1
|
Peng H, Hamanaka RB, Katsnelson J, Hao LL, Yang W, Chandel NS, Lavker RM. MicroRNA-31 targets FIH-1 to positively regulate corneal epithelial glycogen metabolism. FASEB J 2012; 26:3140-7. [PMID: 22532441 DOI: 10.1096/fj.11-198515] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Corneal epithelium relies on abundant glycogen stores as its primary energy source. MicroRNA-31 (miR-31), a corneal epithelial-preferred miRNA, negatively regulates factor inhibiting hypoxia-inducible factor-1 (FIH-1). Since HIF-1α is involved in anaerobic energy production, we investigated the role that miR-31 and FIH-1 play in regulating corneal epithelial glycogen. We used antagomirs (antago) to reduce the level of miR-31 in primary human corneal epithelial keratinocytes (HCEKs), and a miR-31-resistant FIH-1 to increase FIH-1 levels. Antago-31 raised FIH-1 levels and significantly reduced glycogen stores in HCEKs compared to irrelevant-antago treatment. Similarly, HCEKs retrovirally transduced with a miR-31-resistant FIH-1 had markedly reduced glycogen levels compared with empty vector controls. In addition, we observed no change in a HIF-1α reporter or known genes downstream of HIF-1α indicating that the action of FIH-1 and miR-31 on glycogen is HIF-1α-independent. An enzyme-dead FIH-1 mutation failed to restore glycogen stores, indicating that FIH-1 negatively regulates glycogen in a hydroxylase-independent manner. FIH-1 overexpression in HCEKs decreased AKT signaling, activated GSK-3β, and inactivated glycogen synthase. Treatment of FIH-1-transduced HCEKs with either a myristolated Akt or a GSK-3β inhibitor restored glycogen stores, confirming the direct involvement of Akt/GSK-3β signaling. Silencing FIH-1 in HCEKs reversed the observed changes in Akt-signaling. Glycogen regulation in a HIF-1α-independent manner is a novel function for FIH-1 and provides new insight into how the corneal epithelium regulates its energy requirements.
Collapse
Affiliation(s)
- Han Peng
- Department of Dermatology, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | | | |
Collapse
|
2
|
Gong H, Wang Y, Qi X, Wang C, Liu T, Ren S, Wang Y. Differential response of lens crystallins and corneal crystallins in degenerative corneas. Exp Eye Res 2012; 96:55-64. [PMID: 22233703 DOI: 10.1016/j.exer.2011.12.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 12/14/2011] [Accepted: 12/29/2011] [Indexed: 02/04/2023]
Abstract
Corneal degenerations, occurring either spontaneously or as a complication to other diseases, cause vision problems by endangering corneal transparency. Our past cornea research projects involving mice revealed that some recruited mice presented corneal problems similar to human corneal degeneration. The present study examines the histology of diseased mice corneas, including ultrastructure. Genome-wide microarray and proteomic methods were utilized to screen for molecular changes in the diseased corneas. It was found that abnormalities affected mainly anterior layers of the corneas. The most often observed histological abnormalities included neoplasm or detachment of the epithelial layer, erosion or breakage of Bowman membranes, blood vessel formation, and bleeding in the stroma. Microarray assay showed that among the 46 up-regulated probes in diseased corneas, 13 were for lens crystallins. However, all corneal crystallins genes remained unchanged. αA-crystallin was among the proteins that showed the greatest increase in diseased corneas, as detected by gel electrophoresis. We propose that lens crystallins, rather than corneal crystallins, are involved in the pathological process of corneal degeneration. Further study along these lines would provide insight into the mechanism of corneal transparency.
Collapse
Affiliation(s)
- Huaqing Gong
- Shandong Provincial Key Lab of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, 5 Yanerdao Road, Qingdao 266071, China
| | | | | | | | | | | | | |
Collapse
|
3
|
Laliotis GP, Bizelis I, Rogdakis E. Comparative Approach of the de novo Fatty Acid Synthesis (Lipogenesis) between Ruminant and Non Ruminant Mammalian Species: From Biochemical Level to the Main Regulatory Lipogenic Genes. Curr Genomics 2011; 11:168-83. [PMID: 21037855 PMCID: PMC2878982 DOI: 10.2174/138920210791110960] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 01/03/2010] [Accepted: 01/10/2010] [Indexed: 11/24/2022] Open
Abstract
Over the second half of 20th century much research on lipogenesis has been conducted, especially focused on increasing the production efficiency and improving the quality of animal derived products. However, many diferences are observed in the physiology of lipogenesis between species. Recently, many studies have also elucidated the involvement of numerous genes in this procedure, highlighting diferences not only at physiology but also at the molecular level. The main scope of this review is to point out the major differences between ruminant and non ruminant species, that are observed in key regulatory genes involved in lipogenesis. Human is used as a central reference and according to the findinggs, main differences are analysed. These findings could serve not only as basis for understanding the main physiology of lipogenesis and further basic research, but also as a basis for any animal scientist to develop new concepts and methods for use in improving animal production and modern genetic improvement.
Collapse
Affiliation(s)
- G P Laliotis
- Department of Animal Science, Laboratory of Animal Breeding and Husbandry, Agricultural University of Athens, Iera Odos 75,118 55 Athens, Greece
| | | | | |
Collapse
|
4
|
Isocitrate dehydrogenase mutations may be a protective mechanism in glioma patients. Med Hypotheses 2011; 76:602-3. [DOI: 10.1016/j.mehy.2011.01.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 12/23/2010] [Accepted: 01/01/2011] [Indexed: 11/22/2022]
|
5
|
Cytosolic NADP(+)-dependent isocitrate dehydrogenase regulates cadmium-induced apoptosis. Biochem Pharmacol 2009; 79:1072-80. [PMID: 19944673 DOI: 10.1016/j.bcp.2009.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 11/13/2009] [Accepted: 11/20/2009] [Indexed: 01/14/2023]
Abstract
Cadmium ions have a high affinity for thiol groups. Therefore, they may disturb many cellular functions. We recently reported that cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) functions as an antioxidant enzyme to supply NADPH, a major source of reducing equivalents to the cytosol. Cadmium decreased the activity of IDPc both as a purified enzyme and in cultured cells. In the present study, we demonstrate that the knockdown of IDPc expression in HEK293 cells greatly enhances apoptosis induced by cadmium. Transfection of HEK293 cells with an IDPc small interfering RNA significantly decreased the activity of IDPc and enhanced cellular susceptibility to cadmium-induced apoptosis as indicated by the morphological evidence of apoptosis, DNA fragmentation and condensation, cellular redox status, mitochondria redox status and function, and the modulation of apoptotic marker proteins. Taken together, our results suggest that suppressing the expression of IDPc enhances cadmium-induced apoptosis of HEK293 cells by increasing disruption of the cellular redox status.
Collapse
|
6
|
Lee SM, Park SY, Shin SW, Kil IS, Yang ES, Park JW. Silencing of cytosolic NADP(+)-dependent isocitrate dehydrogenase by small interfering RNA enhances the sensitivity of HeLa cells toward staurosporine. Free Radic Res 2009; 43:165-73. [PMID: 19204869 DOI: 10.1080/10715760802653661] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Staurosporine induces the production of reactive oxygen species, which play an important causative role in apoptotic cell death. Recently, it was demonstrated that the control of cellular redox balance and the defense against oxidative damage is one of the primary functions of cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) by supplying NADPH for antioxidant systems. The present report shows that silencing of IDPc expression in HeLa cells greatly enhances apoptosis induced by staurosporine. Transfection of HeLa cells with an IDPc small interfering RNA (siRNA) markedly decreased activity of IDPc, enhancing the susceptibility of staurosporine-induced apoptosis reflected by DNA fragmentation, cellular redox status and the modulation of apoptotic marker proteins. These results indicate that IDPc may play an important role in regulating the apoptosis induced by staurosporine and the sensitizing effect of IDPc siRNA on the apoptotic cell death of HeLa cells offers the possibility of developing a modifier of cancer chemotherapy.
Collapse
Affiliation(s)
- Su-Min Lee
- College of Natural Sciences, Kyungpook National University, Taegu, Korea
| | | | | | | | | | | |
Collapse
|
7
|
Shin SW, Oh CJ, Kil IS, Park JW. Glutathionylation regulates cytosolic NADP+-dependent isocitrate dehydrogenase activity. Free Radic Res 2009; 43:409-16. [PMID: 19291592 DOI: 10.1080/10715760902801525] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Cytosolic NADP+-dependent isocitrate dehydrogenase (IDPc) is susceptible to inactivation by numerous thiol-modifying reagents. This study now reports that Cys269 of IDPc is a target for S-glutathionylation and that this modification is reversed by dithiothreitol as well as enzymatically by cytosolic glutaredoxin in the presence of GSH. Glutathionylated IDPc was significantly less susceptible than native protein to peptide fragmentation by reactive oxygen species and proteolytic digestion. Glutathionylation may play a protective role in the degradation of protein through the structural alterations of IDPc. HEK293 cells treated with diamide displayed decreased IDPc activity and accumulated glutathionylated enzyme. Using immunoprecipitation with an anti-IDPc IgG and immunoblotting with an anti-GSH IgG, we purified and positively identified glutathionylated IDPc from the kidneys of mice subjected to ischemia/reperfusion injury and from the livers of ethanol-administered rats. These results suggest that IDPc activity is modulated through enzymatic glutathionylation and deglutathionylation during oxidative stress.
