1
|
Nicy, Chakraborty D, Wales DJ. Energy Landscapes for Base-Flipping in a Model DNA Duplex. J Phys Chem B 2022; 126:3012-3028. [PMID: 35427136 PMCID: PMC9098180 DOI: 10.1021/acs.jpcb.2c00340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/24/2022] [Indexed: 12/31/2022]
Abstract
We explore the process of base-flipping for four central bases, adenine, guanine, cytosine, and thymine, in a deoxyribonucleic acid (DNA) duplex using the energy landscape perspective. NMR imino-proton exchange and fluorescence correlation spectroscopy studies have been used in previous experiments to obtain lifetimes for bases in paired and extrahelical states. However, the difference of almost 4 orders of magnitude in the base-flipping rates obtained by the two methods implies that they are exploring different pathways and possibly different open states. Our results support the previous suggestion that minor groove opening may be favored by distortions in the DNA backbone and reveal links between sequence effects and the direction of opening, i.e., whether the base flips toward the major or the minor groove side. In particular, base flipping along the minor groove pathway was found to align toward the 5' side of the backbone. We find that bases align toward the 3' side of the backbone when flipping along the major groove pathway. However, in some cases for cytosine and thymine, the base flipping along the major groove pathway also aligns toward the 5' side. The sequence effect may be caused by the polar interactions between the flipping-base and its neighboring bases on either of the strands. For guanine flipping toward the minor groove side, we find that the equilibrium constant for opening is large compared to flipping via the major groove. We find that the estimated rates of base opening, and hence the lifetimes of the closed state, obtained for thymine flipping through small and large angles along the major groove differ by 6 orders of magnitude, whereas for thymine flipping through small angles along the minor groove and large angles along the major groove, the rates differ by 3 orders of magnitude.
Collapse
Affiliation(s)
- Nicy
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K.
| | - Debayan Chakraborty
- Department
of Chemistry, The University of Texas at
Austin, Austin, Texas 78712, United States
| | - David J. Wales
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K.
| |
Collapse
|
2
|
Sýkorová V, Tichý M, Hocek M. Polymerase Synthesis of DNA Containing Iodinated Pyrimidine or 7-Deazapurine Nucleobases and Their Post-synthetic Modifications through the Suzuki-Miyaura Cross-Coupling Reactions. Chembiochem 2021; 23:e202100608. [PMID: 34821441 DOI: 10.1002/cbic.202100608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/24/2021] [Indexed: 11/08/2022]
Abstract
All four iodinated 2'-deoxyribonucleoside triphosphates (dNTPs) derived from 5-iodouracil, 5-iodocytosine, 7-iodo-7-deazaadenine and 7-iodo-7-deazaguanine were prepared and studied as substrates for KOD XL DNA polymerase. All of the nucleotides were readily incorporated by primer extension and by PCR amplification to form DNA containing iodinated nucleobases. Systematic study of the Suzuki-Miyaura cross-coupling reactions with two bulkier arylboronic acids revealed that the 5-iodopyrimidines were more reactive and gave cross-coupling products both in the terminal or internal position in single-stranded oligonucleotides (ssONs) and in the terminal position of double-stranded DNA (dsDNA), whereas the 7-iodo-7-deazapurines were less reactive and gave cross-coupling products only in the terminal position. None of the four iodinated bases reacted in an internal position of dsDNA. These findings are useful for the use of the iodinated nucleobases for post-synthetic modification of DNA with functional groups for various applications.
Collapse
Affiliation(s)
- Veronika Sýkorová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Michal Tichý
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12843, Prague 2, Czech Republic
| |
Collapse
|
3
|
Beuck C, Weinhold E. Reversibly locked thionucleobase pairs in DNA to study base flipping enzymes. Beilstein J Org Chem 2014; 10:2293-306. [PMID: 25298797 PMCID: PMC4187101 DOI: 10.3762/bjoc.10.239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 08/28/2014] [Indexed: 12/16/2022] Open
Abstract
Covalently interstrand cross-linked DNA is an interesting tool to study DNA binding proteins that locally open up the DNA duplex by flipping single bases out of the DNA helix or melting whole stretches of base pairs to perform their function. The ideal DNA cross-link to study protein–DNA interactions should be specific and easy to synthesize, be stable during protein binding experiments, have a short covalent linker to avoid steric hindrance of protein binding, and should be available as a mimic for both A/T and G/C base pairs to cover all possible binding specificities. Several covalent interstrand cross-links have been described in the literature, but most of them fall short of at least one of the above criteria. We developed an efficient method to site-specifically and reversibly cross-link thionucleoside base pairs in synthetic duplex oligodeoxynucleotides by bisalkylation with 1,2-diiodoethane resulting in an ethylene-bridged base pair. Both linked A/T and G/C base pair analogs can conveniently be prepared which allows studying any base pair-opening enzyme regardless of its sequence specificity. The cross-link is stable in the absence of reducing agents but the linker can be quickly and tracelessly removed by the addition of thiol reagents like dithiothreitol. This property makes the cross-linking reaction fully reversible and allows for a switching of the linked base pair from locked to unlocked during biochemical experiments. Using the DNA methyltransferase from Thermus aquaticus (M.TaqI) as example, we demonstrate that the presented cross-linked DNA with an ethylene-linked A/T base pair analog at the target position is a useful tool to determine the base-flipping equilibrium constant of a base-flipping enzyme which lies mostly on the extrahelical side for M.TaqI.
