1
|
Ruiz WG, Clayton DR, Parakala-Jain T, Dalghi MG, Franks J, Apodaca G. The rat bladder umbrella cell keratin network: Organization, dependence on the plectin cytolinker, and responses to bladder filling. Mol Biol Cell 2024; 35:ar139. [PMID: 39356795 PMCID: PMC11617100 DOI: 10.1091/mbc.e24-06-0262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/17/2024] [Revised: 09/11/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
The keratin cytoskeleton and associated desmosomes contribute to the mechanical stability of epithelial tissues, but their organization in native bladder umbrella cells and their responses to bladder filling are poorly understood. Using whole rat bladders in conjunction with confocal microscopy, super-resolution image processing, three-dimensional image reconstruction, and platinum replica electron microscopy, we identified a cortical cytoskeleton network in umbrella cells that was organized as a dense tile-like mesh comprised of tesserae bordered by cortical actin filaments, filled with keratin filaments, and cross-linked by plectin. Below these tesserae, keratin formed a subapical meshwork and at the cell periphery a band of keratin was linked via plectin to the junction-associated actin ring. Disruption of plectin led to focal keratin network dissolution, loss of the junction-associated keratin, and defects in cell-cell adhesion. During bladder filling, a junction-localized necklace of desmosomes expanded, and a subjacent girded layer formed linking the keratin network to desmosomes, including those at the umbrella cell-intermediate cell interface. Our studies reveal a novel tile- and mesh-like organization of the umbrella cell keratin network that is dependent on plectin, that reorganizes in response to bladder filling, and that likely serves to maintain umbrella cell continuity in the face of mechanical distension.
Collapse
Affiliation(s)
- Wily G. Ruiz
- Department of Medicine Renal-Electrolyte Division and George M. O'Brien Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Dennis R. Clayton
- Department of Medicine Renal-Electrolyte Division and George M. O'Brien Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Tanmay Parakala-Jain
- Department of Medicine Renal-Electrolyte Division and George M. O'Brien Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Marianela G. Dalghi
- Department of Medicine Renal-Electrolyte Division and George M. O'Brien Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Jonathan Franks
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh 15213
| | - Gerard Apodaca
- Department of Medicine Renal-Electrolyte Division and George M. O'Brien Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh 15213
| |
Collapse
|
2
|
Ruiz WG, Clayton DR, Parakala-Jain T, Dalghi MG, Franks J, Apodaca G. The umbrella cell keratin network: organization as a tile-like mesh, formation of a girded layer in response to bladder filling, and dependence on the plectin cytolinker. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598498. [PMID: 38915686 PMCID: PMC11195278 DOI: 10.1101/2024.06.11.598498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/26/2024]
Abstract
The keratin cytoskeleton and associated desmosomes contribute to the mechanical stability of epithelial tissues, but their organization in bladder umbrella cells and their responses to bladder filling are poorly understood. Using super-resolution confocal microscopy, along with 3D image reconstruction and platinum replica electron microscopy, we observed that the apical keratin network of umbrella cells was organized as a dense tile-like mesh comprised of tesserae bordered on their edges by cortical actin filaments, filled with woven keratin filaments, and crosslinked by plectin. A band of keratin was also observed at the cell periphery that was linked to the junction-associated actin ring by plectin. During bladder filling, the junction-localized desmosomal necklace expanded, and a subjacent girded layer was formed that linked the keratin network to desmosomes, including those at the umbrella cell-intermediate cell interface. Disruption of plectin led to focal keratin network dissolution, loss of the junction-associated band of keratin, perturbation of tight junction continuity, and loss of cell-cell cohesion. Our studies reveal a novel tile-like organization of the umbrella cell keratin cytoskeleton that is dependent on plectin, that reorganizes in response to bladder filling, and that likely serves to maintain umbrella cell continuity in the face of mechanical distension.
Collapse
Affiliation(s)
- Wily G. Ruiz
- Department of Medicine Renal-Electrolyte Division and George M. O’Brien Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dennis R. Clayton
- Department of Medicine Renal-Electrolyte Division and George M. O’Brien Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tanmay Parakala-Jain
- Department of Medicine Renal-Electrolyte Division and George M. O’Brien Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marianela G. Dalghi
- Department of Medicine Renal-Electrolyte Division and George M. O’Brien Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jonathan Franks
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Gerard Apodaca
- Department of Medicine Renal-Electrolyte Division and George M. O’Brien Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Alisafaei F, Mandal K, Saldanha R, Swoger M, Yang H, Shi X, Guo M, Hehnly H, Castañeda CA, Janmey PA, Patteson AE, Shenoy VB. Vimentin is a key regulator of cell mechanosensing through opposite actions on actomyosin and microtubule networks. Commun Biol 2024; 7:658. [PMID: 38811770 PMCID: PMC11137025 DOI: 10.1038/s42003-024-06366-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/14/2022] [Accepted: 05/21/2024] [Indexed: 05/31/2024] Open
Abstract
The cytoskeleton is a complex network of interconnected biopolymers consisting of actin filaments, microtubules, and intermediate filaments. These biopolymers work in concert to transmit cell-generated forces to the extracellular matrix required for cell motility, wound healing, and tissue maintenance. While we know cell-generated forces are driven by actomyosin contractility and balanced by microtubule network resistance, the effect of intermediate filaments on cellular forces is unclear. Using a combination of theoretical modeling and experiments, we show that vimentin intermediate filaments tune cell stress by assisting in both actomyosin-based force transmission and reinforcement of microtubule networks under compression. We show that the competition between these two opposing effects of vimentin is regulated by the microenvironment stiffness. These results reconcile seemingly contradictory results in the literature and provide a unified description of vimentin's effects on the transmission of cell contractile forces to the extracellular matrix.
Collapse
Affiliation(s)
- Farid Alisafaei
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Kalpana Mandal
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Medicine and Engineering, University of Pennsylvania, 3340 Smith Walk, Philadelphia, PA, 19104, USA
| | - Renita Saldanha
- Physics Department, Syracuse University, Syracuse, NY, 13244, USA
- BioInspired Institute, Syracuse University, Syracuse, NY, 13244, USA
| | - Maxx Swoger
- Physics Department, Syracuse University, Syracuse, NY, 13244, USA
- BioInspired Institute, Syracuse University, Syracuse, NY, 13244, USA
| | - Haiqian Yang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Xuechen Shi
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Medicine and Engineering, University of Pennsylvania, 3340 Smith Walk, Philadelphia, PA, 19104, USA
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Heidi Hehnly
- Department of Biology, Syracuse University, Syracuse, NY, 13244, USA
| | - Carlos A Castañeda
- Departments of Biology and Chemistry, Syracuse University, Syracuse, NY, 13244, USA
- Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY, 13244, USA
| | - Paul A Janmey
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Medicine and Engineering, University of Pennsylvania, 3340 Smith Walk, Philadelphia, PA, 19104, USA
- Departments of Physiology, and Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alison E Patteson
- Physics Department, Syracuse University, Syracuse, NY, 13244, USA
- BioInspired Institute, Syracuse University, Syracuse, NY, 13244, USA
| | - Vivek B Shenoy
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
4
|
Guan G, Cannon RD, Coates DE, Mei L. Effect of the Rho-Kinase/ROCK Signaling Pathway on Cytoskeleton Components. Genes (Basel) 2023; 14:272. [PMID: 36833199 PMCID: PMC9957420 DOI: 10.3390/genes14020272] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/20/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
The mechanical properties of cells are important in tissue homeostasis and enable cell growth, division, migration and the epithelial-mesenchymal transition. Mechanical properties are determined to a large extent by the cytoskeleton. The cytoskeleton is a complex and dynamic network composed of microfilaments, intermediate filaments and microtubules. These cellular structures confer both cell shape and mechanical properties. The architecture of the networks formed by the cytoskeleton is regulated by several pathways, a key one being the Rho-kinase/ROCK signaling pathway. This review describes the role of ROCK (Rho-associated coiled-coil forming kinase) and how it mediates effects on the key components of the cytoskeleton that are critical for cell behaviour.
Collapse
Affiliation(s)
- Guangzhao Guan
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
- Department of Oral Diagnostic and Surgical Sciences, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin 9016, New Zealand
| | - Richard D. Cannon
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
- Department of Oral Sciences, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin 9016, New Zealand
| | - Dawn E. Coates
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Li Mei
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
- Department of Oral Sciences, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin 9016, New Zealand
| |
Collapse
|
5
|
Elbalasy I, Wilharm N, Herchenhahn E, Konieczny R, Mayr SG, Schnauß J. From Strain Stiffening to Softening—Rheological Characterization of Keratins 8 and 18 Networks Crosslinked via Electron Irradiation. Polymers (Basel) 2022; 14:polym14030614. [PMID: 35160604 PMCID: PMC8838340 DOI: 10.3390/polym14030614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/31/2021] [Revised: 01/21/2022] [Accepted: 01/28/2022] [Indexed: 02/01/2023] Open
Abstract
Networks of crosslinked keratin filaments are abundant in epithelial cells and tissues, providing resilience against mechanical forces and ensuring cellular integrity. Although studies of in vitro models of reconstituted keratin networks have revealed important mechanical aspects, the mechanical properties of crosslinked keratin structures remain poorly understood. Here, we exploited the power of electron beam irradiation (EBI) to crosslink in vitro networks of soft epithelial keratins 8 and 18 (k8–k18) filaments with different irradiation doses (30 kGy, 50 kGy, 80 kGy, 100 kGy, and 150 kGy). We combined bulk shear rheology with confocal microscopy to investigate the impact of crosslinking on the mechanical and structural properties of the resultant keratin gels. We found that irradiated keratin gels display higher linear elastic modulus than the unirradiated, entangled networks at all doses tested. However, at the high doses (80 kGy, 100 kGy, and 150 kGy), we observed a remarkable drop in the elastic modulus compared to 50 kGy. Intriguingly, the irradiation drastically changed the behavior for large, nonlinear deformations. While untreated keratin networks displayed a strong strain stiffening, increasing irradiation doses shifted the system to a strain softening behavior. In agreement with the rheological behavior in the linear regime, the confocal microscopy images revealed fully isotropic networks with high percolation in 30 kGy and 50 kGy-treated keratin samples, while irradiation with 100 kGy induced the formation of thick bundles and clusters. Our results demonstrate the impact of permanent crosslinking on k8–k18 mechanics and provide new insights into the potential contribution of intracellular covalent crosslinking to the loss of mechanical resilience in some human keratin diseases. These insights will also provide inspiration for the synthesis of new keratin-based biomaterials.
