1
|
Liu C, Raab M, Gui Y, Rudd CE. Multi-functional adaptor SKAP1: regulator of integrin activation, the stop-signal, and the proliferation of T cells. Front Immunol 2023; 14:1192838. [PMID: 37325633 PMCID: PMC10264576 DOI: 10.3389/fimmu.2023.1192838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023] Open
Abstract
T-cell activation is a complex process involving a network of kinases and downstream molecular scaffolds or adaptors that integrate surface signals with effector functions. One key immune-specific adaptor is Src kinase-associated phosphoprotein 1 (SKAP1), which is also known as src kinase-associated protein of 55 kDa (SKAP55). This mini-review explains how SKAP1 plays multiple roles in regulating integrin activation, the "stop-signal", and the optimization of the cell cycling of proliferating T cells through interactions with various mediators, including the Polo-like kinase 1 (PLK1). Ongoing research on SKAP1 and its binding partners will likely provide important insights into the regulation of immune function and have implications for the development of new treatments for disease states such as cancer and autoimmunity.
Collapse
Affiliation(s)
- Chen Liu
- Faculté de Medicine, Université de Montréal, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
- Division of Immunology-Oncology, Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Monika Raab
- Department of Obstetrics and Gynaecology, School of Medicine, J.W. Goethe-University, Frankfurt, Germany
| | - Yirui Gui
- Faculté de Medicine, Université de Montréal, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
- Division of Immunology-Oncology, Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Christopher E. Rudd
- Faculté de Medicine, Université de Montréal, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
- Division of Immunology-Oncology, Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
2
|
Shah K, Al-Haidari A, Sun J, Kazi JU. T cell receptor (TCR) signaling in health and disease. Signal Transduct Target Ther 2021; 6:412. [PMID: 34897277 PMCID: PMC8666445 DOI: 10.1038/s41392-021-00823-w] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022] Open
Abstract
Interaction of the T cell receptor (TCR) with an MHC-antigenic peptide complex results in changes at the molecular and cellular levels in T cells. The outside environmental cues are translated into various signal transduction pathways within the cell, which mediate the activation of various genes with the help of specific transcription factors. These signaling networks propagate with the help of various effector enzymes, such as kinases, phosphatases, and phospholipases. Integration of these disparate signal transduction pathways is done with the help of adaptor proteins that are non-enzymatic in function and that serve as a scaffold for various protein-protein interactions. This process aids in connecting the proximal to distal signaling pathways, thereby contributing to the full activation of T cells. This review provides a comprehensive snapshot of the various molecules involved in regulating T cell receptor signaling, covering both enzymes and adaptors, and will discuss their role in human disease.
Collapse
Affiliation(s)
- Kinjal Shah
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Amr Al-Haidari
- Clinical Genetics and Pathology, Skåne University Hospital, Region Skåne, Lund, Sweden
- Clinical Sciences Department, Surgery Research Unit, Lund University, Malmö, Sweden
| | - Jianmin Sun
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
3
|
Thaker YR, Raab M, Strebhardt K, Rudd CE. GTPase-activating protein Rasal1 associates with ZAP-70 of the TCR and negatively regulates T-cell tumor immunity. Nat Commun 2019; 10:4804. [PMID: 31641113 PMCID: PMC6805919 DOI: 10.1038/s41467-019-12544-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 09/09/2019] [Indexed: 12/11/2022] Open
Abstract
Immunotherapy involving checkpoint blockades of inhibitory co-receptors is effective in combating cancer. Despite this, the full range of mediators that inhibit T-cell activation and influence anti-tumor immunity is unclear. Here, we identify the GTPase-activating protein (GAP) Rasal1 as a novel TCR-ZAP-70 binding protein that negatively regulates T-cell activation and tumor immunity. Rasal1 inhibits via two pathways, the binding and inhibition of the kinase domain of ZAP-70, and GAP inhibition of the p21ras-ERK pathway. It is expressed in activated CD4 + and CD8 + T-cells, and inhibits CD4 + T-cell responses to antigenic peptides presented by dendritic cells as well as CD4 + T-cell responses to peptide antigens in vivo. Furthermore, siRNA reduction of Rasal1 expression in T-cells shrinks B16 melanoma and EL-4 lymphoma tumors, concurrent with an increase in CD8 + tumor-infiltrating T-cells expressing granzyme B and interferon γ-1. Our findings identify ZAP-70-associated Rasal1 as a new negative regulator of T-cell activation and tumor immunity. Activation of T cells in the tumor microenvironment can be inhibited through a variety of mechanisms. Here, the authors show that Rasal1, a GTPase-activating protein, binds and inhibits signaling downstream of the T Cell Receptor complex and that consistently, its reduced expression enhances anti-tumor T-cell responses in two syngeneic cancer mouse models.
