1
|
Dong J, Li D, Kang L, Luo C, Wang J. Insights into human eNOS, nNOS and iNOS structures and medicinal indications from statistical analyses of their interactions with bound compounds. BIOPHYSICS REPORTS 2023; 9:159-175. [PMID: 38028152 PMCID: PMC10648232 DOI: 10.52601/bpr.2023.210045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 05/18/2023] [Indexed: 12/01/2023] Open
Abstract
83 Structures of human nNOS, 55 structures of human eNOS, 13 structures of iNOS, and about 126 reported NOS-bound compounds are summarized and analyzed. Structural and statistical analysis show that, at least one copy of each analyzed compound binds to the active site (the substrate arginine binding site) of human NOS. And binding features of the three isoforms show differences, but the binding preference of compounds is not in the way helpful for inhibitor design targeting nNOS and iNOS, or for activator design targeting eNOS. This research shows that there is a strong structural and functional similarity between oxygenase domains of human NOS isoforms, especially the architecture, residue composition, size, shape, and distribution profile of hydrophobicity, polarity and charge of the active site. The selectivity and efficacy of inhibitors over the rest of isoforms rely a lot on chance and randomness. Further increase of selectivity via rational improvement is uncertain, unpredictable and unreliable, therefore, to achieve high selectivity through targeting this site is complicated and requires combinative investigation. After analysis on the current two targeting sites in NOS, the highly conserved arginine binding pocket and H4B binding pocket, new potential drug-targeting sites are proposed based on structure and sequence profiling. This comprehensive analysis on the structure and interaction profiles of human NOS and bound compounds provides fresh insights for drug discovery and pharmacological research, and the new discovery here is practically applied to guide protein-structure based drug discovery.
Collapse
Affiliation(s)
- Jianshu Dong
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Henan Province for Drug Quality control and Evaluation, Zhengzhou University, Zhengzhou 450001, China
| | - Dié Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Henan Province for Drug Quality control and Evaluation, Zhengzhou University, Zhengzhou 450001, China
| | - Lei Kang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Henan Province for Drug Quality control and Evaluation, Zhengzhou University, Zhengzhou 450001, China
| | - Chenbing Luo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Henan Province for Drug Quality control and Evaluation, Zhengzhou University, Zhengzhou 450001, China
| | - Jiangyun Wang
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
2
|
Popova NA, Soodaeva SK, Klimanov IA, Misharin VM, Temnov AA. Autoregulation and Autoinhibition of the Main NO Synthase Isoforms (Brief Review). Sovrem Tekhnologii Med 2023; 15:53-59. [PMID: 38435476 PMCID: PMC10904358 DOI: 10.17691/stm2023.15.3.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Indexed: 03/05/2024] Open
Abstract
Nitric oxide (II) (NO) is the most important mediator of a wide range of physiological and pathophysiological processes. It is synthesized by NO synthases (NOSs), which have three main isoforms differing from each other in terms of activation and inhibition features, levels of NO production, subcellular localization, etc. At the same time, all isoforms are structurally very similar, and these differences are determined by NOS autoregulatory elements. The article presents an analysis of the autoregulatory and autoinhibitory mechanisms of the NOS reductase domain that determine differences in the productivity of isoforms, as well as their dependence on the concentration of Ca2+ ions. The main regulatory elements in NOS that modulate the electron transfer from flavin to heme include calmodulin (CaM), an autoinhibitory insert (AI), and the C-terminal tail (C-tail). Hydrophobic interactions of CaM with the surface of the NOS oxidase domain are assumed to facilitate electron transfer from flavin mononucleotide (FMN). CaM binding causes a change in the inter-domain distances, a shift of AI and the C-tail, and, as a result, a decrease in their inhibitory effect. CaM also shifts the conformational equilibrium of the reductase domain towards more open conformations, reduces the lifetime of conformations, their stereometric distribution, and accelerates the flow of electrons through the reductase domain. The AI element, apparently, induces a conformational change that hinders electron transfer within the reductase domain, similar to the hinge domain in cytochrome P450. Together with CaM, the C-tail regulates the electron flow between flavins, the distance and relative orientation of isoalloxane rings, and also modulates the electron flow from FMN to the terminal acceptor. Together with the C-tail, AI also predetermines the dependence of neuronal and endothelial forms of NOS on the concentration of Ca2+ ions, and the C-tail length affects differences in the productivity of NO synthesis. The inhibitory effect of the C-tail is likely to be reduced by CaM binding due to the C-tail shift due to the electrostatic repulsive forces of the negatively charged phosphate and aspartate residues. The autoregulatory elements of NOS require further study, since the mechanisms of their interaction are complex and multidirectional, and hence provide a wide range of characteristics of the observed isoforms.
Collapse
Affiliation(s)
- N A Popova
- Researcher, Laboratory of Clinical and Experimental Biophysics; Pulmonology Research Institute, Federal Medical and Biological Agency of Russia, 28 Orekhovy Boulevard, Moscow, 115682, Russia; Researcher, Laboratory of Chemical and Biotechnological Synthesis; Moscow Institute of Physics and Technology (National Research University), 9 Institutskiy Per., Dolgoprudny, Moscow Region, 141701, Russia
| | - S K Soodaeva
- Head of Laboratory of Clinical and Experimental Biophysics; Pulmonology Research Institute, Federal Medical and Biological Agency of Russia, 28 Orekhovy Boulevard, Moscow, 115682, Russia; Leading Researcher, Laboratory of Chemical and Biotechnological Synthesis; Moscow Institute of Physics and Technology (National Research University), 9 Institutskiy Per., Dolgoprudny, Moscow Region, 141701, Russia
| | - I A Klimanov
- Senior Researcher, Laboratory of Clinical and Experimental Biophysics; Pulmonology Research Institute, Federal Medical and Biological Agency of Russia, 28 Orekhovy Boulevard, Moscow, 115682, Russia
| | - V M Misharin
- Acting Director of the Institute; Pulmonology Research Institute, Federal Medical and Biological Agency of Russia, 28 Orekhovy Boulevard, Moscow, 115682, Russia
| | - A A Temnov
- Head of Laboratory of Chemical and Biotechnological Synthesis; Moscow Institute of Physics and Technology (National Research University), 9 Institutskiy Per., Dolgoprudny, Moscow Region, 141701, Russia
| |
Collapse
|
3
|
Truchado-Garcia M, Caccavale F, Grande C, D’Aniello S. Expression Pattern of Nitric Oxide Synthase during Development of the Marine Gastropod Mollusc, Crepidula fornicata. Genes (Basel) 2021; 12:genes12020314. [PMID: 33671839 PMCID: PMC7926364 DOI: 10.3390/genes12020314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/28/2022] Open
Abstract
Nitric Oxide (NO) plays a key role in the induction of larval metamorphosis in several invertebrate phyla. The inhibition of the NO synthase in Crepidula fornicata, a molluscan model for evolutionary, developmental, and ecological research, has been demonstrated to block the initiation of metamorphosis highlighting that endogenous NO is crucial in the control of this developmental and morphological process. Nitric Oxide Synthase contributes to the development of shell gland, digestive gland and kidney, being expressed in cells that presumably correspond to FMRF-amide, serotoninergic and catecolaminergic neurons. Here we identified a single Nos gene in embryonic and larval transcriptomes of C. fornicata and studied its localization during development, through whole-mount in situ hybridization, in order to compare its expression pattern with that of other marine invertebrate animal models.
Collapse
Affiliation(s)
- Marta Truchado-Garcia
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Darwin, 1, Cantoblanco, 28049 Madrid, Spain;
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Filomena Caccavale
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| | - Cristina Grande
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Darwin, 1, Cantoblanco, 28049 Madrid, Spain;
- Correspondence: (C.G.); (S.D.); Tel.: +34-91-4972359 (C.G.); +39-081-5833418 (S.D.)
| | - Salvatore D’Aniello
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
- Correspondence: (C.G.); (S.D.); Tel.: +34-91-4972359 (C.G.); +39-081-5833418 (S.D.)
| |
Collapse
|
4
|
Reina-Torres E, De Ieso ML, Pasquale LR, Madekurozwa M, van Batenburg-Sherwood J, Overby DR, Stamer WD. The vital role for nitric oxide in intraocular pressure homeostasis. Prog Retin Eye Res 2020; 83:100922. [PMID: 33253900 DOI: 10.1016/j.preteyeres.2020.100922] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/13/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
Catalyzed by endothelial nitric oxide (NO) synthase (eNOS) activity, NO is a gaseous signaling molecule maintaining endothelial and cardiovascular homeostasis. Principally, NO regulates the contractility of vascular smooth muscle cells and permeability of endothelial cells in response to either biochemical or biomechanical cues. In the conventional outflow pathway of the eye, the smooth muscle-like trabecular meshwork (TM) cells and Schlemm's canal (SC) endothelium control aqueous humor outflow resistance, and therefore intraocular pressure (IOP). The mechanisms by which outflow resistance is regulated are complicated, but NO appears to be a key player as enhancement or inhibition of NO signaling dramatically affects outflow function; and polymorphisms in NOS3, the gene that encodes eNOS modifies the relation between various environmental exposures and glaucoma. Based upon a comprehensive review of past foundational studies, we present a model whereby NO controls a feedback signaling loop in the conventional outflow pathway that is sensitive to changes in IOP and its oscillations. Thus, upon IOP elevation, the outflow pathway tissues distend, and the SC lumen narrows resulting in increased SC endothelial shear stress and stretch. In response, SC cells upregulate the production of NO, relaxing neighboring TM cells and increasing permeability of SC's inner wall. These IOP-dependent changes in the outflow pathway tissues reduce the resistance to aqueous humor drainage and lower IOP, which, in turn, diminishes the biomechanical signaling on SC. Similar to cardiovascular pathogenesis, dysregulation of the eNOS/NO system leads to dysfunctional outflow regulation and ocular hypertension, eventually resulting in primary open-angle glaucoma.
Collapse
Affiliation(s)
| | | | - Louis R Pasquale
- Eye and Vision Research Institute of New York Eye and Ear Infirmary at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Darryl R Overby
- Department of Bioengineering, Imperial College London, London, UK.
| | - W Daniel Stamer
- Department of Ophthalmology, Duke University, Durham, NC, USA.
| |
Collapse
|
5
|
Moroz LL, Romanova DY, Nikitin MA, Sohn D, Kohn AB, Neveu E, Varoqueaux F, Fasshauer D. The diversification and lineage-specific expansion of nitric oxide signaling in Placozoa: insights in the evolution of gaseous transmission. Sci Rep 2020; 10:13020. [PMID: 32747709 PMCID: PMC7400543 DOI: 10.1038/s41598-020-69851-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022] Open
Abstract
Nitric oxide (NO) is a ubiquitous gaseous messenger, but we know little about its early evolution. Here, we analyzed NO synthases (NOS) in four different species of placozoans-one of the early-branching animal lineages. In contrast to other invertebrates studied, Trichoplax and Hoilungia have three distinct NOS genes, including PDZ domain-containing NOS. Using ultra-sensitive capillary electrophoresis assays, we quantified nitrites (products of NO oxidation) and L-citrulline (co-product of NO synthesis from L-arginine), which were affected by NOS inhibitors confirming the presence of functional enzymes in Trichoplax. Using fluorescent single-molecule in situ hybridization, we showed that distinct NOSs are expressed in different subpopulations of cells, with a noticeable distribution close to the edge regions of Trichoplax. These data suggest both the compartmentalized release of NO and a greater diversity of cell types in placozoans than anticipated. NO receptor machinery includes both canonical and novel NIT-domain containing soluble guanylate cyclases as putative NO/nitrite/nitrate sensors. Thus, although Trichoplax and Hoilungia exemplify the morphologically simplest free-living animals, the complexity of NO-cGMP-mediated signaling in Placozoa is greater to those in vertebrates. This situation illuminates multiple lineage-specific diversifications of NOSs and NO/nitrite/nitrate sensors from the common ancestor of Metazoa and the preservation of conservative NOS architecture from prokaryotic ancestors.