Collapse
Affiliation(s)
- Iman Elbalasy
- Peter-Debye Institute for Soft Matter Physics, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany;
- Faculty of Science, Cairo University, Giza 12613, Egypt
- Correspondence: (I.E.); (S.G.M.); (J.S.)
| | - Nils Wilharm
- Leibniz-Institut für Oberflächenmodifizierung e.V. (IOM), Permoserstr. 15, 04318 Leipzig, Germany; (N.W.); (R.K.)
- Division of Surface Physics, Department of Physics and Earth Sciences, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany
| | - Erik Herchenhahn
- Peter-Debye Institute for Soft Matter Physics, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany;
| | - Robert Konieczny
- Leibniz-Institut für Oberflächenmodifizierung e.V. (IOM), Permoserstr. 15, 04318 Leipzig, Germany; (N.W.); (R.K.)
| | - Stefan G. Mayr
- Leibniz-Institut für Oberflächenmodifizierung e.V. (IOM), Permoserstr. 15, 04318 Leipzig, Germany; (N.W.); (R.K.)
- Division of Surface Physics, Department of Physics and Earth Sciences, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany
- Correspondence: (I.E.); (S.G.M.); (J.S.)
| | - Jörg Schnauß
- Peter-Debye Institute for Soft Matter Physics, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany;
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, 04103 Leipzig, Germany
- Unconventional Computing Lab, Department of Computer Science and Creative Technologies, UWE, Bristol BS16 1QY, UK
- Correspondence: (I.E.); (S.G.M.); (J.S.)
| |
Collapse
|
6
|
Shakibapour M, Kefayat A, Reza Mofid M, Shojaie B, Mohamadi F, Maryam Sharafi S, Mahmoudzadeh M, Yousofi Darani H. Anti-cancer immunoprotective effects of immunization with hydatid cyst wall antigens in a non-immunogenic and metastatic triple-negative murine mammary carcinoma model. Int Immunopharmacol 2021; 99:107955. [PMID: 34247052 DOI: 10.1016/j.intimp.2021.107955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/04/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 01/10/2023]
Abstract
Cancer vaccines have gained lots of attention as the future of cancer treatment. However, poor immunogenicity of tumor-associated antigens often fails to induce an efficient immune response against the tumor. Strange anti-tumor immune responses at the parasite-infected patients due to cross-reactivity have been reported in various studies. Therefore, parasite antigens with significant immunogenicity and high epitope homology with cancer antigens may activate a strong immune response against cancer cells. Herein, the sera of immunized rabbits with the hydatid cyst wall (HCW) antigens were incubated with 4 T1 mammary carcinoma cells to investigate cross-reactivity between the HCW antigens antisera and surface antigens of the breast cancer cells. Also, the SDS-PAGE profile of HCW antigens was prepared and incubated with the breast cancer patients' sera and considerable reactivity was observed between their sera and a specific band (~27/28 kDa) according to Western blotting analyzes. Then, the protein bands with cross-reactivity with breast cancer patients' sera were utilized for prophylactic immunizations of Balb/c mice. The immunoprotective effect of immunization with the HCW antigens caused significant inhibition of 4 T1 breast tumor growth, decrease of metastasis, and enlargement of the tumor-bearing mice survival time in comparison with PBS and pure immune adjuvant injected groups. Mass spectrometry analysis showed that the ~ 27/28 kDa band has numbers of proteins/polypeptides with a high degree of homology with cancer cells antigens which can be the reason for this cross-reactivity and anti-tumor immune response. Taking together, immunization with HCW antigens would be a promising approach in cancer immunotherapy after further investigations.
Collapse
Affiliation(s)
- Mahshid Shakibapour
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirhosein Kefayat
- Department of Oncology, Cancer Prevention Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Reza Mofid
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Behrokh Shojaie
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fereshteh Mohamadi
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seydeh Maryam Sharafi
- Environment Research Centre, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdi Mahmoudzadeh
- Department of Oncology, Cancer Prevention Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Yousofi Darani
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
7
|
Lavenus SB, Tudor SM, Ullo MF, Vosatka KW, Logue JS. A flexible network of vimentin intermediate filaments promotes migration of amoeboid cancer cells through confined environments. J Biol Chem 2020; 295:6700-6709. [PMID: 32234762 DOI: 10.1074/jbc.ra119.011537] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/18/2019] [Revised: 03/27/2020] [Indexed: 12/18/2022] Open
Abstract
Tumor cells can spread to distant sites through their ability to switch between mesenchymal and amoeboid (bleb-based) migration. Because of this difference, inhibitors of metastasis must account for each migration mode. However, the role of vimentin in amoeboid migration has not been determined. Because amoeboid leader bleb-based migration (LBBM) occurs in confined spaces and vimentin is known to strongly influence cell-mechanical properties, we hypothesized that a flexible vimentin network is required for fast amoeboid migration. To this end, here we determined the precise role of the vimentin intermediate filament system in regulating the migration of amoeboid human cancer cells. Vimentin is a classic marker of epithelial-to-mesenchymal transition and is therefore an ideal target for a metastasis inhibitor. Using a previously developed polydimethylsiloxane slab-based approach to confine cells, RNAi-based vimentin silencing, vimentin overexpression, pharmacological treatments, and measurements of cell stiffness, we found that RNAi-mediated depletion of vimentin increases LBBM by ∼50% compared with control cells and that vimentin overexpression and simvastatin-induced vimentin bundling inhibit fast amoeboid migration and proliferation. Importantly, these effects were independent of changes in actomyosin contractility. Our results indicate that a flexible vimentin intermediate filament network promotes LBBM of amoeboid cancer cells in confined environments and that vimentin bundling perturbs cell-mechanical properties and inhibits the invasive properties of cancer cells.
Collapse
Affiliation(s)
- Sandrine B Lavenus
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York 12208
| | - Sara M Tudor
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York 12208
| | - Maria F Ullo
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York 12208
| | - Karl W Vosatka
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York 12208
| | - Jeremy S Logue
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York 12208
| |
Collapse
|
8
|
Zhang H, Zhao H, Wang X, Cui X, Jin L. Keratin 86 is up-regulated in the uterus during implantation, induced by oestradiol. BMC DEVELOPMENTAL BIOLOGY 2020; 20:3. [PMID: 32028879 PMCID: PMC7006210 DOI: 10.1186/s12861-020-0208-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 09/12/2019] [Accepted: 01/27/2020] [Indexed: 02/08/2023]
Abstract
Background Uterine receptivity is one of the determinants of embryo implantation, which is responsible for pregnancy success. Aberrant embryo implantation due to disrupted uterine receptivity is usually found in ovarian hyperstimulation induced hyperoestrogen patients. Results This study identified keratin 86 (KRT86), a fibrous structural protein, which was upregulated in uterine endometrium during peri-implantation. Using a hyperoestrogen mouse model established in a previous study, we found abnormal oestradiol (E2) levels during pre-implantation could trigger high expression of Krt86 in the uterine epithelium. In an ovariectomised mouse model, combining oestrogen receptors ERα and ERβ knockout mice models, uterine Krt86 was found to be up-regulated after E2 treatment, mediated by nuclear ERα. Furthermore, we found progesterone (P4) could ameliorate Krt86 expression, induced by abnormal E2. Conclusions These results revealed the dynamic expression and regulation of Krt86, especially in hyperoestrogen treated mice, indicating it might act as a marker for non-receptive uterus.
Collapse
Affiliation(s)
- He Zhang
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, Liaoning, China.
| | - Huashan Zhao
- Center for Reproduction and Health Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xi Wang
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, Liaoning, China
| | - Xiaolin Cui
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, Liaoning, China
| | - Lingling Jin
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, Liaoning, China
| |
Collapse
|
9
|
Chen Z, Zhong M, Luo Y, Deng L, Hu Z, Song Y. Determination of rheology and surface tension of airway surface liquid: a review of clinical relevance and measurement techniques. Respir Res 2019; 20:274. [PMID: 31801520 PMCID: PMC6894196 DOI: 10.1186/s12931-019-1229-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/11/2019] [Accepted: 11/01/2019] [Indexed: 12/11/2022] Open
Abstract
By airway surface liquid, we mean a thin fluid continuum consisting of the airway lining layer and the alveolar lining layer, which not only serves as a protective barrier against foreign particles but also contributes to maintaining normal respiratory mechanics. In recent years, measurements of the rheological properties of airway surface liquid have attracted considerable clinical attention due to new advances in microrheology instruments and methods. This article reviews the clinical relevance of measurements of airway surface liquid viscoelasticity and surface tension from four main aspects: maintaining the stability of the airways and alveoli, preventing ventilator-induced lung injury, optimizing surfactant replacement therapy for respiratory syndrome distress, and characterizing the barrier properties of airway mucus to improve drug and gene delivery. Primary measuring techniques and methods suitable for determining the viscoelasticity and surface tension of airway surface liquid are then introduced with respect to principles, advantages and limitations. Cone and plate viscometers and particle tracking microrheometers are the most commonly used instruments for measuring the bulk viscosity and microviscosity of airway surface liquid, respectively, and pendant drop methods are particularly suitable for the measurement of airway surface liquid surface tension in vitro. Currently, in vivo and in situ measurements of the viscoelasticity and surface tension of the airway surface liquid in humans still presents many challenges.