Collapse
Affiliation(s)
- Christine Beuck
- Department of Structural & Medicinal Biochemistry, University of Duisburg-Essen, Universitätsstr. 2-5, D-45141 Essen, Germany
| | - Elmar Weinhold
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52056 Aachen, Germany
| |
Collapse
|
4
|
Metadynamics simulation study on the conformational transformation of HhaI methyltransferase: an induced-fit base-flipping hypothesis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:304563. [PMID: 25045662 PMCID: PMC4090504 DOI: 10.1155/2014/304563] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/12/2014] [Indexed: 12/02/2022]
Abstract
DNA methyltransferases play crucial roles in establishing and maintenance of DNA methylation, which is an important epigenetic mark. Flipping the target cytosine out of the DNA helical stack and into the active site of protein provides DNA methyltransferases with an opportunity to access and modify the genetic information hidden in DNA. To investigate the conversion process of base flipping in the HhaI methyltransferase (M.HhaI), we performed different molecular simulation approaches on M.HhaI-DNA-S-adenosylhomocysteine ternary complex. The results demonstrate that the nonspecific binding of DNA to M.HhaI is initially induced by electrostatic interactions. Differences in chemical environment between the major and minor grooves determine the orientation of DNA. Gln237 at the target recognition loop recognizes the GCGC base pair from the major groove side by hydrogen bonds. In addition, catalytic loop motion is a key factor during this process. Our study indicates that base flipping is likely to be an “induced-fit” process. This study provides a solid foundation for future studies on the discovery and development of mechanism-based DNA methyltransferases regulators.
Collapse
|
5
|
Rastogi V, Alcolea Palafox M, Guerrero-Martínez A, Tardajos G, Vats J, Kostova I, Schlucker S, Kiefer W. FT-IR and FT-Raman spectra, ab initio and density functional computations of the vibrational spectra, molecular geometry, atomic charges and some molecular properties of the biomolecule 5-iodouracil. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.theochem.2009.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Tashiro R, Sugiyama H. Photochemistry of 5-Bromouracil- or 5-Iodouracil-containing DNA: Probe for DNA Structure and Charge Transfer Along DNA. J SYN ORG CHEM JPN 2009. [DOI: 10.5059/yukigoseikyokaishi.67.1261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ryu Tashiro
- Faculty of Phamaceutical Sciences, Suzuka University of Medical Science
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Sciences, Kyoto University
| |
Collapse
|
7
|
Evdokimov AA, Sclavi B, Zinoviev VV, Malygin EG, Hattman S, Buckle M. Study of Bacteriophage T4-encoded Dam DNA (Adenine-N6)-methyltransferase Binding with Substrates by Rapid Laser UV Cross-linking. J Biol Chem 2007; 282:26067-76. [PMID: 17630395 DOI: 10.1074/jbc.m700866200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA methyltransferases of the Dam family (including bacteriophage T4-encoded Dam DNA (adenine-N(6))-methyltransferase (T4Dam)) catalyze methyl group transfer from S-adenosyl-L-methionine (AdoMet), producing S-adenosyl-L-homocysteine (AdoHcy) and methylated adenine residues in palindromic GATC sequences. In this study, we describe the application of direct (i.e. no exogenous cross-linking reagents) laser UV cross-linking as a universal non-perturbing approach for studying the characteristics of T4Dam binding with substrates in the equilibrium and transient modes of interaction. UV irradiation of the enzyme.substrate complexes using an Nd(3+):yttrium aluminum garnet laser at 266 nm resulted in up to 3 and >15% yields of direct T4Dam cross-linking to DNA and AdoMet, respectively. Consequently, we were able to measure equilibrium constants and dissociation rates for enzyme.substrate complexes. In particular, we demonstrate that both reaction substrates, specific DNA and AdoMet (or product AdoHcy), stabilized the ternary complex. The improved substrate affinity for the enzyme in the ternary complex significantly reduced dissociation rates (up to 2 orders of magnitude). Several of the parameters obtained (such as dissociation rate constants for the binary T4Dam.AdoMet complex and for enzyme complexes with a nonfluorescent hemimethylated DNA duplex) were previously inaccessible by other means. However, where possible, the results of laser UV cross-linking were compared with those of fluorescence analysis. Our study suggests that rapid laser UV cross-linking efficiently complements standard DNA methyltransferase-related tools and is a method of choice to probe enzyme-substrate interactions in cases in which data cannot be acquired by other means.