Collapse
Affiliation(s)
- Leonid L Moroz
- Whitney Laboratory for Marine Bioscience and Departments of Neuroscience, University of Florida, St. Augustine and Gainesville, FL, 32080, USA.
| | - Daria Y Romanova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Mikhail A Nikitin
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
| | - Dosung Sohn
- Whitney Laboratory for Marine Bioscience and Departments of Neuroscience, University of Florida, St. Augustine and Gainesville, FL, 32080, USA
| | - Andrea B Kohn
- Whitney Laboratory for Marine Bioscience and Departments of Neuroscience, University of Florida, St. Augustine and Gainesville, FL, 32080, USA
| | - Emilie Neveu
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland
| | - Frederique Varoqueaux
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland
| | - Dirk Fasshauer
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland
| |
Collapse
|
6
|
Abstract
Endothelial nitric oxide (NO) synthase (eNOS) has an indispensable role in the erectile response. In the penis, eNOS activity and endothelial NO bioavailability are regulated by multiple post-translatlonal molecular mechanisms, such as eNOS phosphorylation, eNOS interaction with regulatory proteins and contractile pathways, and actions of reactive oxygen species (ROS). These mechanisms regulate eNOS-mediated responses under physiologic circumstances and provide various mechanisms whereby endothelial NO availability may be altered in states of vasculogenlc erectile dysfunction (ED), in view of the recent advances in the field of eNOS function in the penis and its role in penile erection, the emphasis in this review is placed on the mechanisms regulating eNOS activity and its interaction with the RhoA/Rho-kinase pathway in the physiology of penile erection and the pathophysiology of ED.
Collapse
Affiliation(s)
- Biljana Musicki
- Johns Hopkins Hospital, Department of Urology, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | | |
Collapse
|
7
|
Transcriptional and Posttranslational Regulation of eNOS in the Endothelium. ADVANCES IN PHARMACOLOGY 2016; 77:29-64. [PMID: 27451094 DOI: 10.1016/bs.apha.2016.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO) is a highly reactive free radical gas and these unique properties have been adapted for a surprising number of biological roles. In neurons, NO functions as a neurotransmitter; in immune cells, NO contributes to host defense; and in endothelial cells, NO is a major regulator of blood vessel homeostasis. In the vasculature, NO is synthesized on demand by a specific enzyme, endothelial nitric oxide synthase (eNOS) that is uniquely expressed in the endothelial cells that form the interface between the circulating blood and the various tissues of the body. NO regulates endothelial and blood vessel function via two distinct pathways, the activation of soluble guanylate cyclase and cGMP-dependent signaling and the S-nitrosylation of proteins with reactive thiols (S-nitrosylation). The chemical properties of NO also serve to reduce oxidation and regulate mitochondrial function. Reduced synthesis and/or compromised biological activity of NO precede the development of cardiovascular disease and this has generated a high level of interest in the mechanisms controlling the synthesis and fate of NO in the endothelium. The amount of NO produced results from the expression level of eNOS, which is regulated at the transcriptional and posttranscriptional levels as well as the acute posttranslational regulation of eNOS. The goal of this chapter is to highlight and integrate past and current knowledge of the mechanisms regulating eNOS expression in the endothelium and the posttranslational mechanisms regulating eNOS activity in both health and disease.
Collapse
|
8
|
Hutchinson TE, Patel JM. Peptide-stimulated angiogenesis: Role of lung endothelial caveolar signaling and nitric oxide. Nitric Oxide 2015; 51:43-51. [PMID: 26537637 DOI: 10.1016/j.niox.2015.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/29/2015] [Accepted: 10/26/2015] [Indexed: 10/22/2022]
Abstract
Endothelial nitric oxide (NO) synthase (eNOS)-derived NO plays a critical role in the modulation of angiogenesis in the pulmonary vasculature. We recently reported that an eleven amino acid (SSWRRKRKESS) cell penetrating synthetic peptide (P1) activates caveolar signaling, caveloae/eNOS dissociation, and enhance NO production in lung endothelial cells (EC). This study examines whether P1 promote angiogenesis via modulation of caveolar signaling and the level of NO generation in EC and pulmonary artery (PA) segments. P1-enhanced tube formation and cell sprouting were abolished by caveolae disruptor Filipin (FIL) in EC and PA, respectively. P1 enhanced eNOS activity and angiogenesis were attenuated by inhibition of eNOS as well as PLCγ-1, PKC-α but not PI3K-mediated caveolar signaling in intact EC and/or PA. P1 failed to enhance the catalytic activity of eNOS and angiogenesis in caveolae disrupted EC by FIL. Lower (0.01 mM) concentration of NOC-18 enhanced angiogenesis without inhibition of eNOS activity whereas higher concentration of NOC-18 (1.0 mM) inhibited eNOS activity and angiogenesis in EC. Inhibition of eNOS by l-NAME in the presence of P1 resulted in near total loss of tube formation in EC. Although P1 enhanced angiogenesis mimicked only by lower concentrations of NO generated by NOC-18, this response is independent of caveolar signaling/integrity. These results suggest that P1-enhanced angiogenesis is regulated by dynamic process involving caveolar signaling-mediated increased eNOS/NO activity or by the direct exposure to NOC-18 generating only physiologic range of NO independent of caveolae in lung EC and PA segments.
Collapse
Affiliation(s)
- Tarun E Hutchinson
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL 32608-1197, USA
| | - Jawaharlal M Patel
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL 32608-1197, USA; Research Service, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608-1197, USA.
| |
Collapse
|
9
|
The N-terminal portion of autoinhibitory element modulates human endothelial nitric-oxide synthase activity through coordinated controls of phosphorylation at Thr495 and Ser1177. Biosci Rep 2014; 34:BSR20140079. [PMID: 24993645 PMCID: PMC4122979 DOI: 10.1042/bsr20140079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
NO production catalysed by eNOS (endothelial nitric-oxide synthase) plays an important role in the cardiovascular system. A variety of agonists activate eNOS through the Ser1177 phosphorylation concomitant with Thr495 dephosphorylation, resulting in increased ·NO production with a basal level of calcium. To date, the underlying mechanism remains unclear. We have previously demonstrated that perturbation of the AIE (autoinhibitory element) in the FMN-binding subdomain can also lead to eNOS activation with a basal level of calcium, implying that the AIE might regulate eNOS activation through modulating phosphorylation at Thr495 and Ser1177. Here we generated stable clones in HEK-293 (human embryonic kidney 293) cells with a series of deletion mutants in both the AIE (Δ594-604, Δ605-612 and Δ626-634) and the C-terminal tail (Δ14; deletion of 1164-1177). The expression of Δ594-604 and Δ605-612 mutants in non-stimulated HEK-293 cells substantially increased nitrate/nitrite release into the culture medium; the other two mutants, Δ626-634 and Δ1164-1177, displayed no significant difference when compared with WTeNOS (wild-type eNOS). Intriguingly, mutant Δ594-604 showed close correlation between Ser1177 phosphorylation and Thr495 dephosphorylation, and NO production. Our results have indicated that N-terminal portion of AIE (residues 594-604) regulates eNOS activity through coordinated phosphorylation on Ser1177 and Thr495.
Collapse
|
10
|
Wang F, Guo X, Shen X, Kream RM, Mantione KJ, Stefano GB. Vascular dysfunction associated with type 2 diabetes and Alzheimer's disease: a potential etiological linkage. Med Sci Monit Basic Res 2014; 20:118-29. [PMID: 25082505 PMCID: PMC4138067 DOI: 10.12659/msmbr.891278] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The endothelium performs a crucial role in maintaining vascular integrity leading to whole organ metabolic homeostasis. Endothelial dysfunction represents a key etiological factor leading to moderate to severe vasculopathies observed in both Type 2 diabetic and Alzheimer’s Disease (AD) patients. Accordingly, evidence-based epidemiological factors support a compelling hypothesis stating that metabolic rundown encountered in Type 2 diabetes engenders severe cerebral vascular insufficiencies that are causally linked to long term neural degenerative processes in AD. Of mechanistic importance, Type 2 diabetes engenders an immunologically mediated chronic pro-inflammatory state involving interactive deleterious effects of leukocyte-derived cytokines and endothelial-derived chemotactic agents leading to vascular and whole organ dysfunction. The long term negative consequences of vascular pro-inflammatory processes on the integrity of CNS basal forebrain neuronal populations mediating complex cognitive functions establish a striking temporal comorbidity of AD with Type 2 diabetes. Extensive biomedical evidence supports the pivotal multi-functional role of constitutive nitric oxide (NO) production and release as a critical vasodilatory, anti-inflammatory, and anti-oxidant, mechanism within the vascular endothelium. Within this context, we currently review the functional contributions of dysregulated endothelial NO expression to the etiology and persistence of Type 2 diabetes-related and co morbid AD-related vasculopathies. Additionally, we provide up-to-date perspectives on critical areas of AD research with special reference to common NO-related etiological factors linking Type 2 diabetes to the pathogenesis of AD.
Collapse
Affiliation(s)
- Fuzhou Wang
- Department of Anesthesiology and Critical Care Medicine, Nanjing Maternit and Child Health Care Hospital, Nanjing Medical University, Nanjing, China (mainland)
| | - Xirong Guo
- Institutes of Pediatrics, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, China (mainland)
| | - Xiaofeng Shen
- Department of Anesthesiology and Critical Care Medicine, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, China (mainland)
| | - Richard M Kream
- Neuroscience Research Institute, State University of New York - College at Old Westbury, Old Westbury, USA
| | - Kirk J Mantione
- Neuroscience Research Institute, State University of New York - College at Old Westbury, Old Westbury, USA
| | - George B Stefano
- Neuroscience Research Institute, State University of New York - College at Old Westbury, Old Westbury, USA
| |
Collapse
|
11
|
Lenaerts I, Driesen RB, Blanco NH, Holemans P, Heidbüchel H, Janssens S, Balligand JL, Sipido KR, Willems R. Role of nitric oxide and oxidative stress in a sheep model of persistent atrial fibrillation. ACTA ACUST UNITED AC 2013; 15:754-60. [DOI: 10.1093/europace/eut012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
12
|
Lowry JL, Brovkovych V, Zhang Y, Skidgel RA. Endothelial nitric-oxide synthase activation generates an inducible nitric-oxide synthase-like output of nitric oxide in inflamed endothelium. J Biol Chem 2012; 288:4174-93. [PMID: 23255592 DOI: 10.1074/jbc.m112.436022] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
High levels of NO generated in the vasculature under inflammatory conditions are usually attributed to inducible nitric-oxide synthase (iNOS), but the role of the constitutively expressed endothelial NOS (eNOS) is unclear. In normal human lung microvascular endothelial cells (HLMVEC), bradykinin (BK) activates kinin B2 receptor (B2R) signaling that results in Ca(2+)-dependent activation of eNOS and transient NO. In inflamed HLMVEC (pretreated with interleukin-1β and interferon-γ), we found enhanced binding of eNOS to calcium-calmodulin at basal Ca(2+) levels, thereby increasing its basal activity that was dependent on extracellular l-Arg. Furthermore, B2R stimulation generated prolonged high output eNOS-derived NO that is independent of increased intracellular Ca(2+) and is mediated by a novel Gα(i)-, MEK1/2-, and JNK1/2-dependent pathway. This high output NO stimulated with BK was blocked with a B2R antagonist, eNOS siRNA, or eNOS inhibitor but not iNOS inhibitor. Moreover, B2R-mediated NO production and JNK phosphorylation were inhibited with MEK1/2 and JNK inhibitors or MEK1/2 and JNK1/2 siRNA but not with ERK1/2 inhibitor. BK induced Ca(2+)-dependent eNOS phosphorylation at Ser(1177), Thr(495), and Ser(114) in cytokine-treated HLMVEC, but these modifications were not dependent on JNK1/2 activation and were not responsible for prolonged NO output. Cytokine treatment did not alter the expression of B2R, Gα(q/11), Gα(i1,2), JNK, or eNOS. B2R activation in control endothelial cells enhanced migration, but in cytokine-treated HLMVEC it reduced migration. Both responses were NO-dependent. Understanding how JNK regulates prolonged eNOS-derived NO may provide new therapeutic targets for the treatment of disorders involving vascular inflammation.