Collapse
Affiliation(s)
- Zhenglong Chen
- School of Medical Instrumentation, Shanghai University of Medicine & Health Sciences, 257 Tianxiong Road, Shanghai, 201318 China
| | - Ming Zhong
- Department of Intensive Care Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032 China
| | - Yuzhou Luo
- School of Medical Instrumentation, Shanghai University of Medicine & Health Sciences, 257 Tianxiong Road, Shanghai, 201318 China
| | - Linhong Deng
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, 213164 Jiangsu China
| | - Zhaoyan Hu
- School of Medical Instrumentation, Shanghai University of Medicine & Health Sciences, 257 Tianxiong Road, Shanghai, 201318 China
| | - Yuanlin Song
- Department of Pulmonary Medicine, Zhongshan Hospital Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032 China
| |
Collapse
|
10
|
Abstract
Recent advances in three-dimensional (3D) printing technology has enabled to shape food in unique and complex 3D shapes. To showcase the capability of 3D food printing, chocolates have been commonly used as printing inks, and 3D printing based on hot-melt extrusion have been demonstrated to model 3D chocolate products. Although hot-melt extrusion of chocolates is simple, the printing requires precise control over the operating temperature in a narrow range. In this work, for the first time, we directly printed chocolate-based inks in its liquid phase using direct ink writing (DIW) 3D printer to model complex 3D shapes without temperature control. We termed this method as chocolate-based ink 3D printing (Ci3DP). The printing inks were prepared by mixing readily available chocolate syrup and paste with cocoa powders at 5 to 25 w/w% to achieve desired rheological properties. High concentrations of cocoa powders in the chocolate-based inks exhibited shear-thinning properties with viscosities ranging from 102 to 104 Pa.s; the inks also possessed finite yield stresses at rest. Rheology of the inks was analyzed by quantifying the degree of shear-thinning by fitting the experimental data of shear stress as a function of shear rate to Herschel-Bulkley model. We demonstrated fabrication of 3D models consisting of chocolate syrups and pastes mixed with the concentration of cocoa powders at 10 to 25 w/w%. The same method was extended to fabricate chocolate-based models consisting of multiple type of chocolate-based inks (e.g. semi-solid enclosure and liquid filling). The simplicity and flexibility of Ci3DP offer great potentials in fabricating complex chocolate-based products without temperature control.
Collapse
Affiliation(s)
- Rahul Karyappa
- Digital Manufacturing and Design (DManD) Centre, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Michinao Hashimoto
- Digital Manufacturing and Design (DManD) Centre, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore.
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore.
| |
Collapse
|
11
|
Furlani F, Sacco P, Cok M, de Marzo G, Marsich E, Paoletti S, Donati I. Biomimetic, Multiresponsive, and Self-Healing Lactose-Modified Chitosan (CTL)-Based Gels Formed via Competitor-Assisted Mechanism. ACS Biomater Sci Eng 2019; 5:5539-5547. [DOI: 10.1021/acsbiomaterials.9b01256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/12/2023]
Affiliation(s)
- Franco Furlani
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 5, I-34127 Trieste, Italy
| | - Pasquale Sacco
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 5, I-34127 Trieste, Italy
| | - Michela Cok
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 5, I-34127 Trieste, Italy
| | - Gaia de Marzo
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 5, I-34127 Trieste, Italy
| | - Eleonora Marsich
- Department of Medicine, Surgery, and Health Sciences, University of Trieste, Piazza dell’Ospitale 1, I-34129 Trieste, Italy
| | - Sergio Paoletti
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 5, I-34127 Trieste, Italy
| | - Ivan Donati
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 5, I-34127 Trieste, Italy
| |
Collapse
|
12
|
Mechanical loading of desmosomes depends on the magnitude and orientation of external stress. Nat Commun 2018; 9:5284. [PMID: 30538252 PMCID: PMC6290003 DOI: 10.1038/s41467-018-07523-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/16/2018] [Accepted: 11/08/2018] [Indexed: 01/19/2023] Open
Abstract
Desmosomes are intercellular adhesion complexes that connect the intermediate filament cytoskeletons of neighboring cells, and are essential for the mechanical integrity of mammalian tissues. Mutations in desmosomal proteins cause severe human pathologies including epithelial blistering and heart muscle dysfunction. However, direct evidence for their load-bearing nature is lacking. Here we develop Förster resonance energy transfer (FRET)-based tension sensors to measure the forces experienced by desmoplakin, an obligate desmosomal protein that links the desmosomal plaque to intermediate filaments. Our experiments reveal that desmoplakin does not experience significant tension under most conditions, but instead becomes mechanically loaded when cells are exposed to external mechanical stresses. Stress-induced loading of desmoplakin is transient and sensitive to the magnitude and orientation of the applied tissue deformation, consistent with a stress absorbing function for desmosomes that is distinct from previously analyzed cell adhesion complexes. Desmosomes are intercellular adhesion complexes that connect the intermediate filament cytoskeletons of neighboring cells but direct evidence for their load-bearing nature is lacking. Here the authors develop FRET-based tension sensors to measure the forces experienced by desmoplakin and infer that desmosomes become mechanically loaded when cells are exposed to external mechanical stresses.
Collapse
|
13
|
Lima LADO, Bittencourt LO, Puty B, Fernandes RM, Nascimento PC, Silva MCF, Alves-Junior SM, Pinheiro JDJV, Lima RR. Methylmercury Intoxication Promotes Metallothionein Response and Cell Damage in Salivary Glands of Rats. Biol Trace Elem Res 2018; 185:135-142. [PMID: 29332268 DOI: 10.1007/s12011-017-1230-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/19/2017] [Accepted: 12/20/2017] [Indexed: 12/20/2022]
Abstract
Environmental and occupational mercury exposure is considered a major public health issue. Despite being well known that MeHg exposure causes adverse effects in several physiologic functions, MeHg effects on salivary glands still not completely elucidated. Here, we investigated the cellular MeHg-induced damage in the three major salivary glands (parotid, submandibular, and sublingual) of adult rats after chronic, systemic and low doses of MeHg exposure. Rats were exposed by 0.04 mg/kg/day over 60 days. After that, animals were euthanized and all three glands were collected. We evaluated total Hg accumulation, metallothionein I/II (MT I/II), α-smooth muscle actin (α-SMA), and cytokeratin 18 (CK18) immune expression. Our results have showed that MeHg is able to disrupt gland tissue and to induce a protective mechanism by MT I/II expression. We also showed that cell MT production is not enough to protect gland tissue against cellular structural damage seen by reducing marking of cytoskeletal proteins as CK18 and α-SMA. Our data suggest that chronic MeHg exposure in low-daily doses is able to induce cellular damage in rat salivary glands.
Collapse
Affiliation(s)
- Leidiane Alencar de Oliveira Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Street Augusto Correa N. 01, Guamá, Belém, Para, 66075-900, Brazil
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Street Augusto Correa N. 01, Guamá, Belém, Para, 66075-900, Brazil
| | - Bruna Puty
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Street Augusto Correa N. 01, Guamá, Belém, Para, 66075-900, Brazil
| | - Rafael Monteiro Fernandes
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Street Augusto Correa N. 01, Guamá, Belém, Para, 66075-900, Brazil
| | - Priscila Cunha Nascimento
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Street Augusto Correa N. 01, Guamá, Belém, Para, 66075-900, Brazil
| | - Marcia Cristina Freitas Silva
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Street Augusto Correa N. 01, Guamá, Belém, Para, 66075-900, Brazil
| | | | | | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Street Augusto Correa N. 01, Guamá, Belém, Para, 66075-900, Brazil.
| |
Collapse
|
14
|
Hagiyama M, Yabuta N, Okuzaki D, Inoue T, Takashima Y, Kimura R, Ri A, Ito A. Modest Static Pressure Suppresses Columnar Epithelial Cell Growth in Association with Cell Shape and Cytoskeletal Modifications. Front Physiol 2017; 8:997. [PMID: 29259558 PMCID: PMC5723396 DOI: 10.3389/fphys.2017.00997] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/04/2017] [Accepted: 11/20/2017] [Indexed: 01/15/2023] Open
Abstract
Intraluminal pressure elevation can cause degenerative disorders, such as ileus and hydronephrosis, and the threshold is fairly low and constant, 20–30 cm H2O. We previously devised a novel two-chamber culture system subjecting cells cultured on a semipermeable membrane to increased culture medium height (water pressure up to 60 cm H2O). Here, we sought to determine how a continuous pressure load of ~30 cm H2O affects proliferating epithelial cells with special interest in the link with cell morphology. We cultured several different cell lines using the low static pressure-loadable two-chamber system, and examined cell growth, cell cycle, and cell morphology. Madin–Darby canine kidney (MDCK) columnar epithelial cells were growth-suppressed in a manner dependent on static water pressure ranging from 2 to 50 cm H2O, without cell cycle arrest at any specific phase. Two other types of columnar epithelial cells exhibited similar phenotypes. By contrast, spherical epithelial and mesenchymal cells were not growth-suppressed, even at 50 cm H2O. Phalloidin staining revealed that 50 cm H2O pressure load vertically flattened and laterally widened columnar epithelial cells and made actin fiber distribution sparse, without affecting total phalloidin intensity per cell. When the mucosal protectant irsogladine maleate (100 nM) was added to 50-cm-high culture medium, MDCK cells were reduced in volume and their doubling time shortened. Cell proliferation and morphology are known to be regulated by the Hippo signaling pathway. A pressure load of 50 cm H2O enhanced serine-127 phosphorylation and cytoplasmic retention of YAP, the major constituent of this pathway, suggesting that Hippo pathway was involved in the pressure-induced cell growth suppression. RNA sequencing of MDCK cells showed that a 50 cm H2O pressure load upregulated keratin 14, an intermediate filament, 12-fold. This upregulation was confirmed at the protein level by immunofluorescence, suggesting a role in cytoskeletal reinforcement. These results provide evidence that cell morphology and the cytoskeleton are closely linked to cell growth. Pathological intraluminal pressure elevation may cause mucosal degeneration by acting directly on this linkage and the Hippo pathway.
