1
|
Kaji M, Namkoong H, Chubachi S, Tanaka H, Asakura T, Haraguchi Hashiguchi M, Yamada M, Uehara T, Suzuki H, Tanabe N, Yamada Y, Nozaki T, Ouchi T, Tsuji A, Kosaki K, Hasegawa N, Fukunaga K. The first Japanese case of autosomal dominant cutis laxa with a frameshift mutation in exon 30 of the elastin gene complicated by small airway disease with 8 years of follow-up. BMC Pulm Med 2024; 24:481. [PMID: 39354494 PMCID: PMC11446081 DOI: 10.1186/s12890-024-03290-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Cutis laxa constitutes a diverse group of connective tissue diseases, both inherited and acquired, characterized by loose skin and varying systemic involvement, including pulmonary lesions. While cutis laxa has been linked to conditions like emphysema, asthma, and bronchiectasis, the specific pathological and radiological characteristics underlying pulmonary complications related to cutis laxa remain unclear. CASE PRESENTATION A 36-year-old woman, diagnosed with cutis laxa at birth, presented to our outpatient clinic with severe obstructive ventilatory impairment, evident in pulmonary function tests (expiratory volume in one second (FEV1)/forced vital capacity (FVC): 34.85%; %residual volume [RV]: 186.5%; %total lung capacity [TLC]: 129.2%). Pulmonary function tests also indicated small airway disease (%FEF50%, 7.9%; %FEF75%, 5.7%; and %FEF25-75%, 6.8%). Computed tomography (CT) revealed the lack of normal increase in lung attenuation on expiratory CT scan, with no discernible emphysematous changes. Exome sequencing was performed to confirm the association between the pulmonary lesions and cutis laxa, revealing a frameshift variant in exon 30 of the elastin gene (ELN). Further analysis employing a parametric response map revealed a longitudinal increase in the percentage of functional small airway disease (fSAD) from 37.84% to 46.61% over the 8-year follow-up, despite the absence of overt changes in CT findings, specifically the lack of normal increase in lung attenuation on expiratory CT scan. Over the same follow-up interval, there was a modest reduction of 25.6 mL/year in FEV1 coupled with a significant increase in %RV. Pulmonary function test metrics, reflective of small airway disease, exhibited a continual decline; specifically, %FEF50%, %FEF75%, and %FEF25-75% diminished from 7.9% to 7.0%, 5.7% to 4.6%, and 6.8% to 5.4%, respectively. CONCLUSIONS This case highlighted an instance of autosomal dominant cutis laxa arising from a frameshift variant in exon 30 of ELN, accompanied by small airway disease. Comprehensive investigation, utilizing quantitative CT analysis, revealed a longitudinal increase in fSAD percentage with a mild reduction in FEV1. These findings indicate that elastin deficiency may not only diminish elastic fibers in the skin but also be implicated in small airway disease by impacting components of the extracellular matrix in the lungs.
Collapse
Affiliation(s)
- Masanori Kaji
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Ho Namkoong
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan.
| | - Shotaro Chubachi
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiromu Tanaka
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takanori Asakura
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Clinical Medicine (Laboratory of Bioregulatory Medicine), Kitasato University School of Pharmacy, Tokyo, Japan
- Department of Respiratory Medicine, Kitasato University Kitasato Institute Hospital, Tokyo, Japan
| | | | - Mamiko Yamada
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Tomoko Uehara
- Department of Pediatrics, Central Hospital, Aichi Developmental Disability Center, Aichi, Japan
| | - Hisato Suzuki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Naoya Tanabe
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Rehabilitation Unit, Kyoto University Hospital, Kyoto, Japan
| | - Yoshitake Yamada
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Taiki Nozaki
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Takeshi Ouchi
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | | | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Naoki Hasegawa
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Krarup NT, Hvidbjerg M, Zaremba T, Sommerlund M, Christensen MK. Autosomal dominant cutis laxa and critical stenosis of the left main coronary artery in a 21-year-old female with an intronic mutation in the elastin gene. Am J Med Genet A 2023; 191:1059-1064. [PMID: 36541930 DOI: 10.1002/ajmg.a.63095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/10/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
Cutis laxa (CL) is a rare, inherited or acquired connective tissue disorder characterized by abnormal elastic fibers causing loose and redundant skin and a prematurely aged appearance. The syndrome has been associated with hypertension, but cases with early-onset ischemic heart disease have never been described. Here, we report a 21-year-old Danish female with activity-related shortness of breath and oedema of the lower extremities. The patient had a clinical diagnosis of autosomal dominant CL, but no genotyping had been performed prior to the index admission. The patient was diagnosed with ischemic heart disease, based on results of non-invasive cardiovascular imaging (including MRI and PET-CT) followed by invasive treatment of a critical left main coronary artery stenosis. Subsequent referral to genetic testing revealed a likely pathogenic intronic variant in ELN. This case report includes the clinical findings and relates these to known molecular mechanisms of CL.
Collapse
Affiliation(s)
| | - Marie Hvidbjerg
- Department of Clinical Genetics, Aalborg University Hospital, Aalborg, Denmark
| | - Tomás Zaremba
- Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| | - Mette Sommerlund
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|
3
|
Makino T, Terada Y, Mizawa M, Hirono K, Adachi Y, Aoki S, Kubo A, Shimizu T. Identification of a de novo mutation of the elastin gene by targeted exome sequencing in autosomal dominant cutis laxa. Clin Exp Dermatol 2022; 47:1895-1897. [PMID: 36002914 DOI: 10.1111/ced.15303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2022] [Indexed: 11/28/2022]
Abstract
Cutis laxa (CL) comprises a heterogeneous group of entities mainly classified as X-linked, autosomal dominant and recessive forms, which differ in severity. We encountered a CL baby with no familial history. We performed targeted exome sequencing, and detected a de novo heterozygous frameshift mutation in the elastin gene of the baby.
Collapse
Affiliation(s)
- Teruhiko Makino
- Department of Dermatology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Yoshiyuki Terada
- Department of Dermatology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Megumi Mizawa
- Department of Dermatology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Keiichi Hirono
- Department of Pediatrics, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Yuichi Adachi
- Department of Pediatrics, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Satomi Aoki
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Akiharu Kubo
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan.,Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tadamichi Shimizu
- Department of Dermatology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| |
Collapse
|
4
|
Beyens A, Pottie L, Sips P, Callewaert B. Clinical and Molecular Delineation of Cutis Laxa Syndromes: Paradigms for Homeostasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1348:273-309. [PMID: 34807425 DOI: 10.1007/978-3-030-80614-9_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Cutis laxa (CL) syndromes are a large and heterogeneous group of rare connective tissue disorders that share loose redundant skin as a hallmark clinical feature, which reflects dermal elastic fiber fragmentation. Both acquired and congenital-Mendelian- forms exist. Acquired forms are progressive and often preceded by inflammatory triggers in the skin, but may show systemic elastolysis. Mendelian forms are often pleiotropic in nature and classified upon systemic manifestations and mode of inheritance. Though impaired elastogenesis is a common denominator in all Mendelian forms of CL, the underlying gene defects are diverse and affect structural components of the elastic fiber or impair metabolic pathways interfering with cellular trafficking, proline synthesis, or mitochondrial functioning. In this chapter we provide a detailed overview of the clinical and molecular characteristics of the different cutis laxa types and review the latest insights on elastic fiber assembly and homeostasis from both human and animal studies.
Collapse
Affiliation(s)
- Aude Beyens
- Center for Medical Genetics Ghent, Department of Dermatology, Department of Biomolecular Medicine, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Lore Pottie
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Patrick Sips
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Bert Callewaert
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University Hospital, Ghent University, Ghent, Belgium.
| |
Collapse
|
5
|
Hikino K, Koido M, Tomizuka K, Liu X, Momozawa Y, Morisaki T, Murakami Y, The Biobank Japan Project, Mushiroda T, Terao C. Susceptibility loci and polygenic architecture highlight population specific and common genetic features in inguinal hernias: genetics in inguinal hernias. EBioMedicine 2021; 70:103532. [PMID: 34392144 PMCID: PMC8374389 DOI: 10.1016/j.ebiom.2021.103532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The underlying pathology of inguinal hernia is still not fully known; thus, further investigations of genetic backgrounds is needed. Here, we aimed to identify genetic factors attributing to inguinal hernias and explore the polygenic architecture of which some components are population-specific, while others are more common among populations. METHODS We performed a genome-wide association study (GWAS) on subjects with inguinal hernias using BioBank Japan (BBJ) data with 1,983 cases and 172,507 controls, followed by a trans-ethnic meta-analysis with UK Biobank (UKBB) data. We performed downstream analyses in order to identify the mechanisms underlying inguinal hernias supported by genetic findings. FINDINGS We identified a locus closest to ELN, which encodes elastin, at the GWAS significant level. The trans-ethnic meta-analysis revealed 23 additional significant loci, including five loci newly identified not significant in BBJ or UKBB GWAS: TGFB2, RNA5SP214/VGLL2, LOC646588, HMCN2, and ATP5F1CP1/CDKN3. Downstream analyses revealed the overlap of GWAS significant signals in extracellular components, including elastin fiber formation. We also found a highly shared polygenic architecture across different populations (trans-ethnic genetic-effect correlation = 0•77, standard error = 0•26) and population-specific lead variants in ELN, indicating the critical role of elastin in inguinal hernias. INTERPRETATION We identified a significant locus of the ELN gene in the Japanese population and five additional loci across different populations. Downstream analyses revealed highly shared genetic architectures across populations and highlighted the important roles of extracellular components in the development of inguinal hernias. These findings deepen our understanding of the mechanisms underlying inguinal hernia. FUNDING The Japan Agency for Medical Research and Development (AMED) (Grant Number: JP19km0605001).
Collapse
Affiliation(s)
- Keiko Hikino
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Masaru Koido
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan; Division of Molecular Pathology, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokane-dai, Minato-ku, Tokyo 108-8639, Japan
| | - Kohei Tomizuka
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Xiaoxi Liu
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Takayuki Morisaki
- Division of Molecular Pathology, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokane-dai, Minato-ku, Tokyo 108-8639, Japan
| | - Yoshinori Murakami
- Division of Molecular Pathology, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokane-dai, Minato-ku, Tokyo 108-8639, Japan
| | - The Biobank Japan Project
- Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokane-dai, Minato-ku, Tokyo, 108-8639, Japan
| | - Taisei Mushiroda
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan; Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan; The Department of Applied Genetics, The School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan.
| |
Collapse
|
6
|
Burger J, Bogunovic N, de Wagenaar NP, Liu H, Vliet N, IJpma A, Maugeri A, Micha D, Verhagen HJM, Ten Hagen TLM, Majoor-Krakauer D, Pluijm I, Essers J, Yeung KK. Molecular phenotyping and functional assessment of smooth muscle like-cells with pathogenic variants in aneurysm genes ACTA2, MYH11, SMAD3 and FBN1. Hum Mol Genet 2021; 30:2286-2299. [PMID: 34244757 PMCID: PMC8600030 DOI: 10.1093/hmg/ddab190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 11/30/2022] Open
Abstract
Aortic aneurysms (AAs) are pathological dilatations of the aorta. Pathogenic variants in genes encoding for proteins of the contractile machinery of vascular smooth muscle cells (VSMCs), genes encoding proteins of the transforming growth factor beta signaling pathway and extracellular matrix (ECM) homeostasis play a role in the weakening of the aortic wall. These variants affect the functioning of VSMC, the predominant cell type in the aorta. Many variants have unknown clinical significance, with unknown consequences on VSMC function and AA development. Our goal was to develop functional assays that show the effects of pathogenic variants in aneurysm-related genes. We used a previously developed fibroblast transdifferentiation protocol to induce VSMC-like cells, which are used for all assays. We compared transdifferentiated VSMC-like cells of patients with a pathogenic variant in genes encoding for components of VSMC contraction (ACTA2, MYH11), transforming growth factor beta (TGFβ) signaling (SMAD3) and a dominant negative (DN) and two haploinsufficient variants in the ECM elastic laminae (FBN1) to those of healthy controls. The transdifferentiation efficiency, structural integrity of the cytoskeleton, TGFβ signaling profile, migration velocity and maximum contraction were measured. Transdifferentiation efficiency was strongly reduced in SMAD3 and FBN1 DN patients. ACTA2 and FBN1 DN cells showed a decrease in SMAD2 phosphorylation. Migration velocity was impaired for ACTA2 and MYH11 cells. ACTA2 cells showed reduced contractility. In conclusion, these assays for showing effects of pathogenic variants may be promising tools to help reclassification of variants of unknown clinical significance in AA-related genes.