Collapse
Affiliation(s)
- Alexey A Evdokimov
- Federal State Research Institute State Research Center of Virology and Biotechnology Vector, Novosibirsk 630559, Russia
| | | | | | | | | | | |
Collapse
|
8
|
Wibowo FR, Rauch C, Trieb M, Liedl KR. M.TaqI facilitates the base flipping via an unusual DNA backbone conformation. Biopolymers 2005; 79:128-38. [PMID: 16047360 DOI: 10.1002/bip.20341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
MD simulations have been carried out to understand the dynamical behavior of the DNA substrate of the Thermus aquaticus DNA methyltransferase (M.TaqI) in the methylation process at N6 of adenine. As starting structures, an x-ray structure of M.TaqI in complex with DNA and cofactor analogue (PDB code: 1G 38) and free decamer d(GTTCGATGTC)(2) were taken. The x-ray structure shows two consecutive BII substates that are not observed in the free decamer. These consecutive BII substates are also observed during our simulation. Additionally, their facing backbones adopt the same conformations. These double facing BII substates are stable during the last 9 ns of the trajectories and result in a stretched DNA structure. On the other hand, protein-DNA contacts on 5' and 3' phosphodiester groups of the partner thymine of flipped adenine have changed. The sugar and phosphate parts of thymine have moved further into the empty space left by the flipping base without the influence of protein. Furthermore, readily high populated BII substates at the GpA step of palindromic tetrad TCGA rather than CpG step are observed in the free decamer. On the contrary, the BI substate at the GpA step is observed on the flipped adenine strand. A restrained MD simulation, reproducing the BI/BII pattern in the complex, demonstrated the influence of the unusual backbone conformation on the dynamical behavior of the target base. This finding along with the increased nearby interstrand phosphate distance is supportive to the N6-methylation mechanism.
Collapse
Affiliation(s)
- Fajar R Wibowo
- Institute of General, Inorganic, and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A6020 Innsbruck, Austria
| | | | | | | |
Collapse
|
9
|
Banoub JH, Newton RP, Esmans E, Ewing DF, Mackenzie G. Recent developments in mass spectrometry for the characterization of nucleosides, nucleotides, oligonucleotides, and nucleic acids. Chem Rev 2005; 105:1869-915. [PMID: 15884792 DOI: 10.1021/cr030040w] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joseph H Banoub
- Fisheries and Oceans Canada, Science Branch, Special Projects, P.O. Box 5667, St. John's NL A1C 5X1, Canada.
| | | | | | | | | |
Collapse
|
10
|
Valente L, Nishikura K. ADAR gene family and A-to-I RNA editing: diverse roles in posttranscriptional gene regulation. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2005; 79:299-338. [PMID: 16096031 DOI: 10.1016/s0079-6603(04)79006-6] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Louis Valente
- The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
11
|
Geyer H, Geyer R, Pingoud V. A novel strategy for the identification of protein-DNA contacts by photocrosslinking and mass spectrometry. Nucleic Acids Res 2004; 32:e132. [PMID: 15383647 PMCID: PMC519130 DOI: 10.1093/nar/gnh131] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Photochemical crosslinking is a method for studying the molecular details of protein-nucleic acid interactions. In this study, we describe a novel strategy to localize crosslinked amino acid residues that combines laser-induced photocrosslinking, proteolytic digestion, Fe3+-IMAC (immobilized metal affinity chromatography) purification of peptide-oligodeoxynucleotide heteroconjugates and hydrolysis of oligodeoxynucleotides by hydrogen fluoride (HF), with efficient matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The new method is illustrated by the identification of the DNA-binding site of the restriction endonuclease MboI. Photoactivatable 5-iododeoxyuridine was incorporated into a single site within the DNA recognition sequence (GATC) of MboI. Ultraviolet irradiation of the protein-DNA complex with a helium/cadmium laser at 325 nm resulted in 15% crosslinking yield. Proteolytic digestion with different proteases produced various peptide-oligodeoxynucleotide adducts that were purified together with free oligodeoxynucleotide by Fe3+-IMAC. A combination of MS analysis of the peptide-nucleosides obtained after hydrolysis by HF and their fragmentation by MS/MS revealed that Lys209 of MboI was crosslinked to the MboI recognition site at the position of the adenine, demonstrating that the region around Lys209 is involved in specific binding of MboI to its DNA substrate. This method is suitable for the fast identification of the site of contact between proteins and nucleic acids starting from picomole quantities of crosslinked complexes.