Collapse
Affiliation(s)
- Man Hagiyama
- Department of Pathology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Norikazu Yabuta
- Department of Oncogene Research, Osaka University, Suita, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Takao Inoue
- Department of Pathology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Yasutoshi Takashima
- Department of Pathology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Ryuichiro Kimura
- Department of Pathology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Aritoshi Ri
- Department of Pathology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Akihiko Ito
- Department of Pathology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| |
Collapse
|
15
|
Sanghvi-Shah R, Weber GF. Intermediate Filaments at the Junction of Mechanotransduction, Migration, and Development. Front Cell Dev Biol 2017; 5:81. [PMID: 28959689 PMCID: PMC5603733 DOI: 10.3389/fcell.2017.00081] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/30/2017] [Accepted: 08/30/2017] [Indexed: 01/04/2023] Open
Abstract
Mechanically induced signal transduction has an essential role in development. Cells actively transduce and respond to mechanical signals and their internal architecture must manage the associated forces while also being dynamically responsive. With unique assembly-disassembly dynamics and physical properties, cytoplasmic intermediate filaments play an important role in regulating cell shape and mechanical integrity. While this function has been recognized and appreciated for more than 30 years, continually emerging data also demonstrate important roles of intermediate filaments in cell signal transduction. In this review, with a particular focus on keratins and vimentin, the relationship between the physical state of intermediate filaments and their role in mechanotransduction signaling is illustrated through a survey of current literature. Association with adhesion receptors such as cadherins and integrins provides a critical interface through which intermediate filaments are exposed to forces from a cell's environment. As a consequence, these cytoskeletal networks are posttranslationally modified, remodeled and reorganized with direct impacts on local signal transduction events and cell migratory behaviors important to development. We propose that intermediate filaments provide an opportune platform for cells to both cope with mechanical forces and modulate signal transduction.
Collapse
Affiliation(s)
- Rucha Sanghvi-Shah
- Department of Biological Sciences, Rutgers University-NewarkNewark, NJ, United States
| | - Gregory F Weber
- Department of Biological Sciences, Rutgers University-NewarkNewark, NJ, United States
| |
Collapse
|
16
|
Convento MB, Pessoa EA, Cruz E, da Glória MA, Schor N, Borges FT. Calcium oxalate crystals and oxalate induce an epithelial-to-mesenchymal transition in the proximal tubular epithelial cells: Contribution to oxalate kidney injury. Sci Rep 2017; 7:45740. [PMID: 28387228 PMCID: PMC5384284 DOI: 10.1038/srep45740] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/06/2016] [Accepted: 03/06/2017] [Indexed: 01/01/2023] Open
Abstract
TGF-β1 is the main mediator of epithelial-to-mesenchymal transition (EMT). Hyperoxaluria induces crystalluria, interstitial fibrosis, and progressive renal failure. This study analyzed whether hyperoxaluria is associated with TGF-β1 production and kidney fibrosis in mice and if oxalate or calcium oxalate (CaOx) could induce EMT in proximal tubule cells (HK2) and therefore contribute to the fibrotic process. Hyperoxaluria was induced by adding hydroxyproline and ethylene glycol to the mice’s drinking water for up to 60 days. Renal function and oxalate and urinary crystals were evaluated. Kidney collagen production and TGF-β1 expression were assessed. EMT was analyzed in vitro according to TGF-β1 production, phenotypic characterization, invasion, cell migration, gene and protein expression of epithelial and mesenchymal markers. Hyperoxaluric mice showed a decrease in renal function and an increase in CaOx crystals and Ox urinary excretion. The deposition of collagen in the renal interstitium was observed. HK2 cells stimulated with Ox and CaOx exhibited a decreased expression of epithelial as well as increased expression mesenchymal markers; these cells presented mesenchymal phenotypic changes, migration, invasiveness capability and TGF-β1 production, characterizing EMT. Treatment with BMP-7 or its overexpression in HK2 cells was effective at preventing it. This mechanism may contribute to the fibrosis observed in hyperoxaluria.
Collapse
Affiliation(s)
- Marcia Bastos Convento
- Department of Medicine, Nephrology Division, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Edson Andrade Pessoa
- Department of Medicine, Nephrology Division, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Edgar Cruz
- Department of Medicine, Nephrology Division, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Maria Aparecida da Glória
- Department of Medicine, Nephrology Division, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Nestor Schor
- Department of Medicine, Nephrology Division, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Fernanda Teixeira Borges
- Department of Medicine, Nephrology Division, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.,Postgraduate Program, Health Sciences, CBS, Universidade Cruzeiro do Sul, São Paulo, Brazil
| |
Collapse
|
17
|
Dolan GK, Yakubov GE, Greene GW, Amiralian N, Annamalai PK, Martin DJ, Stokes JR. Dip-and-Drag Lateral Force Spectroscopy for Measuring Adhesive Forces between Nanofibers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:13340-13348. [PMID: 27993025 DOI: 10.1021/acs.langmuir.6b03467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/06/2023]
Abstract
Adhesive interactions between nanofibers strongly influence the mechanical behavior of soft materials composed of fibrous networks. We use atomic force microscopy in lateral force mode to drag a cantilever tip through fibrous networks, and use the measured lateral force response to determine the adhesive forces between fibers of the order of 100 nm diameter. The peaks in lateral force curves are directly related to the detachment energy between two fibers; the data is analyzed using the Jarzynski equality to yield the average adhesion energy of the weakest links. The method is successfully used to measure adhesion forces arising from van der Waals interactions between electrospun polymer fibers in networks of varying density. This approach overcomes the need to isolate and handle individual fibers, and can be readily employed in the design and evaluation of advanced materials and biomaterials which, through inspiration from nature, are increasingly incorporating nanofibers. The data obtained with this technique may also be of critical importance in the development of network models capable of predicting the mechanics of fibrous materials.
Collapse
Affiliation(s)
| | | | - George W Greene
- The Institute for Frontier Materials and The Australian Center for Excellence in Electromaterials Science, Deakin University , Waurn Ponds, VIC 3216, Australia
| | | | | | | | | |
Collapse
|
18
|
Quan FS, Kim KS. Medical applications of the intrinsic mechanical properties of single cells. Acta Biochim Biophys Sin (Shanghai) 2016; 48:865-871. [PMID: 27542404 DOI: 10.1093/abbs/gmw081] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/23/2016] [Accepted: 06/21/2016] [Indexed: 11/13/2022] Open
Abstract
The mechanical properties of single cells have been recently identified as the basis of an emerging approach in medical applications because they are closely related to the biological processes of cells and, ultimately, human health conditions. In this article, we provide a brief review of the intrinsic mechanical properties of single cells related to cancer and aging. The mechanical properties can be used as biomarkers for early cancer diagnosis because cancer cells have a lower Young's modulus, indicating higher elasticity or softness than their counterpart normal cells. The metastatic potential of cancer cells is inversely correlated with their elastic properties. Aging induces stiffness through an increased amount of cytoskeletal fiber. Changes in the mechanical properties also show potential for drug screening. Although there are several challenges to be met before clinical applications can be made, such mechanical properties of single cells may provide new approaches to human diseases.
Collapse
Affiliation(s)
- Fu-Shi Quan
- Department of Medical Zoology, College of Medicine, Kyung Hee University, Seoul 130-710, Republic of Korea
| | - Kyung Sook Kim
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul 130-710, Republic of Korea
| |
Collapse
|
19
|
Castro-Muñozledo F, Meza-Aguilar DG, Domínguez-Castillo R, Hernández-Zequinely V, Sánchez-Guzmán E. Vimentin as a Marker of Early Differentiating, Highly Motile Corneal Epithelial Cells. J Cell Physiol 2016; 232:818-830. [DOI: 10.1002/jcp.25487] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/11/2016] [Accepted: 07/11/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Federico Castro-Muñozledo
- Department of Cell Biology; Centro de Investigación y de Estudios Avanzados del IPN; México City Mexico
| | - Diana G. Meza-Aguilar
- Department of Cell Biology; Centro de Investigación y de Estudios Avanzados del IPN; México City Mexico
| | - Rocío Domínguez-Castillo
- Department of Molecular Biomedicine; Centro de Investigación y de Estudios Avanzados del IPN; México City Mexico
| | | | - Erika Sánchez-Guzmán
- Department of Cell Biology; Centro de Investigación y de Estudios Avanzados del IPN; México City Mexico
| |
Collapse
|
20
|
Affiliation(s)
- Masami Kawaguchi
- Laboratory of Colloid Rheology, Division of Chemistry for Materials, Graduate School of Engineering, Mie University, Tsu, Japan
| |
Collapse
|
21
|
van Kempen THS, Donders WP, van de Vosse FN, Peters GWM. A constitutive model for developing blood clots with various compositions and their nonlinear viscoelastic behavior. Biomech Model Mechanobiol 2016; 15:279-91. [PMID: 26045142 PMCID: PMC4792371 DOI: 10.1007/s10237-015-0686-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/31/2015] [Accepted: 05/16/2015] [Indexed: 01/19/2023]
Abstract
The mechanical properties determine to a large extent the functioning of a blood clot. These properties depend on the composition of the clot and have been related to many diseases. However, the various involved components and their complex interactions make it difficult at this stage to fully understand and predict properties as a function of the components. Therefore, in this study, a constitutive model is developed that describes the viscoelastic behavior of blood clots with various compositions. Hereto, clots are formed from whole blood, platelet-rich plasma and platelet-poor plasma to study the influence of red blood cells, platelets and fibrin, respectively. Rheological experiments are performed to probe the mechanical behavior of the clots during their formation. The nonlinear viscoelastic behavior of the mature clots is characterized using a large amplitude oscillatory shear deformation. The model is based on a generalized Maxwell model that accurately describes the results for the different rheological experiments by making the moduli and viscosities a function of time and the past and current deformation. Using the same model with different parameter values enables a description of clots with different compositions. A sensitivity analysis is applied to study the influence of parameter variations on the model output. The relative simplicity and flexibility make the model suitable for numerical simulations of blood clots and other materials showing similar behavior.