Collapse
Affiliation(s)
- Joyce Burger
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Natalija Bogunovic
- Department of Surgery, Institute for Cardiovascular Research, Amsterdam University Medical Centers, location VU University Medical Center, Amsterdam, The Netherlands.,Department of Physiology, Institute for Cardiovascular Research, Amsterdam University Medical Centers, location VU University Medical Center, Amsterdam, The Netherlands.,Department of Clinical Genetics, MOVE Institute, Amsterdam University Medical Centers, location VU University Medical Center, Amsterdam, The Netherlands
| | - Nathalie P de Wagenaar
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Radiation Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Hui Liu
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Nicole Vliet
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Arne IJpma
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Bioinformatics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Alessandra Maugeri
- Department of Clinical Genetics, MOVE Institute, Amsterdam University Medical Centers, location VU University Medical Center, Amsterdam, The Netherlands
| | - Dimitra Micha
- Department of Clinical Genetics, MOVE Institute, Amsterdam University Medical Centers, location VU University Medical Center, Amsterdam, The Netherlands
| | - Hence J M Verhagen
- Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Timo L M Ten Hagen
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Ingrid Pluijm
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jeroen Essers
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Radiation Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Kak K Yeung
- Department of Surgery, Institute for Cardiovascular Research, Amsterdam University Medical Centers, location VU University Medical Center, Amsterdam, The Netherlands.,Department of Physiology, Institute for Cardiovascular Research, Amsterdam University Medical Centers, location VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Moset Zupan A, Nietupski C, Schutte SC. Cyclic Adenosine Monophosphate Eliminates Sex Differences in Estradiol-Induced Elastin Production from Engineered Dermal Substitutes. Int J Mol Sci 2021; 22:ijms22126358. [PMID: 34198681 PMCID: PMC8232104 DOI: 10.3390/ijms22126358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 11/16/2022] Open
Abstract
Lack of adult cells' ability to produce sufficient amounts of elastin and assemble functional elastic fibers is an issue for creating skin substitutes that closely match native skin properties. The effects of female sex hormones, primarily estrogen, have been studied due to the known effects on elastin post-menopause, thus have primarily included older mostly female populations. In this study, we examined the effects of female sex hormones on the synthesis of elastin by female and male human dermal fibroblasts in engineered dermal substitutes. Differences between the sexes were observed with 17β-estradiol treatment alone stimulating elastin synthesis in female substitutes but not male. TGF-β levels were significantly higher in male dermal substitutes than female dermal substitutes and the levels did not change with 17β-estradiol treatment. The male dermal substitutes had a 1.5-fold increase in cAMP concentration in the presence of 17β-estradiol compared to no hormone controls, while cAMP concentrations remained constant in the female substitutes. When cAMP was added in addition to 17β-estradiol and progesterone in the culture medium, the sex differences were eliminated, and elastin synthesis was upregulated by 2-fold in both male and female dermal substitutes. These conditions alone did not result in functionally significant amounts of elastin or complete elastic fibers. The findings presented provide insights into differences between male and female cells in response to female sex steroid hormones and the involvement of the cAMP pathway in elastin synthesis. Further explorations into the signaling pathways may identify better targets to promote elastic fiber synthesis in skin substitutes.
Collapse
Affiliation(s)
- Andreja Moset Zupan
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (A.M.Z.); (C.N.)
| | - Carolyn Nietupski
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (A.M.Z.); (C.N.)
| | - Stacey C. Schutte
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (A.M.Z.); (C.N.)
- Department of Research, Shriners Hospitals for Children-Cincinnati, Cincinnati, OH 45221, USA
- Correspondence:
| |
Collapse
|
8
|
Becker J, Schwoch S, Zelent C, Sitte M, Salinas G, Wilting J. Transcriptome Analysis of Hypoxic Lymphatic Endothelial Cells Indicates Their Potential to Contribute to Extracellular Matrix Rearrangement. Cells 2021; 10:cells10051008. [PMID: 33923324 PMCID: PMC8145299 DOI: 10.3390/cells10051008] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/27/2022] Open
Abstract
Lymphedema (LE) affects millions of people worldwide. It is a chronic progressive disease with massive development of fibrosclerosis when untreated. There is no pharmacological treatment of lymphedema. The disease is associated with swelling of the interstitium of the affected organ, mostly arm or leg, impressive development of adipose tissue, fibrosis and sclerosis with accumulation of huge amounts of collagen, and Papillomatosis cutis. Malnutrition and reduced oxygenation of the affected tissues is a hallmark of lymphedema. Here, we investigated if the hypoxia of lymphatic endothelial cells (LECs) might contribute to fibrosis. We applied RNASeq and qPCR to study the concordant changes of the exome of three human foreskin-derived LEC isolates after 4 days of hypoxia (1% O2) vs. normoxia (21% O2). Of the approximately 16,000 genes expressed in LECs, 162 (1%) were up- or down-regulated by hypoxia. Of these, 21 genes have important functions in the production or modification of the extracellular matrix (ECM). In addition to the down-regulation of elastin, we found up-regulation of druggable enzymes and regulators such as the long non-coding RNA H19, inter-alpha-trypsin inhibitor heavy chain family member 5 (ITIH5), lysyl-oxidase (LOX), prolyl 4-hydroxylase subunit alpha 1 (P4HA1), procollagen-lysine 2-oxoglutarate 5-dioxygenase 2 (PLOD2), and others that are discussed in the paper. Initial lymphatics do not produce a continuous basement membrane; however, our study shows that hypoxic LECs have an unexpectedly high ability to alter the ECM.
Collapse
Affiliation(s)
- Jürgen Becker
- Department of Anatomy and Cell Biology, University Medical School Göttingen, 37075 Göttingen, Germany; (J.B.); (S.S.); (C.Z.)
| | - Sonja Schwoch
- Department of Anatomy and Cell Biology, University Medical School Göttingen, 37075 Göttingen, Germany; (J.B.); (S.S.); (C.Z.)
| | - Christina Zelent
- Department of Anatomy and Cell Biology, University Medical School Göttingen, 37075 Göttingen, Germany; (J.B.); (S.S.); (C.Z.)
| | - Maren Sitte
- NGS-Integrative Genomics Core Unit (NIG), Institute of Human Genetics, University Medical Center Göttingen, 37075 Göttingen, Germany; (M.S.); (G.S.)
| | - Gabriela Salinas
- NGS-Integrative Genomics Core Unit (NIG), Institute of Human Genetics, University Medical Center Göttingen, 37075 Göttingen, Germany; (M.S.); (G.S.)
| | - Jörg Wilting
- Department of Anatomy and Cell Biology, University Medical School Göttingen, 37075 Göttingen, Germany; (J.B.); (S.S.); (C.Z.)
- Correspondence:
| |
Collapse
|
9
|
Stum MG, Tadenev ALD, Seburn KL, Miers KE, Poon PP, McMaster CR, Robinson C, Kane C, Silva KA, Cliften PF, Sundberg JP, Reinholdt LG, John SWM, Burgess RW. Genetic analysis of Pycr1 and Pycr2 in mice. Genetics 2021; 218:6178002. [PMID: 33734376 DOI: 10.1093/genetics/iyab048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/10/2021] [Indexed: 01/09/2023] Open
Abstract
The final step in proline biosynthesis is catalyzed by three pyrroline-5-carboxylate reductases, PYCR1, PYCR2, and PYCR3, which convert pyrroline-5-carboxylate (P5C) to proline. Mutations in human PYCR1 and ALDH18A1 (P5C Synthetase) cause Cutis Laxa (CL), whereas mutations in PYCR2 cause hypomyelinating leukodystrophy 10 (HLD10). Here, we investigated the genetics of Pycr1 and Pycr2 in mice. A null allele of Pycr1 did not show integument or CL-related phenotypes. We also studied a novel chemically-induced mutation in Pycr2. Mice with recessive loss-of-function mutations in Pycr2 showed phenotypes consistent with neurological and neuromuscular disorders, including weight loss, kyphosis, and hind-limb clasping. The peripheral nervous system was largely unaffected, with only mild axonal atrophy in peripheral nerves. A severe loss of subcutaneous fat in Pycr2 mutant mice is reminiscent of a CL-like phenotype, but primary features such as elastin abnormalities were not observed. Aged Pycr2 mutant mice had reduced white blood cell counts and altered lipid metabolism, suggesting a generalized metabolic disorder. PYCR1 and -2 have similar enzymatic and cellular activities, and consistent with previous studies, both were localized in the mitochondria in fibroblasts. Both PYCR1 and -2 were able to complement the loss of Pro3, the yeast enzyme that converts P5C to proline, confirming their activity as P5C reductases. In mice, Pycr1; Pycr2 double mutants were sub-viable and unhealthy compared to either single mutant, indicating the genes are largely functionally redundant. Proline levels were not reduced, and precursors were not increased in serum from Pycr2 mutant mice or in lysates from skin fibroblast cultures, but placing Pycr2 mutant mice on a proline-free diet worsened the phenotype. Thus, Pycr1 and -2 have redundant functions in proline biosynthesis, and their loss makes proline a semi-essential amino acid. These findings have implications for understanding the genetics of CL and HLD10, and for modeling these disorders in mice.