Collapse
Affiliation(s)
- Youg Raj Thaker
- Cell Signalling Section, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK.,School of Biological Science, Protein Structure and Disease Mechanisms, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Monika Raab
- Department of Obstetrics and Gynaecology, School of Medicine, J.W. Goethe-University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Klaus Strebhardt
- Department of Obstetrics and Gynaecology, School of Medicine, J.W. Goethe-University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Christopher E Rudd
- Cell Signalling Section, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK. .,Département de Immunologie-Oncologie, Centre de Recherche Hôpital Maisonneuve-Rosemont, Montreal, QC, H1T 2M4, Canada. .,Département de Medicine, Université de Montréal, Montreal, QC, H3C 3J7, Canada.
| |
Collapse
|
4
|
Raab M, Strebhardt K, Rudd CE. Immune adaptor SKAP1 acts a scaffold for Polo-like kinase 1 (PLK1) for the optimal cell cycling of T-cells. Sci Rep 2019; 9:10462. [PMID: 31320682 PMCID: PMC6639320 DOI: 10.1038/s41598-019-45627-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 06/06/2019] [Indexed: 02/06/2023] Open
Abstract
While the immune cell adaptor protein SKAP1 mediates LFA-1 activation induced by antigen-receptor (TCR/CD3) ligation on T-cells, it is unclear whether the adaptor interacts with other mediators of T-cell function. In this context, the serine/threonine kinase, polo-like kinase (PLK1) regulates multiple steps in the mitotic and cell cycle progression of mammalian cells. Here, we show that SKAP1 is phosphorylated by and binds to PLK1 for the optimal cycling of T-cells. PLK1 binds to the N-terminal residue serine 31 (S31) of SKAP1 and the interaction is needed for optimal PLK1 kinase activity. Further, siRNA knock-down of SKAP1 reduced the rate of T-cell division concurrent with a delay in the expression of PLK1, Cyclin A and pH3. Reconstitution of these KD cells with WT SKAP1, but not the SKAP1 S31 mutant, restored normal cell division. SKAP1-PLK1 binding is dynamically regulated during the cell cycle of T-cells. Our findings identify a novel role for SKAP1 in the regulation of PLK1 and optimal cell cycling needed for T-cell clonal expansion in response to antigenic activation.
Collapse
Affiliation(s)
- Monika Raab
- Department of Obstetrics and Gynaecology, School of Medicine, J.W. Goethe-University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
- Cell Signaling Section, Department of Pathology, Tennis Court Road, University of Cambridge, CB2 1Q, Cambridge, UK.
| | - Klaus Strebhardt
- Department of Obstetrics and Gynaecology, School of Medicine, J.W. Goethe-University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Christopher E Rudd
- Cell Signaling Section, Department of Pathology, Tennis Court Road, University of Cambridge, CB2 1Q, Cambridge, UK.
- Centre de Recherch-Hopital Maisonneuve-Rosemont (CR-HMR), Montreal, Quebec, H1T 2M4, Canada.