Collapse
Affiliation(s)
- Hildegard Geyer
- Biochemisches Institut, Friedrichstrasse 24, Justus-Liebig-Universität, D-35392 Giessen, Germany
| | | | | |
Collapse
|
12
|
Liebert K, Hermann A, Schlickenrieder M, Jeltsch A. Stopped-flow and mutational analysis of base flipping by the Escherichia coli Dam DNA-(adenine-N6)-methyltransferase. J Mol Biol 2004; 341:443-54. [PMID: 15276835 DOI: 10.1016/j.jmb.2004.05.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2004] [Revised: 04/22/2004] [Accepted: 05/20/2004] [Indexed: 10/26/2022]
Abstract
By stopped-flow kinetics using 2-aminopurine as a probe to detect base flipping, we show here that base flipping by the Escherichia coli Dam DNA-(adenine-N6)-methyltransferase (MTase) is a biphasic process: target base flipping is very fast (k(flip)>240 s(-1)), but binding of the flipped base into the active site pocket of the enzyme is slow (k=0.1-2 s(-1)). Whereas base flipping occurs in the absence of S-adenosyl-l-methionine (AdoMet), binding of the target base in the active site pocket requires AdoMet. Our data suggest that the tyrosine residue in the DPPY motif conserved in the active site of DNA-(adenine-N6)-MTases stacks to the flipped target base. Substitution of the aspartic acid residue of the DPPY motif by alanine abolished base flipping, suggesting that this residue contacts and stabilizes the flipped base. The exchange of Ser188 located in a loop next to the active center by alanine led to a seven- to eightfold reduction of k(flip), which was also reduced with substrates having altered GATC recognition sites and in the absence of AdoMet. These findings provide evidence that the enzyme actively initiates base flipping by stabilizing the transition state of the process. Reduced rates of base flipping in substrates containing the target base in a non-canonical sequence demonstrate that DNA recognition by the MTase starts before base flipping. DNA recognition, cofactor binding and base flipping are correlated and efficient base flipping takes place only if the enzyme has bound to a cognate target site and AdoMet is available.
Collapse
Affiliation(s)
- Kirsten Liebert
- School of Engineering and Science, International University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | | | | | | |
Collapse
|
13
|
David A, Bleimling N, Beuck C, Lehn JM, Weinhold E, Teulade-Fichou MP. DNA mismatch-specific base flipping by a bisacridine macrocycle. Chembiochem 2004; 4:1326-31. [PMID: 14661275 DOI: 10.1002/cbic.200300693] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Most, if not all, enzymes that chemically modify nucleobases in DNA flip their target base from the inside of the double helix into an extrahelical position. This energetically unfavorable conformation is partly stabilized by specific binding of the apparent abasic site being formed. Thus, DNA base-flipping enzymes, like DNA methyltransferases and DNA glycosylases, generally bind very strongly to DNA containing abasic sites or abasic-site analogues. The macrocyclic bisacridine BisA has previously been shown to bind abasic sites. Herein we demonstrate that it is able to specifically recognize DNA base mismatches and most likely induces base flipping. Specific binding of BisA to DNA mismatches was studied by thermal denaturation experiments by using short duplex oligodeoxynucleotides containing central TT, TC, or TG mismatches or a TA match. In the presence of the macrocycle a strong increase in the melting temperature of up to 7.1 degrees C was observed for the mismatch-containing duplexes, whereas the melting temperature of the fully matched duplex was unaffected. Furthermore, BisA binding induced an enhanced reactivity of the mispaired thymine residue in the DNA toward potassium permanganate oxidation. A comparable reactivity has previously been observed for a TT target base mismatch in the presence of DNA methyltransferase M.TaqI. This similarity to a known base-flipping enzyme suggests that insertion of BisA into the DNA helix displaces the mispaired thymine residue into an extrahelical position, where it should be more prone to chemical oxidation. Thus, DNA base flipping does not appear to be limited to DNA-modifying enzymes but it is likely to also be induced by a small synthetic molecule binding to a thermodynamically weakened site in DNA.