Collapse
Affiliation(s)
| | | | | | | | - Pak P Poon
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | | | - Carolyn Robinson
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Coleen Kane
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | - Paul F Cliften
- Department of Genetics, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | - Simon W M John
- The Jackson Laboratory, Bar Harbor, ME 04609, USA.,Department of Ophthalmology, Howard Hughes Medical Institute, New York, NY 10032, USA.,Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
10
|
Morlino S, Nardella G, Castellana S, Micale L, Copetti M, Fusco C, Castori M. Review of clinical and molecular variability in autosomal recessive cutis laxa 2A. Am J Med Genet A 2020; 185:955-965. [PMID: 33369135 DOI: 10.1002/ajmg.a.62047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/10/2020] [Accepted: 12/13/2020] [Indexed: 11/06/2022]
Abstract
ATP6V0A2-related cutis laxa, also known as autosomal recessive cutis laxa type 2A (ARCL2A), is a subtype of hereditary cutis laxa originally characterized by skin, skeletal, and neurological involvement, and a combined defect of N-glycosylation and O-glycosylation. The associated clinical spectrum subsequently expanded to a less severe phenotype dominated by cutaneous involvement. At the moment, ARCL2A was described in a few case reports and series only. An Italian adult woman ARCL2A with a phenotype restricted to skin and the two novel c.3G>C and c.1101dup ATP6V0A2 variants has been reported. A systematic literature review allowed us to identify 69 additional individuals from 64 families. Available data were scrutinized in order to describe the clinical and molecular variability of ARCL2A. About 78.3% of known variants were predicted null alleles, while 11 were missense and 2 affected noncanonical splice sites. Age at ascertainment appeared as the unique phenotypic discriminator with earlier age more commonly associated with facial dysmorphism (p .02), high/cleft palate (p .005), intellectual disability/global developmental delay (p .013), and seizures (p .024). No specific genotype-phenotype correlations were identified. This work confirmed the existence of an attenuated phenotype associated with ATP6V0A2 biallelic variants and offers an updated critique to the clinical and molecular variability of ARCL2A.
Collapse
Affiliation(s)
- Silvia Morlino
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, Foggia, Italy
| | - Grazia Nardella
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, Foggia, Italy
| | - Stefano Castellana
- Unit of Bioinformatics, Fondazione IRCCS-Casa Sollievo della Sofferenza, Foggia, Italy
| | - Lucia Micale
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, Foggia, Italy
| | - Massimiliano Copetti
- Unit of Biostatistics, Fondazione IRCCS-Casa Sollievo della Sofferenza, Foggia, Italy
| | - Carmela Fusco
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, Foggia, Italy
| | - Marco Castori
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, Foggia, Italy
| |
Collapse
|
11
|
Li J, Ritelli M, Ma CS, Rao G, Habib T, Corvilain E, Bougarn S, Cypowyj S, Grodecká L, Lévy R, Béziat V, Shang L, Payne K, Avery DT, Migaud M, Boucherit S, Boughorbel S, Guennoun A, Chrabieh M, Rapaport F, Bigio B, Itan Y, Boisson B, Cormier-Daire V, Syx D, Malfait F, Zoppi N, Abel L, Freiberger T, Dietz HC, Marr N, Tangye SG, Colombi M, Casanova JL, Puel A. Chronic mucocutaneous candidiasis and connective tissue disorder in humans with impaired JNK1-dependent responses to IL-17A/F and TGF-β. Sci Immunol 2020; 4:4/41/eaax7965. [PMID: 31784499 DOI: 10.1126/sciimmunol.aax7965] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 11/01/2019] [Indexed: 12/12/2022]
Abstract
Genetic etiologies of chronic mucocutaneous candidiasis (CMC) disrupt human IL-17A/F-dependent immunity at mucosal surfaces, whereas those of connective tissue disorders (CTDs) often impair the TGF-β-dependent homeostasis of connective tissues. The signaling pathways involved are incompletely understood. We report a three-generation family with an autosomal dominant (AD) combination of CMC and a previously undescribed form of CTD that clinically overlaps with Ehlers-Danlos syndrome (EDS). The patients are heterozygous for a private splice-site variant of MAPK8, the gene encoding c-Jun N-terminal kinase 1 (JNK1), a component of the MAPK signaling pathway. This variant is loss-of-expression and loss-of-function in the patients' fibroblasts, which display AD JNK1 deficiency by haploinsufficiency. These cells have impaired, but not abolished, responses to IL-17A and IL-17F. Moreover, the development of the patients' TH17 cells was impaired ex vivo and in vitro, probably due to the involvement of JNK1 in the TGF-β-responsive pathway and further accounting for the patients' CMC. Consistently, the patients' fibroblasts displayed impaired JNK1- and c-Jun/ATF-2-dependent induction of key extracellular matrix (ECM) components and regulators, but not of EDS-causing gene products, in response to TGF-β. Furthermore, they displayed a transcriptional pattern in response to TGF-β different from that of fibroblasts from patients with Loeys-Dietz syndrome caused by mutations of TGFBR2 or SMAD3, further accounting for the patients' complex and unusual CTD phenotype. This experiment of nature indicates that the integrity of the human JNK1-dependent MAPK signaling pathway is essential for IL-17A- and IL-17F-dependent mucocutaneous immunity to Candida and for the TGF-β-dependent homeostasis of connective tissues.
Collapse
Affiliation(s)
- Juan Li
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Marco Ritelli
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Cindy S Ma
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Geetha Rao
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | | | - Emilie Corvilain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France.,University of Paris, Imagine Institute, 75015 Paris, France
| | | | - Sophie Cypowyj
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Lucie Grodecká
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation, Brno 65691, Czech Republic
| | - Romain Lévy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France.,University of Paris, Imagine Institute, 75015 Paris, France
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France.,University of Paris, Imagine Institute, 75015 Paris, France
| | - Lei Shang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Kathryn Payne
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | - Danielle T Avery
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France.,University of Paris, Imagine Institute, 75015 Paris, France
| | - Soraya Boucherit
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France.,University of Paris, Imagine Institute, 75015 Paris, France
| | | | | | - Maya Chrabieh
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France.,University of Paris, Imagine Institute, 75015 Paris, France
| | - Franck Rapaport
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Benedetta Bigio
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Yuval Itan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA.,The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France.,University of Paris, Imagine Institute, 75015 Paris, France
| | - Valérie Cormier-Daire
- University of Paris, Imagine Institute, 75015 Paris, France.,Department of Medical Genetics, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
| | - Delfien Syx
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium
| | - Fransiska Malfait
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium
| | - Nicoletta Zoppi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France.,University of Paris, Imagine Institute, 75015 Paris, France
| | - Tomáš Freiberger
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation, Brno 65691, Czech Republic.,Faculty of Medicine and Central European Institute of Technology, Masaryk University, Brno 62500, Czech Republic
| | - Harry C Dietz
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Howard Hughes Medical Institute, Baltimore, MD 21205, USA
| | - Nico Marr
- Sidra Medicine, P.O. Box 26999, Doha, Qatar.,College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar
| | - Stuart G Tangye
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Marina Colombi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA. .,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France.,University of Paris, Imagine Institute, 75015 Paris, France.,Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, 75015 Paris, France.,Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA. .,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France.,University of Paris, Imagine Institute, 75015 Paris, France
| |
Collapse
|
12
|
From Anti-SARS-CoV-2 Immune Responses to COVID-19 via Molecular Mimicry. Antibodies (Basel) 2020; 9:antib9030033. [PMID: 32708525 PMCID: PMC7551747 DOI: 10.3390/antib9030033] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/04/2020] [Accepted: 07/09/2020] [Indexed: 12/21/2022] Open
Abstract
Aim: To define the autoimmune potential of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. Methods: Experimentally validated epitopes cataloged at the Immune Epitope DataBase (IEDB) and present in SARS-CoV-2 were analyzed for peptide sharing with the human proteome. Results: Immunoreactive epitopes present in SARS-CoV-2 were mostly composed of peptide sequences present in human proteins that—when altered, mutated, deficient or, however, improperly functioning—may associate with a wide range of disorders, from respiratory distress to multiple organ failure. Conclusions: This study represents a starting point or hint for future scientific–clinical investigations and suggests a range of possible protein targets of autoimmunity in SARS-CoV-2 infection. From an experimental perspective, the results warrant the testing of patients’ sera for autoantibodies against these protein targets. Clinically, the results warrant a stringent surveillance on the future pathologic sequelae of the current SARS-CoV-2 pandemic.
Collapse
|
13
|
Kapoor S, Vats P, Polipalli S, Yuvaraj P. Predominant Motor Delay as a Major Presenting Clinical Sign in Cutis Laxa— Report of a Case with Review of Literature. Neurol India 2020; 68:919-921. [DOI: 10.4103/0028-3886.293457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
14
|
Schafmayer C, Harrison JW, Buch S, Lange C, Reichert MC, Hofer P, Cossais F, Kupcinskas J, von Schönfels W, Schniewind B, Kruis W, Tepel J, Zobel M, Rosendahl J, Jacobi T, Walther-Berends A, Schroeder M, Vogel I, Sergeev P, Boedeker H, Hinrichsen H, Volk A, Erk JU, Burmeister G, Hendricks A, Hinz S, Wolff S, Böttner M, Wood AR, Tyrrell J, Beaumont RN, Langheinrich M, Kucharzik T, Brezina S, Huber-Schönauer U, Pietsch L, Noack LS, Brosch M, Herrmann A, Thangapandi RV, Schimming HW, Zeissig S, Palm S, Focke G, Andreasson A, Schmidt PT, Weitz J, Krawczak M, Völzke H, Leeb G, Michl P, Lieb W, Grützmann R, Franke A, Lammert F, Becker T, Kupcinskas L, D'Amato M, Wedel T, Datz C, Gsur A, Weedon MN, Hampe J. Genome-wide association analysis of diverticular disease points towards neuromuscular, connective tissue and epithelial pathomechanisms. Gut 2019; 68:854-865. [PMID: 30661054 DOI: 10.1136/gutjnl-2018-317619] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/03/2019] [Accepted: 01/05/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Diverticular disease is a common complex disorder characterised by mucosal outpouchings of the colonic wall that manifests through complications such as diverticulitis, perforation and bleeding. We report the to date largest genome-wide association study (GWAS) to identify genetic risk factors for diverticular disease. DESIGN Discovery GWAS analysis was performed on UK Biobank imputed genotypes using 31 964 cases and 419 135 controls of European descent. Associations were replicated in a European sample of 3893 cases and 2829 diverticula-free controls and evaluated for risk contribution to diverticulitis and uncomplicated diverticulosis. Transcripts at top 20 replicating loci were analysed by real-time quatitative PCR in preparations of the mucosal, submucosal and muscular layer of colon. The localisation of expressed protein at selected loci was investigated by immunohistochemistry. RESULTS We discovered 48 risk loci, of which 12 are novel, with genome-wide significance and consistent OR in the replication sample. Nominal replication (p<0.05) was observed for 27 loci, and additional 8 in meta-analysis with a population-based cohort. The most significant novel risk variant rs9960286 is located near CTAGE1 with a p value of 2.3×10-10 and 0.002 (ORallelic=1.14 (95% CI 1.05 to 1.24)) in the replication analysis. Four loci showed stronger effects for diverticulitis, PHGR1 (OR 1.32, 95% CI 1.12 to 1.56), FAM155A-2 (OR 1.21, 95% CI 1.04 to 1.42), CALCB (OR 1.17, 95% CI 1.03 to 1.33) and S100A10 (OR 1.17, 95% CI 1.03 to 1.33). CONCLUSION In silico analyses point to diverticulosis primarily as a disorder of intestinal neuromuscular function and of impaired connective fibre support, while an additional diverticulitis risk might be conferred by epithelial dysfunction.
