecule that is specific for the DD, Shield-1. Proteins encounter different local protein quality control (QC) machinery when targeted to cellular compartments such as the mitochondrial matrix or endoplasmic reticulum (ER). These varied environments could have profound effects on the levels and regulation of the cytoplasmically derived DD. Here we show that DD fusions in the cytoplasm or nucleus can be efficiently degraded in mammalian cells; however, targeting fusions to the mitochondrial matrix or ER lumen leads to accumulation even in the absence of Shield-1. Additionally, we characterize the behavior of the DD with perturbants that modulate protein production, degradation, and local protein QC machinery. Chemical induction of the unfolded protein response in the ER results in decreased levels of an ER-targeted DD indicating the sensitivity of the DD to the degradation environment. These data reinforce that DD is an effective tool for protein perturbation, show that the local QC machinery affects levels of the DD, and suggest that the DD may be a useful probe for monitoring protein quality control machinery.
Collapse
|
9
|
Lee YH, Tan HT, Chung MCM. Subcellular fractionation methods and strategies for proteomics. Proteomics 2010; 10:3935-56. [DOI: 10.1002/pmic.201000289] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Doyle SR, Chan CK. Mitochondrial gene therapy: an evaluation of strategies for the treatment of mitochondrial DNA disorders. Hum Gene Ther 2009; 19:1335-48. [PMID: 18764763 DOI: 10.1089/hum.2008.090] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mitochondrial DNA (mtDNA) disorders include a vast range of pathological conditions, despite each sharing a mutual inability to produce ATP efficiently as a result of defective oxidative phosphorylation. There is no clear consensus regarding an effective therapeutic approach, and consequently the current treatment strategies are largely supportive rather than curative. This is almost certainly the result of there being virtually no defined genotype-phenotype relationships among the mtDNA disorders; hence an identical mutation may be responsible for multiple phenotypes, or the same phenotype may be produced by different mutations. In light of this, the development of gene therapy to treat mtDNA disorders offers a promising approach, as it potentially circumvents the complication of the aforementioned genotype-phenotype inconsistency and ultimately the current inability to treat individual disorders with sufficient efficacy. Such an approach will ultimately require the combination of efficient mitochondrial targeting, and an effective therapeutic molecule. Although promising proof-of-principle developments in this field have been demonstrated, the realization of a successful therapeutic mitochondrial gene therapy strategy has not come to fruition. This review critiques the key approaches under development by discussing the theory underlying each strategy, and detailing the current progress made. We also emphasize the potential hurdles that must be acknowledged and overcome if the potential of a therapeutic gene therapy to treat mitochondrial DNA disorders is to be realized.
Collapse
Affiliation(s)
- Stephen R Doyle
- Department of Genetics and Human Variation, La Trobe University, Melbourne, Victoria 3086, Australia.
| | | |
Collapse
|
11
|
Ahmed AU, Fisher PR. Import of nuclear-encoded mitochondrial proteins: a cotranslational perspective. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 273:49-68. [PMID: 19215902 DOI: 10.1016/s1937-6448(08)01802-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A growing amount of evidence suggests that the cytosolic translation of nuclear-encoded mitochondrial proteins and their subsequent import into mitochondria are tightly coupled in a process termed cotranslational import. In addition to the original posttranslational view of mitochondrial protein import, early literature also provides both in vitro and in vivo experimental evidence supporting the simultaneous existence of a cotranslational protein-import mechanism in mitochondria. Recent investigations have started to reveal the cotranslational import mechanism which is initiated by transporting either a translation complex or a translationally competent mRNA encoding a mitochondrial protein to the mitochondrial surface. The intracellular localization of mRNA to the mitochondrial surface has emerged as the latest addition to our understanding of mitochondrial biogenesis. It is mediated by targeting elements within the mRNA molecule in association with potential mRNA-binding proteins.
Collapse
Affiliation(s)
- Afsar U Ahmed
- Department of Microbiology, La Trobe University, Victoria, Australia
| | | |
Collapse
|
12
|
Lee J, Sharma S, Kim J, Ferrante RJ, Ryu H. Mitochondrial nuclear receptors and transcription factors: who's minding the cell? J Neurosci Res 2008; 86:961-71. [PMID: 18041090 DOI: 10.1002/jnr.21564] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Mitochondria are power organelles generating biochemical energy, ATP, in the cell. Mitochondria play a variety of roles, including integrating extracellular signals and executing critical intracellular events, such as neuronal cell survival and death. Increasing evidence suggests that a cross-talk mechanism between mitochondria and the nucleus is closely related to neuronal function and activity. Nuclear receptors (estrogen receptors, thyroid (T3) hormone receptor, peroxisome proliferators-activated receptor gamma2) and transcription factors (cAMP response binding protein, p53) have been found to target mitochondria and exert prosurvival and prodeath pathways. In this context, the regulation of mitochondrial function via the translocation of nuclear receptors and transcription factors may underlie some of the mechanisms involved in neuronal survival and death. Understanding the function of nuclear receptors and transcription factors in the mitochondria may provide important pharmacological utility in the treatment of neurodegenerative conditions. Thus, the modulation of signaling pathways via mitochondria-targeting nuclear receptors and transcription factors is rapidly emerging as a novel therapeutic target.
Collapse
Affiliation(s)
- Junghee Lee
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
13
|
Abstract
Ejaculated sperm are capable of using mRNAs transcripts for protein translation during the final maturation steps before fertilization. In a capacitation-dependent process, nuclear-encoded mRNAs are translated by mitochondrial-type ribosomes while the cytoplasmic translation machinery is not involved. Our findings suggest that new proteins are synthesized to replace degraded proteins while swimming and waiting in the female reproductive tract before fertilization, or produced due to the specific needs of the capacitating spermatozoa. In addition, a growing number of articles have reported evidence for the correlation of nuclear-encoded mRNA and protein synthesis in somatic mitochondria. It is known that all of the proteins necessary for the replication, transcription and translation of the genes encoded in mtDNA are now encoded in the nuclear genome. This genetic investment is far out of proportion to the number of proteins involved, as there have been multiple movements and duplications of genes. However, the evolutionary retention (or secondary uptake) of the mitochondrial machinery for translation of nuclear-encoded mRNAs may shed light on this paradox.
Collapse
Affiliation(s)
- Yael Gur
- The Mina & Everard Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | |
Collapse
|
14
|
Barth C, Le P, Fisher PR. Mitochondrial biology and disease in Dictyostelium. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 263:207-52. [PMID: 17725968 DOI: 10.1016/s0074-7696(07)63005-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The cellular slime mold Dictyostelium discoideum has become an increasingly useful model for the study of mitochondrial biology and disease. Dictyostelium is an amoebazoan, a sister clade to the animal and fungal lineages. The mitochondrial biology of Dictyostelium exhibits some features which are unique, others which are common to all eukaryotes, and still others that are otherwise found only in the plant or the animal lineages. The AT-rich mitochondrial genome of Dictyostelium is larger than its mammalian counterpart and contains 56kb (compared to 17kb in mammals) encoding tRNAs, rRNAs, and 33 polypeptides (compared to 13 in mammals). It produces a single primary transcript that is cotranscriptionally processed into multiple monocistronic, dicistronic, and tricistronic mRNAs, tRNAs, and rRNAs. The mitochondrial fission mechanism employed by Dictyostelium involves both the extramitochondrial dynamin-based system used by plant, animal, and fungal mitochondria and the ancient FtsZ-based intramitochondrial fission process inherited from the bacterial ancestor. The mitochondrial protein-import apparatus is homologous to that of other eukaryote, and mitochondria in Dictyostelium play an important role in the programmed cell death pathways. Mitochondrial disease in Dictyostelium has been created both by targeted gene disruptions and by antisense RNA and RNAi inhibition of expression of essential nucleus-encoded mitochondrial proteins. This has revealed a regular pattern of aberrant mitochondrial disease phenotypes caused not by ATP insufficiency per se, but by chronic activation of the universal eukaryotic energy-sensing protein kinase AMPK. This novel insight into the cytopathological mechanisms of mitochondrial dysfunction suggests new possibilities for therapeutic intervention in mitochondrial and neurodegenerative diseases.