Collapse
Affiliation(s)
- Arnaud David
- Laboratoire de Chimie des Interactions Moléculaires, Collège de France, CNRS UPR 285, 11 place Marcelin Berthelot, 75005 Paris, France
| | | | | | | | | | | |
Collapse
|
14
|
Dawson TR, Sansam CL, Emeson RB. Structure and sequence determinants required for the RNA editing of ADAR2 substrates. J Biol Chem 2003; 279:4941-51. [PMID: 14660658 DOI: 10.1074/jbc.m310068200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ADAR2 is a double-stranded RNA-specific adenosine deaminase involved in the editing of mammalian RNAs by the site-specific conversion of adenosine to inosine. We have demonstrated previously that ADAR2 can modify its own pre-mRNA, leading to the creation of a proximal 3'-splice junction containing a non-canonical adenosine-inosine (A-I) dinucleotide. Alternative splicing to this proximal acceptor shifts the reading frame of the mature mRNA transcript, resulting in the loss of functional ADAR2 expression. Both evolutionary sequence conservation and mutational analysis support the existence of an extended RNA duplex within the ADAR2 pre-mRNA formed by base-pairing interactions between regions approximately 1.3-kilobases apart in intron 4 and exon 5. Characterization of ADAR2 pre-mRNA transcripts isolated from adult rat brain identified 16 editing sites within this duplex region, and sites preferentially modified by ADAR1 and ADAR2 have been defined using both tissue culture and in vitro editing systems. Statistical analysis of nucleotide sequences surrounding edited and non-edited adenosine residues have identified a nucleotide sequence bias correlating with ADAR2 site preference and editing efficiency. Among a mixed population of ADAR substrates, ADAR2 preferentially favors its own transcript, yet mutation of a poor substrate to conform to the defined nucleotide bias increases the ability of that substrate to be modified by ADAR2. These data suggest that both sequence and structural elements are required to define adenosine moieties targeted for specific ADAR2-mediated deamination.
Collapse
Affiliation(s)
- T Renee Dawson
- Department of Molecular Physiology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
15
|
Rausch JW, Qu J, Yi-Brunozzi HY, Kool ET, Le Grice SFJ. Hydrolysis of RNA/DNA hybrids containing nonpolar pyrimidine isosteres defines regions essential for HIV type 1 polypurine tract selection. Proc Natl Acad Sci U S A 2003; 100:11279-84. [PMID: 12972638 PMCID: PMC208748 DOI: 10.1073/pnas.1932546100] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2003] [Indexed: 11/18/2022] Open
Abstract
Both x-ray crystallography and chemical footprinting indicate that bases of the HIV type 1 (HIV-1) polypurine tract (PPT)-containing RNA/DNA hybrid deviate from standard Watson-Crick base pairing. However, the contribution of these structural anomalies to the accuracy of plus-strand primer selection by HIV-1 reverse transcriptase is not immediately clear. To address this issue, DNA templates harboring single and pairwise non-hydrogen-bonding isosteres of cytosine (2-fluoro-4-methylbenzene deoxyribonucleoside) and thymine (2,4-difluoro-5-methylbenzene deoxyribonucleoside) were synthesized and hybridized to PPT-containing RNA primers as a means of locally removing hydrogen bonding and destabilizing paired structure. Cleavage of these hybrids was examined with p66/p51 HIV-1 reverse transcriptase and a mutant carrying an alteration in the p66 RNase H primer shown to specifically impair PPT processing. Analog insertion within the PPT (rG):(dC) and central (rA):(dT) tracts repositioned the RNase H domain such that the RNA/DNA hybrid was cleaved 3-4 bp from the site of insertion, a distance corresponding closely to the spatial separation between the catalytic center and RNase H primer grip. However, PPT processing was significantly impaired when the junction between these tracts was substituted. Substitutions within the upstream (rA):(dT) tract, where maximum distortion had previously been observed, destroyed PPT processing. Collectively, our scanning mutagenesis approach implicates multiple regions of the PPT in the accuracy with which it is excised from (+) U3 RNA and DNA, and also provides evidence for close cooperation between the RNase H primer grip and catalytic center in achieving this cleavage.