Collapse
Affiliation(s)
- Jessica L Lowry
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois 60612, USA
| | | | | | | |
Collapse
|
13
|
Phongsak T, Sucharitakul J, Thotsaporn K, Oonanant W, Yuvaniyama J, Svasti J, Ballou DP, Chaiyen P. The C-terminal domain of 4-hydroxyphenylacetate 3-hydroxylase from Acinetobacter baumannii is an autoinhibitory domain. J Biol Chem 2012; 287:26213-22. [PMID: 22661720 DOI: 10.1074/jbc.m112.354472] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
p-Hydroxyphenylacetate (HPA) 3-hydroxylase from Acinetobacter baumannii consists of a reductase component (C(1)) and an oxygenase component (C(2)). C(1) catalyzes the reduction of FMN by NADH to provide FMNH(-) as a substrate for C(2). The rate of reduction of flavin is enhanced ∼20-fold by binding HPA. The N-terminal domain of C(1) is homologous to other flavin reductases, whereas the C-terminal domain (residues 192-315) is similar to MarR, a repressor protein involved in bacterial antibiotic resistance. In this study, three forms of truncated C(1) variants and single site mutation variants of residues Arg-21, Phe-216, Arg-217, Ile-246, and Arg-247 were constructed to investigate the role of the C-terminal domain in regulating C(1). In the absence of HPA, the C(1) variant in which residues 179-315 were removed (t178C(1)) was reduced by NADH and released FMNH(-) at the same rates as wild-type enzyme carries out these functions in the presence of HPA. In contrast, variants with residues 231-315 removed behaved similarly to the wild-type enzyme. Thus, residues 179-230 are involved in repressing the production of FMNH(-) in the absence of HPA. These results are consistent with the C-terminal domain in the wild-type enzyme being an autoinhibitory domain that upon binding the effector HPA undergoes conformational changes to allow faster flavin reduction and release. Most of the single site variants investigated had catalytic properties similar to those of the wild-type enzyme except for the F216A variant, which had a rate of reduction that was not stimulated by HPA. F216A could be involved with HPA binding or in the required conformational change for stimulation of flavin reduction by HPA.
Collapse
Affiliation(s)
- Thanawat Phongsak
- Department of Biochemistry and Center of Excellence in Protein Structure and Function, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | | | | | | | | | | | | | |
Collapse
|
14
|
McMurry JL, Chrestensen CA, Scott IM, Lee EW, Rahn AM, Johansen AM, Forsberg BJ, Harris KD, Salerno JC. Rate, affinity and calcium dependence of nitric oxide synthase isoform binding to the primary physiological regulator calmodulin. FEBS J 2011; 278:4943-54. [PMID: 22004458 DOI: 10.1111/j.1742-4658.2011.08395.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using interferometry-based biosensors the binding and release of endothelial and neuronal nitric oxide synthase (eNOS and nNOS) from calmodulin (CaM) was measured. In both isoforms, binding to CaM is diffusion limited and within approximately three orders of magnitude of the Smoluchowski limit imposed by orientation-independent collisions. This suggests that the orientation of CaM is facilitated by the charge arrays on the CaM-binding site and the complementary surface on CaM. Protein kinase C phosphorylation of eNOS T495, adjacent to the CaM-binding site, abolishes or greatly slows CaM binding. Kinases which increase the activity of eNOS did not stimulate the binding of CaM, which is already diffusion limited. The coupling of Ca(2+) binding and CaM/NOS binding equilibria links the affinity of CaM for NOS to the Ca(2+) dependence of CaM binding. Hence, changes in the Ca(2+) sensitivity of CaM binding always imply changes in the NOS-CaM affinity. It is possible, however, that in some regimes binding and activation are not synonymous, so that Ca(2+) sensitivity need not be tightly linked to CaM sensitivity of activation. This study is being extended using mutants to probe the roles of individual structural elements in binding and release.
Collapse
Affiliation(s)
- Jonathan L McMurry
- Department of Chemistry & Biochemistry, Kennesaw State University, Kennesaw, GA 30144, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Rafikov R, Fonseca FV, Kumar S, Pardo D, Darragh C, Elms S, Fulton D, Black SM. eNOS activation and NO function: structural motifs responsible for the posttranslational control of endothelial nitric oxide synthase activity. J Endocrinol 2011; 210:271-84. [PMID: 21642378 PMCID: PMC3326601 DOI: 10.1530/joe-11-0083] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rather than being a constitutive enzyme as was first suggested, endothelial nitric oxide synthase (eNOS) is dynamically regulated at the transcriptional, posttranscriptional, and posttranslational levels. This review will focus on how changes in eNOS function are conferred by various posttranslational modifications. The latest knowledge regarding eNOS targeting to the plasma membrane will be discussed as the role of protein phosphorylation as a modulator of catalytic activity. Furthermore, new data are presented that provide novel insights into how disruption of the eNOS dimer prevents eNOS uncoupling and the production of superoxide under conditions of elevated oxidative stress and identifies a novel regulatory region we have termed the 'flexible arm'.
Collapse
Affiliation(s)
- Ruslan Rafikov
- Pulmonary Vascular Disease Program, Vascular Biology Center: CB-3211B, Georgia Health Sciences University, 1459 Laney Walker Boulevard, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
NO synthase: structures and mechanisms. Nitric Oxide 2010; 23:1-11. [PMID: 20303412 DOI: 10.1016/j.niox.2010.03.001] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 02/24/2010] [Accepted: 03/12/2010] [Indexed: 11/20/2022]
Abstract
Production of NO from arginine and molecular oxygen is a complex chemical reaction unique to biology. Our understanding of the chemical and regulation mechanisms of the NO synthases has developed over the past two decades, uncovering some extraordinary features. This article reviews recent progress and highlights current issues and controversies. The structure of the enzyme has now been determined almost in entirety, although it is as a selection of fragments, which are difficult to assemble unambiguously. NO synthesis is driven by electron transfer through FAD and FMN cofactors, which is controlled by calmodulin binding in the constitutive mammalian enzymes. Many of the unique structural features involved have been characterised, but the mechanics of calmodulin-dependent activation are largely unresolved. Ultimately, NO is produced in the active site by the reaction of arginine with activated heme-bound oxygen in two distinct cycles. The unique role of the tetrahydrobiopterin cofactor as an electron donor in this process has now been established, but the subsequent chemical events are currently a matter of intense speculation and debate.
Collapse
|
17
|
Guan ZW, Haque MM, Wei CC, Garcin ED, Getzoff ED, Stuehr DJ. Lys842 in neuronal nitric-oxide synthase enables the autoinhibitory insert to antagonize calmodulin binding, increase FMN shielding, and suppress interflavin electron transfer. J Biol Chem 2009; 285:3064-75. [PMID: 19948738 DOI: 10.1074/jbc.m109.000810] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuronal nitric-oxide synthase (nNOS) contains a unique autoinhibitory insert (AI) in its FMN subdomain that represses nNOS reductase activities and controls the calcium sensitivity of calmodulin (CaM) binding to nNOS. How the AI does this is unclear. A conserved charged residue (Lys(842)) lies within a putative CaM binding helix in the middle of the AI. We investigated its role by substituting residues that neutralize (Ala) or reverse (Glu) the charge at Lys(842). Compared with wild type nNOS, the mutant enzymes had greater cytochrome c reductase and NADPH oxidase activities in the CaM-free state, were able to bind CaM at lower calcium concentration, and had lower rates of heme reduction and NO synthesis in one case (K842A). Moreover, stopped-flow spectrophotometric experiments with the nNOS reductase domain indicate that the CaM-free mutants had faster flavin reduction kinetics and had less shielding of their FMN subdomains compared with wild type and no longer increased their level of FMN shielding in response to NADPH binding. Thus, Lys(842) is critical for the known functions of the AI and also enables two additional functions of the AI as newly identified here: suppression of electron transfer to FMN and control of the conformational equilibrium of the nNOS reductase domain. Its effect on the conformational equilibrium probably explains suppression of catalysis by the AI.
Collapse
Affiliation(s)
- Zhi-Wen Guan
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | | | | | | | |
Collapse
|
18
|
Xia C, Misra I, Iyanagi T, Kim JJP. Regulation of interdomain interactions by calmodulin in inducible nitric-oxide synthase. J Biol Chem 2009; 284:30708-17. [PMID: 19737939 DOI: 10.1074/jbc.m109.031682] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nitric-oxide synthases (NOSs) catalyze the conversion of l-arginine to nitric oxide and citrulline. There are three NOS isozymes, each with a different physiological role: neuronal NOS, endothelial NOS, and inducible NOS (iNOS). NOSs consist of an N-terminal oxygenase domain and a C-terminal reductase domain, linked by a calmodulin (CaM)-binding region. CaM is required for NO production, but unlike other NOS isozymes, iNOS binds CaM independently of the exogenous Ca(2+) concentration. We have co-expressed CaM and the FMN domain of human iNOS, which includes the CaM-binding region. The Ca(2+)-bound protein complex (CaCaMxFMN) forms an air-stable semiquinone when reduced with NADPH and reduces cytochrome c when reconstituted with the iNOS FAD/NADPH domain. We have solved the crystal structure of the CaCaMxFMN complex in four different conformations, each with a different relative orientation, between the FMN domain and the bound CaM. The CaM-binding region together with bound CaM forms a hinge, pivots on the conserved Arg(536), and regulates electron transfer from FAD to FMN and from FMN to heme by adjusting the relative orientation and distance among the three cofactors. In addition, the relative orientations of the N- and C-terminal lobes of CaM are also different among the four conformations, suggesting that the flexibility between the two halves of CaM also contributes to the fine tuning of the orientation/distance between the redox centers. The data demonstrate a possible mode for precise control of electron transfer by altering the distance and orientation of redox centers in a protein displaying domain movement.
Collapse
Affiliation(s)
- Chuanwu Xia
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | |
Collapse
|
19
|
Tran QK, Leonard J, Black DJ, Nadeau OW, Boulatnikov IG, Persechini A. Effects of combined phosphorylation at Ser-617 and Ser-1179 in endothelial nitric-oxide synthase on EC50(Ca2+) values for calmodulin binding and enzyme activation. J Biol Chem 2009; 284:11892-9. [PMID: 19251696 DOI: 10.1074/jbc.m806205200] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have investigated the possible biochemical basis for enhancements in NO production in endothelial cells that have been correlated with agonist- or shear stress-evoked phosphorylation at Ser-1179. We have found that a phosphomimetic substitution at Ser-1179 doubles maximal synthase activity, partially disinhibits cytochrome c reductase activity, and lowers the EC(50)(Ca(2+)) values for calmodulin binding and enzyme activation from the control values of 182 +/- 2 and 422 +/- 22 nm to 116 +/- 2 and 300 +/- 10 nm. These are similar to the effects of a phosphomimetic substitution at Ser-617 (Tran, Q. K., Leonard, J., Black, D. J., and Persechini, A. (2008) Biochemistry 47, 7557-7566). Although combining substitutions at Ser-617 and Ser-1179 has no additional effect on maximal synthase activity, cooperativity between the two substitutions completely disinhibits reductase activity and further reduces the EC(50)(Ca(2+)) values for calmodulin binding and enzyme activation to 77 +/- 2 and 130 +/- 5 nm. We have confirmed that specific Akt-catalyzed phosphorylation of Ser-617 and Ser-1179 and phosphomimetic substitutions at these positions have similar functional effects. Changes in the biochemical properties of eNOS produced by combined phosphorylation at Ser-617 and Ser-1179 are predicted to substantially increase synthase activity in cells at a typical basal free Ca(2+) concentration of 50-100 nm.