Collapse
Affiliation(s)
- Clemens Schafmayer
- Department of Visceral and Thoracic Surgery, Kiel University, Kiel, Germany
| | | | - Stephan Buch
- Medical Department 1, University Hospital Dresden, Technische Universität Dresden (TU Dresden), Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden (TU Dresden), Dresden, Germany
| | | | - Matthias C Reichert
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Philipp Hofer
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Vienna, Austria
| | | | - Juozas Kupcinskas
- Department of Gastroenterology and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | | | - Wolfgang Kruis
- Department of Internal Medicine, Gastroenterology and Pulmonology, Evangelic Hospital Köln-Kalk, Cologne, Germany
| | - Jürgen Tepel
- Department of General and Thoracic Surgery, Hospital Osnabrück, Osnabrück, Germany
| | - Myrko Zobel
- Department of Gastroenterology, Helios Hospital Weißeritztal, Freital, Germany
| | - Jonas Rosendahl
- Medical Department 1, University Hospital Halle, Martin-Luther Universität Halle-Wittenberg, Halle, Germany
| | | | | | | | - Ilka Vogel
- Department of Surgery, Community Hospital Kiel, Kiel, Germany
| | - Petr Sergeev
- Department of Internal Medicine II, Hospital Riesa, Kiel, Germany
| | - Hans Boedeker
- Department of Internal Medicine, Hospital Freiberg, Freiberg, Germany
| | | | - Andreas Volk
- Department of Visceral, Thoracic and Vascular Surgery, Technische Universität Dresden (TU Dresden), Dresden, Germany
| | - Jens-Uwe Erk
- Medical Department 1, University Hospital Halle, Martin-Luther Universität Halle-Wittenberg, Halle, Germany
| | - Greta Burmeister
- Department of Visceral and Thoracic Surgery, Kiel University, Kiel, Germany
| | | | - Sebastian Hinz
- Department of Visceral and Thoracic Surgery, Kiel University, Kiel, Germany
| | - Sebastian Wolff
- Department of Internal Medicine, Gastroenterology and Pulmonology, Evangelic Hospital Köln-Kalk, Cologne, Germany
| | | | - Andrew R Wood
- University of Exeter Medical School, University of Exeter, United Kingdom, Exeter, UK
| | - Jessica Tyrrell
- University of Exeter Medical School, University of Exeter, United Kingdom, Exeter, UK
| | - Robin N Beaumont
- University of Exeter Medical School, University of Exeter, United Kingdom, Exeter, UK
| | | | | | - Stefanie Brezina
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Vienna, Austria
| | - Ursula Huber-Schönauer
- Department of Internal Medicine, Hospital Oberndorf, Teaching Hospital of the Paracelsus Private Medical University of Salzburg, Oberndorf, Austria
| | - Leonora Pietsch
- Medical Department 1, University Hospital Halle, Martin-Luther Universität Halle-Wittenberg, Halle, Germany
| | - Laura Sophie Noack
- Medical Department 1, University Hospital Dresden, Technische Universität Dresden (TU Dresden), Dresden, Germany
| | - Mario Brosch
- Medical Department 1, University Hospital Dresden, Technische Universität Dresden (TU Dresden), Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden (TU Dresden), Dresden, Germany
| | - Alexander Herrmann
- Medical Department 1, University Hospital Dresden, Technische Universität Dresden (TU Dresden), Dresden, Germany
| | - Raghavan Veera Thangapandi
- Medical Department 1, University Hospital Dresden, Technische Universität Dresden (TU Dresden), Dresden, Germany
| | | | - Sebastian Zeissig
- Medical Department 1, University Hospital Dresden, Technische Universität Dresden (TU Dresden), Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden (TU Dresden), Dresden, Germany
| | - Stefan Palm
- Outpatient Center for Gastroenterology, Dippoldiswalde, Germany
| | - Gerd Focke
- Outpatient Center for Gastroenterology Dresden-Blasewitz, Dresden, Germany
| | - Anna Andreasson
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Stress Research Institute, Stockholm University, Stockholm, Sweden
| | - Peter T Schmidt
- Department of Medicine Solna and Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Juergen Weitz
- Department of Visceral, Thoracic and Vascular Surgery, Technische Universität Dresden (TU Dresden), Dresden, Germany
| | - Michael Krawczak
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Gernot Leeb
- Department of Gastroenterology, Hospital Oberpullendorf, Oberpullendorf, Austria
| | - Patrick Michl
- Medical Department 1, University Hospital Halle, Martin-Luther Universität Halle-Wittenberg, Halle, Germany
| | - Wolfgang Lieb
- Institute of Epidemiology & Popgen Biobank, Kiel University, Kiel, Germany
| | - Robert Grützmann
- Department of Surgery, University Hospital Erlangen, Erlangen, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Thomas Becker
- Department of Visceral and Thoracic Surgery, Kiel University, Kiel, Germany
| | - Limas Kupcinskas
- Department of Gastroenterology and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Mauro D'Amato
- Department of Medicine Solna and Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Thilo Wedel
- Institute of Anatomy, Kiel University, Kiel, Germany
| | - Christian Datz
- Department of Internal Medicine, Hospital Oberndorf, Teaching Hospital of the Paracelsus Private Medical University of Salzburg, Oberndorf, Austria
| | - Andrea Gsur
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Vienna, Austria
| | - Michael N Weedon
- University of Exeter Medical School, University of Exeter, United Kingdom, Exeter, UK
| | - Jochen Hampe
- Medical Department 1, University Hospital Dresden, Technische Universität Dresden (TU Dresden), Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden (TU Dresden), Dresden, Germany
| |
Collapse
|
15
|
Okuneva EG, Kozina AA, Baryshnikova NV, Krasnenko AY, Tsukanov KY, Klimchuk OI, Surkova EI, Ilinsky VV. A novel elastin gene frameshift mutation in a Russian family with cutis laxa: a case report. BMC DERMATOLOGY 2019; 19:4. [PMID: 30704477 PMCID: PMC6357400 DOI: 10.1186/s12895-019-0084-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 01/28/2019] [Indexed: 12/30/2022]
Abstract
Background Cutis laxa (CL) is a rare connective tissue disorder characterized by loose, redundant, inelastic and wrinkled skin. Patients develop a prematurely aged appearance. Inheritance can be autosomal dominant or autosomal recessive. The X-linked form is now classified in the group of copper transport diseases. Autosomal dominant CL is characterized by wrinkled, redundant and sagging, inelastic skin and in some cases is associated with internal organ involvement. Case presentation We report a familial case of autosomal dominant CL, which includes a 33-year-old woman and her 11-year-old son with dry, thin and wrinkled skin that appeared prematurely aged. No serious involvement of internal organs was found. In both patients, we identified novel heterozygous mutation c.2323delG (p.Ala775fs) in exon 34 of elastin transcript NM_001278939.1. Similar frameshift mutations in the last exons of elastin gene were previously reported in patients with autosomal dominant CL. Conclusions Our results show a novel frameshift mutation that was found in patients with cutis laxa. Exome sequencing is effective and useful technology for properly diagnosis of diseases with similar phenotype to ensure proper treatment is provided.
Collapse
Affiliation(s)
- E G Okuneva
- Genotek Ltd., Nastavnicheskii pereulok 17/1, 105120, Moscow, Russia
| | - A A Kozina
- Institute of Biomedical Chemistry, Pogodinskaya street 10 building 8, 119121, Moscow, Russia
| | - N V Baryshnikova
- Genotek Ltd., Nastavnicheskii pereulok 17/1, 105120, Moscow, Russia.,Pirogov Russian National Research Medical University, Ostrovitianova street 1, 117997, Moscow, Russia
| | - A Yu Krasnenko
- Genotek Ltd., Nastavnicheskii pereulok 17/1, 105120, Moscow, Russia.,Pirogov Russian National Research Medical University, Ostrovitianova street 1, 117997, Moscow, Russia
| | - K Yu Tsukanov
- Genotek Ltd., Nastavnicheskii pereulok 17/1, 105120, Moscow, Russia
| | - O I Klimchuk
- Genotek Ltd., Nastavnicheskii pereulok 17/1, 105120, Moscow, Russia
| | - E I Surkova
- Genotek Ltd., Nastavnicheskii pereulok 17/1, 105120, Moscow, Russia.
| | - V V Ilinsky
- Pirogov Russian National Research Medical University, Ostrovitianova street 1, 117997, Moscow, Russia.,Vavilov Institute of General Genetics, Gubkina street 3, 119333, Moscow, Russia
| |
Collapse
|
16
|
Mecham RP. Elastin in lung development and disease pathogenesis. Matrix Biol 2018; 73:6-20. [PMID: 29331337 DOI: 10.1016/j.matbio.2018.01.005] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/30/2017] [Accepted: 01/07/2018] [Indexed: 12/24/2022]
Abstract
Elastin is expressed in most tissues that require elastic recoil. The protein first appeared coincident with the closed circulatory system, and was critical for the evolutionary success of the vertebrate lineage. Elastin is expressed by multiple cell types in the lung, including mesothelial cells in the pleura, smooth muscle cells in airways and blood vessels, endothelial cells, and interstitial fibroblasts. This highly crosslinked protein associates with fibrillin-containing microfibrils to form the elastic fiber, which is the physiological structure that functions in the extracellular matrix. Elastic fibers can be woven into many different shapes depending on the mechanical needs of the tissue. In large pulmonary vessels, for example, elastin forms continuous sheets, or lamellae, that separate smooth muscle layers. Outside of the vasculature, elastic fibers form an extensive fiber network that originates in the central bronchi and inserts into the distal airspaces and visceral pleura. The fibrous cables form a looping system that encircle the alveolar ducts and terminal air spaces and ensures that applied force is transmitted equally to all parts of the lung. Normal lung function depends on proper secretion and assembly of elastin, and either inhibition of elastin fiber assembly or degradation of existing elastin results in lung dysfunction and disease.
Collapse
Affiliation(s)
- Robert P Mecham
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
17
|
What do polymorphisms tell us about the mechanisms of COPD? Clin Sci (Lond) 2017; 131:2847-2863. [PMID: 29203722 DOI: 10.1042/cs20160718] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 10/22/2017] [Accepted: 11/01/2017] [Indexed: 12/11/2022]
Abstract
COPD (chronic obstructive pulmonary disease) is characterized by irreversible lung airflow obstruction. Cigarette smoke is the major risk factor for COPD development. However, only a minority number of smokers develop COPD, and there are substantial variations in lung function among smokers, suggesting that genetic determinants in COPD susceptibility. During the past decade, genome-wide association studies and exome sequencing have been instrumental to identify the genetic determinants of complex traits, including COPD. Focused studies have revealed mechanisms by which genetic variants contribute to COPD and have led to novel insights in COPD pathogenesis. Through functional investigations of causal variants in COPD, from the proteinase-antiproteinase theory to emerging roles of developmental pathways (such as Hedgehog and Wnt pathways) in COPD, we have greatly expanded our understanding on this complex pulmonary disease. In this review, we critically review functional investigations on roles of genetic polymorphisms in COPD, and discuss future challenges and opportunities in discovering novel mechanisms of functional variants.
Collapse
|
18
|
A novel case of autosomal dominant cutis laxa in a consanguineous family: report and literature review. Clin Dysmorphol 2017; 26:142-147. [PMID: 28383366 DOI: 10.1097/mcd.0000000000000179] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Autosomal dominant cutis laxa (ADCL, OMIM #123700) is a rare connective tissue disorder characterized by loose, redundant skin folds that may be apparent form birth or appear later in life. Most severely affected areas are the neck, axillar regions, trunk, and groin. Typically, patients present with characteristic facial features including a premature aged appearance, long philtrum, a high forehead, large ears, and a beaked nose. Cardiovascular and pulmonary complications include bicuspid aortic valves, aortic root dilatation, and emphysema. Sporadically, these complications have been documented to cause premature death. Several rare findings including urogenital anomalies and gastroesophageal problems can be also occur. Most patients harbor a frameshift mutation in one of the five last exons of the ELN gene (ADCL1, OMIM #123700), whereas one patient was described to have a tandem duplication in the FBLN5 gene (ADCL2, OMIM #614434). Here, we present a female ADCL patient, from a consanguineous family, with a novel mutation in ELN and review 39 previously reported ADCL patients. All patients have various skin findings, whereas cardiovascular, pulmonary findings, and multiple hernia were present in 61, 28, and 38% of patients, respectively. Strabismus, urogenital anomalies, gastroesophageal problems, and scoliosis may rarely be present. A clear definition of the ADCL syndrome can enable more accurate genetic counseling.