Collapse
Affiliation(s)
- Jason W Rausch
- HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702, USA
| | | | | | | | | |
Collapse
|
16
|
Koudan EV, Subach OM, Korshunova GA, Romanova EA, Eritja R, Gromova ES. DNA duplexes containing photoactive derivatives of 2'-deoxyuridine as photocrosslinking probes for EcoRII DNA methyltransferase-substrate interaction. J Biomol Struct Dyn 2002; 20:421-8. [PMID: 12437380 DOI: 10.1080/07391102.2002.10506860] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
EcoRII DNA methyltransferase (M.EcoRII) recognizes the DNA sequence 5'.CC*T/AGG.3' and catalyzes the transfer of the methyl group from S-adenosyl-L-methionine to the C5 position of the inner cytosine residue (C*). We obtained several DNA duplexes containing photoactive 5-iodo-2'-deoxyuridine (i(5)dU) or 5-[4-(3-(trifluoromethyl)-3H-diazirin-3-yl)phenyl]-2'-deoxyuridine (Tfmdp-dU) to characterize regions of M.EcoRII involved in DNA binding and to investigate the DNA double helix conformational changes that take place during methylation. The efficiencies of methylation, DNA binding affinities and M.EcoRII-DNA photocrosslinking yields strongly depend on the type of modification and its location within the EcoRII recognition site. The data obtained agree with the flipping of the target cytosine out of the DNA double helix for catalysis. To probe regions of M.EcoRII involved in DNA binding, covalent conjugates M.EcoRII-DNA were cleaved by cyanogen bromide followed by analysis of the oligonucleotide-peptides obtained. DNA duplexes containing i(5)dU or Tfmdp-dU at the central position of the recognition site, or instead of the target cytosine were crosslinked to the Gly(268)-Met(391) region of the EcoRII methylase. Amino acid residues from this region may take part both in substrate recognition and stabilization of the extrahelical target cytosine residue.
Collapse
Affiliation(s)
- Elizaveta V Koudan
- Department of Chemistry, Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Russia
| | | | | | | | | | | |
Collapse
|
17
|
Clancy MJ, Shambaugh ME, Timpte CS, Bokar JA. Induction of sporulation in Saccharomyces cerevisiae leads to the formation of N6-methyladenosine in mRNA: a potential mechanism for the activity of the IME4 gene. Nucleic Acids Res 2002; 30:4509-18. [PMID: 12384598 PMCID: PMC137137 DOI: 10.1093/nar/gkf573] [Citation(s) in RCA: 228] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
N6-methyladenosine (m6A) is present at internal sites in mRNA isolated from all higher eukaryotes, but has not previously been detected in the mRNA of the yeast Saccharomyces cerevisiae. This nucleoside modification occurs only in a sequence- specific context that appears to be conserved across diverse species. The function of this modification is not fully established, but there is some indirect evidence that m6A may play a role in the efficiency of mRNA splicing, transport or translation. The S.cerevisiae gene IME4, which is important for induction of sporulation, is very similar to the human gene MT-A70, which has been shown to be a critical subunit of the human mRNA [N6-adenosine]-methyltransferase. This observation led to the hypothesis that yeast sporulation may be dependent upon methylation of yeast mRNA, mediated by Ime4p. In this study we show that induction of sporulation leads to the appearance of low levels of m6A in yeast mRNA and that this modification requires IME4. Moreover, single amino acid substitutions in the putative catalytic residues of Ime4p lead to severe sporulation defects in a strain whose sporulation ability is completely dependent on this protein. Collectively, these data suggest very strongly that the activation of sporulation by Ime4p is the result of its proposed methyltransferase activity and provide the most direct evidence to date of a physiologic role of m6A in a gene regulatory pathway.
Collapse
Affiliation(s)
- Mary J Clancy
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | | | | | | |
Collapse
|
18
|
Babkina OV, Chutko CA, Shashkov AA, Dzhidzhoev MS, Eritja RI, Gromova ES. Iodouracil-mediated photocrosslinking of DNA to EcoRII restriction endonuclease in catalytic conditions. Photochem Photobiol Sci 2002; 1:636-40. [PMID: 12665299 DOI: 10.1039/b202028a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We used a XeCl excimer laser with 50 ns pulses, a frequency of 0.3 Hz and a wavelength of 308 nm in appropriate conditions for the photocrosslinking of EcoRII restriction endonuclease to a 14-mer DNA duplex, containing a 5-iodo-2'-deoxyuridine residue (IdU). IdU replaced the thymidine residue within the EcoRII recognition sequence 5'-CCT/AGG. The binding of EcoRII endonuclease to the IdU-containing DNA duplex was analyzed by gel retardation assay in the presence of Ca2+ or Mg2+ ions. Photocrosslinking of EcoRII to the IdU-containing DNA duplex occurred in a pre-reactive complex formed in the presence of Ca2+ ions. Photocrosslinking yields as a function of time and UV-laser light intensity were studied.