- Département de Medicine, Université de Montréal, Montreal, Quebec, H3C 3J7, Canada.
| |
Collapse
|
5
|
Lewis JB, Scangarello FA, Murphy JM, Eidell KP, Sodipo MO, Ophir MJ, Sargeant R, Seminario MC, Bunnell SC. ADAP is an upstream regulator that precedes SLP-76 at sites of TCR engagement and stabilizes signaling microclusters. J Cell Sci 2018; 131:jcs215517. [PMID: 30305305 PMCID: PMC6240300 DOI: 10.1242/jcs.215517] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 09/17/2018] [Indexed: 12/31/2022] Open
Abstract
Antigen recognition by the T cell receptor (TCR) directs the assembly of essential signaling complexes known as SLP-76 (also known as LCP2) microclusters. Here, we show that the interaction of the adhesion and degranulation-promoting adaptor protein (ADAP; also known as FYB1) with SLP-76 enables the formation of persistent microclusters and the stabilization of T cell contacts, promotes integrin-independent adhesion and enables the upregulation of CD69. By analyzing point mutants and using a novel phospho-specific antibody, we show that Y595 is essential for normal ADAP function, that virtually all tyrosine phosphorylation of ADAP is restricted to a Y595-phosphorylated (pY595) pool, and that multivalent interactions between the SLP-76 SH2 domain and its binding sites in ADAP are required to sustain ADAP phosphorylation. Although pY595 ADAP enters SLP-76 microclusters, non-phosphorylated ADAP is enriched in protrusive actin-rich structures. The pre-positioning of ADAP at the contact sites generated by these structures favors the retention of nascent SLP-76 oligomers and their assembly into persistent microclusters. Although ADAP is frequently depicted as an effector of SLP-76, our findings reveal that ADAP acts upstream of SLP-76 to convert labile, Ca2+-competent microclusters into stable adhesive junctions with enhanced signaling potential.
Collapse
Affiliation(s)
- Juliana B Lewis
- Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Frank A Scangarello
- Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
- Medical Scientist Training Program, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Joanne M Murphy
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Keith P Eidell
- Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Michelle O Sodipo
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Michael J Ophir
- Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Ryan Sargeant
- Pacific Immunology Corporation, Ramona, CA 92065, USA
| | | | - Stephen C Bunnell
- Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
6
|
Xiong Y, Ye C, Yang N, Li M, Liu H. Ubc9 Binds to ADAP and Is Required for Rap1 Membrane Recruitment, Rac1 Activation, and Integrin-Mediated T Cell Adhesion. THE JOURNAL OF IMMUNOLOGY 2017; 199:4142-4154. [PMID: 29127148 DOI: 10.4049/jimmunol.1700572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 10/16/2017] [Indexed: 11/19/2022]
Abstract
Although the immune adaptor adhesion and degranulation-promoting adaptor protein (ADAP) acts as a key mediator of integrin inside-out signaling leading to T cell adhesion, the regulation of this adaptor during integrin activation and clustering remains unclear. We now identify Ubc9, the sole small ubiquitin-related modifier E2 conjugase, as an essential regulator of ADAP where it is required for TCR-induced membrane recruitment of the small GTPase Rap1 and its effector protein RapL and for activation of the small GTPase Rac1 in T cell adhesion. We show that Ubc9 interacted directly with ADAP in vitro and in vivo, and the association was increased in response to anti-CD3 stimulation. The Ubc9-binding domain on ADAP was mapped to a nuclear localization sequence (aa 674-700) within ADAP. Knockdown of Ubc9 by short hairpin RNA or expression of the Ubc9-binding-deficient ADAP mutant significantly decreased TCR-induced integrin adhesion to ICAM-1 and fibronectin, as well as LFA-1 clustering, although it had little effect on the TCR proximal signaling responses and TCR-induced IL-2 transcription. Furthermore, downregulation of Ubc9 impaired TCR-mediated Rac1 activation and attenuated the membrane targeting of Rap1 and RapL, but not Rap1-interacting adaptor molecule. Taken together, our data demonstrate for the first time, to our knowledge, that Ubc9 acts as a functional binding partner of ADAP and plays a selective role in integrin-mediated T cell adhesion via modulation of Rap1-RapL membrane recruitment and Rac1 activation.