Collapse
Affiliation(s)
- Seoung Woo Shin
- School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Taegu 702-701, Korea
| | | | | | | |
Collapse
|
8
|
Kim J, Kim KY, Jang HS, Yoshida T, Tsuchiya K, Nitta K, Park JW, Bonventre JV, Park KM. Role of cytosolic NADP+-dependent isocitrate dehydrogenase in ischemia-reperfusion injury in mouse kidney. Am J Physiol Renal Physiol 2008; 296:F622-33. [PMID: 19106211 DOI: 10.1152/ajprenal.90566.2008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cytosolic NADP+-dependent isocitrate dehydrogenase (IDPc) synthesizes reduced NADP (NADPH), which is an essential cofactor for the generation of reduced glutathione (GSH), the most abundant and important antioxidant in mammalian cells. We investigated the role of IDPc in kidney ischemia-reperfusion (I/R) in mice. The activity and expression of IDPc were highest in the cortex, modest in the outer medulla, and lowest in the inner medulla. NADPH levels were greatest in the cortex. IDPc expression in the S1 and S2 segments of proximal tubules was higher than in the S3 segment, which is much more susceptible to I/R. IDPc protein was also highly expressed in the mitochondrion-rich intercalated cells of the collecting duct. IDPc activity was 10- to 30-fold higher than the activity of glucose-6-phosphate dehydrogenase, another producer of cytosolic NADPH, in various kidney regions. This study identifies that IDPc may be the primary source of NADPH in the kidney. I/R significantly reduced IDPc expression and activity and NADPH production and increased the ratio of oxidized glutathione to total glutathione [GSSG/(GSH+GSSG)], resulting in kidney dysfunction, tubular cell damage, and lipid peroxidation. In LLC-PK(1) cells, upregulation of IDPc by IDPc gene transfer protected the cells against hydrogen peroxide, enhancing NADPH production, inhibiting the increase of GSSG/(GSH+GSSG), and reducing lipid peroxidation. IDPc downregulation by small interference RNA treatment presented results contrasting with the upregulation. In conclusion, these results demonstrate that IDPc is expressed differentially along tubules in patterns that may contribute to differences in susceptibility to injury, is a major enzyme in cytosolic NADPH generation in kidney, and is downregulated with I/R.
Collapse
Affiliation(s)
- Jinu Kim
- Department of Anatomy and BK 21 Project, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Black W, Vasiliou V. Ocular Metabolism and Disposition of 4-Hydroxy-2-nonenal. Cutan Ocul Toxicol 2008. [DOI: 10.1080/15569520500278906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Stress alters the cellular and proteomic compartments of bovine bronchoalveolar lavage fluid. Vet Immunol Immunopathol 2008; 125:111-25. [DOI: 10.1016/j.vetimm.2008.05.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2008] [Revised: 03/23/2008] [Accepted: 05/08/2008] [Indexed: 01/29/2023]
|
11
|
The role of corneal crystallins in the cellular defense mechanisms against oxidative stress. Semin Cell Dev Biol 2007; 19:100-12. [PMID: 18077195 DOI: 10.1016/j.semcdb.2007.10.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 10/04/2007] [Indexed: 11/19/2022]
Abstract
The refracton hypothesis describes the lens and cornea together as a functional unit that provides the proper ocular transparent and refractive properties for the basis of normal vision. Similarities between the lens and corneal crystallins also suggest that both elements of the refracton may also contribute to the antioxidant defenses of the entire eye. The cornea is the primary physical barrier against environmental assault to the eye and functions as a dominant filter of UV radiation. It is routinely exposed to reactive oxygen species (ROS)-generating UV light and molecular O(2) making it a target vulnerable to UV-induced damage. The cornea is equipped with several defensive mechanisms to counteract the deleterious effects of UV-induced oxidative damage. These comprise both non-enzymatic elements that include proteins and low molecular weight compounds (ferritin, glutathione, NAD(P)H, ascorbate and alpha-tocopherol) as well as various enzymes (catalase, glucose-6-phosphate dehydrogenase, glutathione peroxidase, glutathione reductase, and superoxide dismutase). Several proteins accumulate in the cornea at unusually high concentrations and have been classified as corneal crystallins based on the analogy of these proteins with the abundant taxon-specific lens crystallins. In addition to performing a structural role related to ocular transparency, corneal crystallins may also contribute to the corneal antioxidant systems through a variety of mechanisms including the direct scavenging of free radicals, the production of NAD(P)H, the metabolism and/or detoxification of toxic compounds (i.e. reactive aldehydes), and the direct absorption of UV radiation. In this review, we extend the discussion of the antioxidant defenses of the cornea to include these highly expressed corneal crystallins and address their specific capacities to minimize oxidative damage.
Collapse
|
12
|
Jester JV. Corneal crystallins and the development of cellular transparency. Semin Cell Dev Biol 2007; 19:82-93. [PMID: 17997336 DOI: 10.1016/j.semcdb.2007.09.015] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 09/26/2007] [Accepted: 09/27/2007] [Indexed: 10/22/2022]
Abstract
Past studies have established that the cornea like the lens abundantly expresses a few water-soluble enzyme/proteins in a taxon specific fashion. Based on these similarities it has been proposed that the lens and the cornea form a structural unit, the 'refracton', that has co-evolved through gene sharing to maximize light transmission and refraction to the retina. Thus far, the analogy between corneal crystallins and lens crystallins has been limited to similarities in the abundant expression, with few reports concerning their structural function. This review covers recent studies that establish a clear relationship between expression of corneal crystallins and light scattering from corneal stromal cells, i.e. keratocytes, that support a structural role for corneal crystallins in the development of transparency similar to that of lens crystallins that would be consistent with the 'refracton' hypothesis.
Collapse
Affiliation(s)
- James V Jester
- The Eye Institute, University of California Irvine, Orange, CA 92868, USA.
| |
Collapse
|
13
|
Krishnan K, Kathiresan T, Raman R, Rajini B, Dhople VM, Aggrawal RK, Sharma Y. Ubiquitous lens alpha-, beta-, and gamma-crystallins accumulate in anuran cornea as corneal crystallins. J Biol Chem 2007; 282:18953-9. [PMID: 17452334 DOI: 10.1074/jbc.m609275200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Corneal epithelium is known to have high levels of some metabolic enzymes such as aldehyde dehydrogenase in mammals, gelsolin in zebrafish, and alpha-enolase in several species. Analogous to lens crystallins, these enzymes and proteins are referred to as corneal crystallins, although their precise function is not established in any species. Although it is known that after lentectomy, the outer cornea undergoes transdifferentiation to regenerate a lens only in anuran amphibians, major proteins expressed in an anuran cornea have not been identified. This study therefore aimed to identify the major corneal proteins in the Indian toad (Bufo melanostictus) and the Indian frog (Rana tigrina). Soluble proteins of toad and frog corneas were resolved on two-dimensional gels and identified by matrix-assisted laser desorption ionization time-of-flight/time-of-flight and electrospray ionization quadrupole time-of-flight. We report that anuran cornea is made up of the full complement of ubiquitous lens alpha-, beta-, and gamma-crystallins, mainly localized in the corneal epithelium. In addition, some taxon-specific lens crystallins and novel proteins, such as alpha- or beta-enolase/tau-crystallin, were also identified. Our data present a unique case of the anuran cornea where the same crystallins are used in the lens and in the cornea, thus supporting the earlier idea that crystallins are essential for the visual functions of the cornea as they perform for the lens. High levels of lens alpha-, beta-, and gamma-crystallins have not been reported in the cornea of any species studied so far and may offer a possible explanation for their inability to regenerate a lens after lentectomy. Our data that anuran cornea has an abundant quantity of almost all the lens crystallins are consistent with its ability to form a lens, and this connection is worthy of further studies.
Collapse
Affiliation(s)
- Kannan Krishnan
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad-500 007, India
| | | | | | | | | | | | | |
Collapse
|
14
|
Kathiresan T, Krishnan K, Krishnakumar V, Agrawal R, Anand A, Muralidhar D, Mishra AK, Dhople VM, Aggrawal RK, Sharma Y. Triose phosphate isomerase, a novel enzyme-crystallin, and tau-crystallin in crocodile cornea. FEBS J 2006; 273:3370-80. [PMID: 16857018 DOI: 10.1111/j.1742-4658.2006.05344.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Several enzymes are known to accumulate in the cornea in unusually high concentrations. Based on the analogy with lens crystallins, these enzymes are called corneal crystallins, which are diverse and species-specific. Examining crystallins in lens and cornea in multiple species provides great insight into their evolution. We report data on major proteins present in the crocodile cornea, an evolutionarily distant taxon. We demonstrate that tau-crystallin/alpha-enolase and triose phosphate isomerase (TIM) are among the major proteins expressed in the crocodile cornea as resolved by 2D gel electrophoresis and identified by MALDI-TOF. These proteins might be classified as putative corneal crystallins. tau-Crystallin, known to be present in turtle and crocodile lens, has earlier been identified in chicken and bovine cornea, whereas TIM has not been identified in the cornea of any species. Immunostaining showed that tau-crystallin and TIM are concentrated largely in the corneal epithelium. Using western blot, immunofluorescence and enzymatic activity, we demonstrate that high accumulation of tau-crystallin and TIM starts in the late embryonic development (after the 24th stage of embryonic development) with maximum expression in a two-week posthatched animal. The crocodile corneal extract exhibits significant alpha-enolase and TIM activities, which increases in the corneal extract with development. Our results establishing the presence of tau-crystallin in crocodile, in conjunction with similar reports for other species, suggest that it is a widely prevalent corneal crystallin. Identification of TIM in the crocodile cornea reported here adds to the growing list of corneal crystallins.