Collapse
Affiliation(s)
- Christian Barth
- Department of Microbiology, La Trobe University, Melbourne VIC 3086, Australia
| | | | | |
Collapse
|
15
|
Ahmed AU, Beech PL, Lay ST, Gilson PR, Fisher PR. Import-associated translational inhibition: novel in vivo evidence for cotranslational protein import into Dictyostelium discoideum mitochondria. EUKARYOTIC CELL 2006; 5:1314-27. [PMID: 16896215 PMCID: PMC1539133 DOI: 10.1128/ec.00386-05] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2005] [Accepted: 05/29/2006] [Indexed: 11/20/2022]
Abstract
To investigate protein import into the mitochondria of Dictyostelium discoideum, green fluorescent protein (GFP) was fused as a reporter protein either to variable lengths of the N-terminal region of chaperonin 60 (the first 23, 40, 80, 97, and 150 amino acids) or to the mitochondrial targeting sequence of DNA topoisomerase II. The fusion proteins were expressed in AX2 cells under the actin-15 promoter. Fluorescence images of GFP transformants confirmed that Dictyostelium chaperonin 60 is a mitochondrial protein. The level of the mitochondrially targeted GFP fusion proteins was unexpectedly much lower than the nontargeted (cytoplasmic) forms. The distinction between targeted and nontargeted protein activities was investigated at both the transcriptional and translational levels in vivo. We found that targeting GFP to the mitochondria results in reduced levels of the fusion protein even though transcription of the fusion gene and the stability of the protein are unaffected. [(35)S]methionine labeling and GFP immunoprecipitation confirmed that mitochondrially targeted GFP is translated at much slower rates than nontargeted GFP. The results indicate a novel phenomenon, import-associated translational inhibition, whereby protein import into the mitochondria limits the rate of translation. The simplest explanation for this is that import of the GFP fusion proteins occurs cotranslationally, i.e., protein synthesis and import into mitochondria are coupled events. Consistent with cotranslational import, Northern analysis showed that the GFP mRNA is associated with isolated mitochondria. This association occurred regardless of whether the GFP was fused to a mitochondrial leader peptide. However, the presence of an import-competent leader peptide stabilized the mRNA-mitochondria association, rendering it more resistant to extensive EDTA washing. In contrast with GFP, the mRNA of another test protein, aequorin, did not associate with the mitochondria, and its translation was unaffected by import of the encoded polypeptide into the mitochondria.
Collapse
Affiliation(s)
- Afsar U Ahmed
- Department of Microbiology, La Trobe University, Bundoora, Victoria 3086, Australia
| | | | | | | | | |
Collapse
|
16
|
Mukhopadhyay A, Zullo SJ, Weiner H. Factors that might affect the allotopic replacement of a damaged mitochondrial DNA-encoded protein. Rejuvenation Res 2006; 9:182-90. [PMID: 16706640 DOI: 10.1089/rej.2006.9.182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The human mitochondrion contains a small circular genome that codes for 13 proteins, 22 tRNAs, and 2 rRNAs. The proteins are all inner membrane bound components of complexes involved in the electron transport system and ATP formation. Mutations to any of the 13 proteins affect cellular behavior because energy production could be decreased. Investigators have attempted to find methods to correct these mutated proteins. One way is to express the mitochondrial gene in the nucleus (called allotopic expression). The newly synthesized protein would have to be imported into mitochondria and assembled into complexes. This paper reviews some of the successful attempts to achieve allotopic expression and discusses some issues that might affect the ability to have the proteins properly inserted into the inner membrane.
Collapse
Affiliation(s)
- Abhijit Mukhopadhyay
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 22046, USA
| | | | | |
Collapse
|
17
|
Russo A, Russo G, Cuccurese M, Garbi C, Pietropaolo C. The 3'-untranslated region directs ribosomal protein-encoding mRNAs to specific cytoplasmic regions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:833-43. [PMID: 16839621 DOI: 10.1016/j.bbamcr.2006.05.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Revised: 04/21/2006] [Accepted: 05/10/2006] [Indexed: 11/30/2022]
Abstract
mRNA localization is a conserved post-transcriptional process crucial for a variety of systems. We have analyzed the subcellular distribution of mRNAs encoding human cytosolic and mitochondrial ribosomal proteins. Biochemical fractionation experiments showed that the transcripts for cytosolic ribosomal proteins associate preferentially with the cytoskeleton via actin microfilaments. Transfection in HeLa cells of a GFP reporter construct containing the cytosolic ribosomal protein L4 3'-UTR showed that the 3'-UTR is necessary for the association of the transcript to the cytoskeleton. Using confocal analysis we demonstrate that the chimeric transcript is specifically associated with the perinuclear cytoskeleton. We also show that mRNA for mitochondrial ribosomal protein S12 is asymmetrically distributed in the cytoplasm. In fact, this transcript was localized mainly in the proximity of mitochondria, and the localization was 3'-UTR-dependent. In summary, ribosomal protein mRNAs constitute a new class of localized transcripts that share a common localization mechanism.
Collapse
Affiliation(s)
- Annapina Russo
- Dipartimento di Biochimica e Biotecnologie Mediche, Università Federico II, Via Sergio Pansini 5, Napoli 80131, Italy
| | | | | | | | | |
Collapse
|
18
|
MacKenzie JA, Payne RM. Preparation of ribosomes loaded with truncated nascent proteins to study ribosome binding to mammalian mitochondria. Mitochondrion 2006; 6:64-70. [PMID: 16513430 DOI: 10.1016/j.mito.2006.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2005] [Revised: 12/13/2005] [Accepted: 01/11/2006] [Indexed: 11/23/2022]
Abstract
Supporting a co-translational model of protein import into mitochondria, we have previously shown that ribosome-nascent chain complexes (RNCs) specifically bind to mitochondria. When producing RNCs using the rabbit reticulocyte lysate in vitro translation system, it was necessary to maximize ribosome loading with truncated nascent proteins because it had a direct impact on RNC binding. We describe here the optimal conditions for preparing RNCs. We show that translation temperature and reaction time are two critical factors, with 30 degrees Celsius and 15min being optimal, respectively. We also show that transcription reactions can be used directly in the translation reaction to create RNCs.
Collapse
Affiliation(s)
- James A MacKenzie
- Department of Biological Sciences, Oswego State University of New York, Oswego, NY 13126, USA
| | | |
Collapse
|
19
|
Zou J, Ye Y, Welshhans K, Lurtz M, Ellis AL, Louis C, Rehder V, Yang JJ. Expression and optical properties of green fluorescent protein expressed in different cellular environments. J Biotechnol 2005; 119:368-78. [PMID: 15935502 DOI: 10.1016/j.jbiotec.2005.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Revised: 04/05/2005] [Accepted: 04/20/2005] [Indexed: 11/16/2022]
Abstract
This study has investigated the expression of green fluorescent protein (GFP) variants in the cytosol and the endoplasmic reticulum (ER) of HeLa cells and evaluated the effects of the different cellular environments on the fluorescence properties of these GFP variants. Several GFP variants have been constructed by adding different N- or C-terminal signal sequences. These proteins were expressed and folded in distinct cellular compartments in HeLa cells. The localization of these GFP variants targeted to the endoplasmic recticulum was confirmed by the co-localization of DsRed2-ER as assessed by confocal microscopy. The addition of signal peptides targeting GFP variants to the ER or cytosol did not appear to alter the optical spectra of these GFP variants. However, the fluorescence intensity of these GFP variants in the ER was significantly less than that in the cytosol. Thus, the results clearly suggest that the cellular environment affects the formation and/or maturation of green fluorescence protein in vivo. These findings will be helpful in the future development and application of GFP technology aimed at investigating cellular functions performed in the ER and the cytosol.
Collapse
Affiliation(s)
- Jin Zou
- Department of Chemistry, Center for Drug Design and Biotechnology, Georgia State University, Atlanta, GA 30303, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Tang WK, Chan CB, Cheng CHK, Fong WP. Seabream antiquitin: molecular cloning, tissue distribution, subcellular localization and functional expression. FEBS Lett 2005; 579:3759-64. [PMID: 15967446 DOI: 10.1016/j.febslet.2005.05.070] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Accepted: 05/20/2005] [Indexed: 11/30/2022]
Abstract
Subsequent to our earlier report on the first purification of antiquitin protein from seabream liver and demonstration of its enzymatic activity [FEBS Letters 516 (2002) 183-186], we report herein the cloning of its full-length cDNA sequence. The open reading frame encodes a protein of 511 amino acids. Results of RT-PCR indicate that antiquitin is highly expressed in both the seabream liver and kidney. Transfection studies in cultured eukaryotic cells provided further evidence that it is a cytosolic protein. Bacterial expression of the enzyme was also performed. The purified recombinant protein was demonstrated to exhibit similar kinetic properties as the native enzyme.