Collapse
Affiliation(s)
- Yiwei Xiong
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China; and
| | - Chengjin Ye
- Department of Veterinary Medicine, Zhejiang A & F University, Lin'an, Hangzhou, Zhejiang 311300, China
| | - Naiqi Yang
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China; and
| | - Madanqi Li
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China; and
| | - Hebin Liu
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China; and .,Department of Veterinary Medicine, Zhejiang A & F University, Lin'an, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
7
|
Kuropka B, Schraven B, Kliche S, Krause E, Freund C. Tyrosine-phosphorylation of the scaffold protein ADAP and its role in T cell signaling. Expert Rev Proteomics 2017; 13:545-54. [PMID: 27258783 DOI: 10.1080/14789450.2016.1187565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION The Adhesion and Degranulation promoting Adaptor Protein (ADAP) is phosphorylated upon T cell activation and acts as a scaffold for the formation of a signaling complex that integrates molecular interactions between T cell or chemokine receptors, the actin cytoskeleton, and integrin-mediated cellular adhesion and migration. AREAS COVERED This article reviews current knowledge of the functions of the adapter protein ADAP in T cell signaling with a focus on the role of individual phosphotyrosine (pY) motifs for SH2 domain mediated interactions. The data presented was obtained from literature searches (PubMed) as well as the authors own research on the topic. Expert commentary: ADAP can be regarded as a paradigmatic example of how tyrosine phosphorylation sites serve as dynamic interaction hubs. Molecular crowding at unstructured and redundant sites (pY595, pY651) is contrasted by more specific interactions enabled by the three-dimensional environment of a particular phosphotyrosine motif (pY571).
Collapse
Affiliation(s)
- Benno Kuropka
- a Freie Universität Berlin, Institut für Chemie und Biochemie, Protein Biochemistry Group , Berlin , Germany.,b Mass Spectrometry Group, Leibniz-Institut für Molekulare Pharmakologie , Berlin , Germany
| | - Burkhart Schraven
- c Institute of Molecular and Clinical Immunology , Otto-von-Guericke-University , Magdeburg , Germany.,d Department of Immune Control , Helmholtz Center for Infection Research (HZI) , Braunschweig , Germany
| | - Stefanie Kliche
- c Institute of Molecular and Clinical Immunology , Otto-von-Guericke-University , Magdeburg , Germany
| | - Eberhard Krause
- b Mass Spectrometry Group, Leibniz-Institut für Molekulare Pharmakologie , Berlin , Germany
| | - Christian Freund
- a Freie Universität Berlin, Institut für Chemie und Biochemie, Protein Biochemistry Group , Berlin , Germany
| |
Collapse
|
8
|
SHP-1 Acts as a Key Regulator of Alloresponses by Modulating LFA-1-Mediated Adhesion in Primary Murine T Cells. Mol Cell Biol 2016; 36:3113-3127. [PMID: 27697866 DOI: 10.1128/mcb.00294-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/28/2016] [Indexed: 11/20/2022] Open
Abstract
The clinical potential of transplantation is often reduced by T cell-mediated alloresponses that cause graft rejection or graft-versus-host disease. Integrin-mediated adhesion between alloreactive T cells and antigen-presenting cells is essential for allorejection. The identity of the signaling events needed for the activation of integrins such as LFA-1 is poorly understood. Here, we identified a novel role of the protein tyrosine phosphatase SHP-1 in the regulation of murine LFA-1-mediated adhesion in an allograft setting. Upon alloactivation, SHP-1 activity is reduced, resulting in an increase in LFA-1 adhesion compared to that for syngeneically activated T cells. The importance of these differential activation properties was further indicated by small interfering RNA (siRNA) knockdown of SHP-1 in syngeneically and allogeneically stimulated T cells. Mechanistically, SHP-1 modulated the binding of SLP-76 to ADAP by dephosphorylation of the YDGI tyrosine motif of ADAP, a known docking site for the Src family kinase Fyn. This novel key role of SHP-1 in the regulation of LFA-1-mediated adhesion may provide a new insight into T cell-mediated alloresponses and may pave the way to the development of new immunosuppressive pharmaceutical agents.