Collapse
Affiliation(s)
- Thomas H S van Kempen
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600MB, Eindhoven, The Netherlands.
| | - Wouter P Donders
- Department of Biomedical Engineering, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Frans N van de Vosse
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600MB, Eindhoven, The Netherlands
| | - Gerrit W M Peters
- Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
22
|
Marunaka R, Kawaguchi M. Rheological behavior of hydrophobic fumed silica suspensions in aromatic dispersion media. J DISPER SCI TECHNOL 2016. [DOI: 10.1080/01932691.2016.1155154] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/22/2022]
Affiliation(s)
- Risako Marunaka
- Automotive Refinish, Decorative & Protective Coatings Division, Technical Development Dept. No. 1, Kansai Paint Co., LTD, Hiratsuka, Kanagawa, Japan
| | - Masami Kawaguchi
- Laboratory of Colloid Rheology, Division of Chemistry for Materials, Graduate School of Engineering, Mie University, Tsu, Mie, Japan
| |
Collapse
|
23
|
Fu J, Guerette PA, Miserez A. Self-Assembly of Recombinant Hagfish Thread Keratins Amenable to a Strain-Induced α-Helix to β-Sheet Transition. Biomacromolecules 2015; 16:2327-39. [PMID: 26102237 DOI: 10.1021/acs.biomac.5b00552] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
Abstract
Hagfish slime threads are assembled from protein-based bundles of intermediate filaments (IFs) that undergo a strain-induced α-helical coiled-coil to β-sheet transition. Draw processing of native fibers enables the creation of mechanically tuned materials, and under optimized conditions this process results in mechanical properties similar to spider dragline silk. In this study, we develop the foundation for the engineering of biomimetic recombinant hagfish thread keratin (TK)-based materials. The two protein constituents from the hagfish Eptatretus stoutii thread, named EsTKα and EsTKγ, were expressed in Escherichia coli and purified. Individual (rec)EsTKs and mixtures thereof were subjected to stepwise dialysis to evaluate their protein solubility, folding, and self-assembly propensities. Conditions were identified that resulted in the self-assembly of coiled-coil rich IF-like filaments, as determined by circular dichroism (CD) and transmission electron microscopy (TEM). Rheology experiments indicated that the concentrated filaments assembled into gel-like networks exhibiting a rheological response reminiscent to that of IFs. Notably, the self-assembled filaments underwent an α-helical coiled-coil to β-sheet transition when subjected to oscillatory shear, thus mimicking the critical characteristic responsible for mechanical strengthening of native hagfish threads. We propose that our data establish the foundation to create robust and tunable recombinant TK-based materials whose mechanical properties are controlled by a strain-induced α-helical coiled-coil to β-sheet transition.
Collapse
Affiliation(s)
- Jing Fu
- †School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Paul A Guerette
- †School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798.,‡Energy Research Institute at Nanyang Technological University (ERI@N), 50 Nanyang Drive, Singapore, 637553
| | - Ali Miserez
- †School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798.,§School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive Singapore 637551
| |
Collapse
|
24
|
Block J, Schroeder V, Pawelzyk P, Willenbacher N, Köster S. Physical properties of cytoplasmic intermediate filaments. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:3053-64. [PMID: 25975455 DOI: 10.1016/j.bbamcr.2015.05.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/13/2015] [Revised: 04/28/2015] [Accepted: 05/05/2015] [Indexed: 11/29/2022]
Abstract
Intermediate filaments (IFs) constitute a sophisticated filament system in the cytoplasm of eukaryotes. They form bundles and networks with adapted viscoelastic properties and are strongly interconnected with the other filament types, microfilaments and microtubules. IFs are cell type specific and apart from biochemical functions, they act as mechanical entities to provide stability and resilience to cells and tissues. We review the physical properties of these abundant structural proteins including both in vitro studies and cell experiments. IFs are hierarchical structures and their physical properties seem to a large part be encoded in the very specific architecture of the biopolymers. Thus, we begin our review by presenting the assembly mechanism, followed by the mechanical properties of individual filaments, network and structure formation due to electrostatic interactions, and eventually the mechanics of in vitro and cellular networks. This article is part of a Special Issue entitled: Mechanobiology.
Collapse
Affiliation(s)
- Johanna Block
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Viktor Schroeder
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Göttingen, Germany; Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany
| | - Paul Pawelzyk
- Institute of Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Norbert Willenbacher
- Institute of Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Sarah Köster
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Göttingen, Germany; Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany.
| |
Collapse
|
25
|
Abstract
The study of cytoskeletal polymers has been an active area of research for more than 70 years. However, despite decades of pioneering work by some of the brightest scientists in biochemistry, cell biology, and physiology, many central questions regarding the polymers themselves are only now starting to be answered. For example, although it has long been appreciated that the actin cytoskeleton provides contractility and couples biochemical responses with mechanical stresses in cells, only recently have we begun to understand how the actin polymer itself responds to mechanical loads. Likewise, although it has long been appreciated that the microtubule cytoskeleton can be post-translationally modified, only recently have the enzymes responsible for these modifications been characterized, so that we can now begin to understand how these modifications alter the polymerization and regulation of microtubule structures. Even the septins in eukaryotes and the cytoskeletal polymers of prokaryotes have yielded new insights due to recent advances in microscopy techniques. In this thematic series of minireviews, these topics are covered by some of the very same scientists who generated these recent insights, thereby providing us with an overview of the State of the Cytoskeleton in 2015.
Collapse
Affiliation(s)
- Robert S Fischer
- From the NHLBI, National Institutes of Health, Bethesda, Maryland 20892 and
| | - Velia M Fowler
- the Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
26
|
van Kempen THS, Peters GWM, van de Vosse FN. A constitutive model for the time-dependent, nonlinear stress response of fibrin networks. Biomech Model Mechanobiol 2015; 14:995-1006. [PMID: 25618024 PMCID: PMC4563000 DOI: 10.1007/s10237-015-0649-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/12/2014] [Accepted: 01/09/2015] [Indexed: 11/29/2022]
Abstract
Blood clot formation is important to prevent blood loss in case of a vascular injury but disastrous when it occludes the vessel. As the mechanical properties of the clot are reported to be related to many diseases, it is important to have a good understanding of their characteristics. In this study, a constitutive model is presented that describes the nonlinear viscoelastic properties of the fibrin network, the main structural component of blood clots. The model is developed using results of experiments in which the fibrin network is subjected to a large amplitude oscillatory shear (LAOS) deformation. The results show three dominating nonlinear features: softening over multiple deformation cycles, strain stiffening and increasing viscous dissipation during a deformation cycle. These features are incorporated in a constitutive model based on the Kelvin–Voigt model. A network state parameter is introduced that takes into account the influence of the deformation history of the network. Furthermore, in the period following the LAOS deformation, the stiffness of the networks increases which is also incorporated in the model. The influence of cross-links created by factor XIII is investigated by comparing fibrin networks that have polymerized for 1 and 2 h. A sensitivity analysis provides insights into the influence of the eight fit parameters. The model developed is able to describe the rich, time-dependent, nonlinear behavior of the fibrin network. The model is relatively simple which makes it suitable for computational simulations of blood clot formation and is general enough to be used for other materials showing similar behavior.
Collapse
Affiliation(s)
- Thomas H S van Kempen
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600MB, Eindhoven, The Netherlands,
| | | | | |
Collapse
|
27
|
Nolting JF, Möbius W, Köster S. Mechanics of individual keratin bundles in living cells. Biophys J 2014; 107:2693-9. [PMID: 25468348 PMCID: PMC4255224 DOI: 10.1016/j.bpj.2014.10.039] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/18/2014] [Revised: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 12/04/2022] Open
Abstract
Along with microtubules and microfilaments, intermediate filaments are a major component of the eukaryotic cytoskeleton and play a key role in cell mechanics. In cells, keratin intermediate filaments form networks of bundles that are sparser in structure and have lower connectivity than, for example, actin networks. Because of this, bending and buckling play an important role in these networks. Buckling events, which occur due to compressive intracellular forces and cross-talk between the keratin network and other cytoskeletal components, are measured here in situ. By applying a mechanical model for the bundled filaments, we can access the mechanical properties of both the keratin bundles themselves and the surrounding cytosol. Bundling is characterized by a coupling parameter that describes the strength of the linkage between the individual filaments within a bundle. Our findings suggest that coupling between the filaments is mostly complete, although it becomes weaker for thicker bundles, with some relative movement allowed.
Collapse
Affiliation(s)
- Jens-Friedrich Nolting
- Institute for X-Ray Physics, Georg-August-Universität Göttingen, Göttingen, Germany; Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Wiebke Möbius
- Max Planck Institute of Experimental Medicine, Department of Neurogenetics, Göttingen, Germany; Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Sarah Köster
- Institute for X-Ray Physics, Georg-August-Universität Göttingen, Göttingen, Germany; Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.
| |
Collapse
|
28
|
Castro-Muñozledo F, Velez-DelValle C, Marsch-Moreno M, Hernández-Quintero M, Kuri-Harcuch W. Vimentin is necessary for colony growth of human diploid keratinocytes. Histochem Cell Biol 2014; 143:45-57. [PMID: 25142512 DOI: 10.1007/s00418-014-1262-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 08/08/2014] [Indexed: 01/08/2023]
Abstract
The role of vimentin (Vim) in diploid epithelial cells is not well known. To understand its biological function, we cultured human epidermal keratinocytes under conditions that support migration, proliferation, stratification and terminal differentiation. We identified a keratinocyte subpopulation that shows a p63(+)/α5β1(bright) phenotype and displays Vim intermediate filaments (IFs) besides their keratin IF network. These cells were mainly located at the proliferative/migratory rim of the growing colonies; but also, they were scarce and scattered or formed small groups of basal cells in confluent stratified epithelia. Stimulation of cells with EGF and wounding experiments in confluent arrested epithelia increased the number of Vim(+) keratinocytes in an extent higher to the expected for a cell population doubling. BrdU labeling demonstrated that most of the proliferative cells located at the migratory border of the colony have Vim, in contrast with proliferative cells located at the basal layer at the center of big colonies which lacked of Vim IFs, suggesting that Vim expression was not solely linked to proliferation. Therefore, we silenced Vim mRNA in the cultured keratinocytes and observed an inhibition of colony growth. Such results, together with long-term cultivation assays which showed that Vim might be associated to pattern formation in cultured epithelia, suggest that Vim expression is essential for a highly motile phenotype, which is necessary for keratinocyte colony growth and possibly for development and wound healing. Vim(+)/p63(+)/α5β1(bright) epithelial cells may play a significant physiological role in embryonic morphogenetic movements; wound healing and other pathologies such as carcinomas and hyperproliferative diseases.