Collapse
Affiliation(s)
- Quang-Kim Tran
- Division of Molecular Biology and Biochemistry, University of Missouri-Kansas City, Kansas City, Missouri 64110-2499, USA
| | | | | | | | | | | |
Collapse
|
20
|
Spratt DE, Taiakina V, Palmer M, Guillemette JG. FRET conformational analysis of calmodulin binding to nitric oxide synthase peptides and enzymes. Biochemistry 2008; 47:12006-17. [PMID: 18947187 DOI: 10.1021/bi801418s] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Calmodulin (CaM) is a ubiquitous Ca (2+)-sensor protein that binds and activates the nitric oxide synthase (NOS) enzymes. We have used fluorescence resonance energy transfer (FRET) to examine the conformational transitions of CaM induced by its binding to synthetic nitric oxide synthase (NOS) CaM-binding domain peptides and full length heme-free constitutive NOS (cNOS) enzymes over a range of physiologically relevant free Ca (2+) concentrations. We demonstrate for the first time that the domains of CaM collapse when associated with Ca (2+)-independent inducible NOS CaM-binding domain, similar to the previously solved crystal structures of CaM bound to the Ca (2+)-dependent cNOS peptides. We show that the association of CaM is not detectable with the cNOS peptides at low free Ca (2+) concentrations (<40 nM). In contrast, we demonstrate that CaM associates with the cNOS holo-enzymes in the absence of Ca (2+) and that the Ca (2+)-dependent transition occurs at a lower free Ca (2+) concentration with the cNOS holo-enzymes. Our results suggest that other regions outside of the CaM-binding domain in the cNOS enzymes are involved in the recruitment and binding of CaM. We also demonstrate that CaM binds to the cNOS enzymes in a sequential manner with the Ca (2+)-replete C-lobe binding first followed by the Ca (2+)-replete N-lobe. This novel FRET study helps to clarify some of the observed similarities and differences between the Ca (2+)-dependent/independent interaction between CaM and the NOS isozymes.
Collapse
Affiliation(s)
- Donald E Spratt
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | | | | | | |
Collapse
|
21
|
Autoinhibition of endothelial nitric oxide synthase (eNOS) in gut smooth muscle by nitric oxide. ACTA ACUST UNITED AC 2008; 151:75-9. [PMID: 18926858 DOI: 10.1016/j.regpep.2008.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 09/05/2008] [Accepted: 09/20/2008] [Indexed: 11/22/2022]
Abstract
Nitric oxide in the gut is produced by nNOS in enteric neurons and by eNOS in smooth muscle cells. The eNOS in smooth muscle is activated by vasoactive intestinal peptide (VIP) released from enteric neurons. In the present study, we examined the effect of nitric oxide on VIP-induced eNOS activation in smooth muscle cells isolated from human intestine and rabbit stomach. NOS activity was measured as formation of the 1:1 co-product, l-citrulline from l-arginine. VIP caused an increase in l-citrulline production that was inhibited by NO in a concentration dependent manner (IC(50)~25 microM; maximal inhibition 72% at 100 microM NO). Basal l-citrulline production, however, was unaffected by NO. The effect was not mediated by cGMP/PKG since the PKG inhibitor KT5823 had no effect on eNOS autoinhibition. The autoinhibition was selective for NO since the co-product l-citrulline had no effect on VIP-induced NOS activation. Similar effects were obtained in rabbit gastric and human intestinal smooth muscle cells. The results suggest that NO produced in smooth muscle cells as a result of the activation of eNOS by VIP exerts an autoinhibitory restraint on eNOS thereby regulating the balance of the VIP/cAMP/PKA and NO/cGMP/PKG pathways that regulate the relaxation of gut smooth muscle.
Collapse
|
22
|
Chen CA, Druhan LJ, Varadharaj S, Chen YR, Zweier JL. Phosphorylation of endothelial nitric-oxide synthase regulates superoxide generation from the enzyme. J Biol Chem 2008; 283:27038-47. [PMID: 18622039 DOI: 10.1074/jbc.m802269200] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the vasculature, nitric oxide (NO) is generated by endothelial NO synthase (eNOS) in a calcium/calmodulin-dependent reaction. With oxidative stress, the critical cofactor BH(4) is depleted, and NADPH oxidation is uncoupled from NO generation, leading to production of (O(2)*). Although phosphorylation of eNOS regulates in vivo NO generation, the effects of phosphorylation on eNOS coupling and O(2)* generation are unknown. Therefore, we phosphorylated recombinant BH(4)-free eNOS in vitro using native kinases and determined O(2)* generation using EPR spin trapping. Phosphorylation of Ser-1177 by Akt led to an increase (>50%) in maximal O(2)* generation from eNOS. Moreover, Ser-1177 phosphorylation greatly altered the Ca(2+) sensitivity of eNOS, such that O(2)* generation became largely Ca(2+)-independent. In contrast, phosphorylation of eNOS at Thr-495 by protein kinase Calpha (PKCalpha) had no effect on maximum activity or calcium sensitivity but decreased calmodulin binding and increased association with caveolin. In endothelial cells, eNOS-dependent O(2)* generation was stimulated by vascular endothelial growth factor that induced phosphorylation of Ser-1177. With PKC activation that led to phosphorylation of Thr-495, no inhibition of O(2)* generation occurred. As such, phosphorylation of eNOS at Ser-1177 is pivotal in the direct regulation of O(2)* and NO generation, altering both the Ca(2+) sensitivity of the enzyme and rate of product formation, whereas phosphorylation of Thr-495 indirectly affects this process through regulation of the calmodulin and caveolin interaction. Thus, Akt-mediated phosphorylation modulates eNOS uncoupling and greatly increases O(2)* generation from the enzyme at low Ca(2+) concentrations, and PKCalpha-mediated phosphorylation alters the sensitivity of the enzyme to other negative regulatory signals.
Collapse
Affiliation(s)
- Chun-An Chen
- Davis Heart and Lung Research Institute, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
23
|
Tran QK, Leonard J, Black DJ, Persechini A. Phosphorylation within an autoinhibitory domain in endothelial nitric oxide synthase reduces the Ca(2+) concentrations required for calmodulin to bind and activate the enzyme. Biochemistry 2008; 47:7557-66. [PMID: 18558722 DOI: 10.1021/bi8003186] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have investigated the effects of phosphorylation at Ser-617 and Ser-635 within an autoinhibitory domain (residues 595-639) in bovine endothelial nitric oxide synthase on enzyme activity and the Ca (2+) dependencies for calmodulin binding and enzyme activation. A phosphomimetic S617D substitution doubles the maximum calmodulin-dependent enzyme activity and decreases the EC 50(Ca (2+)) values for calmodulin binding and enzyme activation from the wild-type values of 180 +/- 2 and 397 +/- 23 nM to values of 109 +/- 2 and 258 +/- 11 nM, respectively. Deletion of the autoinhibitory domain also doubles the maximum calmodulin-dependent enzyme activity and decreases the EC 50(Ca (2+)) values for calmodulin binding and calmodulin-dependent enzyme activation to 65 +/- 4 and 118 +/- 4 nM, respectively. An S635D substitution has little or no effect on enzyme activity or EC 50(Ca (2+)) values, either alone or when combined with the S617D substitution. These results suggest that phosphorylation at Ser-617 partially reverses suppression by the autoinhibitory domain. Associated effects on the EC 50(Ca (2+)) values and maximum calmodulin-dependent enzyme activity are predicted to contribute equally to phosphorylation-dependent enhancement of NO production during a typical agonist-evoked Ca (2+) transient, while the reduction in EC 50(Ca (2+)) values is predicted to be the major contributor to enhancement at resting free Ca (2+) concentrations.
Collapse
Affiliation(s)
- Quang-Kim Tran
- Division of Molecular Biology and Biochemistry, University of Missouri, Kansas City, Missouri 64110-2499, USA
| | | | | | | |
Collapse
|
24
|
Ilagan RP, Tiso M, Konas DW, Hemann C, Durra D, Hille R, Stuehr DJ. Differences in a conformational equilibrium distinguish catalysis by the endothelial and neuronal nitric-oxide synthase flavoproteins. J Biol Chem 2008; 283:19603-15. [PMID: 18487202 DOI: 10.1074/jbc.m802914200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nitric oxide (NO) is a physiological mediator synthesized by NO synthases (NOS). Despite their structural similarity, endothelial NOS (eNOS) has a 6-fold lower NO synthesis activity and 6-16-fold lower cytochrome c reductase activity than neuronal NOS (nNOS), implying significantly different electron transfer capacities. We utilized purified reductase domain constructs of either enzyme (bovine eNOSr and rat nNOSr) to investigate the following three mechanisms that may control their electron transfer: (i) the set point and control of a two-state conformational equilibrium of their FMN subdomains; (ii) the flavin midpoint reduction potentials; and (iii) the kinetics of NOSr-NADP+ interactions. Although eNOSr and nNOSr differed in their NADP(H) interaction and flavin thermodynamics, the differences were minor and unlikely to explain their distinct electron transfer activities. In contrast, calmodulin (CaM)-free eNOSr favored the FMN-shielded (electron-accepting) conformation over the FMN-deshielded (electron-donating) conformation to a much greater extent than did CaM-free nNOSr when the bound FMN cofactor was poised in each of its three possible oxidation states. NADPH binding only stabilized the FMN-shielded conformation of nNOSr, whereas CaM shifted both enzymes toward the FMN-deshielded conformation. Analysis of cytochrome c reduction rates measured within the first catalytic turnover revealed that the rate of conformational change to the FMN-deshielded state differed between eNOSr and nNOSr and was rate-limiting for either CaM-free enzyme. We conclude that the set point and regulation of the FMN conformational equilibrium differ markedly in eNOSr and nNOSr and can explain the lower electron transfer activity of eNOSr.
Collapse
Affiliation(s)
- Robielyn P Ilagan
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Nishino Y, Yamamoto K, Kimura S, Kikuchi A, Shiro Y, Iyanagi T. Mechanistic studies on the intramolecular one-electron transfer between the two flavins in the human endothelial NOS reductase domain. Arch Biochem Biophys 2007; 465:254-65. [PMID: 17610838 DOI: 10.1016/j.abb.2007.05.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 05/27/2007] [Accepted: 05/30/2007] [Indexed: 10/23/2022]
Abstract
The object of this study was to clarify the mechanism of electron transfer in the human endothelial nitric oxide synthase (eNOS) reductase domain using recombinant eNOS reductase domains; the FAD/NADPH domain containing FAD- and NADPH-binding sites and the FAD/FMN domain containing FAD/NADPH-, FMN-, and a calmodulin-binding sites. In the presence of molecular oxygen or menadione, the reduced FAD/NADPH domain is oxidized via the neutral (blue) semiquinone (FADH(*)), which has a characteristic absorption peak at 520 nm. The FAD/NADPH and FAD/FMN domains have high activity for ferricyanide, but the FAD/FMN domain has low activity for cytochrome c. In the presence or absence of calcium/calmodulin (Ca(2+)/CaM), reduction of the oxidized flavins (FAD-FMN) and air-stable semiquinone (FAD-FMNH(*)) with NADPH occurred in at least two phases in the absorbance change at 457nm. In the presence of Ca(2+)/CaM, the reduction rate of both phases was significantly increased. In contrast, an absorbance change at 596nm gradually increased in two phases, but the rate of the fast phase was decreased by approximately 50% of that in the presence of Ca(2+)/CaM. The air-stable semiquinone form was rapidly reduced by NADPH, but a significant absorbance change at 520 nm was not observed. These findings indicate that the conversion of FADH(2)-FMNH(*) to FADH(*)-FMNH(2) is unfavorable. Reduction of the FAD moiety is activated by CaM, but the formation rate of the active intermediate, FADH(*)-FMNH(2) is extremely low. These events could cause a lowering of enzyme activity in the catalytic cycle.