Collapse
|
15
|
Estey T, Piatigorsky J, Lassen N, Vasiliou V. ALDH3A1: a corneal crystallin with diverse functions. Exp Eye Res 2006; 84:3-12. [PMID: 16797007 DOI: 10.1016/j.exer.2006.04.010] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2006] [Accepted: 04/19/2006] [Indexed: 02/04/2023]
Abstract
Aldehyde dehydrogenase 3A1 (ALDH3A1) comprises a surprisingly high proportion (5-50% depending on species) of the water-soluble protein of the mammalian cornea, but is present little if at all in the cornea of other species. Mounting experimental evidence demonstrates that this abundant corneal protein plays an important role in the protection of ocular structures against oxidative damage. Corneal ALDH3A1 appears to protect against UV-induced oxidative stress through a variety of biological functions such as the metabolism of toxic aldehydes produced during the peroxidation of cellular lipids, the generation of the antioxidant NADPH, the direct absorption of UV-light, the scavenging of reactive oxygen species (ROS), and the possession of chaperone-like activity. With analogies to the abundant, multifunctional, and taxon-specific lens crystallins, mammalian ALDH3A1 has been considered a corneal crystallin, suggesting that it may contribute to the optical properties of the cornea as well. Recent studies have also revealed a novel role for ALDH3A1 in the regulation of the cell cycle. ALDH3A1-transfected HCE cells have increased population-doubling time, decreased plating efficiency, and reduced DNA synthesis, most likely due to a profound inhibition of cyclins and cyclin-dependent kinases. We have proposed that the ALDH3A1-induced reduction in cell growth may contribute to protection against oxidative stress by extending time for DNA and cell repair. Taken together, the multiple roles of ALDH3A1 against oxidative stress in addition to its contributions to the optical properties of the cornea are consistent with the idea that this specialized protein performs diverse biological functions as do the lens crystallins.
Collapse
Affiliation(s)
- Tia Estey
- Center for Pharmaceutical Biotechnology, Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | | | |
Collapse
|
16
|
Zhou M, Li XM, Lavker RM. Transcriptional profiling of enriched populations of stem cells versus transient amplifying cells. A comparison of limbal and corneal epithelial basal cells. J Biol Chem 2006; 281:19600-9. [PMID: 16675456 DOI: 10.1074/jbc.m600777200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The basal layer of limbal and central corneal epithelium is enriched in stem cells and transient amplifying cells, respectively. This physical separation of stem and transient amplifying cells makes the limbal/corneal epithelium an exceptionally suitable system for isolating basal cells enriched in these two proliferative populations. Prior attempts to isolate epithelial stem cells used methods such as proteolytic tissue dissociation and cell sorting that could potentially alter their gene expression profile. Using laser capture microdissection, we were able to isolate resting limbal and corneal basal cells from frozen sections with minimal tissue processing, thereby improving the yield and quality of RNA. Analyses of RNA isolated from 300 limbal and corneal basal cells from eight mice revealed a set of approximately 100 genes that are differentially expressed in limbal cells versus corneal epithelial basal cells. Semiquantitative reverse transcription-PCR confirmed the up-regulation of three limbal and three corneal genes. LacZ identification of epiregulin from epiregulin-null mice and immunohistochemical staining of wild type mice confirmed that epiregulin, one of the limbal epithelium-enriched genes, was associated with the limbal epithelial basal cells. Within the limbal and corneal basal cells, we detected previously unknown genes that were differentially expressed in these two regions that contribute further to our understanding of the unique heterogeneity of these two closely related basal cell populations. Our findings indicate that we can obtain accurate gene expression profiles of the stem cell-enriched limbal basal cell population in their "natural" quiescent state.
Collapse
Affiliation(s)
- Mingyuan Zhou
- Department of Dermatology, Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
17
|
Sun L, Ryan DG, Zhou M, Sun TT, Lavker RM. EEDA: a protein associated with an early stage of stratified epithelial differentiation. J Cell Physiol 2006; 206:103-11. [PMID: 15920738 PMCID: PMC1523255 DOI: 10.1002/jcp.20433] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Using suppressive subtractive hybridization, we have identified a novel gene, which we named early epithelial differentiation associated (EEDA), which is uniquely associated with an early stage of stratified epithelial differentiation. In epidermis, esophageal epithelium, and tongue epithelium, EEDA mRNA, and antigen was abundant in suprabasal cells, but was barely detectable in more differentiated cells. Consistent with the limbal location of corneal epithelial stem cells, EEDA was expressed in basal corneal epithelial cells that are out of the stem cell compartment, as well as the suprabasal corneal epithelial cells. The strongest EEDA expression occurred in suprabasal precortical cells of mouse, bovine, and human anagen follicles. Developmental studies showed that the appearance of EEDA in embryonic mouse epidermis (E 15.5) coincided with morphological keratinization. Interestingly, EEDA expression is turned off when epithelia were perturbed by wounding and by cultivation under both low and high Ca2+ conditions. Our results indicate that EEDA is involved in the early stages of normal epithelial differentiation, and that EEDA is important for the "normal" differentiation pathway in a wide range of stratified epithelia.
Collapse
Affiliation(s)
- Lijie Sun
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
18
|
Dode MAN, Dufort I, Massicotte L, Sirard MA. Quantitative expression of candidate genes for developmental competence in bovine two-cell embryos. Mol Reprod Dev 2006; 73:288-97. [PMID: 16362969 DOI: 10.1002/mrd.20427] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Only competent oocytes are able to undergo complete maturation and normal embryonic development. Therefore, the identification of genes that are differentially expressed in competent oocytes would contribute to our understanding of the factors controlling competency. It is well known that time of cleavage after insemination in vitro is highly correlated with embryonic developmental potential and this can be used to distinguish between oocytes of different quality. The main objective of this study was to identify genes associated with competency and rapid cleavage. We examined the expression of 16 candidate genes (IDH, YEAF Cathepsin B, RAD50, TCP1 NCOR1, HUEL, STK6, ZNF403, AOP2, EEF1A1, Hsp90, Hsp40, AKR1B1, PGRMC1, and DMRT2) in early and late cleaving embryos, by real time PCR. These transcripts were derived from previous study in our laboratory using cDNA coming from a suppressive subtraction hybridization (SSH) between early cleaving versus late cleaving embryos spotted on a microarray slide. Of the 16 genes evaluated, 3 (IDH, YEAF, and H2A) showed statistical difference (P < 0.05) between early and late cleaving embryos. However, some genes such as Cathepsin B (P = 0.0677), RAD50 (P = 0.0899), and TCP1 (P = 0.0824) tended to show higher expression in the early cleaving than in the late cleaving embryo. In conclusion, we have identified three genes (YEAF, IDH, H2A) that were differentially expressed in the early cleaving embryos, and their expression can be associated with greater developmental competence.
Collapse
|
19
|
Kil IS, Huh TL, Lee YS, Lee YM, Park JW. Regulation of replicative senescence by NADP+ -dependent isocitrate dehydrogenase. Free Radic Biol Med 2006; 40:110-9. [PMID: 16337884 DOI: 10.1016/j.freeradbiomed.2005.08.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 08/11/2005] [Accepted: 08/15/2005] [Indexed: 11/25/2022]
Abstract
The free radical hypothesis of aging postulates that senescence is due to an accumulation of cellular oxidative damage, caused largely by reactive oxygen species that are produced as by-products of normal metabolic processes. Recently, we demonstrated that the control of cytosolic and mitochondrial redox balance and the cellular defense against oxidative damage is one of the primary functions of cytosolic (IDPc) and mitochondrial NADP+ -dependent isocitrate dehydrogenase (IDPm) by supplying NADPH for antioxidant systems. In this paper, we demonstrate that modulation of IDPc or IDPm activity in IMR-90 cells regulates cellular redox status and replicative senescence. When we examined the regulatory role of IDPc and IDPm against the aging process with IMR-90 cells transfected with cDNA for IDPc or IDPm in sense and antisense orientations, a clear inverse relationship was observed between the amount of IDPc or IDPm expressed in target cells and their susceptibility to senescence, which was reflected by changes in replicative potential, cell cycle, senescence-associated beta-galactosidase activity, expression of p21 and p53, and morphology of cells. Furthermore, lipid peroxidation, oxidative DNA damage, and intracellular peroxide generation were higher and cellular redox status shifted to a prooxidant condition in the cell lines expressing the lower level of IDPc or IDPm. The results suggest that IDPc and IDPm play an important regulatory role in cellular defense against oxidative stress and in the senescence of IMR-90 cells.
Collapse
Affiliation(s)
- In Sup Kil
- School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Taegu 702-701, Korea
| | | | | | | | | |
Collapse
|
20
|
Kim SY, Tak JK, Park JW. Inactivation of NADP(+)-dependent isocitrate dehydrogenase by singlet oxygen derived from photoactivated rose bengal. Biochimie 2005; 86:501-7. [PMID: 15388226 DOI: 10.1016/j.biochi.2004.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Accepted: 08/01/2004] [Indexed: 10/26/2022]
Abstract
Recently, we demonstrated that the control of cytosolic and mitochondrial redox balance and the cellular defense against oxidative damage is one of the primary functions of NADP(+)-dependent isocitrate dehydrogenase (ICDH) by supplying NADPH for antioxidant systems. When exposed to a singlet oxygen-producing system composed of rose bengal (RB) and visible light, ICDH was susceptible to oxidative modification and damage as indicated by the loss of activity and by the formation of carbonyl groups. The structural alterations of modified enzyme were indicated by the increase in susceptibility to proteases and the change in intrinsic fluorescence spectra. Upon exposure to photoactivated RB, a significant decrease in both cytosolic and mitochondrial ICDH activities was observed in HL-60 cells. The singlet oxygen-mediated damage to ICDH may result in the perturbation of cellular antioxidant defense mechanisms and subsequently lead to a pro-oxidant condition. When we examined the antioxidant role of cytosolic ICDH against singlet oxygen-induced damage with HL-60 cells transfected with the cDNA for mouse cytosolic ICDH in sense and antisense orientations, a clear inverse relationship was observed between the amount of cytosolic ICDH expressed in target cells and their susceptibility to singlet oxygen-mediated oxidative damage.