Collapse
Affiliation(s)
- Wai-Kwan Tang
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | | | | | | |
Collapse
|
21
|
Mukhopadhyay A, Ni L, Weiner H. A co-translational model to explain the in vivo import of proteins into HeLa cell mitochondria. Biochem J 2005; 382:385-92. [PMID: 15153070 PMCID: PMC1133951 DOI: 10.1042/bj20040065] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2004] [Revised: 05/18/2004] [Accepted: 05/21/2004] [Indexed: 11/17/2022]
Abstract
The dual signal approach, i.e. a mitochondrial signal at the N-terminus and an ER (endoplasmic reticulum) or a peroxisomal signal at the C-terminus of EGFP (enhanced green fluorescent protein), was employed in transfected HeLa cells to test for a co-translational import model. The signal peptide from OTC (ornithine transcarbamylase) or arginase II was fused to the N-terminus of EGFP, and an ER or peroxisomal signal was fused to its C-terminus. The rationale was that if the free preprotein remained in the cytosol, it could be distributed between the two organelles by using a post-translational pathway. The resulting fusion proteins were imported exclusively into mitochondria, suggesting that co-translational import occurred. Native preALDH (precursor of rat liver mitochondrial aldehyde dehydrogenase), preOTC and rhodanese, each with the addition of a C-terminal ER or peroxisomal signal, were also translocated only to the mitochondria, again showing that a co-translational import pathway exists for these native proteins. Import of preALDH(sp)-DHFR, a fusion protein consisting of the leader sequence (signal peptide) of preALDH fused to DHFR (dihydrofolate reductase), was studied in the presence of methotrexate, a substrate analogue for DHFR. It was found that 70% of the preALDH(sp)-DHFR was imported into mitochondria in the presence of methotrexate, implying that 70% of the protein utilized the co-translational import pathway and 30% used the post-translational import pathway. Thus it appears that co-translational import is a major pathway for mitochondrial protein import. A model is proposed to explain how competition between binding factors could influence whether or not a cytosolic carrier protein, such as DHFR, uses the co- or post-translational import pathway.
Collapse
Affiliation(s)
- Abhijit Mukhopadhyay
- Department of Biochemistry, Purdue University, 175 S. University Street, West Lafayette, IN 47907-2063, U.S.A
| | - Li Ni
- Department of Biochemistry, Purdue University, 175 S. University Street, West Lafayette, IN 47907-2063, U.S.A
| | - Henry Weiner
- To whom correspondence should be addressed (email )
| |
Collapse
|
22
|
Warnock DE, Fahy E, Taylor SW. Identification of protein associations in organelles, using mass spectrometry-based proteomics. MASS SPECTROMETRY REVIEWS 2004; 23:259-280. [PMID: 15133837 DOI: 10.1002/mas.10077] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Recent literature that highlights the power of using mass spectrometry (MS) for protein identification from preparations of highly purified organelles and other large subcellular structures is covered in this review with an emphasis on techniques that preserve the integrity of the functional protein complexes. Recent advances in distinguishing contaminant proteins from "bonafide" organelle-localized proteins and the affinity capture of protein complexes are reviewed, as well as bioinformatic strategies to predict protein organellar localization and to integrate protein-protein interaction maps obtained from MS-affinity capture methods with data obtained from other techniques. Those developments demonstrate that a revolution in cellular biology, fueled by technical advances in MS-based proteomic techniques, is well underway.
Collapse
Affiliation(s)
- Dale E Warnock
- MitoKor, Inc., 11494 Sorrento Valley Road, San Diego, California 92121, USA
| | | | | |
Collapse
|
23
|
Rieger MA, Ebner R, Bell DR, Kiessling A, Rohayem J, Schmitz M, Temme A, Rieber EP, Weigle B. Identification of a novel mammary-restricted cytochrome P450, CYP4Z1, with overexpression in breast carcinoma. Cancer Res 2004; 64:2357-64. [PMID: 15059886 DOI: 10.1158/0008-5472.can-03-0849] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
By screening a transcriptome database for expressed sequence tags that are specifically expressed in mammary gland and breast carcinoma, we identified a new human cytochrome P450 (CYP), termed CYP4Z1. The cDNA was cloned from the breast carcinoma line SK-BR-3 and codes for a protein of 505 amino acids. Moreover, a transcribed pseudogene CYP4Z2P that codes for a truncated CYP protein (340 amino acids) with 96% identity to CYP4Z1 was found in SK-BR-3. CYP4Z1 and CYP4Z2P genes consisting of 12 exons are localized in head-to-head orientation on chromosome 1p33. Tissue-specific expression was investigated using real-time reverse transcription PCR with normalized cDNA from 18 different human tissues. CYP4Z1 mRNA was preferentially detected in breast carcinoma tissue and mammary gland, whereas only marginal expression was found in all other tested tissues. Investigation of cDNA pairs from tumor/normal tissues obtained from 241 patients, including 50 breast carcinomas, confirmed the breast-restricted expression and showed a clear overexpression in 52% of breast cancer samples. The expression profile of CYP4Z2P was similar to that of CYP4Z1 with preference in breast carcinoma and mammary gland but a lower expression level in general. Immunoblot analyses with a specific antiserum for CYP4Z1 clearly demonstrated protein expression in mammary gland and breast carcinoma tissue specimens as well as in CYP4Z1-transduced cell lines. Confocal laser-scanning microscopy of MCF-7 cells transfected with a fluorescent fusion protein CYP4Z1-enhanced green fluorescent protein and a subcellular fractionation showed localization to the endoplasmic reticulum as an integral membrane protein concordant for microsomal CYP enzymes.
Collapse
Affiliation(s)
- Michael A Rieger
- Institute of Immunology, Medical Faculty Carl Gustav Carus, Technical University of Dresden, Dresden, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Mavinakere MS, Colberg-Poley AM. Dual targeting of the human cytomegalovirus UL37 exon 1 protein during permissive infection. J Gen Virol 2004; 85:323-329. [PMID: 14769889 DOI: 10.1099/vir.0.19589-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human cytomegalovirus (HCMV) UL37 immediate-early (IE) gene minimally encodes three protein isoforms that share NH(2)-terminal sequences. The predominant UL37 isoform detected during HCMV infection was the UL37 exon 1 protein (pUL37x1), which was produced from IE and, more abundantly, through late times of infection. pUL37x1 was localized in both the endoplasmic reticulum (ER) and mitochondria in infected cells. To determine which UL37x1 NH(2)-terminal residues serve as ER and mitochondrial targeting signals, we examined the subcellular localization of two deletion mutants. pUL37x1Delta2-23, which lacks the hydrophobic leader, is neither translocated into the ER nor imported mitochondrially; conversely, pUL37x1Delta23-34, lacking the juxtaposed basic residues, was translocated into the ER but only imported weakly into mitochondria. These studies show for the first time the temporal production and localization of pUL37x1 during HCMV infection. The trafficking patterns of mutants suggest that the pUL37x1 targeting signal to ER and mitochondria is bipartite.