Collapse
Affiliation(s)
- Yoshitaka Nishino
- Graduate School of Life Science, Himeji Institute of Technology, University of Hyogo, Kouto 3-2-1, Kamigori, Hyogo 678-1297, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Navarro-Lérida I, Martínez-Moreno M, Ventoso I, Álvarez-Barrientos A, Rodríguez-Crespo I. Binding of CAP70 to inducible nitric oxide synthase and implications for the vectorial release of nitric oxide in polarized cells. Mol Biol Cell 2007; 18:2768-77. [PMID: 17507652 PMCID: PMC1924814 DOI: 10.1091/mbc.e06-12-1102] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In this article we analyze the mechanisms by which the C-terminal four amino acids of inducible nitric oxide synthase (NOS2) interact with proteins that contain PDZ (PSD-95/DLG/ZO-1) domains resulting in the translocation of NOS2 to the cellular apical domain. It has been reported that human hepatic NOS2 associates to EBP50, a protein with two PDZ domains present in epithelial cells. We describe herein that NOS2 binds through its four carboxy-terminal residues to CAP70, a protein that contains four PDZ modules that is targeted to apical membranes. Interestingly, this interaction augments both the cytochrome c reductase and .NO-synthase activities of NOS2. Binding of CAP70 to NOS2 also results in an increase in the population of active NOS2 dimers. In addition, CAP70 participates in the correct subcellular targeting of NOS2 in a process that is also dependent on the acylation state of the N-terminal end of NOS2. Hence, nonpalmitoylated NOS2 is unable to progress toward the apical side of the cell despite its interaction with either EBP50 or CAP70. Likewise, if we abrogate the interaction of NOS2 with either EBP50 or CAP70 by fusing the GFP reporter to the carboxy-terminal end of NOS2 palmitoylation is not sufficient to confer an apical targeting.
Collapse
Affiliation(s)
- Inmaculada Navarro-Lérida
- *Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Mónica Martínez-Moreno
- *Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Iván Ventoso
- Centro de Biología Molecular “Severo Ochoa,” Consejo Superior de Investigaciones Científicas-Universidad Autónoma, Facultad de Ciencias, Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain; and
| | | | - Ignacio Rodríguez-Crespo
- *Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
27
|
Ohashi K, Yamazaki T, Kitamura S, Ohta S, Izumi S, Kominami S. Allosteric inhibition of rat neuronal nitric-oxide synthase caused by interference with the binding of calmodulin to the enzyme. Biochim Biophys Acta Gen Subj 2007; 1770:231-40. [PMID: 17098364 DOI: 10.1016/j.bbagen.2006.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 10/03/2006] [Accepted: 10/04/2006] [Indexed: 11/29/2022]
Abstract
A sigmoid-type dependence on the inhibitor concentration was observed in the cytochrome c reductase activity for peptide inhibitors (mastoparan and melittin), calmodulin antagonists (W-7 and tamoxifen) and monobutyltin in a reconstituted system comprised of recombinant rat neuronal nitric-oxide synthase (nNOS) and calmodulin (CaM). The increase in the concentration of CaM in the system induced a decrease in the inhibitory effect, indicating that the inhibitors might interfere with the interaction between nNOS and CaM. The changes in the fluorescence spectra of dansylated CaM caused by the addition of mastoparan, melittin and monobutyltin indicated complex formation between CaM and those compounds, which led to the decrease in the effective concentration of CaM available to nNOS. The sigmoid-type inhibition of mastoparan and melittin fit the theoretical equations quite well, assuming that two CaM molecules bind cooperatively to one nNOS homodimer. Monobutyltin, tamoxifen and W-7 were found to inhibit nNOS activity by binding to the CaM binding site of the nNOS homodimer, in addition to the binding of the inhibitors to calmodulin. These compounds inhibited the L-citrulline formation of nNOS from L-arginine, and the inhibitory effects were abrogated by raising the concentration of calmodulin. It became clear that the binding of calmodulin to nNOS can be interfered with in two ways: (1) via a decrease in the effective concentration of calmodulin caused by complex formation between the inhibitor and calmodulin, and (2) via the inhibition of the binding of calmodulin to nNOS caused by the occupation of the binding site by the inhibitor.
Collapse
Affiliation(s)
- Koji Ohashi
- Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi-cho, Hiroshima 734-8551, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Roman LJ, Masters BSS. Electron Transfer by Neuronal Nitric-oxide Synthase Is Regulated by Concerted Interaction of Calmodulin and Two Intrinsic Regulatory Elements. J Biol Chem 2006; 281:23111-8. [PMID: 16782703 DOI: 10.1074/jbc.m603671200] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nitric-oxide synthases (NOSs) are modular, cofactor-containing enzymes, divided into a heme-containing oxygenase domain and an FMN- and FAD-containing reductase domain. The domains are connected by a calmodulin (CaM)-binding sequence, occupancy of which is required for nitric oxide (NO) production. Two additional CaM-modulated regulatory elements are present in the reductase domains of the constitutive isoforms, the autoregulatory region (AR) and the C-terminal tail region. Deletion of the AR reduces CaM stimulation of electron flow through the reductase domain from 10-fold in wild-type nNOS to 2-fold in the mutant. Deletion of the C terminus yields an enzyme with greatly enhanced reductase activity in the absence of CaM but with activity equivalent to that of wild-type enzyme in its presence. A mutant in which both the AR and C terminus were deleted completely loses CaM modulation through the reductase domain. Thus, transduction of the CaM effect through the reductase domain of nNOS is dependent on these elements. Formation of nitric oxide is, however, still stimulated by CaM in all three mutants. A CaM molecule in which the N-terminal lobe was replaced by the C-terminal lobe (CaM-CC) supported NO synthesis by the deletion mutants but not by wild-type nNOS. We propose a model in which the AR, the C-terminal tail, and CaM interact directly to regulate the conformational state of the reductase domain of nNOS.
Collapse
Affiliation(s)
- Linda J Roman
- Department of Biochemistry, the University of Texas Health Science Center, San Antonio, Texas 78229, USA.
| | | |
Collapse
|
29
|
Wessells H, Teal TH, Luttrell IP, Sullivan CJ. Effect of endothelial cell-based iNOS gene transfer on cavernosal eNOS expression and mouse erectile responses. Int J Impot Res 2006; 18:438-45. [PMID: 16554854 DOI: 10.1038/sj.ijir.3901464] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Inducible nitric oxide synthase (iNOS) gene transfer is reported to augment erectile responses in rats, although it is also shown to impair vasorelaxation in cerebral arteries. We investigated the effect of endothelial cell-based iNOS gene transfer on endothelial NOS (eNOS) expression and mouse erectile responses. Human coronary artery endothelial cells (EC) transduced with empty vector (control) or iNOS were grown in culture and transplanted into the corpus cavernosum of severe combined immunodeficient mice. Endothelial NOS expression was compared in control and iNOS-transduced cells grown in the presence or absence of a selective iNOS inhibitor, L-N6- (1-iminoethyl) lysine hydrochloride (L-NIL). At 3-5 days after cell transplantation, we recorded intracorporal pressure (ICP) responses to cavernosal nerve stimulation and measured cavernosal total NO and eNOS protein expression. In this study, EC transduced with iNOS produced significantly more NO than controls but exhibited a twofold downregulation of eNOS protein and mRNA. This effect was reversed by L-NIL. In vivo, the cell-based gene transfer of iNOS led to significantly increased ICP responses, compared to mice transplanted with control ECs. Consistent with the in vitro data, cavernosal lysates had significantly reduced eNOS expression. In conclusion, EC gene transfer of iNOS downregulates EC expression of eNOS by an NOS-dependent mechanism. In the cavernosum of mice transplanted with Inos-transduced EC, nerve-stimulated erectile responses were augmented by the short-term gene transfer. However, our findings suggest that iNOS gene transfer may have deleterious effects on endothelial function if used as a treatment for erectile dysfunction.
Collapse
Affiliation(s)
- H Wessells
- Department of Urology, University of Washington School of Medicine and Harborview Medical Center, Seattle, WA, USA.
| | | | | | | |
Collapse
|
30
|
Jones RJ, Gao YT, Simone TM, Salerno JC, Smith SME. NADPH analog binding to constitutive nitric oxide activates electron transfer and NO synthesis. Nitric Oxide 2006; 14:228-37. [PMID: 16412670 DOI: 10.1016/j.niox.2005.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 09/09/2005] [Accepted: 09/28/2005] [Indexed: 10/25/2022]
Abstract
We report here that NADPH analogs such as 2'5'ADP, ATP, and 2'AMP paradoxically activate constitutive calcium/calmodulin regulated nitric oxide synthases (cNOS), including the endothelial isoform (eNOS) and the neuronal isoform (nNOS). These activators compete with NADPH by filling the binding site of the adenine moiety of NADPH, but do not occupy the entire NADPH binding domain. Effects of these analogs on cNOS's include increasing the electron transfer rate to external acceptors, as assessed by cytochrome c reductase activity in the absence of calmodulin. In addition, NO synthase activity in the presence of calmodulin (with or without added calcium) was increased by the addition of NADPH analogs. In contrast, the same NADPH analogs inhibit iNOS, the calcium insensitive inducible isoform, which lacks control elements found in constitutive isoforms. Because ATP and ADP are among the effective activators of cNOS isoforms, these effects may be physiologically relevant.
Collapse
Affiliation(s)
- Rachel J Jones
- Biology Department, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | | | | | | |
Collapse
|
31
|
Abstract
The vascular endothelium synthesises the vasodilator and anti-aggregatory mediator nitric oxide (NO) from L-arginine. This action is catalysed by the action of NO synthases, of which two forms are present in the endothelium. Endothelial (e)NOS is highly regulated, constitutively active and generates NO in response to shear stress and other physiological stimuli. Inducible (i)NOS is expressed in response to immunological stimuli, is transcriptionally regulated and, once activated, generates large amounts of NO that contribute to pathological conditions. The physiological actions of NO include the regulation of vascular tone and blood pressure, prevention of platelet aggregation and inhibition of vascular smooth muscle proliferation. Many of these actions are a result of the activation by NO of the soluble guanylate cyclase and consequent generation of cyclic guanosine monophosphate (cGMP). An additional target of NO is the cytochrome c oxidase, the terminal enzyme in the electron transport chain, which is inhibited by NO in a manner that is reversible and competitive with oxygen. The consequent reduction of cytochrome c oxidase leads to the release of superoxide anion. This may be an NO-regulated cell signalling system which, under certain circumstances, may lead to the formation of the powerful oxidant species, peroxynitrite, that is associated with a variety of vascular diseases.
Collapse
Affiliation(s)
- S Moncada
- The Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK.
| | | |
Collapse
|
32
|
Korkmaz Y, Bloch W, Addicks K, Schneider K, Baumann MA, Raab WHM. The Basal Phosphorylation Sites of Endothelial Nitric Oxide Synthase at Serine (Ser)1177, Ser116, and Threonine (Thr)495in Rat Molar Epithelial Rests of Malassez. J Periodontol 2005; 76:1513-9. [PMID: 16171441 DOI: 10.1902/jop.2005.76.9.1513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The epithelial rests of Malassez (ERM) are derived from the Hertwig's epithelial root sheath during tooth development. The ERM contain endothelial nitric oxide synthase (eNOS), but the existence of phosphorylation site/s of eNOS in the ERM is unclear. METHODS Rat molars with periodontium were perfusion- and post-fixed, decalcified, and frozen-sectioned. Free-floating sections were incubated using antisera against total eNOS, eNOS phosphorylated at serine (Ser)1177, Ser116, and threonine (Thr)495. The signal intensities of t-eNOS, p-eNOS at Ser1177 and Ser116 in the ERM were measured by densitometry and statistically analyzed. RESULTS In the ERM, localization of total eNOS and the phosphorylation sites of eNOS at Ser1177 and Ser116 were detected, while a basal localization of eNOS phosphorylated at Thr495 in the ERM was undetectable. For p-eNOS at Ser116 regional differences in phosphorylation were detected. CONCLUSIONS The basal production of NO by eNOS in the ERM is modulated by phosphorylation of eNOS at Ser1177 and Ser116 residues, while the basal activity of the eNOS is not influenced by phosphorylation of eNOS at Thr495 residue. This provides evidence that phosphorylation plays a key role for regulation of the catalytic activity of eNOS.