Collapse
Affiliation(s)
- Olga V Babkina
- Department of Chemistry and Belozersky Institute of Physical and Chemical Biology, Moscow State University, Moscow 119992, Russia
| | | | | | | | | | | |
Collapse
|
19
|
Steen H, Jensen ON. Analysis of protein-nucleic acid interactions by photochemical cross-linking and mass spectrometry. MASS SPECTROMETRY REVIEWS 2002; 21:163-182. [PMID: 12476441 DOI: 10.1002/mas.10024] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Photochemical cross-linking is a commonly used method for studying the molecular details of protein-nucleic acid interactions. Photochemical cross-linking aids in defining nucleic acid binding sites of proteins via subsequent identification of cross-linked protein domains and amino acid residues. Mass spectrometry (MS) has emerged as a sensitive and efficient analytical technique for determination of such cross-linking sites in proteins. The present review of the field describes a number of MS-based approaches for the characterization of cross-linked protein-nucleic acid complexes and for sequencing of peptide-nucleic acid heteroconjugates. The combination of photochemical cross-linking and MS provides a fast screening method to gain insights into the overall structure and formation of protein-oligonucleotide complexes. Because the analytical methods are continuously refined and protein structural data are rapidly accumulating in databases, we envision that many protein-nucleic acid assemblies will be initially characterized by combinations of cross-linking methods, MS, and computational molecular modeling.
Collapse
Affiliation(s)
- Hanno Steen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | | |
Collapse
|
20
|
Mücke M, Pingoud V, Grelle G, Kraft R, Krüger DH, Reuter M. Asymmetric photocross-linking pattern of restriction endonuclease EcoRII to the DNA recognition sequence. J Biol Chem 2002; 277:14288-93. [PMID: 11832480 DOI: 10.1074/jbc.m109311200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The EcoRII homodimer engages two of its recognition sequences (5'-CCWGG) simultaneously and is therefore a type IIE restriction endonuclease. To identify the amino acids of EcoRII that interact specifically with the recognition sequence, we photocross-linked EcoRII with oligonucleotide substrates that contained only one recognition sequence for EcoRII. In this recognition sequence, we substituted either 5-iododeoxycytidine for each C or 5-iododeoxyuridine for A, G, or T. These iodo-pyrimidine bases were excited using a UV laser to result in covalent cross-linking products. The yield of EcoRII photocross-linked to the 5'-C of the 5'-CCAGG strand of the recognition sequence was 45%. However, we could not photocross-link EcoRII to the 5'-C of the 5'-CCTGG strand. Thus, the contact of EcoRII to the bases of the recognition sequence appears to be asymmetric, unlike that expected for most type II restriction endonucleases. Tryptic digestion of free and of cross-linked EcoRII, followed by high performance liquid chromatography (HPLC) separation of the individual peptides and Edman degradation, identified amino acids 25-49 of EcoRII as the cross-linking peptide. Mutational analysis of the electron-rich amino acids His(36) and Tyr(41) of this peptide indicates that Tyr(41) is the amino acid involved in the cross-link and that it therefore contributes to specific DNA recognition by EcoRII.
Collapse
Affiliation(s)
- Merlind Mücke
- Institut für Virologie, Medizinische Fakultät der Humboldt-Universität zu Berlin (Charité), D-10098 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Steen H, Petersen J, Mann M, Jensen ON. Mass spectrometric analysis of a UV-cross-linked protein-DNA complex: tryptophans 54 and 88 of E. coli SSB cross-link to DNA. Protein Sci 2001; 10:1989-2001. [PMID: 11567090 PMCID: PMC2374209 DOI: 10.1110/ps.07601] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Protein-nucleic acid complexes are commonly studied by photochemical cross-linking. UV-induced cross-linking of protein to nucleic acid may be followed by structural analysis of the conjugated protein to localize the cross-linked amino acids and thereby identify the nucleic acid binding site. Mass spectrometry is becoming increasingly popular for characterization of purified peptide-nucleic acid heteroconjugates derived from UV cross-linked protein-nucleic acid complexes. The efficiency of mass spectrometry-based methods is, however, hampered by the contrasting physico-chemical properties of nucleic acid and peptide entities present in such heteroconjugates. Sample preparation of the peptide-nucleic acid heteroconjugates is, therefore, a crucial step in any mass spectrometry-based analytical procedure. This study demonstrates the performance of four different MS-based strategies to characterize E. coli single-stranded DNA binding protein (SSB) that was UV-cross-linked to a 5-iodouracil containing DNA oligomer. Two methods were optimized to circumvent the need for standard liquid chromatography and gel electrophoresis, thereby dramatically increasing the overall sensitivity of the analysis. Enzymatic degradation of protein and oligonucleotide was combined with miniaturized sample preparation methods for enrichment and desalting of cross-linked peptide-nucleic acid heteroconjugates from complex mixtures prior to mass spectrometric analysis. Detailed characterization of the peptidic component of two different peptide-DNA heteroconjugates was accomplished by matrix-assisted laser desorption/ionization mass spectrometry and allowed assignment of tryptophan-54 and tryptophan-88 as candidate cross-linked residues. Sequencing of those peptide-DNA heteroconjugates by nanoelectrospray quadrupole time-of-flight tandem mass spectrometry identified tryptophan-54 and tryptophan-88 as the sites of cross-linking. Although the UV-cross-linking yield of the protein-DNA complex did not exceed 15%, less than 100 pmole of SSB protein was required for detailed structural analysis by mass spectrometry.