Collapse
Affiliation(s)
- Manohara S Mavinakere
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Anamaris M Colberg-Poley
- Department of Pediatrics, George Washington University, School of Medicine and Health Sciences, 111 Michigan Avenue NW, Washington, DC 20010, USA
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010, USA
| |
Collapse
|
25
|
MacKenzie JA, Payne RM. Ribosomes specifically bind to mammalian mitochondria via protease-sensitive proteins on the outer membrane. J Biol Chem 2003; 279:9803-10. [PMID: 14668341 DOI: 10.1074/jbc.m307167200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interaction of ribosomes with specific components of membranes is one of the central themes to the co-translational targeting and import of proteins. To examine ribosome binding to mammalian mitochondria, we used ribosome-nascent chain complexes (RNCs) to follow the in vitro binding of ribosomes that correspond to the initial targeting stage of proteins. Mitochondria were found to contain a limited number of RNC binding sites on the outer membrane. It required more than twice the amount of non-translating ribosomes to inhibit RNC binding by one-half, indicating that RNCs have a competitive binding advantage. In addition, we found that RNCs bind mainly through the ribosomal component and not the nascent chain. RNCs bind via protease-sensitive proteins on the outer membrane, as well as by protease-insensitive components suggesting that two classes of receptors exist. We also show that binding is sensitive to cation conditions. Nearly all of the binding was inhibited in 0.5 m KCl, indicating that they interact with the membrane primarily through electrostatic interactions. In addition, disruption of RNC structure by removing magnesium causes the complete inhibition of binding under normal binding conditions indicating that it is the intact ribosome that is crucial for binding and not the nascent chain. These findings support the hypothesis that the outer mitochondrial membrane contains receptors specific for ribosomes, which would support the conditions necessary for co-translational import.
Collapse
Affiliation(s)
- James A MacKenzie
- Section on Cardiology, Department of Pediatrics, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1081, USA
| | | |
Collapse
|
26
|
Ambard-Bretteville F, Small I, Grandjean O, Colas des Francs-Small C. Discrete mutations in the presequence of potato formate dehydrogenase inhibit the in vivo targeting of GFP fusions into mitochondria. Biochem Biophys Res Commun 2003; 311:966-71. [PMID: 14623276 DOI: 10.1016/j.bbrc.2003.10.099] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Most mitochondrial proteins are encoded by the nucleus, translated in the cytosol, and imported. Mitochondrial precursors generally contain their targeting information in a cleavable N-terminal presequence, which is rich in hydroxylated and positively charged residues and can form amphiphilic alpha-helices. We report the in vivo targeting of green fluorescent protein (GFP) by the FDH presequence, as well as several truncated or mutated variants. Some of these mutations modify the amphiphilicity of the predicted alpha-helix. The removal of the first two residues abolishes import and some single amino acid mutations strongly inhibit import. Such strong effects on import had not been observed in similar studies on other plant mitochondrial presequences, suggesting that the FDH presequence is a particularly good model for functional studies.
Collapse
|
27
|
Sylvestre J, Margeot A, Jacq C, Dujardin G, Corral-Debrinski M. The role of the 3' untranslated region in mRNA sorting to the vicinity of mitochondria is conserved from yeast to human cells. Mol Biol Cell 2003; 14:3848-56. [PMID: 12972568 PMCID: PMC196577 DOI: 10.1091/mbc.e03-02-0074] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2003] [Revised: 05/12/2003] [Accepted: 05/12/2003] [Indexed: 11/11/2022] Open
Abstract
We recently demonstrated, using yeast DNA microarrays, that mRNAs of polysomes that coisolate with mitochondria code for a subset of mitochondrial proteins. The majority of these mRNAs encode proteins of prokaryotic origin. Herein, we show that a similar association occurs between polysomes and mitochondria in human cells. To determine whether mRNA transport machinery is conserved from yeast to human cells, we examined the subcellular localization of human OXA1 mRNA in yeast. Oxa1p is a key component in the biogenesis of mitochondrial inner membrane and is conserved from bacteria to eukaryotic organelles. The expression of human OXA1 cDNA partially restores the respiratory capacity of yeast oxa1- cells. In this study, we demonstrate that 1) OXA1 mRNAs are remarkably enriched in mitochondrion-bound polysomes purified from yeast and human cells; 2) the presence of the human OXA1 3' untranslated region (UTR) is required for the function of the human Oxa1p inside yeast mitochondria; and 3) the accurate sorting of the human OXA1 mRNA to the vicinity of yeast mitochondria is due to the recognition by yeast proteins of the human 3' UTR. Therefore, it seems that the recognition mechanism of OXA1 3' UTR is conserved throughout evolution and is necessary for Oxa1p function.
Collapse
Affiliation(s)
- J Sylvestre
- Laboratoire de Génétique Moléculaire, Unité Mixte Recherche Centre National de la Recherche Scientifique 8541, Ecole Normale Supérieure, Paris, France
| | | | | | | | | |
Collapse
|
28
|
Gerisch G, Müller-Taubenberger A. GFP-fusion proteins as fluorescent reporters to study organelle and cytoskeleton dynamics in chemotaxis and phagocytosis. Methods Enzymol 2003; 361:320-37. [PMID: 12624918 DOI: 10.1016/s0076-6879(03)61017-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Günther Gerisch
- Max-Planck-Institute for Biochemistry, D-82152 Martinsried, Germany
| | | |
Collapse
|
29
|
Mukhopadhyay A, Heard TS, Wen X, Hammen PK, Weiner H. Location of the actual signal in the negatively charged leader sequence involved in the import into the mitochondrial matrix space. J Biol Chem 2003; 278:13712-8. [PMID: 12551941 DOI: 10.1074/jbc.m212743200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Proteins destined for the mitochondrial matrix space have leader sequences that are typically present at the most N-terminal end of the nuclear-encoded precursor protein. The leaders are rich in positive charges and usually deficient of negative charges. This observation led to the acid-chain hypothesis to explain how the leader sequences interact with negatively charged receptor proteins. Here we show using both chimeric leaders and one from isopropyl malate synthase that possesses a negative charge that the leader need not be at the very N terminus of the precursor. Experiments were performed with modified non-functioning leader sequences fused to either the native or a non-functioning leader of aldehyde dehydrogenase so that an internal leader sequence could exist. The internal leader is sufficient for the import of the modified precursor protein. It appears that this leader still needs to form an amphipathic helix just like the normal N-terminal leaders do. This internal leader could function even if the most N-terminal portion contained negative charges in the first 7-11 residues. If the first 11 residues were deleted from isopropyl malate synthase, the resulting protein was imported more successfully than the native protein. It appears that precursors that carry negatively charged leaders use an internal signal sequence to compensate for the non-functional segment at the most N-terminal portion of the protein.
Collapse
Affiliation(s)
- Abhijit Mukhopadhyay
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907-2063, USA
| | | | | | | | | |
Collapse
|
30
|
Foth BJ, Ralph SA, Tonkin CJ, Struck NS, Fraunholz M, Roos DS, Cowman AF, McFadden GI. Dissecting apicoplast targeting in the malaria parasite Plasmodium falciparum. Science 2003; 299:705-8. [PMID: 12560551 DOI: 10.1126/science.1078599] [Citation(s) in RCA: 341] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Transit peptides mediate protein targeting into plastids and are only poorly understood. We extracted amino acid features from transit peptides that target proteins to the relict plastid (apicoplast) of malaria parasites. Based on these amino acid characteristics, we identified 466 putative apicoplast proteins in the Plasmodium falciparum genome. Altering the specific charge characteristics in a model transit peptide by site-directed mutagenesis severely disrupted organellar targeting in vivo. Similarly, putative Hsp70 (DnaK) binding sites present in the transit peptide proved to be important for correct targeting.
Collapse
Affiliation(s)
- Bernardo J Foth
- Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Parkville, VIC 3010, Australia
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Wen H, Jurkovicova D, Pickel VM, Gioio AE, Kaplan BB. Identification of a novel membrane-associated protein expressed in neurons of the squid and rodent nervous systems. Neuroscience 2003; 114:995-1004. [PMID: 12379254 DOI: 10.1016/s0306-4522(02)00362-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In a previous communication, we reported the isolation of a novel cDNA clone (pA6) from a library constructed from squid axonal mRNAs. The partial cDNA clone contained a unique open reading frame that encoded 84 amino acids and was complementary to a moderately abundant mRNA approximately 550-600 nucleotides in length [Chun et al., J. Neurosci. Res. 49 (1997) 144-153]. In this report, we identify the pA6 gene product, and characterize its expression in the squid and rodent brain. Results of immunoblot analyses conducted in squid, using a polyclonal antibody raised against a synthetic peptide corresponding to the C-terminus of the putative protein, established the presence of two pA6 immunoreactive proteins of approximately 14 kDa and 26 kDa in size. In contrast, mouse brain contained only a single 26-kDa immunoreactive species. In both the squid and mouse brain, the expression of pA6 appears highly selective, being detected in certain neurons but not in non-neuronal cells, as judged by both in situ hybridization and immunocytochemistry. Findings derived from light microscopic, double-label immunohistofluorescence studies indicate that pA6 protein co-localizes with prohibitin, a mitochondrial marker protein. Consistent with these results, electron microscopy localized pA6 immunoreactivity to several membrane compartments to include the outer membrane of mitochondria, as well as to the smooth endoplasmic reticulum and tubulovesicles in dendrites, axons, and axon terminals of neurons in the rat brain. Taken together, these findings indicate that pA6 is a novel, membrane-associated protein, which is expressed in the distal structural/functional domains of neurons in both the invertebrate and vertebrate nervous systems.