Collapse
Affiliation(s)
- Yüksel Korkmaz
- Department of Operative and Preventive Dentistry and Endodontics, Heinrich-Heine-University, Düsseldorf, Germany.
| | | | | | | | | | | |
Collapse
|
33
|
Goraya TA, Cooper DMF. Ca2+-calmodulin-dependent phosphodiesterase (PDE1): Current perspectives. Cell Signal 2005; 17:789-97. [PMID: 15763421 DOI: 10.1016/j.cellsig.2004.12.017] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Accepted: 12/21/2004] [Indexed: 10/25/2022]
Abstract
Ca2+-calmodulin-dependent phosphodiesterases (PDE1), like Ca2+-sensitive adenylyl cyclases (AC), are key enzymes that play a pivotal role in mediating the cross-talk between cAMP and Ca2+ signalling. Our understanding of how ACs respond to Ca2+ has advanced greatly, with significant breakthroughs at both the molecular and functional level. By contrast, little is known of the mechanisms that might underlie the regulation of PDE1 by Ca2+ in the intact cell. In living cells, Ca2+ signals are complex and diverse, exhibiting different spatial and temporal properties. The potential therefore exists for dynamic changes in the subcellular distribution and activation of PDE1 in relation to intracellular Ca2+ dynamics. PDE1s are a large family of multiply-spliced gene products. Therefore, it is possible that a cell-type specific response to elevation in [Ca2+]i can occur, depending on the isoform of PDE1 expressed. In this article, we summarize current knowledge on Ca2+ regulation of PDE1 in the intact cell and discuss approaches that might be undertaken to delineate the responses of this important group of enzymes to changes in [Ca2+]i.
Collapse
Affiliation(s)
- Tasmina A Goraya
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | | |
Collapse
|
34
|
Chicoine LG, Tzeng E, Bryan R, Saenz S, Paffett ML, Jones J, Lyons CR, Resta TC, Nelin LD, Walker BR. Intratracheal adenoviral-mediated delivery of iNOS decreases pulmonary vasoconstrictor responses in rats. J Appl Physiol (1985) 2004; 97:1814-22. [PMID: 15258125 DOI: 10.1152/japplphysiol.00193.2004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We hypothesized that adenovirus-mediated inducible nitric oxide synthase (iNOS) gene transduction of the lung would result in time-dependent iNOS overexpression and attenuate the vascular constrictor responses to a thromboxane mimetic, U-46619. Rats were treated via the trachea with surfactant alone (sham), surfactant containing an adenoviral construct with a cytomegalovirus promoter-regulated human iNOS gene (Adeno-iNOS), or an adenoviral construct without a gene insert (Adeno-Control). Adeno-iNOS-transduced rats demonstrated human iNOS mRNA and increased iNOS protein levels only in the lungs. Immunohistochemistry of lungs from Adeno-iNOS-treated animals demonstrated transgene expression in alveolar wall cells. In the lungs from Adeno-iNOS-transduced rats, the expression of iNOS protein and exhaled nitric oxide concentrations were increased on days 1-4 and 7 but returned to baseline values by day 14. The administration of the selective iNOS inhibitor L-N6-(1-iminoethyl)lysine dihydrochloride (L-NIL) decreased exhaled nitric oxide concentrations to levels found in Adeno-Control-transduced lungs. In a second group of rats, the segmental vasoconstrictor responses to U-46619 were determined in isolated, perfused lungs 3 days after transduction. Lungs from rats transduced with Adeno-iNOS had reduced total, arterial, and venous vasoconstrictor responses to U-46619 compared with sham, Adeno-Control, and control groups. In a third set of experiments, the response to 400 nM U-46619 in the presence of 10 microM L-NIL was not different in the isolated lungs from Adeno-Control- and Adeno-iNOS-transduced rats. We conclude that adenovirus-mediated iNOS gene transduction of the lung results in time-dependent iNOS overexpression, which attenuates the vascular constrictor responses to the thromboxane mimetic U-46619.
Collapse
Affiliation(s)
- Louis G Chicoine
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Jones RJ, Smith SME, Gao YT, DeMay BS, Mann KJ, Salerno KM, Salerno JC. The function of the small insertion in the hinge subdomain in the control of constitutive mammalian nitric-oxide synthases. J Biol Chem 2004; 279:36876-83. [PMID: 15210721 DOI: 10.1074/jbc.m402808200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Control of nitric oxide (NO) synthesis in the constitutive nitric-oxide synthases (NOS) by calcium/calmodulin is exerted through the regulation of electron transfer from NADPH through the reductase domains. This process has been shown previously to involve the calmodulin binding site, the autoinhibitory insertion in the FMN binding domain, and the C-terminal tail. Smaller sequence elements also appear to correlate with control. Although some of these elements appear well positioned to function in control, they are poorly conserved; their role in control is neither well established nor defined by available information. In this study mutations have been induced in the small insertion of the hinge subdomain, which has been shown recently to form a beta hairpin in structural studies of the neuronal NOS reductase domains adjacent to the calmodulin site and the autoinhibitory element. Modification of the small insertion in neuronal NOS tends to increase cytochrome c reduction but not NO synthetic activity; some modifications or deletions in the corresponding region in endothelial NOS modestly increase activity under some conditions. Unexpectedly, some minor changes in the sequence introduce a loss in the content of heme relative to flavin cofactors. Taken together, these results suggest that the small insertion protects the calmodulin binding site and that it may be a modulator of NOS activity.
Collapse
Affiliation(s)
- Rachel J Jones
- Department of Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Newman E, Spratt DE, Mosher J, Cheyne B, Montgomery HJ, Wilson DL, Weinberg JB, Smith SME, Salerno JC, Ghosh DK, Guillemette JG. Differential activation of nitric-oxide synthase isozymes by calmodulin-troponin C chimeras. J Biol Chem 2004; 279:33547-57. [PMID: 15138276 DOI: 10.1074/jbc.m403892200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interactions of neuronal nitric-oxide synthase (nNOS) with calmodulin (CaM) and mutant forms of CaM, including CaM-troponin C chimeras, have been previously reported, but there has been no comparable investigation of CaM interactions with the other constitutively expressed NOS (cNOS), endothelial NOS (eNOS), or the inducible isoform (iNOS). The present study was designed to evaluate the role of the four CaM EF hands in the activation of eNOS and iNOS. To assess the role of CaM regions on aspects of enzymatic function, three distinct activities associated with NOS were measured: NADPH oxidation, cytochrome c reduction, and nitric oxide (*NO) generation as assessed by the oxyhemoglobin capture assay. CaM activates the cNOS enzymes by a mechanism other than stimulating electron transfer into the oxygenase domain. Interactions with the reductase moiety are dominant in cNOS activation, and EF hand 1 is critical for activation of both nNOS and eNOS. Although the activation patterns for nNOS and eNOS are clearly related, effects of the chimeras on all the reactions are not equivalent. We propose that cytochrome c reduction is a measure of the release of the FMN domain from the reductase complex. In contrast, cytochrome c reduction by iNOS is readily activated by each of the chimeras examined here and may be constitutive. Each of the chimeras were co-expressed with the human iNOS enzyme in Escherichia coli and subsequently purified. Domains 2 and 3 of CaM contain important elements required for the Ca2+/CaM independence of *NO production by the iNOS enzyme. The disparity between cytochrome c reduction and *NO production at low calcium can be attributed to poor association of heme and FMN domains when the bound CaM constructs are depleted of Ca2+. In general cNOSs are much more difficult to activate than iNOS, which can be attributed to their extra sequence elements, which are adjacent to the CaM-binding site and associated with CaM control.
Collapse
Affiliation(s)
- Elena Newman
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Greif DM, Sacks DB, Michel T. Calmodulin phosphorylation and modulation of endothelial nitric oxide synthase catalysis. Proc Natl Acad Sci U S A 2004; 101:1165-70. [PMID: 14736917 PMCID: PMC337024 DOI: 10.1073/pnas.0306377101] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The endothelial NO synthase (eNOS) is regulated by diverse protein kinase pathways, yet eNOS activity ultimately depends on the ubiquitous calcium regulatory protein calmodulin (CaM). In these studies, we establish that CaM itself undergoes phosphorylation in endothelial cells and that CaM phosphorylation attenuates eNOS activation. Using [(32)P]orthophosphoric acid biosynthetic labeling, we found that CaM is a phosphoprotein in bovine aortic endothelial cells (BAEC) and that the kinase CK2 promotes CaM phosphorylation in BAEC. Phosphorylation of CaM by purified CK2 in vitro reduces the V(max) of immunopurified eNOS by a factor of 2 but has no effect on the K(A) for CaM or calcium. Additionally, [(32)P]orthophosphoric acid biosynthetic labeling of mutant CaM-transfected BAEC revealed that phosphorylation of Ser-81 to alanine mutant CaM ("phosphonull" S81A mutant) is dramatically reduced relative to WT, whereas phosphorylation of the "phosphomimetic" Ser-81 to aspartate (S81D) mutant is unchanged. Further studies using Escherichia coli-expressed and phenyl-Sepharose-purified CaM mutants revealed that the S81A mutation abrogates in vitro CK2-mediated phosphorylation of CaM, whereas phosphorylation of the S81D CaM mutant by CK2 is preserved. Additionally, we found that the phosphomimetic S101D CaM mutant is impaired in its ability to activate eNOS. Taken together, these results suggest that phosphorylation of CaM inhibits eNOS catalysis and proceeds in a hierarchical manner, initially requiring phosphorylation of the CaM Ser-81 residue. We conclude that CaM phosphorylation may represent a unique pathway in the regulation of eNOS signaling and thereby may play a role in modulating NO-dependent vascular responses.
Collapse
Affiliation(s)
- Daniel M Greif
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
38
|
Hu H, Xin M, Belayev LL, Zhang J, Block ER, Patel JM. Autoinhibitory domain fragment of endothelial NOS enhances pulmonary artery vasorelaxation by the NO-cGMP pathway. Am J Physiol Lung Cell Mol Physiol 2004; 286:L1066-74. [PMID: 14729513 DOI: 10.1152/ajplung.00378.2003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Catalytic activity of eNOS is regulated by multiple posttranscriptional mechanisms, including a 40-amino acid (604-643) autoinhibitory domain (AID) located in the reductase domain of the eNOS protein. We examined whether an exogenous synthetic AID, an 11-amino acid (626-636) fragment of AID (AAF), or scrambled AAF (AAF-SR), enhanced eNOS activity and NO-cGMP-mediated vasorelaxation using pulmonary artery (PA) endothelial/smooth muscle cell (PAEC/PASM) coculture, isolated PA segment, and isolated lung perfusion models. Incubation of isolated total membrane fraction of PAEC with AID or AAF resulted in concentration-dependent loss of eNOS activity. In contrast, incubation of intact PAEC with AID or AAF but not AAF-SR caused concentration- and time-dependent activation of eNOS. Because AID and AAF had similar effects on activation of eNOS, AAF and AAF-SR were used for further evaluation. Although AAF stimulation increased catalytic activity of PKC-alpha in PAEC, AAF-mediated activation of eNOS was independent of phosphorylation of Ser1177 or Thr495 and/or expression of eNOS protein. AAF stimulation of PAEC increased NO and cGMP production, which were attenuated by pretreatment with the eNOS inhibitor l-NAME. AAF caused time-dependent vasodilation of U-46619-precontracted endothelium-intact but not endothelium-denuded PA segments, and this response was attenuated by l-NAME. AAF, but not AAF-SR, also caused vasorelaxation in an ex vivo isolated mouse lung perfusion model precontracted with U-46619. Incubation with fluorescence-labeled AAF demonstrated translocation of AAF in PAEC in culture, isolated PA, and isolated intact lungs. These results demonstrate that AAF-stimulated vasodilation is mediated via activation of eNOS and enhanced NO-cGMP production in PA and intact lung.