Collapse
Affiliation(s)
- Federico Castro-Muñozledo
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN Apdo, Postal 14-740, 07000, Mexico City, Mexico,
| | | | | | | | | |
Collapse
|
29
|
Marunaka R, Kawaguchi M. Rheological behavior of hydrophobic fumed silica suspensions in different alkanes. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2014.05.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/25/2022]
|
30
|
Pawelzyk P, Mücke N, Herrmann H, Willenbacher N. Attractive interactions among intermediate filaments determine network mechanics in vitro. PLoS One 2014; 9:e93194. [PMID: 24690778 PMCID: PMC3972185 DOI: 10.1371/journal.pone.0093194] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/11/2014] [Accepted: 02/28/2014] [Indexed: 01/11/2023] Open
Abstract
Mechanical and structural properties of K8/K18 and vimentin intermediate filament (IF) networks have been investigated using bulk mechanical rheometry and optical microrheology including diffusing wave spectroscopy and multiple particle tracking. A high elastic modulus G0 at low protein concentration c, a weak concentration dependency of G0 (G0∼c0.5±0.1) and pronounced strain stiffening are found for these systems even without external crossbridgers. Strong attractive interactions among filaments are required to maintain these characteristic mechanical features, which have also been reported for various other IF networks. Filament assembly, the persistence length of the filaments and the network mesh size remain essentially unaffected when a nonionic surfactant is added, but strain stiffening is completely suppressed, G0 drops by orders of magnitude and exhibits a scaling G0∼c1.9±0.2 in agreement with microrheological measurements and as expected for entangled networks of semi-flexible polymers. Tailless K8Δ/K18ΔT and various other tailless filament networks do not exhibit strain stiffening, but still show high G0 values. Therefore, two binding sites are proposed to exist in IF networks. A weaker one mediated by hydrophobic amino acid clusters in the central rod prevents stretched filaments between adjacent cross-links from thermal equilibration and thus provides the high G0 values. Another strong one facilitating strain stiffening is located in the tail domain with its high fraction of hydrophobic amino acid sequences. Strain stiffening is less pronounced for vimentin than for K8/K18 due to electrostatic repulsion forces partly compensating the strong attraction at filament contact points.
Collapse
Affiliation(s)
- Paul Pawelzyk
- Institute for Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Norbert Mücke
- Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, Germany
| | - Harald Herrmann
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
| | - Norbert Willenbacher
- Institute for Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- * E-mail:
| |
Collapse
|
31
|
Liu Q, Bao H, Xi C, Miao H. Rheological characterization of tuna myofibrillar protein in linear and nonlinear viscoelastic regions. J FOOD ENG 2014. [DOI: 10.1016/j.jfoodeng.2013.08.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/26/2022]
|
32
|
E L, T H S VK, F P T B, G W M P, C W J O. Large amplitude oscillatory shear properties of human skin. J Mech Behav Biomed Mater 2013; 28:462-70. [PMID: 23453828 DOI: 10.1016/j.jmbbm.2013.01.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/26/2012] [Revised: 01/23/2013] [Accepted: 01/30/2013] [Indexed: 11/19/2022]
Abstract
Skin is a complex multi-layered tissue, with highly non-linear viscoelastic and anisotropic properties. Thus far, a few studies have been performed to directly measure the mechanical properties of three distinguished individual skin layers; epidermis, dermis and hypodermis. These studies however, suffer from several disadvantages such as skin damage due to separation, and disruption of the complex multi-layered composition. In addition, most studies are limited to linear shear measurements, i.e. measurements with small linear deformations (also called small amplitude oscillatory shear experiments), whereas in daily life skin can experience high strains, due to for example shaving or walking. To get around these disadvantages and to measure the non-linear mechanical (shear) behavior, we used through-plane human skin to measure large amplitude oscillatory shear (LAOS) deformation up to a strain amplitude of 0.1. LAOS deformation was combined with real-time image recording and subsequent digital image correlation and strain field analysis to determine skin layer deformations. Results demonstrated that deformation at large strains became highly non-linear by showing intra-cycle strain stiffening and inter-cycle shear thinning. Digital image correlation revealed that dynamic shear moduli gradually decreased from 8kPa at the superficial epidermal layer down to a stiffness of 2kPa in the dermis. From the results we can conclude that, from a mechanical point of view, skin should be considered as a complex composite with gradually varying shear properties rather than a three layered tissue.
Collapse
Affiliation(s)
- Lamers E
- Soft Biomechanics & Tissue Engineering, Biomedical Engineering, Eindhoven University of Technology, Den Dolech 2, Gem-Z. 4.103, PO Box 513, 5600 MB Eindhoven, The Netherlands.
| | | | | | | | | |
Collapse
|
33
|
Miserez A, Guerette PA. Phase transition-induced elasticity of α-helical bioelastomeric fibres and networks. Chem Soc Rev 2013; 42:1973-95. [DOI: 10.1039/c2cs35294j] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
|
34
|
Leitner A, Paust T, Marti O, Walther P, Herrmann H, Beil M. Properties of intermediate filament networks assembled from keratin 8 and 18 in the presence of Mg²+. Biophys J 2012; 103:195-201. [PMID: 22853896 PMCID: PMC3403007 DOI: 10.1016/j.bpj.2012.06.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/25/2012] [Revised: 06/04/2012] [Accepted: 06/06/2012] [Indexed: 01/10/2023] Open
Abstract
The mechanical properties of epithelial cells are modulated by structural changes in keratin intermediate filament networks. To investigate the relationship between network architecture and viscoelasticity, we assembled keratin filaments from recombinant keratin proteins 8 (K8) and 18 (K18) in the presence of divalent ions (Mg(2+)). We probed the viscoelastic modulus of the network by tracking the movement of microspheres embedded in the network during assembly, and studied the network architecture using scanning electron microscopy. Addition of Mg(2+) at physiological concentrations (<1 mM) resulted in networks whose structure was similar to that of keratin networks in epithelial cells. Moreover, the elastic moduli of networks assembled in vitro were found to be within the same magnitude as those measured in keratin networks of detergent-extracted epithelial cells. These findings suggest that Mg(2+)-induced filament cross-linking represents a valid model for studying the cytoskeletal mechanics of keratin networks.
Collapse
Affiliation(s)
- Anke Leitner
- Institut für Experimentelle Physik, University of Ulm, Ulm, Germany
| | - Tobias Paust
- Institut für Experimentelle Physik, University of Ulm, Ulm, Germany
| | - Othmar Marti
- Institut für Experimentelle Physik, University of Ulm, Ulm, Germany
| | - Paul Walther
- Electron Microscopy Facility, University of Ulm, Ulm, Germany
| | - Harald Herrmann
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
| | - Michael Beil
- Department of Medicine I, University of Ulm, Ulm, Germany
| |
Collapse
|
35
|
Hyun K, Wilhelm M, Klein CO, Cho KS, Nam JG, Ahn KH, Lee SJ, Ewoldt RH, McKinley GH. A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS). Prog Polym Sci 2011. [DOI: 10.1016/j.progpolymsci.2011.02.002] [Citation(s) in RCA: 907] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/26/2022]
|
36
|
Kiss B, Röhlich P, Kellermayer MSZ. Structure and elasticity of desmin protofibrils explored with scanning force microscopy. J Mol Recognit 2011; 24:1095-104. [DOI: 10.1002/jmr.1158] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/10/2022]
Affiliation(s)
- Balázs Kiss
- Department of Biophysics and Radiation Biology; Faculty of Medicine, Semmelweis University; Tűzoltó u. 37-47; Budapest; H-1094; Hungary
| | - Pál Röhlich
- Department of Human Morphology and Developmental Biology; Semmelweis University, Faculty of Medicine; Tűzoltó u. 58; Budapest; H-1094; Hungary
| | - Miklós S. Z. Kellermayer
- Department of Biophysics and Radiation Biology; Faculty of Medicine, Semmelweis University; Tűzoltó u. 37-47; Budapest; H-1094; Hungary
| |
Collapse
|
37
|
Strategies and challenges for the mechanical modeling of biological and bio-inspired materials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2011. [DOI: 10.1016/j.msec.2010.11.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/30/2022]
|
38
|
Holt B, Tripathi A, Morgan JR. Designing polyHEMA substrates that mimic the viscoelastic response of soft tissue. J Biomech 2011; 44:1491-8. [PMID: 21496821 DOI: 10.1016/j.jbiomech.2011.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/08/2010] [Revised: 03/01/2011] [Accepted: 03/08/2011] [Indexed: 11/25/2022]
Abstract
Matching the mechanical properties of a biomaterial to soft tissue is often overlooked despite the fact that it is well known that cells respond to and are capable of changing their mechanical environment. In this paper, we used NaCl and alginate beads as porogens to make a series of micro- and macro-porous pHEMA substrates (poly(2-hydroxyethly methacrylate)) and quantified their mechanical behavior under low-magnitude shear loads over physiologically relevant frequencies. Using a stress-controlled rheometer, we performed isothermal (37°C) frequency response experiments between 0.628 and 75.4rad/s (0.01-12Hz) at 0.1% strain. Both micro- and macro-porous pHEMA substrates were predominately elastic in nature with a narrow range of G' and G″ values that mimicked the response of human skin. The magnitude of the G' and G″ values of the macro-porous substrates were designed to closely match human skin. To determine how cell growth might alter their mechanical properties, pHEMA substrates were functionalized and human skin fibroblasts grown on them for fourteen days. As a result of cell growth, the magnitude of G' and G″ increased at low frequencies while also altering the degree of high frequency dependence, indicating that cellular interactions with the micro-pore infrastructure has a profound effect on the viscoelastic behavior of the substrates. These data could be fit to a mathematical model describing a soft-solid. A quantitative understanding of the mechanical behavior of biomaterials in regimes that are physiologically relevant and how these mechanics may change after implantation may aid in the design of new materials.