Collapse
Affiliation(s)
- H Wen
- Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 4N222, Bethesda, MD 20892-1381, USA
| | | | | | | | | |
Collapse
|
32
|
Guy J, Qi X, Pallotti F, Schon EA, Manfredi G, Carelli V, Martinuzzi A, Hauswirth WW, Lewin AS. Rescue of a mitochondrial deficiency causing Leber Hereditary Optic Neuropathy. Ann Neurol 2002; 52:534-42. [PMID: 12402249 DOI: 10.1002/ana.10354] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A G to A transition at nucleotide 11778 in the ND4 subunit gene of complex I was the first point mutation in the mitochondrial genome linked to a human disease. It causes Leber Hereditary Optic Neuropathy, a disorder with oxidative phosphorylation deficiency. To overcome this defect, we made a synthetic ND4 subunit compatible with the "universal" genetic code and imported it into mitochondria by adding a mitochondrial targeting sequence. For detection we added a FLAG tag. This gene was inserted in an adeno-associated viral vector. The ND4FLAG protein was imported into the mitochondria of cybrids harboring the G11778A mutation, where it increased their survival rate threefold, under restrictive conditions that forced the cells to rely predominantly on oxidative phosphorylation to produce ATP. Since assays of complex I activity were normal in G11778A cybrids we focused on changes in ATP synthesis using complex I substrates. The G11778A cybrids showed a 60% reduction in the rate of ATP synthesis. Relative to mock-transfected G11778A cybrids, complemented G11778A cybrids showed a threefold increase in ATP synthesis, to a level indistinguishable from that in cybrids containing normal mitochondrial DNA. Restoration of respiration by allotopic expression opens the door for gene therapy of Leber Hereditary Optic Neuropathy.
Collapse
MESH Headings
- Adenosine Triphosphate/biosynthesis
- Cell Survival
- Cells, Cultured
- DNA, Mitochondrial/genetics
- Dependovirus/genetics
- Electron Transport Complex I
- Gene Transfer Techniques
- Genetic Therapy
- Genetic Vectors
- Humans
- Hybrid Cells/physiology
- NADH, NADPH Oxidoreductases/genetics
- NADH, NADPH Oxidoreductases/metabolism
- Optic Atrophy, Hereditary, Leber/genetics
- Optic Atrophy, Hereditary, Leber/metabolism
- Optic Atrophy, Hereditary, Leber/therapy
- Oxidative Phosphorylation
- Point Mutation
- Sequence Tagged Sites
Collapse
Affiliation(s)
- John Guy
- Department of Ophthalmology, Neuro-Opthalmology Service, University of Florida College of Medicine, Gainesville, FL 32610, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ricart J, Izquierdo JM, Di Liegro CM, Cuezva JM. Assembly of the ribonucleoprotein complex containing the mRNA of the beta-subunit of the mitochondrial H+-ATP synthase requires the participation of two distal cis-acting elements and a complex set of cellular trans-acting proteins. Biochem J 2002; 365:417-28. [PMID: 11952427 PMCID: PMC1222693 DOI: 10.1042/bj20011726] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2001] [Revised: 03/20/2002] [Accepted: 04/08/2002] [Indexed: 11/17/2022]
Abstract
The mRNA encoding the beta-subunit of the mitochondrial H(+)-ATP synthase (beta-F1-ATPase) is localized in an approx. 150 nm structure of the hepatocyte of mammals. In the present study, we have investigated the cis- and trans-acting factors involved in the generation of the ribonucleoprotein complex containing beta-F1-ATPase mRNA. Two cis-acting elements (beta1.2 and 3'beta) have been identified. The beta1.2 element is placed in the open reading frame, downstream of the region encoding the mitochondrial pre-sequence of the protein. The 3'beta element is the 3' non-translated region of the mRNA. Complex sets of proteins from the soluble and non-soluble fractions of the liver interact with the beta1.2 and 3'beta elements. A soluble p88, present also in reticulocyte lysate, displays binding specificity for both the cis-acting elements. Sedimentation and high-resolution in situ hybridization experiments showed that the structure containing the rat liver beta-F1-ATPase mRNA is found in fractions of high sucrose concentration, where large polysomes sediment. Treatment of liver extracts with EDTA promoted the mobilization of beta-F1-ATPase mRNA to fractions of lower sucrose concentration, suggesting that the structure containing beta-F1-ATPase mRNA is a large polysome. Finally, in vitro reconstitution experiments with reticulocyte lysate, using either the full-length, mutant or chimaeric versions of beta-F1-ATPase mRNA, reveal that the assembly of the beta-F1-ATPase mRNA polysome requires the co-operation of both the cis-acting mRNA determinants. The present study illustrates the existence of an intramolecular RNA cross-talking required for the association of the mRNA with the translational machinery.
Collapse
Affiliation(s)
- Javier Ricart
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
34
|
Torrungruang K, Shah R, Alvarez M, Bowen DK, Gerard R, Pavalko FM, Elmendorf JS, Charoonpatrapong K, Hock J, Rhodes SJ, Bidwell JP. Osteoblast intracellular localization of Nmp4 proteins. Bone 2002; 30:931-6. [PMID: 12052465 DOI: 10.1016/s8756-3282(02)00730-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nmp4 proteins are transcription factors that contribute to the expression of type I collagen and many of the matrix metalloproteinase genes. Numerous Nmp4 isoforms have been identified. These proteins, all derived from a single gene, have from five to eight Cys(2)His(2) zinc fingers, the arrangement of which directs specific isoforms to nuclear matrix subdomains. Nmp4 isoforms also have an SH3 binding domain, typical of cytoplasmic docking proteins. Although recent evidence indicates that Nmp4 proteins also reside in the osteoblast cytoplasm, whether they localize to specific organelles or structures is not well defined. The intracellular localization of a protein is a determinant of its function and provides insights into its mechanism of action. As a first step toward determining the functional relationship between the cytoplasmic and nuclear Nmp4 compartments, we mapped their location in the osteoblast cytoplasm. Immunocytochemical analysis of osteoblasts demonstrated that Nmp4 antibodies labeled the mitochondria, colocalized with Golgi protein 58K, and lightly stained the cytoplasm. Western analysis using Nmp4 antibodies revealed a complex profile of protein bands in the nuclear, mitochondrial, and cytosolic fractions. Several of these proteins were specific to defined intracellular domains. Consistent with the western analyses, reverse transcription-polymerase chain reaction (RT-PCR) analysis detected previously uncharacterized Nmp4 isoforms. These data necessarily enlarge the known Nmp4 family from nuclear matrix transcription factors to a more widely extended class of intracellular proteins.
Collapse
Affiliation(s)
- K Torrungruang
- Department of Periodontics, Indiana University School of Dentistry, Indianapolis 46202, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Mukhopadhyay A, Avramova LV, Weiner H. Tom34 unlike Tom20 does not interact with the leader sequences of mitochondrial precursor proteins. Arch Biochem Biophys 2002; 400:97-104. [PMID: 11913975 DOI: 10.1006/abbi.2002.2777] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tom20 and Tom34 are mammalian liver proteins previously identified by others to be components of the mitochondrial import translocation apparatus. It has been shown that Tom20 interacts with the leader sequence of nuclear coded matrix space precursor proteins. Here we show with recombinantly expressed Tom proteins that Tom34 binds the mature portion of the precursor and not the leader. Both these Tom proteins inhibited the import of newly translated precursor of aldehyde dehydrogenase in an in vitro assay. Only Tom20 inhibited the import of a fusion protein of the leader of aldehyde dehydrogenase attached to dihydrofolate reductase. Antibodies against Tom20 coprecipitated both the precursor of aldehyde dehydrogenase (pALDH) and of dihydrofolate reductase (pA-DHFR). Antibodies against Tom34 interacted only when the mature portion of aldehyde dehydrogenase was present. Similar import inhibition patterns were found when other precursor and chimeric constructs we investigated. When Tom34-green fluorescence protein was transfected to HeLa cells it was observed that Tom34 was found through out the cell. It is concluded from our observation that Tom34 is a cytosolic protein, whose role appeared to be to interact with mature portion of some preproteins and may keep them in an unfolded, import compatible state.