Collapse
Affiliation(s)
- Hanbo Hu
- Research Service (151 VA Medical Center, 1601 SW Archer Road, Gainesville, FL 32608-1197, USA
| | | | | | | | | | | |
Collapse
|
39
|
Sato Y, Sagami I, Shimizu T. Identification of caveolin-1-interacting sites in neuronal nitric-oxide synthase. Molecular mechanism for inhibition of NO formation. J Biol Chem 2003; 279:8827-36. [PMID: 14681230 DOI: 10.1074/jbc.m310327200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Caveolin is known to down-regulate both neuronal (nNOS) and endothelial nitric-oxide synthase (eNOS). In the present study, direct interactions of recombinant caveolin-1 with both the oxygenase and reductase domains of nNOS were demonstrated using in vitro binding assays. To elucidate the mechanism of nNOS regulation by caveolin, we examined the effects of a caveolin-1 scaffolding domain peptide (CaV1p1; residues (82-101)) on the catalytic activities of wild-type and mutant nNOSs. CaV1p1 inhibited NO formation activity and NADPH oxidation of wild-type nNOS in a dose-dependent manner with an IC(50) value of 1.8 microM. Mutations of Phe(584) and Trp(587) within a caveolin binding consensus motif of the oxygenase domain did not result in the loss of CaV1p1 inhibition, indicating that an alternate region of nNOS mediates inhibition by caveolin. The addition of CaV1p1 also inhibited more than 90% of the cytochrome c reductase activity in the isolated reductase domain with or without the calmodulin (CaM) binding site, whereas CaV1p1 inhibited ferricyanide reductase activity by only 50%. These results suggest that there are significant differences in the mechanism of inhibition by caveolin for nNOS as compared with those previously reported for eNOS. Further analysis of the interaction through the use of several reductase domain deletion mutants revealed that the FMN domain was essential for successful interaction between caveolin-1 and nNOS reductase. We also examined the effects of CaV1p1 on an autoinhibitory domain deletion mutant (Delta40) and a C-terminal truncation mutant (DeltaC33), both of which are able to form NO in the absence of CaM, unlike the wild-type enzyme. Interestingly, CaV1p1 inhibited CaM-dependent, but not CaM-independent, NO formation activities of both Delta40 and DeltaC33, suggesting that CaV1p1 inhibits interdomain electron transfer induced by CaM from the reductase domain to the oxygenase domain.
Collapse
Affiliation(s)
- Yuko Sato
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | | | | |
Collapse
|
40
|
Chen PF, Wu KK. Structural elements contribute to the calcium/calmodulin dependence on enzyme activation in human endothelial nitric-oxide synthase. J Biol Chem 2003; 278:52392-400. [PMID: 14561757 DOI: 10.1074/jbc.m305469200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two regions, located at residues 594-606/614-645 and residues 1165-1178, are present in the reductase domain of human endothelial nitric-oxide synthase (eNOS) but absent in its counterpart, inducible nitric-oxide synthase (iNOS). We previously demonstrated that removing residues 594-606/614-645 resulted in an enzyme (Delta45) containing an intrinsic calmodulin (CaM) purified from an Sf9/baculovirus expression system (Chen, P.-F., and Wu, K.K. (2000) J. Biol. Chem. 275, 13155-13163). Here we have further elucidated the differential requirement of Ca2+/CaM for enzyme activation between eNOS and iNOS by either deletion of residues 1165-1178 (Delta14) or combined deletions of residues 594-606/614-645 and 1165-1178 (Delta45/ Delta14) from eNOS to mimic iNOS. We measured the catalytic rates using purified proteins completely free of CaM. Steady-state analysis indicated that the Delta45 supported NO synthesis in the absence of CaM at 60% of the rate in its presence, consistent with our prior result that CaM-bound Delta45 retained 60% of its activity in the presence of 10 mm EGTA. Mutant Delta14 displayed a 1.5-fold reduction of EC50 for Ca2+/CaM-dependence in l-citrulline formation, and a 2-4-fold increase in the rates of NO synthesis, NADPH oxidation, and cytochrome c reduction relative to the wild type. The basal rates of double mutant Delta45/Delta14 in NO production, NADPH oxidation, and cytochrome c reduction were 3-fold greater than those of CaM-stimulated wild-type eNOS. Interestingly, all three activities of Delta45/ Delta14 were suppressed rather than enhanced by Ca2+/CaM, indicating a complete Ca2+/CaM independence for those reactions. The results suggest that the Ca2+/CaM-dependent catalytic activity of eNOS appears to be conferred mainly by these two structural elements, and the interdomain electron transfer from reductase to oxygenase domain does not require Ca2+/CaM when eNOS lacks these two segments.
Collapse
Affiliation(s)
- Pei-Feng Chen
- Vascular Biology Research Center and Division of Hematology, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas 77225, USA.
| | | |
Collapse
|
41
|
Boo YC, Sorescu GP, Bauer PM, Fulton D, Kemp BE, Harrison DG, Sessa WC, Jo H. Endothelial NO synthase phosphorylated at SER635 produces NO without requiring intracellular calcium increase. Free Radic Biol Med 2003; 35:729-41. [PMID: 14583337 DOI: 10.1016/s0891-5849(03)00397-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Shear stress stimulates NO production involving the Ca2+-independent mechanisms in endothelial cells. We have shown that exposure of bovine aortic endothelial cells (BAEC) to shear stress stimulates phosphorylation of eNOS at S635 and S1179 by the protein kinase A- (PKA-) dependent mechanisms. We examined whether phosphorylation of S635 of eNOS induced by PKA stimulates NO production in a calcium-independent manner. Expression of a constitutively active catalytic subunit of PKA (Cqr) in BAEC induced phosphorylation of S635 and S1179 residues and dephosphorylation of T497. Additionally, Cqr expression stimulated NO production, which could not be prevented by treating cells with the intracellular calcium chelator BAPTA-AM. To determine the role of each eNOS phosphorylation site in NO production, HEK-293 cells transfected with eNOS point mutants whereby S116, T497, S635, and S1179 were mutated to either A or D. Maximum NO production from S635D-expressing cells was significantly higher than that of either wild type or S635A in both basal and elevated [Ca2+]i conditions. More interestingly, S635D cells produced NO even when [Ca2+]i was nearly depleted by BAPTA-AM. We confirmed these results obtained in HEK-293 cells in BAEC transfected with S635D, S635A, or wild-type eNOS vector. These findings suggest that, once phosphorylated at S635 residue, eNOS produces NO without requiring any changes in [Ca2+]i. PKA-dependent phosphorylation of eNOS S635 and subsequent basal NO production in a Ca2+-independent manner may play an important role in regulating vascular biology and pathophysiology.
Collapse
Affiliation(s)
- Yong Chool Boo
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Boo YC, Jo H. Flow-dependent regulation of endothelial nitric oxide synthase: role of protein kinases. Am J Physiol Cell Physiol 2003; 285:C499-508. [PMID: 12900384 DOI: 10.1152/ajpcell.00122.2003] [Citation(s) in RCA: 286] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Vascular endothelial cells are directly and continuously exposed to fluid shear stress generated by blood flow. Shear stress regulates endothelial structure and function by controlling expression of mechanosensitive genes and production of vasoactive factors such as nitric oxide (NO). Though it is well known that shear stress stimulates NO production from endothelial nitric oxide synthase (eNOS), the underlying molecular mechanisms remain unclear and controversial. Shear-induced production of NO involves Ca2+/calmodulin-independent mechanisms, including phosphorylation of eNOS at several sites and its interaction with other proteins, including caveolin and heat shock protein-90. There have been conflicting results as to which protein kinases-protein kinase A, protein kinase B (Akt), other Ser/Thr protein kinases, or tyrosine kinases-are responsible for shear-dependent eNOS regulation. The functional significance of each phosphorylation site is still unclear. We have attempted to summarize the current status of understanding in shear-dependent eNOS regulation.
Collapse
Affiliation(s)
- Yong Chool Boo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University, Atlanta, GA 30322, USA.
| | | |
Collapse
|
43
|
Knudsen GM, Nishida CR, Mooney SD, Ortiz de Montellano PR. Nitric-oxide synthase (NOS) reductase domain models suggest a new control element in endothelial NOS that attenuates calmodulin-dependent activity. J Biol Chem 2003; 278:31814-24. [PMID: 12805387 DOI: 10.1074/jbc.m303267200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inducible (iNOS) and constitutive (eNOS, nNOS) nitric-oxide synthases differ in their Ca2+-calmodulin (CaM) dependence. iNOS binds CaM irreversibly but eNOS and nNOS, which bind CaM reversibly, have inserts in their reductase domains that regulate electron transfer. These include the 43-45-amino acid autoinhibitory element (AI) that attenuates electron transfer in the absence of CaM, and the C-terminal 20-40-amino acid tail that attenuates electron transfer in a CaM-independent manner. We constructed models of the reductase domains of the three NOS isoforms to predict the structural basis for CaM-dependent regulation. We have identified and characterized a loop (CD2A) within the NOS connecting domain that is highly conserved by isoform and that, like the AI element, is within direct interaction distance of the CaM binding region. The eNOS CD2A loop (eCD2A) has the sequence 834KGSPGGPPPG843, and is truncated to 809ESGSY813 (iCD2A) in iNOS. The eCD2A contributes to the Ca2+ dependence of CaM-bound activity to a level similar to that of the AI element. The eCD2A plays an autoinhibitory role in the control of NO, and CaM-dependent and -independent reductase activity, but this autoinhibitory function is masked by the dominant AI element. Finally, the iCD2A is involved in determining the salt dependence of NO activity at a post-flavin reduction level. Electrostatic interactions between the CD2A loop and the CaM-binding region, and CaM itself, provide a structural means for the CD2A to mediate CaM regulation of intra-subunit electron transfer within the active NOS complex.
Collapse
Affiliation(s)
- Giselle M Knudsen
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143-2280, USA
| | | | | | | |
Collapse
|
44
|
Kone BC, Kuncewicz T, Zhang W, Yu ZY. Protein interactions with nitric oxide synthases: controlling the right time, the right place, and the right amount of nitric oxide. Am J Physiol Renal Physiol 2003; 285:F178-90. [PMID: 12842859 DOI: 10.1152/ajprenal.00048.2003] [Citation(s) in RCA: 216] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nitric oxide (NO) is a potent cell-signaling, effector, and vasodilator molecule that plays important roles in diverse biological effects in the kidney, vasculature, and many other tissues. Because of its high biological reactivity and diffusibility, multiple tiers of regulation, ranging from transcriptional to posttranslational controls, tightly control NO biosynthesis. Interactions of each of the major NO synthase (NOS) isoforms with heterologous proteins have emerged as a mechanism by which the activity, spatial distribution, and proximity of the NOS isoforms to regulatory proteins and intended targets are governed. Dimerization of the NOS isozymes, required for their activity, exhibits distinguishing features among these proteins and may serve as a regulated process and target for therapeutic intervention. An increasingly wide array of proteins, ranging from scaffolding proteins to membrane receptors, has been shown to function as NOS-binding partners. Neuronal NOS interacts via its PDZ domain with several PDZ-domain proteins. Several resident and recruited proteins of plasmalemmal caveolae, including caveolins, anchoring proteins, G protein-coupled receptors, kinases, and molecular chaperones, modulate the activity and trafficking of endothelial NOS in the endothelium. Inducible NOS (iNOS) interacts with the inhibitory molecules kalirin and NOS-associated protein 110 kDa, as well as activator proteins, the Rac GTPases. In addition, protein-protein interactions of proteins governing iNOS transcription function to specify activation or suppression of iNOS induction by cytokines. The calpain and ubiquitin-proteasome pathways are the major proteolytic systems responsible for the regulated degradation of NOS isozymes. The experimental basis for these protein-protein interactions, their functional importance, and potential implication for renal and vascular physiology and pathophysiology is reviewed.