Collapse
|
9
|
Jung SH, Yoo EH, Yu MJ, Song HM, Kang HY, Cho JY, Lee JR. ARAP, a Novel Adaptor Protein, Is Required for TCR Signaling and Integrin-Mediated Adhesion. THE JOURNAL OF IMMUNOLOGY 2016; 197:942-52. [PMID: 27335501 DOI: 10.4049/jimmunol.1501913] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 05/19/2016] [Indexed: 11/19/2022]
Abstract
A novel adaptor protein was identified by analyzing phosphotyrosine proteomes from membrane rafts of activated T cells. This protein showed sequence similarity to a well-known T cell adaptor protein, adhesion and degranulation-promoting adaptor protein (ADAP); therefore, the novel protein was designated activation-dependent, raft-recruited ADAP-like phosphoprotein (ARAP). Suppression of ARAP impaired the major signaling pathways downstream of the TCR. ARAP associated with the Src homology 2 domain of Src homology 2-containing leukocyte protein of 76 kDa via the phosphorylation of two YDDV motifs in response to TCR stimulation. ARAP also mediated integrin activation but was not involved in actin polymerization. The results of this study indicate that a novel T cell adaptor protein, ARAP, plays a unique role in T cells as a part of both the proximal activation signaling and inside-out signaling pathways that result in integrin activation and T cell adhesion.
Collapse
Affiliation(s)
- Seung Hee Jung
- Department of Life Science, College of Natural Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Eun Hye Yoo
- Department of Life Science, College of Natural Sciences, Ewha Womans University, Seoul 03760, Korea; Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea; and
| | - Mi Jin Yu
- Department of Life Science, College of Natural Sciences, Ewha Womans University, Seoul 03760, Korea; Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea; and
| | - Hyeon Myeong Song
- Department of Life Science, College of Natural Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Hee Yoon Kang
- Department of Life Science, College of Natural Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Je-Yoel Cho
- Department of Veterinary Biochemistry, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Jong Ran Lee
- Department of Life Science, College of Natural Sciences, Ewha Womans University, Seoul 03760, Korea; Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea; and
| |
Collapse
|
10
|
Lim D, Lu Y, Rudd CE. Non-cleavable talin rescues defect in the T-cell conjugation of T-cells deficient in the immune adaptor SKAP1. Immunol Lett 2016; 172:40-6. [PMID: 26905930 PMCID: PMC4860717 DOI: 10.1016/j.imlet.2016.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 02/02/2016] [Accepted: 02/05/2016] [Indexed: 11/09/2022]
Abstract
Skap1−/− T-cells show impaired talin and RIAM localization at the anti-CD3 beads. Talin cleavage is altered in Skap1−/− T-cells. Cleavage resistant talin (L432G) restored normal conjugation of Skap1−/− T-cells. Immune cell adaptor SKAP1 interfaces with regulation of talin and RIAM in T-cells.
While the cytoskeletal protein talin binds to the β-chain of LFA-1, the immune cell adaptor SKAP1 (SKAP-55) binds to the α-chain of the same integrin via RapL. Whereas calpain protease cleavage of talin is important for LFA-1 activation, it has been unclear whether SKAP1 can alter the function of talin or its associated adaptor RIAM in T-cells. In this paper, we report that Skap1−/− T-cells showed a reduction in the translocation of talin and RIAM to the contact interface of T-cells with antigenic beads or dendritic cells (DCs) presenting OVA peptide to OT-1 T-cells. In addition, Skap1−/− T-cells show an altered pattern of talin cleavage, while the expression of a cleavage resistant form of talin (L432G) restored the impaired adhesion of OT1 transgenic Skap1−/− T-cells with DCs. SKAP1 therefore can affect the function of talin in T-cells needed for optimal T-cell/DC conjugation.