Collapse
|
19
|
Ryu M, Nogami A, Kitakaze T, Harada N, Suzuki YA, Yamaji R. Lactoferrin induces tropoelastin expression by activating the lipoprotein receptor-related protein 1-mediated phosphatidylinositol 3-kinase/Akt pathway in human dermal fibroblasts. Cell Biol Int 2017; 41:1325-1334. [DOI: 10.1002/cbin.10845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/12/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Mizuyuki Ryu
- Biochemical Laboratory; Saraya Co. Ltd; Kashiwara Osaka Japan
- Division of Applied Life Sciences; Graduate School of Life and Environmental Sciences; Osaka Prefecture University; Sakai Osaka Japan
| | - Asuka Nogami
- Biochemical Laboratory; Saraya Co. Ltd; Kashiwara Osaka Japan
| | - Tomoya Kitakaze
- Division of Applied Life Sciences; Graduate School of Life and Environmental Sciences; Osaka Prefecture University; Sakai Osaka Japan
| | - Naoki Harada
- Division of Applied Life Sciences; Graduate School of Life and Environmental Sciences; Osaka Prefecture University; Sakai Osaka Japan
| | | | - Ryoichi Yamaji
- Division of Applied Life Sciences; Graduate School of Life and Environmental Sciences; Osaka Prefecture University; Sakai Osaka Japan
| |
Collapse
|
20
|
Sang P, Xie YH, Li LH, Ye YJ, Hu W, Wang J, Wan W, Li R, Li LJ, Ma LL, Li Z, Liu SQ, Meng ZH. Effect of the R119G mutation on human P5CR structure and its interactions with NAD: Insights derived from molecular dynamics simulation and free energy analysis. Comput Biol Chem 2017; 67:141-149. [PMID: 28095341 DOI: 10.1016/j.compbiolchem.2016.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/09/2016] [Accepted: 12/30/2016] [Indexed: 11/21/2022]
Abstract
Pyrroline-5-carboxylate reductase (P5CR), an enzyme with conserved housekeeping roles, is involved in the etiology of cutis laxa. While previous work has shown that the R119G point mutation in the P5CR protein is involved, the structural mechanism behind the pathology remains to be elucidated. In order to probe the role of the R119G mutation in cutis laxa, we performed molecular dynamics (MD) simulations, essential dynamics (ED) analysis, and Molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) binding free energy calculations on wild type (WT) and mutant P5CR-NAD complex. These MD simulations and ED analyses suggest that the R119G mutation decreases the flexibility of P5CR, specifically in the substrate binding pocket, which could decrease the kinetics of the cofactor entrance and egress. Furthermore, the MM-PBSA calculations suggest the R119G mutant has a lower cofactor binding affinity for NAD than WT. Our study provides insight into the possible role of the R119G mutation during interactions between P5CR and NAD, thus bettering our understanding of how the mutation promotes cutis laxa.
Collapse
Affiliation(s)
- Peng Sang
- Laboratory of Molecular Cardiology, Department of Cardiology,The First Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Yue-Hui Xie
- Department of Computer Science, The Faculty of Basic Medicine, Kunming Medical University, Kunming, PR China
| | - Lin-Hua Li
- Laboratory of Molecular Cardiology, Department of Cardiology,The First Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Yu-Jia Ye
- Laboratory of Molecular Cardiology, Department of Cardiology,The First Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Wei Hu
- Laboratory of Molecular Cardiology, Department of Cardiology,The First Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Jing Wang
- Laboratory of Molecular Cardiology, Department of Cardiology,The First Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Wen Wan
- Laboratory of Molecular Cardiology, Department of Cardiology,The First Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Rui Li
- Laboratory of Molecular Cardiology, Department of Cardiology,The First Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Long-Jun Li
- Laboratory of Molecular Cardiology, Department of Cardiology,The First Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Lin-Ling Ma
- Laboratory of Molecular Cardiology, Department of Cardiology,The First Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Zhi Li
- Laboratory of Molecular Cardiology, Department of Cardiology,The First Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Shu-Qun Liu
- Laboratory of Molecular Cardiology, Department of Cardiology,The First Affiliated Hospital of Kunming Medical University, Kunming, PR China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, PR China.
| | - Zhao-Hui Meng
- Laboratory of Molecular Cardiology, Department of Cardiology,The First Affiliated Hospital of Kunming Medical University, Kunming, PR China.
| |
Collapse
|
21
|
Abstract
Wound healing is a highly complex chain of events, and although it may never be possible to eliminate the risk of experiencing a wound, clinicians' armamentarium continues to expand with methods to manage it. The phases of wound healing are the inflammatory phase, the proliferative phase, and the maturation phase. The pathway of healing is determined by characteristics of the wound on initial presentation, and it is vital to select the appropriate method to treat the wound based on its ability to avoid hypoxia, infection, excessive edema, and foreign bodies.
Collapse
|
22
|
Gkogkolou P, Hildebrandt K, Broekaert S, Metze D, Sengle G, Böhm M. Cutis laxa acquisita: novel insights into impaired elastic fibre regeneration. Br J Dermatol 2017; 176:832-835. [DOI: 10.1111/bjd.15196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- P. Gkogkolou
- Department of Dermatology; University of Münster; Münster Germany
| | - K. Hildebrandt
- Center for Biochemistry; Medical Faculty; University of Cologne; Cologne Germany
- Center for Molecular Medicine Cologne (CMMC); University of Cologne; Cologne Germany
| | - S. Broekaert
- Department of Dermatology; University of Münster; Münster Germany
| | - D. Metze
- Department of Dermatology; University of Münster; Münster Germany
| | - G. Sengle
- Center for Biochemistry; Medical Faculty; University of Cologne; Cologne Germany
- Center for Molecular Medicine Cologne (CMMC); University of Cologne; Cologne Germany
| | - M. Böhm
- Department of Dermatology; University of Münster; Münster Germany
| |
Collapse
|
23
|
Visualizing tropoelastin in a long-term human elastic fibre cell culture model. Sci Rep 2016; 6:20378. [PMID: 26842906 PMCID: PMC4740895 DOI: 10.1038/srep20378] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 12/23/2015] [Indexed: 01/23/2023] Open
Abstract
Elastin is an essential protein found in a variety of tissues where resilience and flexibility are needed, such as the skin and the heart. When aiming to engineer suitable implants, elastic fibres are needed to allow adequate tissue renewal. However, the visualization of human elastogenesis remains in the dark. To date, the visualization of human tropoelastin (TE) production in a human cell context and its fibre assembly under live cell conditions has not been achieved. Here, we present a long-term cell culture model of human dermal fibroblasts expressing fluorescence-labelled human TE. We employed a lentiviral system to stably overexpress Citrine-labelled TE to build a fluorescent fibre network. Using immunofluorescence, we confirmed the functionality of the Citrine-tagged TE. Furthermore, we visualized the fibre assembly over the course of several days using confocal microscopy. Applying super resolution microscopy, we were able to investigate the inner structure of the elastin–fibrillin-1 fibre network. Future investigations will allow the tracking of TE produced under various conditions. In tissue engineering applications the fluorescent fibre network can be visualized under various conditions or it serves as a tool for investigating fibre degradation processes in disease-in-a-dish-models.
Collapse
|
24
|
Yeo GC, Aghaei-Ghareh-Bolagh B, Brackenreg EP, Hiob MA, Lee P, Weiss AS. Fabricated Elastin. Adv Healthc Mater 2015; 4:2530-2556. [PMID: 25771993 PMCID: PMC4568180 DOI: 10.1002/adhm.201400781] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 02/09/2015] [Indexed: 12/18/2022]
Abstract
The mechanical stability, elasticity, inherent bioactivity, and self-assembly properties of elastin make it a highly attractive candidate for the fabrication of versatile biomaterials. The ability to engineer specific peptide sequences derived from elastin allows the precise control of these physicochemical and organizational characteristics, and further broadens the diversity of elastin-based applications. Elastin and elastin-like peptides can also be modified or blended with other natural or synthetic moieties, including peptides, proteins, polysaccharides, and polymers, to augment existing capabilities or confer additional architectural and biofunctional features to compositionally pure materials. Elastin and elastin-based composites have been subjected to diverse fabrication processes, including heating, electrospinning, wet spinning, solvent casting, freeze-drying, and cross-linking, for the manufacture of particles, fibers, gels, tubes, sheets and films. The resulting materials can be tailored to possess specific strength, elasticity, morphology, topography, porosity, wettability, surface charge, and bioactivity. This extraordinary tunability of elastin-based constructs enables their use in a range of biomedical and tissue engineering applications such as targeted drug delivery, cell encapsulation, vascular repair, nerve regeneration, wound healing, and dermal, cartilage, bone, and dental replacement.