Collapse
Affiliation(s)
- Sun Yee Kim
- Department of Biochemistry, College of Natural Sciences, Kyungpook National University, Taegu 702-701, Korea
| | | | | |
Collapse
|
21
|
Jester JV, Budge A, Fisher S, Huang J. Corneal keratocytes: phenotypic and species differences in abundant protein expression and in vitro light-scattering. Invest Ophthalmol Vis Sci 2005; 46:2369-78. [PMID: 15980224 PMCID: PMC1853377 DOI: 10.1167/iovs.04-1225] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
PURPOSE Previous studies suggest that corneal haze after injury involves changes in the light-scattering properties of keratocytes that are possibly linked to the abundant expression of water-soluble proteins. The purpose of this study was to determine the protein expression pattern of keratocytes from different species and different cultured rabbit keratocyte phenotypes and to assess differences in light-scattering in vitro. METHODS Water-soluble proteins were isolated from corneal epithelial cells and keratocytes of several species, including human (Hu), mouse (Mo), rabbit (Ra), chicken (Ch), and pig (P) and different cultured rabbit keratocyte phenotypes. Proteins were then characterized by SDS-PAGE, tryptic peptide sequence analysis, and Western blot analysis. Light-scattering and actin organization from cultured cells were determined with confocal reflectance and fluorescence microscopy, respectively. RESULTS Protein expression patterns varied substantially between species and cell types, with five new abundantly expressed proteins identified including, LDH (Ra, Ch), G3PDH (Hu, Ch), pyruvate kinase (Ch), Annexin II (Ch), and protein disulfide isomerase (Ch). Different rabbit keratocyte phenotypes also showed different levels of expression of ALDH1A1 and TKT, with myofibroblasts showing the greatest reduction. Myofibroblasts showed significantly greater (P < 0.05) light-scattering but also showed the greatest organization of actin filaments. CONCLUSIONS Abundant protein expression is a characteristic feature of corneal keratocytes that is lost when cells are phenotypically modulated in culture. Greater light-scattering by myofibroblasts also provides support for a link between cellular transparency and haze after injury that is possibly related to loss of protein expression or development of prominent actin filament bundles.
Collapse
Affiliation(s)
- James V Jester
- Department of Ophthalmology, University of California at Irvine, Irvine, California 92868, USA.
| | | | | | | |
Collapse
|
22
|
Aijaz S, Allen J, Tregidgo R, van Heyningen V, Hanson I, Clark BJ. Expression analysis of SIX3 and SIX6 in human tissues reveals differences in expression and a novel correlation between the expression of SIX3 and the genes encoding isocitrate dehyhrogenase and cadherin 18. Genomics 2005; 86:86-99. [PMID: 15953543 DOI: 10.1016/j.ygeno.2005.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Revised: 02/22/2005] [Accepted: 03/03/2005] [Indexed: 11/22/2022]
Abstract
SIX3 and SIX6 are transcription factors expressed during early stages of eye development. Limited expression data for SIX3 and SIX6 are available in the literature but, to date, there are no reports of the relative levels of expression of these genes throughout the human body and in adult tissues in particular. In this paper, we report extensive real-time quantitative PCR analyses of SIX3 and SIX6 expression in many different tissues of the adult human body, including ocular tissues, and a comparison of expression data with that of many other genes to identify similarity in expression. Using this powerful technique, we have detected a novel statistical correlation between the spatial distribution and the quantitative expression of SIX3 and 5 other transcripts including IDH1, the gene encoding the NADP(+)-dependent enzyme isocitrate dehydrogenase, and cadherin 18, type 2 (CDH14). Our data demonstrate that this novel technique can be used to generate hypotheses by comparison of gene expression profiles to identify possible interactions between genes or gene products.
Collapse
Affiliation(s)
- Saima Aijaz
- Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK
| | | | | | | | | | | |
Collapse
|
23
|
Kil IS, Lee YS, Bae YS, Huh TL, Park JW. Modulation of NADP(+)-dependent isocitrate dehydrogenase in aging. Redox Rep 2005; 9:271-7. [PMID: 15606980 DOI: 10.1179/135100004225006056] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
NADPH is an important cofactor in many biosynthesis pathways and the regeneration of reduced glutathione, critically important in cellular defense against oxidative damage. It is mainly produced by glucose-6-phosphate dehydrogenase, malic enzyme, and NADP(+)-specific isocitrate dehydrogenases (ICDHs). Here, we investigated age-related changes in ICDH activity and protein expression in IMR-90 human diploid fibroblast cells and tissues from Fischer 344 rats. We found that in IMR-90 cells the activity of cytosolic ICDH (IDPc) gradually increased with age up to the 46-48 population doubling level (PDL) and then gradually decreased at later PDL. 2',7'-Dichloro-fluorescein fluorescence which reflects intracellular ROS generation was increased with aging in IMR-90 cells. In ad libitum-fed rats, we noted age-related, tissue-specific modulations of IDPc and mitochondrial ICDH (IDPm) activities and protein expression in the liver, kidney and testes. In contrast, ICDH activities and protein expression were not significantly modulated in diet-restricted rats. These data suggest that modulation of ICDH is an age-dependent and a tissue-specific phenomenon.
Collapse
Affiliation(s)
- In Sup Kil
- Department of Biochemistry, College of Natural Sciences, Kyungpook National University, Taegu, Korea
| | | | | | | | | |
Collapse
|
24
|
Kanungo J, Swamynathan SK, Piatigorsky J. Abundant corneal gelsolin in Zebrafish and the 'four-eyed' fish, Anableps anableps: possible analogy with multifunctional lens crystallins. Exp Eye Res 2005; 79:949-56. [PMID: 15642334 PMCID: PMC5998675 DOI: 10.1016/j.exer.2004.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Accepted: 04/20/2004] [Indexed: 11/16/2022]
Abstract
The cornea accumulates high proportions (can be up to 50%) of taxon-specific, water-soluble, cytoplasmic proteins (often enzymes) that have been considered analogous to the multifunctional lens crystallins. We have shown that gelsolin (an actin-severing protein) is the major water-soluble corneal protein of the zebrafish (Danio rerio) and the 'four-eyed' fish (Anableps anableps). Each Anableps eye contains one lens, an aquatic ventral cornea with an epithelium comprising 5-7 cell layers, and an air-exposed flatter dorsal cornea with an epithelium comprising >20 cell layers and appreciably enriched with glycogen. Gelsolin accounts for 38 and 21% of the dorsal and ventral cornea, respectively, suggesting that the abundance of gelsolin in the cornea is not incompatible with its function in air. The thicker, glycogen-enriched, air-exposed dorsal cornea may protect against UV irradiation and desiccation. Gelsolin comprises approximately 50% of the 5 cell-layer thick aquatic corneal epithelium of zebrafish. Reported zebrafish ESTs have indicated the presence of a second gelsolin gene in this species. We show by RT-PCR that the abundant corneal gelsolin (also expressed weakly in lens) (C/L-gelsolin) is also expressed in early development and differs from a ubiquitously expressed gelsolin (U-gelsolin) that is not specialized for cornea. Microinjection tests showed that overexpression of C/L-gelsolin dorsalizes the embryo and can lead to axis duplication, while interruption of C/L-gelsolin expression with a specific morpholino oligonucleotide ventralizes the embryo and interferes with brain and eye development. The evidence that C/L-gelsolin participates in the bone morphogenetic protein (BMP)/Smad dorsal-ventral signaling pathway is reviewed. Finally, we speculate that soluble C/L-gelsolin:actin complexes in the cornea may be analogous to soluble alphaA:alphaB-crystallin complexes in the lens. Together, our data are consistent with an analogy between the abundance of gelsolin in fish corneas and taxon-specific multifunctional crystallins in lenses.
Collapse
Affiliation(s)
| | | | - Joram Piatigorsky
- Corresponding author. Dr Joram Piatigorsky, Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, 7 Memorial Drive, Building. 7, Room 100A, Bethesda, MD 20892, USA. (J. Piatigorsky)
| |
Collapse
|
25
|
Kil IS, Lee JH, Shin AH, Park JW. Glycation-induced inactivation of NADP(+)-dependent isocitrate dehydrogenase: implications for diabetes and aging. Free Radic Biol Med 2004; 37:1765-78. [PMID: 15528036 DOI: 10.1016/j.freeradbiomed.2004.08.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2004] [Revised: 07/20/2004] [Accepted: 08/26/2004] [Indexed: 11/16/2022]
Abstract
Recently, we demonstrated that the control of cytosolic and mitochondrial redox balance and the cellular defense against oxidative damage is one of the primary functions of NADP(+)-dependent isocitrate dehydrogenase (ICDH), because it supplies NADPH for antioxidant systems. When exposed to reducing sugars such as glucose, glucose 6-phosphate, and fructose, ICDH was susceptible to oxidative modification and damage, which was indicated by a loss of activity and fragmentation of the peptide as well as by the formation of carbonyl groups. The glycated ICDH was isolated and identified by boronate-affinity chromatography and immunoblotting with anti-hexitol-lysine antibody. The active site lysine residue, Lys(212), was identified as one of the major sites of nonenzymatic glycation of ICDH. The structural alterations of modified enzymes were indicated by changes in thermal stability, intrinsic tryptophan fluorescence, and binding of the hydrophobic probe 8-anilino-1-naphthalene sulfonic acid. When we examined the antioxidant role of mitochondrial ICDH against glycation-induced cytotoxicity with HEK293 cells transfected with the cDNA for mouse mitochondrial ICDH in sense and antisense orientations, a clear inverse relationship was observed between the amount of mitochondrial ICDH expressed in target cells and their susceptibility to glycation-mediated cytotoxicity. Mitochondrial ICDH was purified by immunoprecipitation and probed with anti-hexitol-lysine antibody, which revealed increased levels of glycated ICDH in the kidneys of diabetic rats and in the lenses of diabetic patients suffering from cataracts. A decrease in ICDH activity was observed in those tissues. We also found that levels of glycated ICDH increased in IMR-90 cells and rat kidney during normal aging. The glycation-mediated damage to ICDH may result in the perturbation of cellular antioxidant defense mechanisms and subsequently lead to a pro-oxidant condition and may contribute to various pathologies associated with the general aging process and long-term complications of diabetes.