Collapse
Affiliation(s)
- Daina Lim
- Cell Signalling Section, Division of Immunology, Department of Pathology, Tennis Court Road, University of Cambridge, Cambridge CB2 1QP, UK; Cambridge Institute of Medical Research, Hills Road, CB2 OXY Cambridge, UK
| | - Yuning Lu
- Cell Signalling Section, Division of Immunology, Department of Pathology, Tennis Court Road, University of Cambridge, Cambridge CB2 1QP, UK; Cambridge Institute of Medical Research, Hills Road, CB2 OXY Cambridge, UK
| | - Christopher E Rudd
- Cell Signalling Section, Division of Immunology, Department of Pathology, Tennis Court Road, University of Cambridge, Cambridge CB2 1QP, UK; Cambridge Institute of Medical Research, Hills Road, CB2 OXY Cambridge, UK.
| |
Collapse
|
11
|
Gerbec ZJ, Thakar MS, Malarkannan S. The Fyn-ADAP Axis: Cytotoxicity Versus Cytokine Production in Killer Cells. Front Immunol 2015; 6:472. [PMID: 26441977 PMCID: PMC4584950 DOI: 10.3389/fimmu.2015.00472] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 08/31/2015] [Indexed: 11/13/2022] Open
Abstract
Lymphocyte signaling cascades responsible for anti-tumor cytotoxicity and inflammatory cytokine production must be tightly regulated in order to control an immune response. Disruption of these cascades can cause immune suppression as seen in a tumor microenvironment, and loss of signaling integrity can lead to autoimmunity and other forms of host-tissue damage. Therefore, understanding the distinct signaling events that exclusively control specific effector functions of “killer” lymphocytes (T and NK cells) is critical for understanding disease progression and formulating successful immunotherapy. Elucidation of divergent signaling pathways involved in receptor-mediated activation has provided insights into the independent regulation of cytotoxicity and cytokine production in lymphocytes. Specifically, the Fyn signaling axis represents a branch point for killer cell effector functions and provides a model for how cytotoxicity and cytokine production are differentially regulated. While the Fyn–PI(3)K pathway controls multiple functions, including cytotoxicity, cell development, and cytokine production, the Fyn–ADAP pathway preferentially regulates cytokine production in NK and T cells. In this review, we discuss how the structure of Fyn controls its function in lymphocytes and the role this plays in mediating two facets of lymphocyte effector function, cytotoxicity and production of inflammatory cytokines. This offers a model for using mechanistic and structural approaches to understand clinically relevant lymphocyte signaling.
Collapse
Affiliation(s)
- Zachary J Gerbec
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin , Milwaukee, WI , USA ; Department of Microbiology, Immunology and Molecular Genetics, Medical College of Wisconsin , Milwaukee, WI , USA
| | - Monica S Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin , Milwaukee, WI , USA ; Department of Pediatrics, Medical College of Wisconsin , Milwaukee, WI , USA ; Department of Medicine, Medical College of Wisconsin , Milwaukee, WI , USA
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin , Milwaukee, WI , USA ; Department of Microbiology, Immunology and Molecular Genetics, Medical College of Wisconsin , Milwaukee, WI , USA ; Department of Pediatrics, Medical College of Wisconsin , Milwaukee, WI , USA ; Department of Medicine, Medical College of Wisconsin , Milwaukee, WI , USA
| |
Collapse
|
12
|
The Immune Adaptor SLP-76 Binds to SUMO-RANGAP1 at Nuclear Pore Complex Filaments to Regulate Nuclear Import of Transcription Factors in T Cells. Mol Cell 2015; 59:840-9. [PMID: 26321253 PMCID: PMC4576164 DOI: 10.1016/j.molcel.2015.07.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 06/01/2015] [Accepted: 07/17/2015] [Indexed: 12/03/2022]
Abstract