Collapse
Affiliation(s)
- Giselle C. Yeo
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - Behnaz Aghaei-Ghareh-Bolagh
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - Edwin P. Brackenreg
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - Matti A. Hiob
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - Pearl Lee
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - Anthony S. Weiss
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
- Bosch Institute, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
25
|
Vodo D, Sarig O, Peled A, Frydman M, Greenberger S, Sprecher E. Autosomal-dominant cutis laxa resulting from an intronic mutation in ELN. Exp Dermatol 2015; 24:885-7. [DOI: 10.1111/exd.12784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Dan Vodo
- Department of Dermatology; Tel Aviv Sourasky Medical Center; Tel Aviv Israel
- Department of Human Molecular Genetics and Biochemistry; Sackler Faculty of Medicine; Tel Aviv University; Tel Aviv Israel
| | - Ofer Sarig
- Department of Human Molecular Genetics and Biochemistry; Sackler Faculty of Medicine; Tel Aviv University; Tel Aviv Israel
| | - Alon Peled
- Department of Dermatology; Tel Aviv Sourasky Medical Center; Tel Aviv Israel
- Department of Human Molecular Genetics and Biochemistry; Sackler Faculty of Medicine; Tel Aviv University; Tel Aviv Israel
| | - Moshe Frydman
- Department of Human Molecular Genetics and Biochemistry; Sackler Faculty of Medicine; Tel Aviv University; Tel Aviv Israel
- The Danek Gertner Institute of Human Genetics; Chaim Sheba Medical Center; Tel Hashomer Israel
| | - Shoshi Greenberger
- Department of Dermatology; Chaim Sheba Medical Center; Tel Hashomer Israel
| | - Eli Sprecher
- Department of Dermatology; Tel Aviv Sourasky Medical Center; Tel Aviv Israel
- Department of Human Molecular Genetics and Biochemistry; Sackler Faculty of Medicine; Tel Aviv University; Tel Aviv Israel
| |
Collapse
|
26
|
Patrucco L, Chiesa A, Soluri MF, Fasolo F, Takahashi H, Carninci P, Zucchelli S, Santoro C, Gustincich S, Sblattero D, Cotella D. Engineering mammalian cell factories with SINEUP noncoding RNAs to improve translation of secreted proteins. Gene 2015; 569:287-93. [DOI: 10.1016/j.gene.2015.05.070] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 05/19/2015] [Accepted: 05/28/2015] [Indexed: 12/31/2022]
|
27
|
Vanakker O, Callewaert B, Malfait F, Coucke P. The Genetics of Soft Connective Tissue Disorders. Annu Rev Genomics Hum Genet 2015; 16:229-55. [DOI: 10.1146/annurev-genom-090314-050039] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Olivier Vanakker
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Bert Callewaert
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Fransiska Malfait
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Paul Coucke
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium;
| |
Collapse
|
28
|
Gardeitchik T, Mohamed M, Fischer B, Lammens M, Lefeber D, Lace B, Parker M, Kim KJ, Lim BC, Häberle J, Garavelli L, Jagadeesh S, Kariminejad A, Guerra D, Leão M, Keski-Filppula R, Brunner H, Nijtmans L, van den Heuvel B, Wevers R, Kornak U, Morava E. Clinical and biochemical features guiding the diagnostics in neurometabolic cutis laxa. Eur J Hum Genet 2014; 22:888-95. [PMID: 23963297 PMCID: PMC4060105 DOI: 10.1038/ejhg.2013.154] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 06/11/2013] [Accepted: 06/12/2013] [Indexed: 01/01/2023] Open
Abstract
Patients with cutis laxa (CL) have wrinkled, sagging skin with decreased elasticity. Skin symptoms are associated with variable systemic involvement. The most common, genetically highly heterogeneous form of autosomal recessive CL, ARCL2, is frequently associated with variable metabolic and neurological symptoms. Progeroid symptoms, dysmorphic features, hypotonia and psychomotor retardation are highly overlapping in the early phase of these disorders. This makes the genetic diagnosis often challenging. In search for discriminatory symptoms, we prospectively evaluated clinical, neurologic, metabolic and genetic features in our patient cohort referred for suspected ARCL. From a cohort of 26 children, we confirmed mutations in genes associated with ARCL in 16 children (14 probands), including 12 novel mutations. Abnormal glycosylation and gyration abnormalities were mostly, but not always associated with ATP6V0A2 mutations. Epilepsy was most common in ATP6V0A2 defects. Corpus callosum dysgenesis was associated with PYCR1 and ALDH18A1 mutations. Dystonic posturing was discriminatory for PYCR1 and ALDH18A1 defects. Metabolic markers of mitochondrial dysfunction were found in one patient with PYCR1 mutations. So far unreported white matter abnormalities were found associated with GORAB and RIN2 mutations. We describe a large cohort of CL patients with neurologic involvement. Migration defects and corpus callosum hypoplasia were not always diagnostic for a specific genetic defect in CL. All patients with ATP6V0A2 defects had abnormal glycosylation. To conclude, central nervous system and metabolic abnormalities were discriminatory in this genetically heterogeneous group, although not always diagnostic for a certain genetic defect in CL.
Collapse
Affiliation(s)
- Thatjana Gardeitchik
- Department of Pediatrics, Institute for Metabolic and Genetic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Miski Mohamed
- Department of Pediatrics, Institute for Metabolic and Genetic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Björn Fischer
- Institute of Medical Genetics and Human Genetics, Charité Universitätsmedizin, Berlin, Germany
| | - Martin Lammens
- Department of Pathology, Institute for Metabolic and Genetic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Dirk Lefeber
- Department of Neurology, Institute for Metabolic and Genetic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Baiba Lace
- Medical Genetics Clinic, Children's Clinical University Hospital, Riga, Latvia
| | - Michael Parker
- Sheffield Clinical Genetics Service, Sheffield Children's Hospital, Sheffield, UK
| | - Ki-Joong Kim
- Department of Pediatrics, Seoul National University Hospital, Seoul, South Korea
| | - Bing C Lim
- Department of Pediatrics, Seoul National University Hospital, Seoul, South Korea
| | - Johannes Häberle
- Department of Pediatrics, University Children's Hospital, Zürich, Switzerland
| | - Livia Garavelli
- Clinical Genetics Unit, Obstetric and Pediatric Department, Santa Maria Nuova Hospital IRCCS, Reggio Emilia, Italy
| | | | | | - Deanna Guerra
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Michel Leão
- Pediatric Neurology Unit and Neurogenetics Unit, Hospital S João, Porto, Portugal
| | | | - Han Brunner
- Department of Human Genetics, Institute for Metabolic and Genetic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Leo Nijtmans
- Department of Pediatrics, Institute for Metabolic and Genetic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Bert van den Heuvel
- Department of Pediatrics, Institute for Metabolic and Genetic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands
- Laboratory for Genetic Endocrine and Metabolic Diseases, Institute for Metabolic and Genetic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Ron Wevers
- Department of Pediatrics, Institute for Metabolic and Genetic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands
- Laboratory for Genetic Endocrine and Metabolic Diseases, Institute for Metabolic and Genetic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Uwe Kornak
- Institute of Medical Genetics and Human Genetics, Charité Universitätsmedizin, Berlin, Germany
- FG Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Eva Morava
- Department of Pediatrics, Institute for Metabolic and Genetic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands
- Hayward Genetics Center, Tulane University Medical Center, New Orleans, LA, USA
| |
Collapse
|
29
|
Kozel BA, Bayliss SJ, Berk DR, Waxler JL, Knutsen RH, Danback JR, Pober BR. Skin findings in Williams syndrome. Am J Med Genet A 2014; 164A:2217-25. [PMID: 24920525 DOI: 10.1002/ajmg.a.36628] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 05/05/2014] [Indexed: 01/30/2023]
Abstract
Previous examination in a small number of individuals with Williams syndrome (also referred to as Williams-Beuren syndrome) has shown subtly softer skin and reduced deposition of elastin, an elastic matrix protein important in tissue recoil. No quantitative information about skin elasticity in individuals with Williams syndrome is available; nor has there been a complete report of dermatologic findings in this population. To fill this knowledge gap, 94 patients with Williams syndrome aged 7-50 years were recruited as part of the skin and vascular elasticity (WS-SAVE) study. They underwent either a clinical dermatologic assessment by trained dermatologists (2010 WSA family meeting) or measurement of biomechanical properties of the skin with the DermaLab™ suction cup (2012 WSA family meeting). Clinical assessment confirmed that soft skin is common in this population (83%), as is premature graying of the hair (80% of those 20 years or older), while wrinkles (92%), and abnormal scarring (33%) were detected in larger than expected proportions. Biomechanical studies detected statistically significant differences in dP (the pressure required to lift the skin), dT (the time required to raise the skin through a prescribed gradient), VE (viscoelasticity), and E (Young's modulus) relative to matched controls. The RT (retraction time) also trended longer but was not significant. The biomechanical differences noted in these patients did not correlate with the presence of vascular defects also attributable to elastin insufficiency (vascular stiffness, hypertension, and arterial stenosis) suggesting the presence of tissue specific modifiers that modulate the impact of elastin insufficiency in each tissue.
Collapse
Affiliation(s)
- Beth A Kozel
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri
| | | | | | | | | | | | | |
Collapse
|
30
|
Siefring ML, Lawrence EC, Nguyen TC, Lu D, Pham G, Lorenchick C, Levine KL, Urban Z. A novel elastin gene mutation in a Vietnamese patient with cutis laxa. Pediatr Dermatol 2014; 31:347-9. [PMID: 24758204 PMCID: PMC4108164 DOI: 10.1111/pde.12334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We report a 3-year-old girl from Vietnam with severe congenital cutis laxa; no cardiovascular, pulmonary, neurologic, or visceral involvement; and no family history of cutis laxa. Mutational analysis of the elastin gene identified heterozygosity for a previously unreported de novo c.2184delT mutation in exon 30 not present in either parent.
Collapse
|
31
|
|
32
|
Gillis E, Van Laer L, Loeys BL. Genetics of thoracic aortic aneurysm: at the crossroad of transforming growth factor-β signaling and vascular smooth muscle cell contractility. Circ Res 2013; 113:327-40. [PMID: 23868829 DOI: 10.1161/circresaha.113.300675] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Aortic aneurysm, including both abdominal aortic aneurysm and thoracic aortic aneurysm, is the cause of death of 1% to 2% of the Western population. This review focuses only on thoracic aortic aneurysms and dissections. During the past decade, the genetic contribution to the pathogenesis of thoracic aortic aneurysms and dissections has revealed perturbed extracellular matrix signaling cascade interactions and deficient intracellular components of the smooth muscle contractile apparatus as the key mechanisms. Based on the study of different Marfan mouse models and the discovery of several novel thoracic aortic aneurysm genes, the involvement of the transforming growth factor-β signaling pathway has opened unexpected new avenues. Overall, these discoveries have 3 important consequences. First, the pathogenesis of thoracic aortic aneurysms and dissections is better understood, although some controversy still exists. Second, the management strategies for the medical and surgical treatment of thoracic aortic aneurysms and dissections are becoming increasingly gene-tailored. Third, the pathogenetic insights have delivered new treatment options that are currently being investigated in large clinical trials.
Collapse
Affiliation(s)
- Elisabeth Gillis
- Center for Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Belgium
| | | | | |
Collapse
|
33
|
Abstract
Skin is an important organ to the human body as it functions as an interface between the body and environment. Cutaneous injury elicits a complex wound healing process, which is an orchestration of cells, matrix components, and signaling factors that re-establishes the barrier function of skin. In adults, an unavoidable consequence of wound healing is scar formation. However, in early fetal development, wound healing is scarless. This phenomenon is characterized by an attenuated inflammatory response, differential expression of signaling factors, and regeneration of normal skin architecture. Elastin endows a range of mechanical and cell interactive properties to skin. In adult wound healing, elastin is severely lacking and only a disorganized elastic fiber network is present after scar formation. The inherent properties of elastin make it a desirable inclusion to adult wound healing. Elastin imparts recoil and resistance and induces a range of cell activities, including cell migration and proliferation, matrix synthesis, and protease production. The effects of elastin align with the hallmarks of fetal scarless wound healing. Elastin synthesis is substantial in late stage in utero and drops to a trickle in adults. The physical and cell signaling advantages of elastin in a wound healing context creates a parallel with the innate features of fetal skin that can allow for scarless healing.
Collapse
Affiliation(s)
- Jessica F Almine
- School of Molecular Bioscience, University of Sydney, New South Wales, Australia
| | | | | |
Collapse
|
34
|
Hadj-Rabia S, Callewaert BL, Bourrat E, Kempers M, Plomp AS, Layet V, Bartholdi D, Renard M, De Backer J, Malfait F, Vanakker OM, Coucke PJ, De Paepe AM, Bodemer C. Twenty patients including 7 probands with autosomal dominant cutis laxa confirm clinical and molecular homogeneity. Orphanet J Rare Dis 2013; 8:36. [PMID: 23442826 PMCID: PMC3599008 DOI: 10.1186/1750-1172-8-36] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 02/14/2013] [Indexed: 01/15/2023] Open
Abstract
Background Elastin gene mutations have been associated with a variety of phenotypes. Autosomal dominant cutis laxa (ADCL) is a rare disorder that presents with lax skin, typical facial characteristics, inguinal hernias, aortic root dilatation and pulmonary emphysema. In most patients, frameshift mutations are found in the 3’ region of the elastin gene (exons 30-34) which result in a C-terminally extended protein, though exceptions have been reported. Methods We clinically and molecularly characterized the thus far largest cohort of ADCL patients, consisting of 19 patients from six families and one sporadic patient. Results Molecular analysis showed C-terminal frameshift mutations in exon 30, 32, and 34 of the elastin gene and identified a mutational hotspot in exon 32 (c.2262delA). This cohort confirms the previously reported clinical constellation of skin laxity (100%), inguinal hernias (51%), aortic root dilatation (55%) and emphysema (37%). Conclusion ADCL is a clinically and molecularly homogeneous disorder, but intra- and interfamilial variability in the severity of organ involvement needs to be taken into account. Regular cardiovascular and pulmonary evaluations are imperative in the clinical follow-up of these patients.