Collapse
Affiliation(s)
- In Sup Kil
- Department of Biochemistry, College of Natural Sciences, Kyungpook National University, Taegu 702-701, Korea
| | | | | | | |
Collapse
|
26
|
Yang JH, Yang ES, Park JW. Inactivation of NADP+-dependent isocitrate dehydrogenase by lipid peroxidation products. Free Radic Res 2004; 38:241-9. [PMID: 15129732 DOI: 10.1080/10715760310001657712] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Membrane lipid peroxidation processes yield products that may react with proteins to cause oxidative modification. Recently, we demonstrated that the control of cytosolic and mitochondrial redox balance and oxidative damage is one of the primary functions of NADP+-dependent isocitrate dehydrogenase (ICDH) through to supply NADPH for antioxidant systems. When exposed to lipid peroxidation products, such as malondialdehyde (MDA), 4-hydroxynonenal (HNE) and lipid hydroperoxide, ICDH was susceptible to oxidative damage, which was indicated by the loss of activity and the formation of carbonyl groups. The structural alterations of modified enzymes were indicated by the change in thermal stability, intrinsic tryptophan fluorescence and binding of the hydrophobic probe 8-anilino 1-napthalene sulfonic acid. Upon exposure to 2,2'-azobis(2-amidinopropane) hydrochloride (AAPH), which induces lipid peroxidation in membrane, a significant decrease in both cytosolic and mitochondrial ICDH activities were observed in U937 cells. Using immunoprecipitation and immunoblotting, we were able to isolate and positively identify HNE adduct in mitochondrial ICDH from AAPH-treated U937 cells. The lipid peroxidation-mediated damage to ICDH may result in the perturbation of the cellular antioxidant defense mechanisms and subsequently lead to a prooxidant condition.
Collapse
Affiliation(s)
- Joon-Hyuck Yang
- Department of Biochemistry, College of Natural Sciences, Kyungpook National University, Taegu 702-701, South Korea
| | | | | |
Collapse
|
27
|
Abstract
Corneal epithelium is a self-renewing tissue. Recent studies indicate that corneal epithelial stem cells reside preferentially in the basal layer of peripheral cornea in the limbal zone, rather than uniformly in the entire corneal epithelium. This idea is supported by a unique limbal/corneal expression pattern of the K3 keratin marker for corneal-type differentiation; the preferential distribution of the slow-cycling (label-retaining) cells in the limbus; the superior proliferative capacity of limbal cells as compared with central corneal epithelial cells in vitro and in vivo; and the ability of limbal basal cells to rescue/reconstitute severely damaged or completely depleted corneal epithelium upon transplantation. The limbal/stem cell concept provides explanations for several paradoxical properties of corneal epithelium including the predominance of tumor formation in the limbal zone, the centripetal migration of peripheral corneal cells toward the central cornea, and the "mature-looking" phenotype of the corneal basal cells. The limbal stem cell concept has led to a better understanding of the strategies that a stratified squamous epithelium uses in repair, to a new classification of various anterior surface epithelial diseases, to a repudiation of the classical idea of "conjunctival transdifferentiation", and to a new surgical procedure called limbal stem cell transplantation.
Collapse
Affiliation(s)
- Tung-Tien Sun
- Epithelial Biology Unit, Departments of Dermatology, Pharmacology and Urology, NYU Cancer Institute, New York University School of Medicine, New York, New York, USA
| | | |
Collapse
|
28
|
Karring H, Thøgersen IB, Klintworth GK, Enghild JJ, Møller-Pedersen T. Proteomic analysis of the soluble fraction from human corneal fibroblasts with reference to ocular transparency. Mol Cell Proteomics 2004; 3:660-74. [PMID: 15054125 DOI: 10.1074/mcp.m400016-mcp200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The transparent corneal stroma contains a population of corneal fibroblasts termed keratocytes, which are interspersed between the collagen lamellae. Under normal conditions, the keratocytes are quiescent and transparent. However, after corneal injury the keratocytes become activated and transform into backscattering wound-healing fibroblasts resulting in corneal opacification. At present, the most popular hypothesis suggests that particular abundant water-soluble proteins called enzyme-crystallins are involved in maintaining corneal cellular transparency. Specifically, corneal haze development is thought to be related to low levels of cytoplasmic enzyme-crystallins in reflective corneal fibroblasts. To further investigate this hypothesis, we have used a proteomic approach to identify the most abundant water-soluble proteins in serum-cultured human corneal fibroblasts that represent an in vitro model of the reflective wound-healing keratocyte phenotype. Densitometry of one-dimensional gels revealed that no single protein isoform exceeded 5% of the total water-soluble protein fraction, which is the qualifying property of a corneal enzyme-crystallin according to the current definition. This result indicates that wound-healing corneal fibroblasts do not contain enzyme-crystallins. A total of 254 protein identifications from two-dimensional gels were performed representing 118 distinct proteins. Proteins protecting against oxidative stress and protein misfolding were prominent, suggesting that these processes may participate in the generation of cytoplasmic light-scattering from corneal fibroblasts.
Collapse
Affiliation(s)
- Henrik Karring
- Department of Ophthalmology, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus C, Denmark
| | | | | | | | | |
Collapse
|
29
|
Shechter I, Dai P, Huo L, Guan G. IDH1 gene transcription is sterol regulated and activated by SREBP-1a and SREBP-2 in human hepatoma HepG2 cells: evidence that IDH1 may regulate lipogenesis in hepatic cells. J Lipid Res 2003; 44:2169-80. [PMID: 12923220 DOI: 10.1194/jlr.m300285-jlr200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mRNA level for cytosolic NADP-dependent isocitrate dehydrogenase (IDH1) increases 2.3-fold, and enzyme activity of NADP-isocitrate dehydrogenase (IDH) 63%, in sterol-deprived HepG2 cells. The mRNA levels of the NADP- and NAD-dependent mitochondrial enzymes show limited or lack of regulation under the same conditions. Nucleotide sequences that are required, and sufficient, for the sterol regulation of transcription are located within a 67 bp region of an IDH1-secreted alkaline phosphatase promoter-reporter gene. The IDH1 promoter is fully activated by the expression of SREBP-1a in the cells and, to a lesser degree, by that of SREBP-2. A 5'-end truncation of 23 bp containing a CAAT and a GC-Box results in 6.5% residual activity. The promoter region involved in the activation by the sterol regulatory element binding proteins (SREBPs) is located at nucleotides -44 to -25. Mutagenesis analysis identified within this region the IDH1-SRE sequence element GTGGGCTGAG, which binds the SREBPs. Similar to the promoter activation, electrophoretic mobility shifts of probes containing the IDH1-SRE element exhibit preferential binding to SREBP-1a, as compared with SREBP-2. These results indicate that IDH1 activity is coordinately regulated with the cholesterol and fatty acid biosynthetic pathways and suggest that it is the source for the cytosolic NADPH required by these pathways.
Collapse
Affiliation(s)
- Ishaiahu Shechter
- Department of Surgery, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799, USA.
| | | | | | | |
Collapse
|
30
|
Lee JH, Yang ES, Park JW. Inactivation of NADP+-dependent isocitrate dehydrogenase by peroxynitrite. Implications for cytotoxicity and alcohol-induced liver injury. J Biol Chem 2003; 278:51360-71. [PMID: 14551203 DOI: 10.1074/jbc.m302332200] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recently, we demonstrated that the control of cytosolic and mitochondrial redox balance and oxidative damage is one of the primary functions of NADP+-dependent isocitrate dehydrogenase (ICDH) by supplying NADPH for antioxidant systems. We investigated whether the ICDH would be a vulnerable target of peroxynitrite anion (ONOO-) as a purified enzyme, in intact cells, and in liver mitochondria from ethanol-fed rats. Synthetic peroxynitrite and 3-morpholinosydnomine N-ethylcarbamide (SIN-1), a peroxynitrite-generating compound, inactivated ICDH in a dose- and time-dependent manner. The inactivation of ICDH by peroxynitrite or SIN-1 was reversed by dithiothreitol. Loss of enzyme activity was associated with the depletion of the thiol groups in protein. Immunoblotting analysis of peroxynitrite-modified ICDH indicates that S-nitrosylation of cysteine and nitration of tyrosine residues are the predominant modifications. Using electrospray ionization mass spectrometry (ESI-MS) with tryptic digestion of protein, we found that peroxynitrite forms S-nitrosothiol adducts on Cys305 and Cys387 of ICDH. Nitration of Tyr280 was also identified, however, this modification did not significantly affect the activity of ICDH. These results indicate that S-nitrosylation of cysteine residues on ICDH is a mechanism involving the inactivation of ICDH by peroxynitrite. The structural alterations of modified enzyme were indicated by the changes in protease susceptibility and binding of the hydrophobic probe 8-anilino-1-napthalene sulfonic acid. When U937 cells were incubated with 100 microM SIN-1 bolus, a significant decrease in both cytosolic and mitochondrial ICDH activities were observed. Using immunoprecipitation and ESI-MS, we were also able to isolate and positively identify S-nitrosylated and nitrated mitochondrial ICDH from SIN-1-treated U937 cells as well as liver from ethanol-fed rats. Inactivation of ICDH resulted in the pro-oxidant state of cells reflected by an increased level of intracellular reactive oxygen species, a decrease in the ratio of [NADPH]/[NADPH + NADP+], and a decrease in the efficiency of reduced glutathione turnover. The peroxynitrite-mediated damage to ICDH may result in the perturbation of the cellular antioxidant defense mechanisms and subsequently lead to a pro-oxidant condition.