Collapse
Affiliation(s)
- Brian Holt
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Box GB-393, Brown University, Providence, RI 02912, USA
| | | | | |
Collapse
|
39
|
|
40
|
Hydrophobic Proteome Analysis of Triple Negative and Hormone-Receptor-Positive-Her2-Negative Breast Cancer by Mass Spectrometer. Clin Proteomics 2010; 6:93-103. [PMID: 20930921 PMCID: PMC2937135 DOI: 10.1007/s12014-010-9052-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/18/2022] Open
Abstract
Introduction It is widely believed that discovery of specific, sensitive, and reliable tumor biomarkers can improve the treatment of cancer. Currently, there are no obvious targets that can be used in treating triple-negative breast cancer (TNBC). Methods To better understand TNBC and find potential biomarkers for targeted treatment, we combined a novel hydrophobic fractionation protocol with mass spectrometry LTQ-orbitrap to explore and compare the hydrophobic sub-proteome of TNBC with another subtype of breast cancer, hormone-receptor-positive-Her2-negative breast cancer (non-TNBC). Results Hydrophobic sub-proteome of breast cancer is rich in membrane proteins. Hundreds of proteins with various defined key cellular functions were identified from TNBC and non-TNBC tumors. In this study, protein profiles of TNBC and non-TNBC were systematically examined, compared, and validated. We have found that nine keratins are down-regulated and several heat shock proteins are up-regulated in TNBC tissues. Our study may provide insights of molecules that are responsible for the aggressiveness of TNBC. Conclusion The initial results obtained using a combination of hydrophobic fractionation and nano-LC mass spectrometry analysis of these proteins appear promising in the discovery of potential cancer biomarkers and bio-signatures. When sufficiently refined, this approach may prove useful in improving breast cancer treatment.
Collapse
|
41
|
Lulevich V, Yang HY, Isseroff RR, Liu GY. Single cell mechanics of keratinocyte cells. Ultramicroscopy 2010; 110:1435-42. [PMID: 20728993 DOI: 10.1016/j.ultramic.2010.07.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/14/2010] [Revised: 07/05/2010] [Accepted: 07/27/2010] [Indexed: 10/19/2022]
Abstract
Keratinocytes represent the major cell type of the uppermost layer of human skin, the epidermis. Using AFM-based single cell compression, the ability of individual keratinocytes to resist external pressure and global rupturing forces is investigated and compared with various cell types. Keratinocytes are found to be 6-70 times stiffer than other cell types, such as white blood, breast epithelial, fibroblast, or neuronal cells, and in contrast to other cell types they retain high mechanic strength even after the cell's death. The absence of membrane rupturing peaks in the force-deformation profiles of keratinocytes and their high stiffness during a second load cycle suggests that their unique mechanical resistance is dictated by the cytoskeleton. A simple analytical model enables the quantification of Young's modulus of keratinocyte cytoskeleton, as high as 120-340 Pa. Selective disruption of the two major cytoskeletal networks, actin filaments and microtubules, does not significantly affect keratinocyte mechanics. F-actin is found to impact cell deformation under pressure. During keratinocyte compression, the plasma membrane stretches to form peripheral blebs. Instead of blebbing, cells with depolymerized F-actin respond to pressure by detaching the plasma membrane from the cytoskeleton underneath. On the other hand, the compression force of keratinocytes expressing a mutated keratin (cell line, KEB-7) is 1.6-2.2 times less than that for the control cell line that has normal keratin networks. Therefore, we infer that the keratin intermediate filament network is responsible for the extremely high keratinocyte stiffness and resilience. This could manifest into the rugged protective nature of the human epidermis.
Collapse
Affiliation(s)
- Valentin Lulevich
- Department of Chemistry, University of California, One Shields Ave., Davis, CA 95616, USA
| | | | | | | |
Collapse
|
42
|
Esue O, Rupprecht L, Sun SX, Wirtz D. Dynamics of the bacterial intermediate filament crescentin in vitro and in vivo. PLoS One 2010; 5:e8855. [PMID: 20140233 PMCID: PMC2816638 DOI: 10.1371/journal.pone.0008855] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/11/2009] [Accepted: 01/04/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Crescentin, the recently discovered bacterial intermediate filament protein, organizes into an extended filamentous structure that spans the length of the bacterium Caulobacter crescentus and plays a critical role in defining its curvature. The mechanism by which crescentin mediates cell curvature and whether crescentin filamentous structures are dynamic and/or polar are not fully understood. METHODOLOGY/PRINCIPAL FINDINGS Using light microscopy, electron microscopy and quantitative rheology, we investigated the mechanics and dynamics of crescentin structures. Live-cell microscopy reveals that crescentin forms structures in vivo that undergo slow remodeling. The exchange of subunits between these structures and a pool of unassembled subunits is slow during the life cycle of the cell however; in vitro assembly and gelation of C. crescentus crescentin structures are rapid. Moreover, crescentin forms filamentous structures that are elastic, solid-like, and, like other intermediate filaments, can recover a significant portion of their network elasticity after shear. The assembly efficiency of crescentin is largely unaffected by monovalent cations (K(+), Na(+)), but is enhanced by divalent cations (Mg(2+), Ca(2+)), suggesting that the assembly kinetics and micromechanics of crescentin depend on the valence of the ions present in solution. CONCLUSIONS/SIGNIFICANCE These results indicate that crescentin forms filamentous structures that are elastic, labile, and stiff, and that their low dissociation rate from established structures controls the slow remodeling of crescentin in C. crescentus.
Collapse
Affiliation(s)
- Osigwe Esue
- Department of Pharmaceutical Development, Genentech, South San Francisco, California, United States of America.
| | | | | | | |
Collapse
|
43
|
Mendez MG, Kojima SI, Goldman RD. Vimentin induces changes in cell shape, motility, and adhesion during the epithelial to mesenchymal transition. FASEB J 2010; 24:1838-51. [PMID: 20097873 DOI: 10.1096/fj.09-151639] [Citation(s) in RCA: 683] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022]
Abstract
Vimentin is used widely as a marker of the epithelial to mesenchymal transitions (EMTs) that take place during embryogenesis and metastasis, yet the functional implications of the expression of this type III intermediate filament (IF) protein are poorly understood. Using form factor analysis and quantitative Western blotting of normal, metastatic, and vimentin-null cell lines, we show that the level of expression of vimentin IFs (VIFs) correlates with mesenchymal cell shape and motile behavior. The reorganization of VIFs caused by expressing a dominant-negative mutant or by silencing vimentin with shRNA (neither of which alter microtubule or microfilament assembly) causes mesenchymal cells to adopt epithelial shapes. Following the microinjection of vimentin or transfection with vimentin cDNA, epithelial cells rapidly adopt mesenchymal shapes coincident with VIF assembly. These shape transitions are accompanied by a loss of desmosomal contacts, an increase in cell motility, and a significant increase in focal adhesion dynamics. Our results demonstrate that VIFs play a predominant role in the changes in shape, adhesion, and motility that occur during the EMT.
Collapse
Affiliation(s)
- Melissa G Mendez
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | |
Collapse
|
44
|
Samarbakhsh A, Tuszynski JA. Viscous drag effect in the flexural rigidity and cantilever stiffness of bio- and nano-filaments measured with the shooting-bead method. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:011903. [PMID: 19658725 DOI: 10.1103/physreve.80.011903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/28/2008] [Revised: 05/25/2009] [Indexed: 05/22/2023]
Abstract
The so-called shooting-bead method is a fast and easy experimental technique for evaluating cantilever stiffness and flexural rigidity of semiflexible to semirigid rodlike biological and nano-filaments based on the measurement of just two distances. In this paper we have derived the shooting-bead formula for cantilever stiffness and flexural rigidity taking into account the effects of the viscous drag force exerted on the filament itself. To this end, we have defined a key variable, called the filament energy-loss factor (or filament drag factor), which accounts for all the energy-loss effects. It has been shown that due to the logarithmic dependence of the filament energy-loss factor on the radius and the length of the filament, inclusion of this factor in the formula for the flexural rigidity has a very noticeable effect on the result even for very thin or long filaments. It has also been shown that the effect due to the consideration of filament energy-loss factor on calculation of the flexural rigidity increases with increasing the flexibility of the filament. We have also considered various sources of experimental error and estimated their effects.
Collapse
Affiliation(s)
- Abdorreza Samarbakhsh
- Department of Physics, University of Alberta, 11322-89 Avenue, Edmonton, Alberta, Canada T6G 2G7.
| | | |
Collapse
|
45
|
Fudge DS, Winegard T, Ewoldt RH, Beriault D, Szewciw L, McKinley GH. From ultra-soft slime to hard {alpha}-keratins: The many lives of intermediate filaments. Integr Comp Biol 2009; 49:32-9. [PMID: 21669844 DOI: 10.1093/icb/icp007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/14/2022] Open
Abstract
Intermediate filaments are filaments 10 nm in diameter that make up an important component of the cytoskeleton in most metazoan taxa. They are most familiar for their role as the fibrous component of α-keratins such as skin, hair, nail, and horn but are also abundant within living cells. Although they are almost exclusively intracellular in their distribution, in the case of the defensive slime produced by hagfishes, they are secreted. This article surveys the impressive diversity of biomaterials that animals construct from intermediate filaments and will focus on the mechanisms by which the mechanical properties of these materials are achieved. Hagfish slime is a dilute network of hydrated mucus and compliant intermediate filament bundles with ultrasoft material properties. Within the cytoplasm of living cells, networks of intermediate filaments form soft gels whose elasticity arises via entropic mechanisms. Single intermediate filaments or bundles are also elastic, but substantially stiffer, exhibiting modulus values similar to that of rubber. Hard α-keratins like wool are stiffer still, an effect that is likely achieved via dehydration of the intermediate filaments in these epidermal appendages. The diverse mechanisms described here have been employed by animals to generate materials with stiffness values that span an impressive eleven orders of magnitude.