Collapse
Affiliation(s)
- Abhijit Mukhopadhyay
- Department of Biochemistry, Purdue University, 1153 Biochemistry Building, West Lafayette, Indiana 47907-1153, USA
| | | | | |
Collapse
|
36
|
Cleary SP, Tan FC, Nakrieko KA, Thompson SJ, Mullineaux PM, Creissen GP, von Stedingk E, Glaser E, Smith AG, Robinson C. Isolated plant mitochondria import chloroplast precursor proteins in vitro with the same efficiency as chloroplasts. J Biol Chem 2002; 277:5562-9. [PMID: 11733507 DOI: 10.1074/jbc.m106532200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most chloroplast and mitochondrial proteins are synthesized with N-terminal presequences that direct their import into the appropriate organelle. In this report we have analyzed the specificity of standard in vitro assays for import into isolated pea chloroplasts and mitochondria. We find that chloroplast protein import is highly specific because mitochondrial proteins are not imported to any detectable levels. Surprisingly, however, pea mitochondria import a range of chloroplast protein precursors with the same efficiency as chloroplasts, including those of plastocyanin, the 33-kDa photosystem II protein, Hcf136, and coproporphyrinogen III oxidase. These import reactions are dependent on the Deltaphi across the inner mitochondrial membrane, and furthermore, marker enzyme assays and Western blotting studies exclude any import by contaminating chloroplasts in the preparation. The pea mitochondria specifically recognize information in the chloroplast-targeting presequences, because they also import a fusion comprising the presequence of coproporphyrinogen III oxidase linked to green fluorescent protein. However, the same construct is targeted exclusively into chloroplasts in vivo indicating that the in vitro mitochondrial import reactions are unphysiological, possibly because essential specificity factors are absent in these assays. Finally, we show that disruption of potential amphipathic helices in one presequence does not block import into pea mitochondria, indicating that other features are recognized.
Collapse
Affiliation(s)
- Suzanne P Cleary
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Le Roy F, Bisbal C, Silhol M, Martinand C, Lebleu B, Salehzada T. The 2-5A/RNase L/RNase L inhibitor (RLI) [correction of (RNI)] pathway regulates mitochondrial mRNAs stability in interferon alpha-treated H9 cells. J Biol Chem 2001; 276:48473-82. [PMID: 11585831 DOI: 10.1074/jbc.m107482200] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Interferon alpha (IFNalpha) belongs to a cytokine family that exhibits antiviral properties, immuno-modulating effects, and antiproliferative activity on normal and neoplasic cells in vitro and in vivo. IFNalpha exerts antitumor action by inducing direct cytotoxicity against tumor cells. This toxicity is at least partly due to induction of apoptosis. Although the molecular basis of the inhibition of cell growth by IFNalpha is only partially understood, there is a direct correlation between the sensitivity of cells to the antiproliferative action of IFNalpha and the down-regulation of their mitochondrial mRNAs. Here, we studied the role of the 2-5A/RNase L system and its inhibitor RLI in this regulation of the mitochondrial mRNAs by IFNalpha. We found that a fraction of cellular RNase L and RLI is localized in the mitochondria. Thus, we down-regulated RNase L activity in human H9 cells by stably transfecting (i) RNase L antisense cDNA or (ii) RLI sense cDNA constructions. In contrast to control cells, no post-transcriptional down-regulation of mitochondrial mRNAs and no cell growth inhibition were observed after IFNalpha treatment in these transfectants. These results demonstrate that IFNalpha exerts its antiproliferative effect on H9 cells at least in part via the degradation of mitochondrial mRNAs by RNase L.
Collapse
Affiliation(s)
- F Le Roy
- EP2030 CNRS, Institut de Génétique Moléculaire, 1919 route de Mende, 34293 Montpellier, France
| | | | | | | | | | | |
Collapse
|
38
|
Huh KW, Siddiqui A. Hepatitis B virus X protein: a multifunctional viral regulator. J Gastroenterol 2001; 1:349-59. [PMID: 16120289 DOI: 10.1016/s1567-7249(01)00040-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2001] [Revised: 11/01/2001] [Accepted: 11/05/2001] [Indexed: 01/27/2023]
Abstract
Hepatitis B Virus (HBV) infection is one of the major causes of hepatocellular carcinoma (HCC). X protein (HBx) has been suspected to be oncogenic, although the precise role(s) remain uncertain. HBx is a multifunctional viral regulator that modulates transcription, cell responses to genotoxic stress, protein degradation, and signaling pathways. These modulations affect viral replication and viral proliferation, directly or indirectly. HBx also affects cell cycle checkpoints, cell death, and carcinogenesis. This article presents an overview of the progress in HBx research over the past several years.
Collapse
Affiliation(s)
- Kyung-Won Huh
- Department of Microbiology, University of Colorado Health Sciences Center, Denver, Colorado, OH, USA
| | | |
Collapse
|
39
|
Duby G, Oufattole M, Boutry M. Hydrophobic residues within the predicted N-terminal amphiphilic alpha-helix of a plant mitochondrial targeting presequence play a major role in in vivo import. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 27:539-49. [PMID: 11576437 DOI: 10.1046/j.1365-313x.2001.01098.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A deletion and mutagenesis study was performed on the mitochondrial presequence of the beta-subunit of the F(1)-ATP synthase from Nicotiana plumbaginifolia linked to the green fluorescent protein (GFP). The various constructs were tested in vivo by transient expression in tobacco protoplasts. GFP distribution in transformed cells was analysed in situ by confocal microscopy, and in vitro in subcellular fractions by Western blotting. Despite its being highly conserved in different species, deletion of the C-terminal region (residues 48-54) of the presequence did not affect mitochondrial import. Deletion of the conserved residues 40-47 and the less conserved intermediate region (residues 18-39) resulted in 60% reduction in GFP import, whereas mutation of conserved residues within these regions had little effect. Further shortening of the presequence progressively reduced import, with the construct retaining the predicted N-terminal amphiphilic alpha-helix (residues 1-12) being unable to mediate mitochondrial import. However, point mutation showed that this last region plays an important role through its basic residues and amphiphilicity, but also through its hydrophobic residues. Replacing Arg4 and Arg5 by alanine residues and shifting the Arg5 and Leu6 (in order to disturb amphiphilicity) resulted in reduction of the presequence import efficiency. The most dramatic effects were seen with single or double mutations of the four Leu residues (positions 5, 6, 10 and 11), which resulted in marked reduction or abolition of GFP import, respectively. We conclude that the N-terminal helical structure of the presequence is necessary but not sufficient for efficient mitochondrial import, and that its hydrophobic residues play an essential role in in vivo mitochondrial targeting.
Collapse
Affiliation(s)
- G Duby
- Unité de biochimie physiologique, Université catholique de Louvain, Croix du Sud 2-20, B-1348 Louvain-la-Neuve, Belgium
| | | | | |
Collapse
|
40
|
Abstract
Mitochondrial dysfunction is a cause, or major contributing factor in the development, of degenerative diseases, aging, cancer, many cases of Alzheimer's and Parkinson's disease and Type II diabetes (D. C. Wallace, Science 283, 1482-1488, 1999). Despite major advances in understanding mtDNA defects at the genetic and biochemical level, there is no satisfactory treatment for the vast majority of patients available. Objective limitations of conventional biochemical treatment for patients with defects of mtDNA warrant the exploration of gene therapeutic approaches. However, mitochondrial gene therapy has been elusive, due to the lack of any mitochondria-specific transfection vector. We review here the current state of the development of mitochondrial DNA delivery systems. In particular, we are summarizing our own efforts in exploring the mitochondriotropic properties of dequalinium, a cationic bolaamphiphile with delocalized charge centers, for the design of a vector suited for the transport of DNA to mitochondria in living cells.