Collapse
Affiliation(s)
- Smail Hadj-Rabia
- Service de Dermatologie - Centre de référence national des Maladies Génétiques à Expression Cutanée MAGEC, INSERM U781, Hôpital Necker - Enfants Malades, Université Paris V-Descartes, 149, rue de Sèvres 75743 Paris Cedex 15, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
The progress of molecular genetics helps clinicians to prove or exclude a suspected diagnosis for a vast and yet increasing number of genodermatoses. This leads to precise genetic counselling, prenatal diagnosis and preimplantation genetic haplotyping for many inherited skin conditions. It is also helpful in such occasions as phenocopy, late onset and incomplete penetrance, uniparental disomy, mitochondrial inheritance and pigmentary mosaicism. Molecular methods of two genodermatoses are explained in detail, i.e. genodermatoses with skin fragility and neurofibromatosis type 1.
Collapse
Affiliation(s)
- Vesarat Wessagowit
- Molecular Genetics Laboratory, The Institute of Dermatology, Bangkok, Thailand.
| |
Collapse
|
36
|
The Complexity of Elastic Fiber Biogenesis: The Paradigm of Cutis Laxa. J Invest Dermatol 2012; 132 Suppl 3:E12-4. [DOI: 10.1038/skinbio.2012.4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Sugitani H, Hirano E, Knutsen RH, Shifren A, Wagenseil JE, Ciliberto C, Kozel BA, Urban Z, Davis EC, Broekelmann TJ, Mecham RP. Alternative splicing and tissue-specific elastin misassembly act as biological modifiers of human elastin gene frameshift mutations associated with dominant cutis laxa. J Biol Chem 2012; 287:22055-67. [PMID: 22573328 DOI: 10.1074/jbc.m111.327940] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Elastin is the extracellular matrix protein in vertebrates that provides elastic recoil to blood vessels, the lung, and skin. Because the elastin gene has undergone significant changes in the primate lineage, modeling elastin diseases in non-human animals can be problematic. To investigate the pathophysiology underlying a class of elastin gene mutations leading to autosomal dominant cutis laxa, we engineered a cutis laxa mutation (single base deletion) into the human elastin gene contained in a bacterial artificial chromosome. When expressed as a transgene in mice, mutant elastin was incorporated into elastic fibers in the skin and lung with adverse effects on tissue function. In contrast, only low levels of mutant protein incorporated into aortic elastin, which explains why the vasculature is relatively unaffected in this disease. RNA stability studies found that alternative exon splicing acts as a modifier of disease severity by influencing the spectrum of mutant transcripts that survive nonsense-mediated decay. Our results confirm the critical role of the C-terminal region of tropoelastin in elastic fiber assembly and suggest tissue-specific differences in the elastin assembly pathway.
Collapse
Affiliation(s)
- Hideki Sugitani
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Berk DR, Bentley DD, Bayliss SJ, Lind A, Urban Z. Cutis laxa: A review. J Am Acad Dermatol 2012; 66:842.e1-17. [DOI: 10.1016/j.jaad.2011.01.004] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 12/05/2010] [Accepted: 01/03/2011] [Indexed: 12/17/2022]
|
39
|
Heinz A, Jung MC, Jahreis G, Rusciani A, Duca L, Debelle L, Weiss AS, Neubert RHH, Schmelzer CEH. The action of neutrophil serine proteases on elastin and its precursor. Biochimie 2011; 94:192-202. [PMID: 22030899 DOI: 10.1016/j.biochi.2011.10.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Accepted: 10/12/2011] [Indexed: 11/17/2022]
Abstract
This study aimed to investigate the degradation of the natural substrates tropoelastin and elastin by the neutrophil-derived serine proteases human leukocyte elastase (HLE), proteinase 3 (PR3) and cathepsin G (CG). Focus was placed on determining their cleavage site specificities using mass spectrometric techniques. Moreover, the release of bioactive peptides from elastin by the three proteases was studied. Tropoelastin was comprehensively degraded by all three proteases, whereas less cleavage occurred in mature cross-linked elastin. An analysis of the cleavage site specificities of the three proteases in tropoelastin and elastin revealed that HLE and PR3 similarly tolerate hydrophobic and/or aliphatic amino acids such as Ala, Gly and Val at P(1), which are also preferred by CG. In addition, CG prefers the bulky hydrophobic amino acid Leu and accepts the bulky aromatic amino acids Phe and Tyr. CG shows a strong preference for the charged amino acid Lys at P(1) in tropoelastin, whereas Lys was not identified at P(1) in CG digests of elastin due to extensive cross-linking at Lys residues in mature elastin. All three serine proteases showed a clear preference for Pro at P(2) and P(4)'. With respect to the liberation of potentially bioactive peptides from elastin, the study revealed that all three serine proteases have a similar ability to release bioactive sequences, with CG producing the highest number of these peptides. In bioactivity studies, potentially bioactive peptides that have not been investigated on their bioactivity to date, were tested. Three new bioactive GxxPG motifs were identified; GVYPG, GFGPG and GVLPG.
Collapse
Affiliation(s)
- Andrea Heinz
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Faculty of Natural Sciences I, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Callewaert B, Renard M, Hucthagowder V, Albrecht B, Hausser I, Blair E, Dias C, Albino A, Wachi H, Sato F, Mecham RP, Loeys B, Coucke PJ, De Paepe A, Urban Z. New insights into the pathogenesis of autosomal-dominant cutis laxa with report of five ELN mutations. Hum Mutat 2011; 32:445-55. [PMID: 21309044 DOI: 10.1002/humu.21462] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 01/11/2011] [Indexed: 12/16/2022]
Abstract
Autosomal dominant cutis laxa (ADCL) is characterized by a typical facial appearance and generalized loose skin folds, occasionally associated with aortic root dilatation and emphysema. We sequenced exons 28-34 of the ELN gene in five probands with ADCL features and found five de novo heterozygous mutations: c.2296_2299dupGCAG (CL-1), c.2333delC (CL-2), c.2137delG (CL-3), c.2262delA (monozygotic twin CL-4 and CL-5), and c.2124del25 (CL-6). Four probands (CL-1,-2,-3,-6) presented with progressive aortic root dilatation. CL-2 and CL-3 also had bicuspid aortic valves. CL-2 presented with severe emphysema. Electron microscopy revealed elastic fiber fragmentation and diminished dermal elastin deposition. RT-PCR studies showed stable mutant mRNA in all patients. Exon 32 skipping explains a milder phenotype in patients with exon 32 mutations. Mutant protein expression in fibroblast cultures impaired deposition of tropoelastin onto microfibril-containing fibers, and enhanced tropoelastin coacervation and globule formation leading to lower amounts of mature, insoluble elastin. Mutation-specific effects also included endoplasmic reticulum stress and increased apoptosis. Increased pSMAD2 staining in ADCL fibroblasts indicated enhanced transforming growth factor beta (TGF-β) signaling. We conclude that ADCL is a systemic disease with cardiovascular and pulmonary complications, associated with increased TGF-β signaling and mutation-specific differences in endoplasmic reticulum stress and apoptosis.
Collapse
Affiliation(s)
- Bert Callewaert
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Akhtar K, Broekelmann TJ, Song H, Turk J, Brett TJ, Mecham RP, Adair-Kirk TL. Oxidative modifications of the C-terminal domain of tropoelastin prevent cell binding. J Biol Chem 2011; 286:13574-82. [PMID: 21321118 DOI: 10.1074/jbc.m110.192088] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Tropoelastin (TE), the soluble monomer of elastin, is synthesized by elastogenic cells, such as chondrocytes, fibroblasts, and smooth muscle cells (SMCs). The C-terminal domain of TE interacts with cell receptors, and these interactions play critical roles in elastic fiber assembly. We recently found that oxidation of TE prevents elastic fiber assembly. Here, we examined the effects of oxidation of TE on cell interactions. We found that SMCs bind to TE through heparan sulfate (HS), whereas fetal lung fibroblasts (WI-38 cells) bind through integrin α(v)β(3) and HS. In addition, we found that oxidation of TE by peroxynitrite (ONOO(-)) prevented binding of SMCs and WI-38 cells and other elastogenic cells, human dermal fibroblasts and fetal bovine chondrocytes. Because the C-terminal domain of TE has binding sites for both HS and integrin, we examined the effects of oxidation of a synthetic peptide derived from the C-terminal 25 amino acids of TE (CT-25) on cell binding. The CT-25 peptide contains the only two Cys residues in TE juxtaposed to a cluster of positively charged residues (RKRK) that are important for cell binding. ONOO(-) treatment of the CT-25 peptide prevented cell binding, whereas reduction of the CT-25 peptide had no effect. Mass spectrometric and circular dichroism spectroscopic analyses showed that ONOO(-) treatment modified both Cys residues in the CT-25 peptide to sulfonic acid derivatives, without altering the secondary structure. These data suggest that the mechanism by which ONOO(-) prevents cell binding to TE is by introducing negatively charged sulfonic acid residues near the positively charged cluster.
Collapse
Affiliation(s)
- Kamal Akhtar
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Affiliation(s)
- Hiroshi Wachi
- Department of Clinical Chemistry, Hoshi University School of Pharmacy and Pharmaceutical Sciences
| |
Collapse
|
43
|
Abstract
Abdominal aortic aneurysm (AAA) is a multifactorial disease with a strong genetic component. Since the first candidate gene studies were published 20 years ago, approximately 100 genetic association studies using single nucleotide polymorphisms (SNPs) in biologically relevant genes have been reported on AAA. These studies investigated SNPs in genes of the extracellular matrix, the cardiovascular system, the immune system, and signaling pathways. Very few studies were large enough to draw firm conclusions and very few results could be replicated in another sample set. The more recent unbiased approaches are family-based DNA linkage studies and genome-wide genetic association studies, which have the potential of identifying the genetic basis for AAA, only when appropriately powered and well-characterized large AAA cohorts are used. SNPs associated with AAA have already been identified in these large multicenter studies. One significant association was of a variant in a gene called contactin-3, which is located on chromosome 3p12.3. However, two follow-up studies could not replicate this association. Two other SNPs, which are located on chromosome 9p21 and 9q33, were replicated in other samples. The two genes with the strongest supporting evidence of contribution to the genetic risk for AAA are the CDKN2BAS gene, also known as ANRIL, which encodes an antisense ribonucleic acid that regulates expression of the cyclin-dependent kinase inhibitors CDKN2A and CDKN2B, and DAB2IP, which encodes an inhibitor of cell growth and survival. Functional studies are now needed to establish the mechanisms by which these genes contribute toward AAA pathogenesis.