Collapse
Affiliation(s)
- Douglas S Fudge
- *Department of Integrative Biology, University of Guelph, Guelph, ON N1G-2W1, Canada; Hatsopoulos Microfluids Laboratory, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
46
|
Desmin and vimentin intermediate filament networks: their viscoelastic properties investigated by mechanical rheometry. J Mol Biol 2009; 388:133-43. [PMID: 19281820 DOI: 10.1016/j.jmb.2009.03.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/16/2008] [Revised: 03/02/2009] [Accepted: 03/03/2009] [Indexed: 02/01/2023]
Abstract
We have investigated the viscoelastic properties of the cytoplasmic intermediate filament (IF) proteins desmin and vimentin. Mechanical measurements were supported by time-dependent electron microscopy studies of the assembly process under similar conditions. Network formation starts within 2 min, but it takes more than 30 min until equilibrium mechanical network strength is reached. Filament bundling is more pronounced for desmin than for vimentin. Desmin filaments (persistence length l(p) approximately 900 nm) are stiffer than vimentin filaments (l(p) approximately 400 nm), but both IFs are much more flexible than microfilaments. The concentration dependence of the plateau modulus G(0) approximately c(alpha) is much weaker than predicted theoretically for networks of semiflexible filaments. This is more pronounced for vimentin (alpha=0.47) than for desmin (alpha=0.70). Both networks exhibit strain stiffening at large shear deformations. At the transition from linear to nonlinear viscoelastic response, only desmin shows characteristics of nonaffine network deformation. Strain stiffening and the maximum modulus occur at strain amplitudes about an order of magnitude larger than those for microfilaments. This is probably attributable to axial slippage within the tetramer building blocks of the IFs. Network deformation beyond a critical strain gamma(max) results in irreversible damage. Strain stiffening sets in at lower concentrations, is more pronounced, and is less sensitive to ionic strength for desmin than for vimentin. Hence, desmin exhibits strain stiffening even at low-salt concentrations, which is not observed for vimentin, and we conclude that the strength of electrostatic repulsion compared to the strength of attractive interactions forming the network junctions is significantly weaker for desmin than for vimentin filaments. These findings indicate that both IFs exhibit distinct mechanical properties that are adapted to their respective cellular surroundings [i.e., myocytes (desmin) and fibroblasts (vimentin)].
Collapse
|
47
|
Hachiya A, Sriwiriyanont P, Fujimura T, Ohuchi A, Kitahara T, Takema Y, Kitzmiller WJ, Visscher MO, Tsuboi R, Boissy RE. Mechanistic effects of long-term ultraviolet B irradiation induce epidermal and dermal changes in human skin xenografts. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:401-13. [PMID: 19147832 DOI: 10.2353/ajpath.2009.070500] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/25/2022]
Abstract
UVB irradiation has been reported to induce photoaging and suppress systemic immune function that could lead to photocarcinogenesis. However, because of the paucity of an UVB-induced photodamaged skin model, precise and temporal mechanism(s) underlying the deleterious effects of long-term UVB exposure on human skin have yet to be delineated. In this study, we established a model using human skin xenografted onto severe combined immunodeficient mice, which were subsequently challenged by repeated UVB irradiation for 6 weeks. Three-dimensional optical image analysis of skin replicas and noninvasive biophysical measurements illustrated a significant increase in skin surface roughness, similar to premature photoaging, and a significant loss of skin elasticity after long-term UVB exposure. Resembling authentically aged skin, UVB-exposed samples exhibited significant increases in epithelial keratins (K6, K16, K17), elastins, and matrix metalloproteinases (MMP-1, MMP-9, MMP-12) as well as degradation of collagens (I, IV, VII). The UVB-induced deterioration of fibrous keratin intermediate filaments was also observed in the stratum corneum. Additionally, similarities in gene expression patterns between our model and chronologically aged skin substantiated the plausible relationship between photodamage and chronological age. Furthermore, severe skin photodamage was observed when neutralizing antibodies against TIMP-1, an endogenous inhibitor of MMPs, were administered during the UVB exposure regimen. Taken together, these findings suggest that our skin xenograft model recapitulates premature photoaged skin and provides a comprehensive tool with which to assess the deleterious effects of UVB irradiation.
Collapse
|
48
|
Holt B, Tripathi A, Morgan J. Viscoelastic response of human skin to low magnitude physiologically relevant shear. J Biomech 2008; 41:2689-95. [PMID: 18672246 DOI: 10.1016/j.jbiomech.2008.06.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/22/2008] [Revised: 05/08/2008] [Accepted: 06/07/2008] [Indexed: 11/28/2022]
Abstract
Percutaneous implants are a family of devices that penetrate the skin and all suffer from the same problems of infection because the skin seal around the device is not optimal. Contributing to this problem is the mechanical discontinuity of the skin/device interface leading to stress concentrations and micro-trauma that chronically breaks any seal that forms. In this paper, we have quantified the mechanical behavior of human skin under low-magnitude shear loads over physiological relevant frequencies. Using a stress-controlled rheometer, we have performed isothermal (37 degrees C) frequency response experiments between 0.628 and 75.39 rad/s at 0.5% and 0.04% strain on whole skin and dermis-only, respectively. Step-stress experiments of 5 and 10 Pa shear loads were also conducted as were strain sweep tests (6.28 rad/s). Measurements were made of whole human skin and skin from which the epidermis was removed (dermis-only). At low frequencies (0.628-10 rad/s), the moduli are only slightly frequency dependent, with approximate power-law scaling of the moduli, G' approximately G'' approximately omega(beta), yielding beta=0.05 for whole skin and beta=0.16 for dermis-only samples. Step-stress experiments revealed three distinct phases. The intermediate phase included elastic "ringing" (damped oscillation) which provided new insights and could be fit to a mathematical model. Both the frequency and step-stress response data suggest that the epidermis provides an elastic rigidity and dermis provides viscoelasticity to the whole skin samples. Hence, whole skin exhibited strain hardening while the dermis-only demonstrated stress softening under step-stress conditions. The data obtained from the low-magnitude shear loads and frequencies that approximate the chronic mechanical environment of a percutaneous implant should aid in the design of a device with an improved skin seal.
Collapse
Affiliation(s)
- Brian Holt
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, 171 Meeting Street, G-B393, Providence, RI 02912, USA
| | | | | |
Collapse
|
49
|
Fudge D, Russell D, Beriault D, Moore W, Lane EB, Vogl AW. The intermediate filament network in cultured human keratinocytes is remarkably extensible and resilient. PLoS One 2008; 3:e2327. [PMID: 18523546 PMCID: PMC2390850 DOI: 10.1371/journal.pone.0002327] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/03/2007] [Accepted: 04/22/2008] [Indexed: 01/11/2023] Open
Abstract
The prevailing model of the mechanical function of intermediate filaments in cells assumes that these 10 nm diameter filaments make up networks that behave as entropic gels, with individual intermediate filaments never experiencing direct loading in tension. However, recent work has shown that single intermediate filaments and bundles are remarkably extensible and elastic in vitro, and therefore well-suited to bearing tensional loads. Here we tested the hypothesis that the intermediate filament network in keratinocytes is extensible and elastic as predicted by the available in vitro data. To do this, we monitored the morphology of fluorescently-tagged intermediate filament networks in cultured human keratinocytes as they were subjected to uniaxial cell strains as high as 133%. We found that keratinocytes not only survived these high strains, but their intermediate filament networks sustained only minor damage at cell strains as high as 100%. Electron microscopy of stretched cells suggests that intermediate filaments are straightened at high cell strains, and therefore likely to be loaded in tension. Furthermore, the buckling behavior of intermediate filament bundles in cells after stretching is consistent with the emerging view that intermediate filaments are far less stiff than the two other major cytoskeletal components F-actin and microtubules. These insights into the mechanical behavior of keratinocytes and the cytokeratin network provide important baseline information for current attempts to understand the biophysical basis of genetic diseases caused by mutations in intermediate filament genes.
Collapse
Affiliation(s)
- Douglas Fudge
- Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, Canada.
| | | | | | | | | | | |
Collapse
|
50
|
Desai KV, Bishop TG, Vicci L, O'Brien ET, Taylor RM, Superfine R. Agnostic particle tracking for three-dimensional motion of cellular granules and membrane-tethered bead dynamics. Biophys J 2008; 94:2374-84. [PMID: 18055538 PMCID: PMC2257905 DOI: 10.1529/biophysj.107.114140] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/03/2007] [Accepted: 10/05/2007] [Indexed: 11/18/2022] Open
Abstract
The ability to detect biological events at the single-molecule level provides unique biophysical insights. Back-focal-plane laser interferometry is a promising technique for nanoscale three-dimensional position measurements at rates far beyond the capability of standard video. We report an in situ calibration technique for back-focal-plane, low-power (nontrapping) laser interferometry. The technique does not rely on any a priori model or calibration knowledge, hence the name "agnostic". We apply the technique to track long-range (up to 100 microm) motion of a variety of particles, including magnetic beads, in three-dimensions with high spatiotemporal resolution ( approximately 2 nm, 100 micros). Our tracking of individual unlabeled vesicles revealed a previously unreported grouping of mean-squared displacement curves at short timescales (<10 ms). Also, tracking functionalized magnetic beads attached to a live cell membrane revealed an anchorage-dependent nonlinear response of the membrane. The software-based technique involves injecting small perturbations into the probe position by driving a precalibrated specimen-mounting stage while recording the quadrant photodetector signals. The perturbations and corresponding quadrant photodetector signals are analyzed to extract the calibration parameters. The technique is sufficiently fast and noninvasive that the calibration can be performed on-the-fly without interrupting or compromising high-bandwidth, long-range tracking of a particle.
Collapse
Affiliation(s)
- Kalpit V Desai
- Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| | | | | | | | | | | |
Collapse
|