Collapse
Affiliation(s)
- Bruce C Kone
- Department of Internal Medicine, The University of Texas Medical School at Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
45
|
Roman LJ, McLain J, Masters BSS. Chimeric enzymes of cytochrome P450 oxidoreductase and neuronal nitric-oxide synthase reductase domain reveal structural and functional differences. J Biol Chem 2003; 278:25700-7. [PMID: 12730215 DOI: 10.1074/jbc.m212309200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nitric-oxide synthases (NOSs) are comprised of an oxygenase domain and a reductase domain bisected by a calmodulin (CaM) binding region. The NOS reductase domains share approximately 60% sequence similarity with the cytochrome P450 oxidoreductase (CYPOR), which transfers electrons to microsomal cytochromes P450. The crystal structure of the neuronal NOS (nNOS) connecting/FAD binding subdomains reveals that the structure of the nNOS-connecting subdomain diverges from that of CYPOR, implying different alignments of the flavins in the two enzymes. We created a series of chimeric enzymes between nNOS and CYPOR in which the FMN binding and the connecting/FAD binding subdomains are swapped. A chimera consisting of the nNOS heme domain and FMN binding subdomain and the CYPOR FAD binding subdomain catalyzed significantly increased rates of cytochrome c reduction in the absence of CaM and of NO synthesis in its presence. Cytochrome c reduction by this chimera was inhibited by CaM. Other chimeras consisting of the nNOS heme domain, the CYPOR FMN binding subdomain, and the nNOS FAD binding subdomain with or without the tail region also catalyzed cytochrome c reduction, were not modulated by CaM, and could not transfer electrons into the heme domain. A chimera consisting of the heme domain of nNOS and the reductase domain of CYPOR reduced cytochrome c and ferricyanide at rates 2-fold higher than that of native CYPOR, suggesting that the presence of the heme domain affected electron transfer through the reductase domain. These data demonstrate that the FMN subdomain of CYPOR cannot effectively substitute for that of nNOS, whereas the FAD subdomains are interchangeable. The differences among these chimeras most likely result from alterations in the alignment of the flavins within each enzyme construct.
Collapse
Affiliation(s)
- Linda J Roman
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA.
| | | | | |
Collapse
|
46
|
Sengupta R, Sahoo R, Mukherjee S, Regulski M, Tully T, Stuehr DJ, Ghosh S. Characterization of Drosophila nitric oxide synthase: a biochemical study. Biochem Biophys Res Commun 2003; 306:590-7. [PMID: 12804606 DOI: 10.1016/s0006-291x(03)01003-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The heme and flavin-binding domains of Drosophila nitric oxide synthase (DNOS) were expressed in Escherichia coli using the expression vector pCW. The denatured molecular mass of the expressed protein was 152kDa along with a proteolytically cleaved product of 121kDa. The DNOS heme protein exhibited very low Ca(2+)/calmodulin-dependent NO synthase activity. The trypsin digestion patterns were different from nNOS. The full-length DNOS protein had high degree of stability against trypsin. The activity assay of trypsin-digested protein confirmed the same result. Urea dissociation profile of DNOS full-length protein showed that the reductase domain activity was much more susceptible towards urea than the oxygenase domain activity. Urea gradient gel of DNOS full-length protein established distinct transition of dissociation and unfolding in the range 3-4M urea. Reductase domain activity of full-length DNOS protein against external electron acceptors like cytochrome c indicated slow electron transfer from FMN. The bacterial expression of DNOS full-length protein represents an important development in structure-function studies of this enzyme and comparison with other mammalian NOS enzymes which is evolutionary significant.
Collapse
Affiliation(s)
- Rajib Sengupta
- Department of Biochemistry, University College of Sciences, Calcutta University, 35 Ballygunge Circular Road, Kolkata, West Bengal 700 019, India
| | | | | | | | | | | | | |
Collapse
|
47
|
Takahashi S, Mendelsohn ME. Calmodulin-dependent and -independent activation of endothelial nitric-oxide synthase by heat shock protein 90. J Biol Chem 2003; 278:9339-44. [PMID: 12519764 DOI: 10.1074/jbc.m212651200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Endothelial nitric oxide synthase (eNOS), which generates the endogenous vasodilator, nitric oxide (NO), is highly regulated by post-translational modifications and protein interactions. Heat shock protein 90 (HSP90) binds directly to eNOS, augmenting NO production. We have used purified proteins to characterize further the mechanism by which HSP90 increases eNOS activity at low (100 nm) and high (10 microm) Ca(2+) levels. In the presence of calmodulin (CaM), HSP90 increased eNOS activity dose dependently at both low and high Ca(2+) concentrations. This effect was abolished by the specific HSP90 inhibitor geldanamycin (GA) at both calcium concentrations. The EC(50) values of eNOS for both Ca(2+) and CaM were decreased in the presence of HSP90. HSP90 also significantly increased the rate of NADPH-dependent cytochrome c reduction by eNOS at both low and high Ca(2+) concentrations. HSP90 bound to eNOS in a dose-dependent manner, and the amount of bound HSP90 also increased with increasing Ca(2+)/CaM. At 100 nm Ca(2+), HSP90 promoted dose-dependent CaM binding to eNOS that was fully inhibitable by GA. At high calcium, HSP90 did not affect CaM binding to eNOS, but GA inhibited HSP90 binding to eNOS. At high Ca(2+), HSP90 caused the V(max) of eNOS for l-arginine to increase by 2-fold, but the K(m) of eNOS was unchanged. HSP90 bound preferentially to CaM-prebound eNOS and significantly increased both its NO synthesis and reductase activities. These data support that HSP90 promotes eNOS activity by two mechanisms: (i) a CaM-dependent mechanism operative at low Ca(2+) concentrations, characterized by an increase in the affinity of eNOS for CaM and (ii) a CaM-independent mechanism apparent at high Ca(2+) concentrations, characterized by stimulation of eNOS reductase activity without further change in CaM binding. These studies contribute to our understanding of eNOS activation by HSP90 and provide a basis for in vitro studies of other eNOS-interacting proteins.
Collapse
Affiliation(s)
- Satoru Takahashi
- Molecular Cardiology Research Institute, Department of Medicine and Division of Cardiology, New England Medical Center Hospitals and Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
48
|
Du M, Yeh HC, Berka V, Wang LH, Tsai AL. Redox properties of human endothelial nitric-oxide synthase oxygenase and reductase domains purified from yeast expression system. J Biol Chem 2003; 278:6002-11. [PMID: 12480940 DOI: 10.1074/jbc.m209606200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Characterization of the redox properties of endothelial nitric-oxide synthase (eNOS) is fundamental to understanding the complicated reaction mechanism of this important enzyme participating in cardiovascular function. Yeast overexpression of both the oxygenase and reductase domains of human eNOS, i.e. eNOS(ox) and eNOS(red), has been established to accomplish this goal. UV-visible and electron paramagnetic resonance (EPR) spectral characterization for the resting eNOS(ox) and its complexes with various ligands indicated a standard NOS heme structure as a thiolate hemeprotein. Two low spin imidazole heme complexes but not the isolated eNOS(ox) were resolved by EPR indicating slight difference in heme geometry of the dimeric eNOS(ox) domain. Stoichiometric titration of eNOS(ox) demonstrated that the heme has a capacity for a reducing equivalent of 1-1.5. Additional 1.5-2.5 reducing equivalents were consumed before heme reduction occurred indicating the presence of other unknown high potential redox centers. There is no indication for additional metal centers that could explain this extra electron capacity of eNOS(ox). Ferrous eNOS(ox), in the presence of l-arginine, is fully functional in forming the tetrahydrobiopterin radical upon mixing with oxygen as demonstrated by rapid-freeze EPR measurements. Calmodulin binds eNOS(red) at 1:1 stoichiometry and high affinity. Stoichiometric titration and computer simulation enabled the determination for three redox potential separations between the four half-reactions of FMN and FAD. The extinction coefficient could also be resolved for each flavin for its semiquinone, oxidized, and reduced forms at multiple wavelengths. This first redox characterization on both eNOS domains by stoichiometric titration and the generation of a high quality EPR spectrum for the BH(4) radical intermediate illustrated the usefulness of these tools in future detailed investigations into the reaction mechanism of eNOS.
Collapse
Affiliation(s)
- Mei Du
- Division of Hematology, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
49
|
Cao S, Yao J, Shah V. The proline-rich domain of dynamin-2 is responsible for dynamin-dependent in vitro potentiation of endothelial nitric-oxide synthase activity via selective effects on reductase domain function. J Biol Chem 2003; 278:5894-901. [PMID: 12488320 DOI: 10.1074/jbc.m212546200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The GTPase dynamin-2 (dyn-2) binds and positively regulates the nitric oxide-generating enzyme, endothelial nitric-oxide synthase (eNOS) (Cao, S., Yao, Y., McCabe, T., Yao, Q., Katusic, Z., Sessa, W., and Shah, V. (2001) J. Biol. Chem. 276, 14249-14256). Here we demonstrate, using purified proteins, that this occurs through a selective influence of the dyn-2 proline-rich domain (dyn-2 PRD) on the eNOS reductase domain. In vitro studies demonstrate that dyn-2 PRD fused with glutathione S-transferase (GST) binds recombinant eNOS protein specifically and with binding kinetics comparable with that observed between dyn-2 full-length and eNOS. Additionally, GST-dyn-2 PRD binds the in vitro transcribed (35)S-eNOS reductase domain but not the (35)S-eNOS oxygenase domain. Furthermore GST-dyn-2 PRD binds a (35)S-labeled eNOS reductase domain fragment (amino acids 645-850) that partially overlaps with the FAD binding domain of eNOS. A recombinant form of the SH3-containing protein Fyn competes the binding of recombinant eNOS protein with dyn-2 PRD, thereby implicating the SH3-like region contained within this reductase domain fragment as the dyn-2 binding region. Mammalian two-hybrid screen corroborates these interactions in cells as well. Functional studies demonstrate that dyn-2 PRD selectively potentiates eNOS activity in a concentration-dependent manner in an order of magnitude similar to that observed with dyn-2 full-length and in a manner that requires calmodulin. Although dyn-2 PRD does not influence eNOS oxygenase domain function or ferricyanide reduction, it does potentiate the ability of recombinant eNOS to reduce cytochrome c, supporting an influence of dyn-2 PRD on electron transfer between FAD and FMN. (These data indicate that the binding domains of dyn-2 and eNOS reside within the dyn-2 PRD domain and the FAD binding region of the eNOS reductase domains, respectively, and that dyn-2 PRD is sufficient to mediate dyn-2-dependent potentiation of eNOS activity, at least in part, by potentiating electron transfer.)
Collapse
Affiliation(s)
- Sheng Cao
- Gastrointestinal Research Unit and Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
50
|
Boo YC, Hwang J, Sykes M, Michell BJ, Kemp BE, Lum H, Jo H. Shear stress stimulates phosphorylation of eNOS at Ser(635) by a protein kinase A-dependent mechanism. Am J Physiol Heart Circ Physiol 2002; 283:H1819-28. [PMID: 12384459 DOI: 10.1152/ajpheart.00214.2002] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Shear stress stimulates nitric oxide (NO) production by phosphorylating endothelial NO synthase (eNOS) at Ser(1179) in a phosphoinositide-3-kinase (PI3K)- and protein kinase A (PKA)-dependent manner. The eNOS has additional potential phosphorylation sites, including Ser(116), Thr(497), and Ser(635). Here, we studied these potential phosphorylation sites in response to shear, vascular endothelial growth factor (VEGF), and 8-bromocAMP (8-BRcAMP) in bovine aortic endothelial cells (BAEC). All three stimuli induced phosphorylation of eNOS at Ser(635), which was consistently slower than that at Ser(1179). Thr(497) was rapidly dephosphorylated by 8-BRcAMP but not by shear and VEGF. None of the stimuli phosphorylated Ser(116). Whereas shear-stimulated Ser(635) phosphorylation was not affected by phosphoinositide-3-kinase inhibitors wortmannin and LY-294002, it was blocked by either treating the cells with a PKA inhibitor H89 or infecting them with a recombinant adenovirus-expressing PKA inhibitor. These results suggest that shear stress stimulates eNOS by two different mechanisms: 1) PKA- and PI3K-dependent and 2) PKA-dependent but PI3K-independent pathways. Phosphorylation of Ser(635) may play an important role in chronic regulation of eNOS in response to mechanical and humoral stimuli.
Collapse
Affiliation(s)
- Yong Chool Boo
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | | | |
Collapse
|