Collapse
|
44
|
Hu Q, Shifren A, Sens C, Choi J, Szabo Z, Starcher BC, Knutsen RH, Shipley JM, Davis EC, Mecham RP, Urban Z. Mechanisms of emphysema in autosomal dominant cutis laxa. Matrix Biol 2010; 29:621-8. [PMID: 20600892 DOI: 10.1016/j.matbio.2010.06.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 06/17/2010] [Accepted: 06/18/2010] [Indexed: 02/01/2023]
Abstract
Heterozygous elastin gene mutations cause autosomal dominant cutis laxa associated with emphysema and aortic aneurysms. To investigate the molecular mechanisms leading to cutis laxa in vivo, we generated transgenic mice by pronuclear injection of minigenes encoding normal human tropoelastin (WT) or tropoelastin with a cutis laxa mutation (CL). Three independent founder lines of CL mice showed emphysematous pulmonary airspace enlargement. No consistent dermatological or cardiovascular pathologies were observed. One CL and one WT line were selected for detailed studies. Both mutant and control transgenic animals showed elastin deposition into pulmonary elastic fibers, indicated by increased desmosine levels in the lung and by colocalization of transgenic and endogenous elastin by immunostaining. CL mice showed increased static lung compliance and decreased stiffness of lung tissue. In addition, markers of transforming growth factor-β (TGFβ) signaling and the unfolded protein response (UPR) were elevated together with increased apoptosis in the lungs of CL animals. We conclude that the synthesis of mutant elastin in CL activates multiple downstream disease pathways by triggering a UPR, altered mechanical signaling, increased release of TGFβ and apoptosis. We propose that the combined effects of these processes lead to the development of an emphysematous pulmonary phenotype in CL.
Collapse
Affiliation(s)
- Qirui Hu
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Renard M, Holm T, Veith R, Callewaert BL, Adès LC, Baspinar O, Pickart A, Dasouki M, Hoyer J, Rauch A, Trapane P, Earing MG, Coucke PJ, Sakai LY, Dietz HC, De Paepe AM, Loeys BL. Altered TGFbeta signaling and cardiovascular manifestations in patients with autosomal recessive cutis laxa type I caused by fibulin-4 deficiency. Eur J Hum Genet 2010; 18:895-901. [PMID: 20389311 DOI: 10.1038/ejhg.2010.45] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Fibulin-4 is a member of the fibulin family, a group of extracellular matrix proteins prominently expressed in medial layers of large veins and arteries. Involvement of the FBLN4 gene in cardiovascular pathology was shown in a murine model and in three patients affected with cutis laxa in association with systemic involvement. To elucidate the contribution of FBLN4 in human disease, we investigated two cohorts of patients. Direct sequencing of 17 patients with cutis laxa revealed no FBLN4 mutations. In a second group of 22 patients presenting with arterial tortuosity, stenosis and aneurysms, FBLN4 mutations were identified in three patients, two homozygous missense mutations (p.Glu126Lys and p.Ala397Thr) and compound heterozygosity for missense mutation p.Glu126Val and frameshift mutation c.577delC. Immunoblotting analysis showed a decreased amount of fibulin-4 protein in the fibroblast culture media of two patients, a finding sustained by diminished fibulin-4 in the extracellular matrix of the aortic wall on immunohistochemistry. pSmad2 and CTGF immunostaining of aortic and lung tissue revealed an increase in transforming growth factor (TGF)beta signaling. This was confirmed by pSmad2 immunoblotting of fibroblast cultures. In conclusion, patients with recessive FBLN4 mutations are predominantly characterized by aortic aneurysms, arterial tortuosity and stenosis. This confirms the important role of fibulin-4 in vascular elastic fiber assembly. Furthermore, we provide the first evidence for the involvement of altered TGFbeta signaling in the pathogenesis of FBLN4 mutations in humans.
Collapse
Affiliation(s)
- Marjolijn Renard
- Center for Medical Genetics, University Hospital Ghent, De Pintelaan 185, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- Anupama Mauskar
- Department of Pediatrics, Lokmanya Tilak Municipal Medical College and General Hospital. Sion, Mumbai - 400 022, Maharashtra, India
| | - Preeti Shanbag
- Department of Pediatrics, Lokmanya Tilak Municipal Medical College and General Hospital. Sion, Mumbai - 400 022, Maharashtra, India
| | - Varsha Ahirrao
- Department of Pediatrics, Lokmanya Tilak Municipal Medical College and General Hospital. Sion, Mumbai - 400 022, Maharashtra, India
| | - Leena Nagotkar
- Department of Pediatrics, Lokmanya Tilak Municipal Medical College and General Hospital. Sion, Mumbai - 400 022, Maharashtra, India
| |
Collapse
|
47
|
Srisuma S, Bhattacharya S, Simon DM, Solleti SK, Tyagi S, Starcher B, Mariani TJ. Fibroblast growth factor receptors control epithelial-mesenchymal interactions necessary for alveolar elastogenesis. Am J Respir Crit Care Med 2010; 181:838-50. [PMID: 20093646 DOI: 10.1164/rccm.200904-0544oc] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE The mechanisms contributing to alveolar formation are poorly understood. A better understanding of these processes will improve efforts to ameliorate lung disease of the newborn and promote alveolar repair in the adult. Previous studies have identified impaired alveogenesis in mice bearing compound mutations of fibroblast growth factor (FGF) receptors (FGFRs) 3 and 4, indicating that these receptors cooperatively promote postnatal alveolar formation. OBJECTIVES To determine the molecular and cellular mechanisms of FGF-mediated alveolar formation. METHODS Compound FGFR3/FGFR4-deficient mice were assessed for temporal changes in lung growth, airspace morphometry, and genome-wide expression. Observed gene expression changes were validated using quantitative real-time RT-PCR, tissue biochemistry, histochemistry, and ELISA. Autocrine and paracrine regulatory mechanisms were investigated using isolated lung mesenchymal cells and type II pneumocytes. MEASUREMENTS AND MAIN RESULTS Quantitative analysis of airspace ontogeny confirmed a failure of secondary crest elongation in compound mutant mice. Genome-wide expression profiling identified molecular alterations in these mice involving aberrant expression of numerous extracellular matrix molecules. Biochemical and histochemical analysis confirmed changes in elastic fiber gene expression resulted in temporal increases in elastin deposition with the loss of typical spatial restriction. No abnormalities in elastic fiber gene expression were observed in isolated mesenchymal cells, indicating that abnormal elastogenesis in compound mutant mice is not cell autonomous. Increased expression of paracrine factors, including insulin-like growth factor-1, in freshly-isolated type II pneumocytes indicated that these cells contribute to the observed pathology. CONCLUSIONS Epithelial/mesenchymal signaling mechanisms appear to contribute to FGFR-dependent alveolar elastogenesis and proper airspace formation.
Collapse
Affiliation(s)
- Sorachai Srisuma
- Division of Neonatology and Center for Pediatric Biomedical Research, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Haider M, Alfadley A, Kadry R, Almutawa A. Acquired cutis laxa type II (Marshall syndrome) in an 18-month-old child: a case report. Pediatr Dermatol 2010; 27:89-91. [PMID: 20199420 DOI: 10.1111/j.1525-1470.2009.01052.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cutis laxa is a rare disorder resulting from degradation and clumping of elastic fibers in dermis. Type II acquired cutis laxa, shows only cutaneous changes without any systemic involvement. We describe an infant with acquired cutis laxa type II following a generalized inflammatory dermatitis.
Collapse
Affiliation(s)
- Mansoor Haider
- Dermatology Unit, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
| | | | | | | |
Collapse
|
49
|
Urban Z, Hucthagowder V, Schürmann N, Todorovic V, Zilberberg L, Choi J, Sens C, Brown CW, Clark RD, Holland KE, Marble M, Sakai LY, Dabovic B, Rifkin DB, Davis EC. Mutations in LTBP4 cause a syndrome of impaired pulmonary, gastrointestinal, genitourinary, musculoskeletal, and dermal development. Am J Hum Genet 2009; 85:593-605. [PMID: 19836010 DOI: 10.1016/j.ajhg.2009.09.013] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 09/22/2009] [Accepted: 09/25/2009] [Indexed: 10/20/2022] Open
Abstract
We report recessive mutations in the gene for the latent transforming growth factor-beta binding protein 4 (LTBP4) in four unrelated patients with a human syndrome disrupting pulmonary, gastrointestinal, urinary, musculoskeletal, craniofacial, and dermal development. All patients had severe respiratory distress, with cystic and atelectatic changes in the lungs complicated by tracheomalacia and diaphragmatic hernia. Three of the four patients died of respiratory failure. Cardiovascular lesions were mild, limited to pulmonary artery stenosis and patent foramen ovale. Gastrointestinal malformations included diverticulosis, enlargement, tortuosity, and stenosis at various levels of the intestinal tract. The urinary tract was affected by diverticulosis and hydronephrosis. Joint laxity and low muscle tone contributed to musculoskeletal problems compounded by postnatal growth delay. Craniofacial features included microretrognathia, flat midface, receding forehead, and wide fontanelles. All patients had cutis laxa. Four of the five identified LTBP4 mutations led to premature termination of translation and destabilization of the LTBP4 mRNA. Impaired synthesis and lack of deposition of LTBP4 into the extracellular matrix (ECM) caused increased transforming growth factor-beta (TGF-beta) activity in cultured fibroblasts and defective elastic fiber assembly in all tissues affected by the disease. These molecular defects were associated with blocked alveolarization and airway collapse in the lung. Our results show that coupling of TGF-beta signaling and ECM assembly is essential for proper development and is achieved in multiple human organ systems by multifunctional proteins such as LTBP4.
Collapse
|
50
|
Reversade B, Escande-Beillard N, Dimopoulou A, Fischer B, Chng SC, Li Y, Shboul M, Tham PY, Kayserili H, Al-Gazali L, Shahwan M, Brancati F, Lee H, O'Connor BD, Schmidt-von Kegler M, Merriman B, Nelson SF, Masri A, Alkazaleh F, Guerra D, Ferrari P, Nanda A, Rajab A, Markie D, Gray M, Nelson J, Grix A, Sommer A, Savarirayan R, Janecke AR, Steichen E, Sillence D, Hausser I, Budde B, Nürnberg G, Nürnberg P, Seemann P, Kunkel D, Zambruno G, Dallapiccola B, Schuelke M, Robertson S, Hamamy H, Wollnik B, Van Maldergem L, Mundlos S, Kornak U. Mutations in PYCR1 cause cutis laxa with progeroid features. Nat Genet 2009; 41:1016-21. [PMID: 19648921 DOI: 10.1038/ng.413] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 06/03/2009] [Indexed: 12/14/2022]
Abstract
Autosomal recessive cutis laxa (ARCL) describes a group of syndromal disorders that are often associated with a progeroid appearance, lax and wrinkled skin, osteopenia and mental retardation. Homozygosity mapping in several kindreds with ARCL identified a candidate region on chromosome 17q25. By high-throughput sequencing of the entire candidate region, we detected disease-causing mutations in the gene PYCR1. We found that the gene product, an enzyme involved in proline metabolism, localizes to mitochondria. Altered mitochondrial morphology, membrane potential and increased apoptosis rate upon oxidative stress were evident in fibroblasts from affected individuals. Knockdown of the orthologous genes in Xenopus and zebrafish led to epidermal hypoplasia and blistering that was accompanied by a massive increase of apoptosis. Our findings link mutations in PYCR1 to altered mitochondrial function and progeroid changes in connective tissues.
Collapse
|