Collapse
Affiliation(s)
- H Steen
- Center for Experimental BioInformatics, Department of Biochemistry and Molecular Biology, University of Southern Denmark/Odense University, DK-5230 Odense M, Denmark
| | | | | | | |
Collapse
|
22
|
Scavetta RD, Thomas CB, Walsh MA, Szegedi S, Joachimiak A, Gumport RI, Churchill ME. Structure of RsrI methyltransferase, a member of the N6-adenine beta class of DNA methyltransferases. Nucleic Acids Res 2000; 28:3950-61. [PMID: 11024175 PMCID: PMC110776 DOI: 10.1093/nar/28.20.3950] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2000] [Revised: 07/10/2000] [Accepted: 08/04/2000] [Indexed: 11/13/2022] Open
Abstract
DNA methylation is important in cellular, developmental and disease processes, as well as in bacterial restriction-modification systems. Methylation of DNA at the amino groups of cytosine and adenine is a common mode of protection against restriction endonucleases afforded by the bacterial methyltransferases. The first structure of an N:6-adenine methyltransferase belonging to the beta class of bacterial methyltransferases is described here. The structure of M. RSR:I from Rhodobacter sphaeroides, which methylates the second adenine of the GAATTC sequence, was determined to 1.75 A resolution using X-ray crystallography. Like other methyltransferases, the enzyme contains the methylase fold and has well-defined substrate binding pockets. The catalytic core most closely resembles the PVU:II methyltransferase, a cytosine amino methyltransferase of the same beta group. The larger nucleotide binding pocket observed in M. RSR:I is expected because it methylates adenine. However, the most striking difference between the RSR:I methyltransferase and the other bacterial enzymes is the structure of the putative DNA target recognition domain, which is formed in part by two helices on an extended arm of the protein on the face of the enzyme opposite the active site. This observation suggests that a dramatic conformational change or oligomerization may take place during DNA binding and methylation.
Collapse
Affiliation(s)
- R D Scavetta
- Department of Pharmacology, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Denver, CO 80262, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Kubareva EA, Thole H, Karyagina AS, Oretskaya TS, Pingoud A, Pingoud V. Identification of a base-specific contact between the restriction endonuclease SsoII and its recognition sequence by photocross-linking. Nucleic Acids Res 2000; 28:1085-91. [PMID: 10666447 PMCID: PMC102617 DOI: 10.1093/nar/28.5.1085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A target sequence-specific DNA binding region of the restriction endonuclease Sso II was identified by photocross-linking with an oligodeoxynucleotide duplex which was substituted with 5-iododeoxy-uridine (5-IdU) at the central position of the Sso II recognition site (CCNGG). For this purpose the Sso II-DNA complex was irradiated with a helium/cadmium laser (325 nm). The cross-linking yield obtained was approximately 50%. In the presence of excess unmodified oligodeoxynucleotide or with oligode-oxynucleotides substituted with 5-IdU elsewhere, no cross-linking was observed, indicating the specificity of the cross-linking reaction. The cross-linked Sso II-oligodeoxynucleotide complex was digested with chymotrypsin, a cross-linked peptide-oligodeoxy-nucleotide complex isolated and the site of cross-linking identified by Edman sequencing to be Trp61. In line with this identification is the finding that the W61A variant cannot be cross-linked with the IdU-substituted oligodeoxynucleotide, shows a decrease in affinity towards DNA and is inactive in cleavage. It is concluded that the region around Trp61 is involved in specific binding of Sso II to its DNA substrate.
Collapse
Affiliation(s)
- E A Kubareva
- A. N. Belozersky Institute of Physical and Chemical Biology and Chemistry Department, Moscow State University, Moscow 119899, Russia
| | | | | | | | | | | |
Collapse
|