Collapse
Affiliation(s)
- Jin Hyup Lee
- Department of Biochemistry, College of Natural Sciences, Kyungpook National University, Taegu 702-701, Korea
| | | | | |
Collapse
|
31
|
Jain M, Brenner DA, Cui L, Lim CC, Wang B, Pimentel DR, Koh S, Sawyer DB, Leopold JA, Handy DE, Loscalzo J, Apstein CS, Liao R. Glucose-6-phosphate dehydrogenase modulates cytosolic redox status and contractile phenotype in adult cardiomyocytes. Circ Res 2003; 93:e9-16. [PMID: 12829617 DOI: 10.1161/01.res.0000083489.83704.76] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Reactive oxygen species (ROS)-mediated cell injury contributes to the pathophysiology of cardiovascular disease and myocardial dysfunction. Protection against ROS requires maintenance of endogenous thiol pools, most importantly, reduced glutathione (GSH), by NADPH. In cardiomyocytes, GSH resides in two separate cellular compartments: the mitochondria and cytosol. Although mitochondrial GSH is maintained largely by transhydrogenase and isocitrate dehydrogenase, the mechanisms responsible for sustaining cytosolic GSH remain unclear. Glucose-6-phosphate dehydrogenase (G6PD) functions as the first and rate-limiting enzyme in the pentose phosphate pathway, responsible for the generation of NADPH in a reaction coupled to the de novo production of cellular ribose. We hypothesized that G6PD is required to maintain cytosolic GSH levels and protect against ROS injury in cardiomyocytes. We found that in adult cardiomyocytes, G6PD activity is rapidly increased in response to cellular oxidative stress, with translocation of G6PD to the cell membrane. Furthermore, inhibition of G6PD depletes cytosolic GSH levels and subsequently results in cardiomyocyte contractile dysfunction through dysregulation of calcium homeostasis. Cardiomyocyte dysfunction was reversed through treatment with either a thiol-repleting agent (L-2-oxothiazolidine-4-carboxylic acid) or antioxidant treatment (Eukarion-134), but not with exogenous ribose. Finally, in a murine model of G6PD deficiency, we demonstrate the development of in vivo adverse structural remodeling and impaired contractile function over time. We, therefore, conclude that G6PD is a critical cytosolic antioxidant enzyme, essential for maintenance of cytosolic redox status in adult cardiomyocytes. Deficiency of G6PD may contribute to cardiac dysfunction through increased susceptibility to free radical injury and impairment of intracellular calcium transport. The full text of this article is available online at http://www.circresaha.org.
Collapse
Affiliation(s)
- Mohit Jain
- Cardiac Muscle Research Laboratory, Whitaker Cardiovascular Institute and Evans Department of Medicine, Boston University School of Medicine, Boston, Mass, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Pappa A, Chen C, Koutalos Y, Townsend AJ, Vasiliou V. Aldh3a1 protects human corneal epithelial cells from ultraviolet- and 4-hydroxy-2-nonenal-induced oxidative damage. Free Radic Biol Med 2003; 34:1178-89. [PMID: 12706498 DOI: 10.1016/s0891-5849(03)00070-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Aldehyde dehydrogenase 3A1 (ALDH3A1) is one of the most abundant proteins found in corneal epithelial cells of mammalian species, with several postulated protective roles that include detoxification of peroxidic aldehydes, scavenging of free radicals, and direct absorption of ultraviolet (UV) radiation. In the present study, the protective role of ALDH3A1 against UV- and 4-hydroxy-2-nonenal- (4-HNE-) induced oxidative damage was studied. For this purpose, human ALDH3A1 was stably transfected in a human corneal epithelial cell line (HCE) lacking endogenous enzyme. Cells transfected with ALDH3A1 were more resistant to UV- and 4-HNE-induced cytotoxicity than mock-transfected cells. DNA fragmentation assays revealed that both treatments induced apoptosis in mock-transfected cells, but not in ALDH3A1-expressing cells. Apoptosis appeared to occur via caspase-3 activation and subsequent PARP cleavage. The Michaelis-Menten constant (K(m)) for 4-HNE was 54 microM in ALDH3A1-transfected cells; the addition of 100 microM 4-HNE increased NAD(P)H levels by 50% above that in mock-transfected cells. We also found that ALDH3A1 expression prevented 4-HNE-induced protein adduct formation. Taken together, these data suggest that ALDH3A1 is a regulatory element of the cellular defense system that protects corneal epithelium against UV- and 4-HNE-induced oxidative damage.
Collapse
Affiliation(s)
- Aglaia Pappa
- Molecular Toxicology and Environmental Health Sciences Program, Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | | | |
Collapse
|
33
|
Manzer R, Qamar L, Estey T, Pappa A, Petersen DR, Vasiliou V. Molecular cloning and baculovirus expression of the rabbit corneal aldehyde dehydrogenase (ALDH1A1) cDNA. DNA Cell Biol 2003; 22:329-38. [PMID: 12941160 DOI: 10.1089/104454903322216671] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Most mammalian species express high concentrations of ALDH3A1 in corneal epithelium with the exception of the rabbit, which expresses high amounts of ALDH1A1 rather than ALDH3A1. Several hypotheses that involve catalytic and/or structural functions have been postulated regarding the role of these corneal ALDHs. The aim of the present study was to characterize the biochemical properties of the rabbit ALDH1A1. We have cloned and sequenced the rabbit ALDH1A1 cDNA, which is 2,073 bp in length (excluding the poly(A+) tail), and has 5' and 3' nontranslated regions of 46 and 536 bp, respectively. This ALDH1A1 cDNA encodes a protein of 496 amino acids (Mr = 54,340) that is: 86-91% identical to mammalian ALDH1A1 proteins, 83-85% identical to phenobarbital-inducible mouse and rat ALDH1A7 proteins, 84% identical to elephant shrew ALDH1A8 proteins (eta-crystallins), 69-73% identical to vertebrate ALDH1A2 and ALDH1A3 proteins, 65% identical to scallop ALDH1A9 protein (omega-crystallin), and 55-57% to cephalopod ALDH1C1 and ALDH1C2 (omega-crystallins). Recombinant rabbit ALDH1A1 protein was expressed using the baculovirus system and purified to homogeneity with affinity chromatography. We found that rabbit ALDH1A1 is catalytically active and efficiently oxidizes hexanal (Km = 3.5 microM), 4-hydroxynonenal (Km = 2.1 microM) and malondialdehyde (Km = 14.0 microM), which are among the major products of lipid peroxidation. Similar kinetic constants were observed with the human recombinant ALDH1A1 protein, which was expressed and purified using similar experimental conditions. These data suggest that ALDH1A1 may contribute to corneal cellular defense against oxidative damage by metabolizing toxic aldehydes produced during UV-induced lipid peroxidation.
Collapse
Affiliation(s)
- Rizwan Manzer
- Molecular Toxicology & Environmental Health Sciences Program, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | | | |
Collapse
|
34
|
Haraguchi CM, Mabuchi T, Yokota S. Localization of NADP-dependent Isocitrate Dehydrogenase in Rat Kidney Peroxisomes. Acta Histochem Cytochem 2003. [DOI: 10.1267/ahc.36.465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Celina M. Haraguchi
- Biology Laboratory, University of Yamanashi, Interdisciplinary Graduate School of Medicine and Engineering
| | - Tadashi Mabuchi
- Department of Biochemistry, University of Yamanashi, Interdisciplinary Graduate School of Medicine and Engineering
| | - Sadaki Yokota
- Biology Laboratory, University of Yamanashi, Interdisciplinary Graduate School of Medicine and Engineering
| |
Collapse
|
35
|
Yang ES, Richter C, Chun JS, Huh TL, Kang SS, Park JW. Inactivation of NADP(+)-dependent isocitrate dehydrogenase by nitric oxide. Free Radic Biol Med 2002; 33:927-37. [PMID: 12361803 DOI: 10.1016/s0891-5849(02)00981-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recently, we demonstrated that the control of cytosolic and mitochondrial redox balance and oxidative damage is one of the primary functions of NADP(+)-dependent isocitrate dehydrogenase (ICDH) through to supply NADPH for antioxidant systems. NO donors such as S-nitrosothiols, diethylamine NONOate, spermine NONOate, and 3-morpholinosydnomine N-ethylcarbamide (SIN-1)/superoxide dismutase inactivated ICDH in a dose- and time-dependent manner. The inhibition of ICDH by S-nitrosothiol was partially reversed by thiol, such as dithiothreitol or 2-mercaptoethanol. Loss of enzyme activity was associated with the depletion of the cysteine-reactive 5,5'-dithiobis-(2-nitrobenzoate) and the loss of fluorescent probe N,N'-dimethyl-N(iodoacetyl)-N'-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) ethyleneamine accessible thiol groups. Using electrospray ionization mass spectrometry with tryptic digestion of protein, we found that nitric oxide forms S-nitrosothiol adducts on Cys305 and Cys387. These results indicate that S-nitrosylation of cysteine residues on ICDH is a mechanism involving the inactivation of ICDH by NO. The structural alterations of modified enzyme were indicated by the changes in protease susceptibility and intrinsic tryptophan fluorescence. When U937 cells were incubated with 200 microM SNAP for 1 h, a significant decrease in both cytosolic and mitochondrial ICDH activities were observed. Furthermore, stimulation with lipopolysaccharide significantly decreased intracellular ICDH activity in RAW 264.7 cells, and this effect was blocked by NO synthase inhibitor N(omega)-methyl-L-arginine. This result indicates that ICDH was also inactivated by endogenous NO. The NO-mediated damage to ICDH may result in the perturbation of cellular antioxidant defense mechanisms and subsequently lead to a pro-oxidant condition.