Collapse
Affiliation(s)
- V Weissig
- Department of Pharmaceutical Sciences, Northeastern University, Bouve College of Health Sciences School of Pharmacy, 211 Mugar Building, Boston, MA, 02115, USA.
| | | |
Collapse
|
41
|
Gioio AE, Eyman M, Zhang H, Lavina ZS, Giuditta A, Kaplan BB. Local synthesis of nuclear-encoded mitochondrial proteins in the presynaptic nerve terminal. J Neurosci Res 2001; 64:447-53. [PMID: 11391699 DOI: 10.1002/jnr.1096] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
One of the central tenets in neuroscience has been that the protein constituents of distal compartments of the neuron (e.g., the axon and nerve terminal) are synthesized in the nerve cell body and are subsequently transported to their ultimate sites of function. In contrast to this postulate, we have established previously that a heterogeneous population of mRNAs and biologically active polyribosomes exist in the giant axon and presynaptic nerve terminals of the photoreceptor neurons in squid. We report that these mRNA populations contain mRNAs for nuclear-encoded mitochondrial proteins to include: cytochrome oxidase subunit 17, propionyl-CoA carboxylase (EC 6.4.1.3), dihydrolipoamide dehydrogenase (EC 1.8.1.4), and coenzyme Q subunit 7. The mRNA for heat shock protein 70, a chaperone protein known to be involved in the import of proteins into mitochondria, has also been identified. Electrophoretic gel analysis of newly synthesized proteins in the synaptosomal fraction isolated from the squid optic lobe revealed that the large presynaptic terminals of the photoreceptor neuron contain a cytoplasmic protein synthetic system. Importantly, a significant amount of the cycloheximide resistant proteins locally synthesized in the terminal becomes associated with mitochondria. PCR analysis of RNA from synaptosomal polysomes establishes that COX17 and CoQ7 mRNAs are being actively translated. Taken together, these findings indicate that proteins required for the maintenance of mitochondrial function are synthesized locally in the presynaptic nerve terminal, and call attention to the intimacy of the relationship between the terminal and its energy generating system. J. Neurosci. Res. 64:447-453, 2001. Published 2001 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- A E Gioio
- Laboratory of Molecular Biology, NIMH/NIH, Clinical Center, 9000 Rockville Pike, Bethesda, MD 20892-1381, USA
| | | | | | | | | | | |
Collapse
|
42
|
Colleluori DM, Morris SM, Ash DE. Expression, Purification, and Characterization of Human Type II Arginase. Arch Biochem Biophys 2001; 389:135-43. [PMID: 11370664 DOI: 10.1006/abbi.2001.2324] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human type II arginase, which is extrahepatic and mitochondrial in location, catalyzes the hydrolysis of arginine to form ornithine and urea. While type I arginases function in the net production of urea for excretion of excess nitrogen, type II arginases are believed to function primarily in the net production of ornithine, a precursor of polyamines, glutamate, and proline. Type II arginases may also regulate nitric oxide biosynthesis by modulating arginine availability for nitric oxide synthase. Recombinant human type II arginase was expressed in Escherichia coli and purified to apparent homogeneity. The Km of arginine for type II arginase is approximately 4.8 mM at physiological pH. Type II arginase exists primarily as a trimer, although higher order oligomers were observed. Borate is a noncompetitive inhibitor of the enzyme, with a Kis of 0.32 mM and a Kii of 0.3 mM. Ornithine, a product of the reaction catalyzed by arginase and a potent inhibitor of type I arginase, is a poor inhibitor of the type II isozyme. The findings presented here indicate that isozyme-selectivity exists between type I and type II arginases for binding of substrate and products, as well as inhibitors. Therefore, inhibitors with greater isozyme-selectivity for type II arginase may be identified and utilized for the therapeutic treatment of smooth muscle disorders, such as erectile dysfunction.
Collapse
Affiliation(s)
- D M Colleluori
- Temple University School of Medicine, Department of Biochemistry, Philadelphia, Pennsylvania 19140, USA
| | | | | |
Collapse
|
43
|
Gautschi M, Lilie H, Fünfschilling U, Mun A, Ross S, Lithgow T, Rücknagel P, Rospert S. RAC, a stable ribosome-associated complex in yeast formed by the DnaK-DnaJ homologs Ssz1p and zuotin. Proc Natl Acad Sci U S A 2001; 98:3762-7. [PMID: 11274393 PMCID: PMC31126 DOI: 10.1073/pnas.071057198] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The yeast cytosol contains multiple homologs of the DnaK and DnaJ chaperone family. Our current understanding of which homologs functionally interact is incomplete. Zuotin is a DnaJ homolog bound to the yeast ribosome. We have now identified the DnaK homolog Ssz1p/Pdr13p as zuotin's partner chaperone. Zuotin and Ssz1p form a ribosome-associated complex (RAC) that is bound to the ribosome via the zuotin subunit. RAC is unique among the eukaryotic DnaK-DnaJ systems, as the 1:1 complex is stable, even in the presence of ATP or ADP. In vitro, RAC stimulates the translocation of a ribosome-bound mitochondrial precursor protein into mitochondria, providing evidence for its chaperone-like effect on nascent chains. In agreement with the existence of a functional complex, deletion of each RAC subunit resulted in a similar phenotype in vivo. However, overexpression of zuotin partly rescued the growth defect of the Delta ssz1 strain, whereas overexpression of Ssz1p did not affect the Delta zuo1 strain, suggesting a pivotal function for the DnaJ homolog.
Collapse
Affiliation(s)
- M Gautschi
- Enzymology of Protein Folding, Max Planck Research Laboratory, Weinbergweg 22, D-06120 Halle/Saale, Germany
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Wright G, Terada K, Yano M, Sergeev I, Mori M. Oxidative stress inhibits the mitochondrial import of preproteins and leads to their degradation. Exp Cell Res 2001; 263:107-17. [PMID: 11161710 DOI: 10.1006/excr.2000.5096] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mitochondrion depends upon the import of cytosolically synthesized preproteins for most of the proteins that comprise its structural elements and metabolic pathways. Here we have examined the influence of redox conditions on mitochondrial preprotein import and processing by mammalian mitochondria. Paraquat pretreatment of isolated mitochondria inhibited the subsequent import preornithine transcarbamylase (pOTC) in vitro. In intact cells oxidizing conditions led to decreased levels of mature OTC and accumulation of its preprotein. Implicating a mitochondrial import lesion, the fluorescence of pOTC-GFP (a protein in which the presequence of pOTC was fused to green fluorescent protein) transfected cells was decreased by paraquat treatment while cytosolic wild-type GFP remained largely unaffected. The accumulation of preproteins was enhanced by proteasome inhibitors. We observed that precursor proteins that failed to be imported, due to oxidizing conditions or an intrinsically slower import rate, are susceptible to degradation. Inhibition of the proteasome was also found to lead to higher levels of the translocase outer membrane protein 20 (Tom20) and to the perinuclear accumulation of mitochondria. These studies indicate that cellular redox conditions influence mitochondrial import, which, in turn, affects mitochondrial protein levels. A role for the proteasome in this process and in general mitochondrial function was also indicated.
Collapse
Affiliation(s)
- G Wright
- Department of Molecular Genetics, Kumamoto University School of Medicine, Honjo 2-2-1, Kumamoto, 860-0811, Japan
| | | | | | | | | |
Collapse
|
45
|
Hayajneh WA, Colberg-Poley AM, Skaletskaya A, Bartle LM, Lesperance MM, Contopoulos-Ioannidis DG, Kedersha NL, Goldmacher VS. The sequence and antiapoptotic functional domains of the human cytomegalovirus UL37 exon 1 immediate early protein are conserved in multiple primary strains. Virology 2001; 279:233-40. [PMID: 11145905 DOI: 10.1006/viro.2000.0726] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The human cytomegalovirus UL37 exon 1 gene encodes the immediate early protein pUL37x1 that has antiapoptotic and regulatory activities. Deletion mutagenesis analysis of the open reading frame of UL37x1 identified two domains that are necessary and sufficient for its antiapoptotic activity. These domains are confined within the segments between amino acids 5 to 34, and 118 to 147, respectively. The first domain provides the targeting of the protein to mitochondria. Direct PCR sequencing of UL37 exon 1 amplified from 26 primary strains of human cytomegalovirus demonstrated that the promoter, polyadenylation signal, and the two segments of pUL37x1 required for its antiapoptotic function were invariant in all sequenced strains and identical to those in AD169 pUL37x1. In total, UL37 exon 1 varies between 0.0 and 1.6% at the nucleotide level from strain AD169. Only 11 amino acids were found to vary in one or more viral strains, and these variations occurred only in the domains of pUL37x1 dispensable for its antiapoptotic function. We infer from this remarkable conservation of pUL37x1 in primary strains that this protein and, probably, its antiapoptotic function are required for productive replication of human cytomegalovirus in humans.