Collapse
Affiliation(s)
- Eun Sun Yang
- Department of Biochemistry, College of Natural Sciences, Kyungpook National University, Taegu 702-701, Korea
| | | | | | | | | | | |
Collapse
|
36
|
Lee SM, Koh HJ, Park DC, Song BJ, Huh TL, Park JW. Cytosolic NADP(+)-dependent isocitrate dehydrogenase status modulates oxidative damage to cells. Free Radic Biol Med 2002; 32:1185-96. [PMID: 12031902 DOI: 10.1016/s0891-5849(02)00815-8] [Citation(s) in RCA: 312] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
NADPH is an important cofactor in many biosynthesis pathways and the regeneration of reduced glutathione, critically important in cellular defense against oxidative damage. It is mainly produced by glucose 6-phosphate dehydrogenase (G6PD), malic enzyme, and the cytosolic form of NADP(+)-dependent isocitrate dehydrogenase (IDPc). Little information is available about the role of IDPc in antioxidant defense. In this study we investigated the role of IDPc against cytotoxicity induced by oxidative stress by comparing the relative degree of cellular responses in three different NIH3T3 cells with stable transfection with the cDNA for mouse IDPc in sense and antisense orientations, where IDPc activities were 3-4-fold higher and 35% lower, respectively, than that in the parental cells carrying the vector alone. Although the activities of other antioxidant enzymes, such as superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase, and G6PD, were comparable in all transformed cells, the ratio of GSSG to total glutathione was significantly higher in the cells expressing the lower level of IDPc. This finding indicates that IDPc is essential for the efficient glutathione recycling. Upon transient exposure to increasing concentrations of H(2)O(2) or menadione, an intracellular source of free radicals and reactive oxygen species, the cells with low levels of IDPc became more sensitive to oxidative damage by H(2)O(2) or menadione. Lipid peroxidation, oxidative DNA damage, and intracellular peroxide generation were higher in the cell-line expressing the lower level of IDPc. However, the cells with the highly over-expressed IDPc exhibited enhanced resistance against oxidative stress, compared to the control cells. This study provides direct evidence correlating the activities of IDPc and the maintenance of the cellular redox state, suggesting that IDPc plays an important role in cellular defense against oxidative stress.
Collapse
Affiliation(s)
- Su Min Lee
- Department of Biochemistry, College of Natural Sciences, Kyungpook National University, Taegu, South Korea
| | | | | | | | | | | |
Collapse
|
37
|
Jo SH, Lee SH, Chun HS, Lee SM, Koh HJ, Lee SE, Chun JS, Park JW, Huh TL. Cellular defense against UVB-induced phototoxicity by cytosolic NADP(+)-dependent isocitrate dehydrogenase. Biochem Biophys Res Commun 2002; 292:542-9. [PMID: 11906195 DOI: 10.1006/bbrc.2002.6667] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ultraviolet (UV) radiation is known as a major cause of skin photoaging and photocarcinogenesis. Many harmful effects of UV radiation are associated with the generation of reactive oxygen species. Recently, we have shown that NADP(+)-dependent isocitrate dehydrogenase is involved in the supply of NADPH needed for GSH production against cellular oxidative damage. In this study we investigated the role of cytosolic form of NADP(+)-dependent isocitrate dehydrogenase (IDPc) against UV radiation-induced cytotoxicity by comparing the relative degree of cellular responses in three different NIH3T3 cells with stable transfection with the cDNA for mouse IDPc in sense and antisense orientations, where IDPc activities were 2.3-fold higher and 39% lower, respectively, than that in the parental cells carrying the vector alone. Upon exposure to UVB (312 nm), the cells with low levels of IDPc became more sensitive to cell killing. Lipid peroxidation, protein oxidation, oxidative DNA damage, and intracellular peroxide generation were higher in the cell-line expressing the lower level of IDPc. However, the cells with the highly overexpressed IDPc exhibited enhanced resistance against UV radiation, compared to the control cells. The data indicate that IDPc plays an important role in cellular defense against UV radiation-induced oxidative injury.
Collapse
Affiliation(s)
- Seung-Hee Jo
- Department of Genetic Engineering, Kyungpook National University, Daegu, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Enigma of the Abundant Water-Soluble Cytoplasmic Proteins of the Cornea. Cornea 2002. [DOI: 10.1097/00003226-200203001-00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
Nees DW, Wawrousek EF, Robison WG, Piatigorsky J. Structurally normal corneas in aldehyde dehydrogenase 3a1-deficient mice. Mol Cell Biol 2002; 22:849-55. [PMID: 11784860 PMCID: PMC133561 DOI: 10.1128/mcb.22.3.849-855.2002] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have constructed an ALDH3a1 null mouse to investigate the role of this enzyme that comprises nearly one-half of the total water-soluble protein in the mouse corneal epithelium. ALDH3a1-deficient mice are viable and fertile, have a corneal epithelium with a water-soluble protein content approximately half that of wild-type mice, and contain no ALDH3a1 as determined by zymograms and immunoblots. Despite the loss of protein content and ALDH3a1 activity, the ALDH3a1(-/-) mouse corneas appear indistinguishable from wild-type corneas when examined by histological analysis and electron microscopy and are transparent as determined by light and slit lamp microscopy. There is no evidence for a compensating protein or enzyme. Even though the function of ALDH3a1 in the mouse cornea remains unknown, our data indicate that its enzymatic activity is unnecessary for corneal clarity and maintenance, at least under laboratory conditions.
Collapse
Affiliation(s)
- David W Nees
- Laboratory of Molecular and Developmental Biology, National Eye Institute, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
40
|
Hernández-Quintero M, García-Villegas R, Castro-Muñozledo F. Differentiation-dependent increases in lactate dehydrogenase activity and isoenzyme expression in rabbit corneal epithelial cells. Exp Eye Res 2002; 74:71-82. [PMID: 11878820 DOI: 10.1006/exer.2001.1110] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Lactate dehydrogenase (LDH) and glucose-6-phosphate dehydrogenase (G-6-PDH) activities were studied during corneal epithelial growth and differentiation in cell culture. LDH and G-6-PDH activities increased up to 60 and 150-fold, respectively, when corneal epithelial cells constituted a differentiated four to five layered epithelium; these increases showed a similar time-course to the expression of K3 keratin. Immunostaining experiments showed that in growing colonies, LDH staining is stronger in those cells that are K3 positive; in contrast, in confluent four to five layered epithelia LDH and K3 were located in all cell layers, similar to the pattern found in frozen sections from rabbit central cornea. During growth and differentiation, the LDH isoenzyme set from corneal epithelial cells did not change; and it was different from those observed in cultured conjunctival, esophageal and epidermal cells. The augment in LDH activity was due to a 25-fold increase in the LDH-H mRNA and a 12-fold augment in LDH-M mRNA. A computer-assisted search led to identify AP2 and Sp1 binding sites in the LDH and G-6-PDH promoters, suggesting that their expression might share common regulatory mechanisms with the regulation of the differentiation-linked keratins. It is proposed that LDH may be an early marker of corneal epithelial differentiation, and its isozyme pattern could be distinctive from other epithelial cell lineages.
Collapse
Affiliation(s)
- Miriam Hernández-Quintero
- Department of Cell Biology, Centro de Investigación y Estudios Avanzados del IPN, Mexico City, Apdo, 07000, Mexico
| | | | | |
Collapse
|
41
|
Piatigorsky J. Enigma of the abundant water-soluble cytoplasmic proteins of the cornea: the "refracton" hypothesis. Cornea 2001; 20:853-8. [PMID: 11685065 DOI: 10.1097/00003226-200111000-00015] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
It is accepted that the taxon-specific, multifunctional crystallins (small heat-shock proteins and enzymes) serve structural roles contributing to the transparent and refractive properties of the lens. The transparent cornea also accumulates unexpectedly high proportions of taxon-specific, multifunctional proteins particularly, but not only, in the epithelium. For example, aldehyde dehydrogenase 3 (ALDH3) is the main water-soluble protein in corneal epithelial cells of most mammals (but ALDH1 predominates in the rabbit), whereas gelsolin predominates in the zebrafish corneal epithelium. Moreover, some invertebrates (e.g., squid and scallop) accumulate proteins in their corneas that are similar to their lens crystallins. Pax-6, among other transcription factors, is implicated in development and tissue-specific gene expression of the lens and cornea. Environmental factors appear to influence gene expression in the cornea, but not the lens. Although no direct proof exists, the diverse, abundant corneal proteins may have evolved a crystallinlike role, in addition to their enzymatic or cytoskeletal functions, by a gene sharing mechanism similar to the lens crystallins. Consequently, it is proposed that the cornea and lens be considered as a single refractive unit, called here the "refracton," to emphasize their similarities and common function.
Collapse
Affiliation(s)
- J Piatigorsky
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892-2730, USA
| |
Collapse
|
42
|
Lee SM, Huh TL, Park JW. Inactivation of NADP(+)-dependent isocitrate dehydrogenase by reactive oxygen species. Biochimie 2001; 83:1057-65. [PMID: 11879734 DOI: 10.1016/s0300-9084(01)01351-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Recently, we demonstrated that the control of cytosolic and mitochondrial redox balance and the cellular defense against oxidative damage is one of the primary functions of NADP(+)-dependent isocitrate dehydrogenase (ICDH) through supply of NADPH for antioxidant systems. When exposed to various reactive oxygen species such as hydrogen peroxide, singlet oxygen generated by photoactivated dye, superoxide anion, and hydroxyl radical produced by metal-catalyzed Fenton reactions, ICDH was susceptible to oxidative modification and damage, which was indicated by the loss of activity, fragmentation of the peptide as well as by the formation of carbonyl groups. Oxidative damage to ICDH was inhibited by antioxidant enzymes, free radical scavengers, and spin-trapping agents. The structural alterations of modified enzymes were indicated by the increase in thermal instability and binding of the hydrophobic probe 8-anilino-1-naphthalene sulfonic acid (ANSA). The reactive oxygen species-mediated damage to ICDH may result in the perturbation of cellular antioxidant defense mechanisms and subsequently lead to a pro-oxidant condition.
Collapse
Affiliation(s)
- S M Lee
- Department of Biochemistry, College of Natural Sciences, Kyungpook National University, Taegu 702-701, South Korea
| | | | | |
Collapse
|
43
|
Yoshihara T, Hamamoto T, Munakata R, Tajiri R, Ohsumi M, Yokota S. Localization of cytosolic NADP-dependent isocitrate dehydrogenase in the peroxisomes of rat liver cells: biochemical and immunocytochemical studies. J Histochem Cytochem 2001; 49:1123-31. [PMID: 11511681 DOI: 10.1177/002215540104900906] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Two types of NADP-dependent isocitrate dehydrogenases (ICDs) have been reported: mitochondrial (ICD1) and cytosolic (ICD2). The C-terminal amino acid sequence of ICD2 has a tripeptide peroxisome targeting signal 1 sequence (PTS1). After differential centrifugation of the postnuclear fraction of rat liver homogenate, approximately 75% of ICD activity was found in the cytosolic fraction. To elucidate the true localization of ICD2 in rat hepatocytes, we analyzed the distribution of ICD activity and immunoreactivity in fractions isolated by Nycodenz gradient centrifugation and immunocytochemical localization of ICD2 antigenic sites in the cells. On Nycodenz gradient centrifugation of the light mitochondrial fraction, ICD2 activity was distributed in the fractions in which activity of catalase, a peroxisomal marker, was also detected, but a low level of activity was also detected in the fractions containing activity for succinate cytochrome C reductase (a mitochondrial marker) and acid phosphatase (a lysosomal marker). We have purified ICD2 from rat liver homogenate and raised a specific antibody to the enzyme. On SDS-PAGE, a single band with a molecular mass of 47 kD was observed, and on immunoblotting analysis of rat liver homogenate a single signal was detected. Double staining of catalase and ICD2 in rat liver revealed co-localization of both enzymes in the same cytoplasmic granules. Immunoelectron microscopy revealed gold particles with antigenic sites of ICD2 present mainly in peroxisomes. The results clearly indicated that ICD2 is a peroxisomal enzyme in rat hepatocytes. ICD2 has been regarded as a cytosolic enzyme, probably because the enzyme easily leaks out of peroxisomes during homogenization. (J Histochem Cytochem 49:1123-1131, 2001)
Collapse
Affiliation(s)
- T Yoshihara
- Department of Bioscience, Faculty of Science and Engineering, Teikyo University of Science and Technology, Yamanashi, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Piatigorsky J, Kozmik Z, Horwitz J, Ding L, Carosa E, Robison WG, Steinbach PJ, Tamm ER. Omega -crystallin of the scallop lens. A dimeric aldehyde dehydrogenase class 1/2 enzyme-crystallin. J Biol Chem 2000; 275:41064-73. [PMID: 10961997 DOI: 10.1074/jbc.m005625200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
While many of the diverse crystallins of the transparent lens of vertebrates are related or identical to metabolic enzymes, much less is known about the lens crystallins of invertebrates. Here we investigate the complex eye of scallops. Electron microscopic inspection revealed that the anterior, single layered corneal epithelium overlying the cellular lens contains a regular array of microvilli that we propose might contribute to its optical properties. The sole crystallin of the scallop eye lens was found to be homologous to Omega-crystallin, a minor crystallin in cephalopods related to aldehyde dehydrogenase (ALDH) class 1/2. Scallop Omega-crystallin (officially designated ALDH1A9) is 55-56% identical to its cephalopod homologues, while it is 67 and 64% identical to human ALDH 2 and 1, respectively, and 61% identical to retinaldehyde dehydrogenase/eta-crystallin of elephant shrews. Like other enzyme-crystallins, scallop Omega-crystallin appears to be present in low amounts in non-ocular tissues. Within the scallop eye, immunofluorescence tests indicated that Omega-crystallin expression is confined to the lens and cornea. Although it has conserved the critical residues required for activity in other ALDHs and appears by homology modeling to have a structure very similar to human ALDH2, scallop Omega-crystallin was enzymatically inactive with diverse substrates and did not bind NAD or NADP. In contrast to mammalian ALDH1 and -2 and other cephalopod Omega-crystallins, which are tetrameric proteins, scallop Omega-crystallin is a dimeric protein. Thus, ALDH is the most diverse lens enzyme-crystallin identified so far, having been used as a lens crystallin in at least two classes of molluscs as well as elephant shrews.
Collapse
Affiliation(s)
- J Piatigorsky
- Laboratory of Molecular and Developmental Biology and Laboratory of Mechanisms of Ocular Disease, National Eye Institute, and Center for Molecular Modeling, Center for Information Technology, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Sax CM, Kays WT, Salamon C, Chervenak MM, Xu YS, Piatigorsky J. Transketolase gene expression in the cornea is influenced by environmental factors and developmentally controlled events. Cornea 2000; 19:833-41. [PMID: 11095059 DOI: 10.1097/00003226-200011000-00014] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE Transketolase (TKT) has been proposed to be a corneal crystallin, and its gene and protein are abundantly expressed in the corneal epithelium of several mammals. A marked up-regulation of TKT gene expression coincides with the time of eyelid opening in the mouse. Here, we examined whether exposure to incident light contributes to the up-regulation of TKT gene expression during cornea maturation. METHODS Mice were raised in either standard light/dark cycling conditions or total darkness. In some cases, subcutaneous injections of epidermal growth factor (EGF) were given beginning on the day of birth to induce early eyelid opening. RNA was prepared from the corneas of mothers and pups and subjected to Northern blot analyses. In addition, the relative levels of TKT mRNA and/or enzyme activity were examined in the corneas of human, bovine, rat, chicken, and zebrafish. RESULTS TKT mRNA levels were 2.1-fold higher in the corneas of 25-day-old mouse pups ( 12 days after eyelid opening) that had been born and raised in light/dark conditions compared to pups born and raised in total darkness. By contrast, the level of TKT mRNA in the mature corneas of adult mice maintained in the dark for 2-8 weeks did not vary greatly from those of mice maintained in light/dark conditions. Interestingly, TKT mRNA levels in the corneas of dark-raised mice, although reduced, did exhibit the increase characteristically observed before and after eyelid opening. In addition, TKT mRNA levels were elevated fivefold in the corneas of 28-day-old mice raised in darkness and injected with EGF compared to uninjected mice also deprived of light. The EGF-injected mice opened their eyes 3 days early, and their corneal epithelium did not grossly differ from that of control mice. TKT mRNA and/or enzyme activity was found to be much higher in the corneas than in other tissues of humans, bovines, and rats but was extremely low in the corneas of chicken and zebrafish. CONCLUSION Our studies suggest that both exposure to incident light and events surrounding the process of eyelid opening play a role in the up-regulation of TKT gene expression observed during corneal maturation in mice. Light appears to play a less important role in the mature cornea in maintaining high levels of TKT gene expression. The low levels of TKT in the cornea of chicken and zebrafish support the notion that TKT acts as a taxon-specific enzyme-crystallin in mammals. The involvement of environmental signals for this putative, mammalian cornea crystallin contrasts with the purely developmental signals involved in the up-regulation of the crystallin genes of the lens.
Collapse
Affiliation(s)
- C M Sax
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, 20892-2730, USA
| | | | | | | | | | | |
Collapse
|
46
|
Sun L, Sun TT, Lavker RM. CLED: a calcium-linked protein associated with early epithelial differentiation. Exp Cell Res 2000; 259:96-106. [PMID: 10942582 DOI: 10.1006/excr.2000.4922] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Although it has been well established that Ca(2+) plays a key role in triggering keratinocyte differentiation, relatively little is known about the molecules that mediate this signaling process. By analyzing a bovine corneal epithelial subtraction cDNA library, we have identified a novel gene that we named CLED (calcium-linked epithelial differentiation), which encodes a messenger RNA present in all stratified squamous epithelia, hair follicle, the bladder transitional epithelium, and small intestinal epithelium. The deduced amino acid sequence of CLED, based on a bovine partial cDNA and its full-length, human and mouse homologues that have been described only as ESTs, contains 2 EF-hand Ca(2+)-binding domains, a myristoylation motif, and several potential protein kinase phosphorylation sites; the CLED protein is therefore related to the S100 protein family. In all stratified squamous epithelia, the CLED message is associated with the intermediate cell layers. Similar CLED association with cells that are above the proliferative compartment but below the terminally differentiated compartment is seen in hair follicle, bladder, and small intestinal epithelia. The only exception is corneal epithelium, where CLED is expressed in both basal and intermediate cells. The presence of CLED in corneal epithelial basal cells, but not in the adjacent limbal basal (stem) cells, provides additional, strong evidence for the unique lateral heterogeneity of the limbal/corneal epithelium. These results suggest that CLED, via Ca(2+)-related mechanisms, may play a role in the epithelial cell's commitment to undergo early differentiation, and that its down-regulation is required before the cells can undergo the final stages of terminal differentiation.
Collapse
Affiliation(s)
- L Sun
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, 19104, USA
| | | | | |
Collapse
|
47
|
Xu YS, Kantorow M, Davis J, Piatigorsky J. Evidence for gelsolin as a corneal crystallin in zebrafish. J Biol Chem 2000; 275:24645-52. [PMID: 10818094 DOI: 10.1074/jbc.m001159200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have shown that gelsolin is one of the most prevalent water-soluble proteins in the transparent cornea of zebrafish. There are also significant amounts of actin. In contrast to actin, gelsolin is barely detectable in other eye tissues (iris, lens, and remaining eye) of the zebrafish. Gelsolin cDNA hybridized intensely in Northern blots to RNA from the cornea but not from the lens, brain, or headless body. The deduced zebrafish gelsolin is approximately 60% identical to mammalian cytosolic gelsolin and has the characteristic six segmental repeats as well as the binding sites for actin, calcium, and phosphatidylinositides. In situ hybridization tests showed that gelsolin mRNA is concentrated in the zebrafish corneal epithelium. The zebrafish corneal epithelium stains very weakly with rhodamine-phalloidin, indicating little F-actin in the cytoplasm. In contrast, the mouse corneal epithelium contains relatively little gelsolin and stains intensely with rhodamine-phalloidin, as does the zebrafish extraocular muscle. We propose, by analogy with the diverse crystallins of the eye lens and with the putative enzyme-crystallins (aldehyde dehydrogenase class 3 and other enzymes) of the mammalian cornea, that gelsolin and actin-gelsolin complexes act as water-soluble crystallins in the zebrafish cornea and contribute to its optical properties.
Collapse
Affiliation(s)
- Y S Xu
- Laboratory of Molecular and Developmental Biology, NEI, National Institutes of Health, Bethesda, Maryland 20892-2730, USA
| | | | | | | |
Collapse
|