Collapse
Affiliation(s)
- W A Hayajneh
- Department of Infectious Diseases, Center for Virology, Immunology, and Infectious Disease Research, Washington, DC, 20010, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Kwong LK, Mockett RJ, Bayne AC, Orr WC, Sohal RS. Decreased mitochondrial hydrogen peroxide release in transgenic Drosophila melanogaster expressing intramitochondrial catalase. Arch Biochem Biophys 2000; 383:303-8. [PMID: 11185567 DOI: 10.1006/abbi.2000.2093] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objective of this study was to develop strategies for manipulating oxidative stress transgenically in a multicellular organism. Ectopic catalase was introduced into the mitochondrial matrix, which is the main intracellular site of H2O2 formation and where catalase is normally absent. Transgenic Drosophila melanogaster were generated by microinjection of a P element construct, containing the genomic catalase sequence of Drosophila, with the mitochondrial leader sequence of ornithine aminotransferase inserted upstream of the coding region. Total catalase activities in whole-body homogenates of 10-day-old flies from four transgenic lines were approximately 30-160% higher than those from the parental and four vector-only control lines. Expression of catalase in the mitochondrial matrix was confirmed by immunoblotting and catalase activity assays. Mitochondrial release of H2O2 was decreased by approximately 90% in the transgenic lines when compared to levels in vector-only controls. This in vivo system provides a novel model for examining the functional significance of decreased mitochondrial H2O2 release.
Collapse
Affiliation(s)
- L K Kwong
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275, USA
| | | | | | | | | |
Collapse
|
47
|
Corral-Debrinski M, Blugeon C, Jacq C. In yeast, the 3' untranslated region or the presequence of ATM1 is required for the exclusive localization of its mRNA to the vicinity of mitochondria. Mol Cell Biol 2000; 20:7881-92. [PMID: 11027259 PMCID: PMC86399 DOI: 10.1128/mcb.20.21.7881-7892.2000] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We isolated mitochondria from Saccharomyces cerevisiae to selectively study polysomes bound to the mitochondrial surface. The distribution of several mRNAs coding for mitochondrial proteins was examined in free and mitochondrion-bound polysomes. Some mRNAs exclusively localize to mitochondrion-bound polysomes, such as the ones coding for Atm1p, Cox10p, Tim44p, Atp2p, and Cot1p. In contrast, mRNAs encoding Cox6p, Cox5a, Aac1p, and Mir1p are found enriched in free cytoplasmic polysome fractions. Aac1p and Mir1p are transporters that lack cleavable presequences. Sequences required for mRNA asymmetric subcellular distribution were determined by analyzing the localization of reporter mRNAs containing the presequence coding region and/or the 3'-untranslated region (3'UTR) of ATM1, a gene encoding an ABC transporter of the mitochondrial inner membrane. Biochemical analyses of mitochondrion-bound polysomes and direct visualization of RNA localization in living yeast cells allowed us to demonstrate that either the presequence coding region or the 3'UTR of ATM1 is sufficient to allow the reporter mRNA to localize to the vicinity of the mitochondrion, independently of its translation. These data demonstrate that mRNA localization is one of the mechanisms used, in yeast, for segregating mitochondrial proteins.
Collapse
Affiliation(s)
- M Corral-Debrinski
- Laboratoire de Génétique Moléculaire, UMR CNRS 8541, Ecole Normale Supérieure, 75230 Paris, France.
| | | | | |
Collapse
|
48
|
Mattingly JR, Yañez AJ, Martinez-Carrion M. The folding of nascent mitochondrial aspartate aminotransferase synthesized in a cell-free extract can be assisted by GroEL and GroES. Arch Biochem Biophys 2000; 382:113-22. [PMID: 11051104 DOI: 10.1006/abbi.2000.2003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
At 30 degrees C, the precursor to mitochondrial aspartate aminotransferase (pmAspAT) cannot fold after synthesis in rabbit reticulocyte lysate (RRL), a model for studying intracellular protein folding. However, it folds rapidly once imported into mitochondria. Guanidinium chloride denatured pmAspAT likewise cannot refold at 30 degrees C in a defined in vitro system. However, it refolds rapidly and in good yield in the presence of the intramitochondrial chaperone homologues GroEL and GroES. In this report, we demonstrate that GroEL and GroES can also facilitate the folding of nascent pmAspAT in reticulocyte lysate under conditions where it otherwise would not. When added alone, GroEL arrests the slow folding of nascent pmAspAT and inhibits import into mitochondria. These effects are significantly reversed by adding GroES. These observations suggest that added GroEL participates in an equilibrium with endogenous chaperones in the cytosol which inhibit folding and promote import competence. Native gel electrophoresis suggests that nascent pmAspAT exists in RRL as a heterogeneous population of partially folded species, some of which bind to added GroEL more readily than others. The GroEL-trapped species appear to be among the productive pmAspAT folding intermediates formed in RRL or they at least appear to equilibrate with these intermediates, since they become import competent after GroES-stimulated release from GroEL.
Collapse
Affiliation(s)
- J R Mattingly
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City 64110, USA
| | | | | |
Collapse
|
49
|
Colberg-Poley AM, Patel MB, Erezo DP, Slater JE. Human cytomegalovirus UL37 immediate-early regulatory proteins traffic through the secretory apparatus and to mitochondria. J Gen Virol 2000; 81:1779-89. [PMID: 10859384 DOI: 10.1099/0022-1317-81-7-1779] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human cytomegalovirus (HCMV) UL36-38 immediate-early (IE) locus encodes the UL37 exon 1 (pUL37x1) and UL37 (gpUL37) regulatory proteins, which have anti-apoptotic activities. pUL37x1 shares its entire sequence, including a hydrophobic leader and an acidic domain, with the exception of one residue, with the amino terminus of gpUL37. gpUL37 has, in addition, unique N-linked glycosylation, transmembrane and cytosolic domains. A rabbit polyvalent antiserum was generated against residues 27-40 in the shared amino-terminal domain and a mouse polyvalent antiserum was generated against the full-length protein to study trafficking of individual UL37 proteins in human cells that transiently expressed gpUL37 or pUL37x1. Co-localization studies by confocal laser scanning microscopy detected trafficking of gpUL37 and pUL37x1 from the endoplasmic reticulum to the Golgi apparatus in permissive U373 cells and in human diploid fibroblasts (HFF). Trafficking of gpUL37 to the cellular plasma membrane was detected in unfixed HFF cells. FLAG-tagged gpUL37 trafficked similarly through the secretory apparatus to the plasma membrane. By using confocal microscopy and immunoblotting of fractionated cells, gpUL37 and pUL37x1 were found to co-localize with mitochondria in human cells. This unconventional dual trafficking pattern through the secretory apparatus and to mitochondria is novel for herpesvirus IE regulatory proteins.
Collapse
Affiliation(s)
- A M Colberg-Poley
- Center for Virology, Immunology, and Infectious Disease Research (Room 5720) and Center for Molecular Mechanisms of Disease Research, Washington, DC 20010, USA
| | | | | | | |
Collapse
|
50
|
Abstract
Mitochondria are made up of two membrane systems that subdivide this organelle into two aqueous subcompartments: the matrix, which is enclosed by the inner membrane, and the intermembrane space, which is located between the inner and the outer membrane. Protein import into mitochondria is a complex reaction, as every protein has to be routed to its specific destination within the organelle. In the past few years, studies with mitochondria of Neurospora crassa and Saccharomyces cerevisiae have led to the identification of four distinct translocation machineries that are conserved among eukaryotes. These translocases, in a concerted fashion, mediate import and sorting of proteins into the mitochondrial subcompartments.
Collapse
Affiliation(s)
- J M Herrmann
- Adolf-Butenandt-Institut für Physiologische Chemie, München, 80336, Germany
| | | |
Collapse
|