While immune cell adaptors regulate proximal T cell signaling, direct regulation of the nuclear pore complex (NPC) has not been reported. NPC has cytoplasmic filaments composed of RanGAP1 and RanBP2 with the potential to interact with cytoplasmic mediators. Here, we show that the immune cell adaptor SLP-76 binds directly to SUMO-RanGAP1 of cytoplasmic fibrils of the NPC, and that this interaction is needed for optimal NFATc1 and NF-κB p65 nuclear entry in T cells. Transmission electron microscopy showed anti-SLP-76 cytoplasmic labeling of the majority of NPCs in anti-CD3 activated T cells. Further, SUMO-RanGAP1 bound to the N-terminal lysine 56 of SLP-76 where the interaction was needed for optimal RanGAP1-NPC localization and GAP exchange activity. While the SLP-76-RanGAP1 (K56E) mutant had no effect on proximal signaling, it impaired NF-ATc1 and p65/RelA nuclear entry and in vivo responses to OVA peptide. Overall, we have identified SLP-76 as a direct regulator of nuclear pore function in T cells. Immune adaptor SLP-76 binds to SUMO-RanGAP1 of cytoplasmic fibrils of the NPC SLP-76 K-56 binding needed for optimal RanGAP1 localization and exchange activity SLP-76 K56E mutant impaired NF-ATc1 and NFκB p65 (RelA) nuclear entry Immune adaptors directly regulate nuclear entry of transcription factors in T cells
Collapse
|
13
|
Kuropka B, Witte A, Sticht J, Waldt N, Majkut P, Hackenberger CPR, Schraven B, Krause E, Kliche S, Freund C. Analysis of Phosphorylation-dependent Protein Interactions of Adhesion and Degranulation Promoting Adaptor Protein (ADAP) Reveals Novel Interaction Partners Required for Chemokine-directed T cell Migration. Mol Cell Proteomics 2015; 14:2961-72. [PMID: 26246585 DOI: 10.1074/mcp.m115.048249] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Indexed: 11/06/2022] Open
Abstract
Stimulation of T cells leads to distinct changes of their adhesive and migratory properties. Signal propagation from activated receptors to integrins depends on scaffolding proteins such as the adhesion and degranulation promoting adaptor protein (ADAP)(1). Here we have comprehensively investigated the phosphotyrosine interactome of ADAP in T cells and define known and novel interaction partners of functional relevance. While most phosphosites reside in unstructured regions of the protein, thereby defining classical SH2 domain interaction sites for master regulators of T cell signaling such as SLP76, Fyn-kinase, and NCK, other binding events depend on structural context. Interaction proteomics using different ADAP constructs comprising most of the known phosphotyrosine motifs as well as the structured domains confirm that a distinct set of proteins is attracted by pY571 of ADAP, including the ζ-chain-associated protein kinase of 70 kDa (ZAP70). The interaction of ADAP and ZAP70 is inducible upon stimulation either of the T cell receptor (TCR) or by chemokine. NMR spectroscopy reveals that the N-terminal SH2 domains within a ZAP70-tandem-SH2 construct is the major site of interaction with phosphorylated ADAP-hSH3(N) and microscale thermophoresis (MST) indicates an intermediate binding affinity (Kd = 2.3 μm). Interestingly, although T cell receptor dependent events such as T cell/antigen presenting cell (APC) conjugate formation and adhesion are not affected by mutation of Y571, migration of T cells along a chemokine gradient is compromised. Thus, although most phospho-sites in ADAP are linked to T cell receptor related functions we have identified a unique phosphotyrosine that is solely required for chemokine induced T cell behavior.
Collapse
Affiliation(s)
- Benno Kuropka
- From the ‡Freie Universität Berlin, Institut für Chemie und Biochemie, Protein Biochemistry group, Thielallee 63, 14195 Berlin, Germany; §Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Amelie Witte
- ¶Otto-von-Guericke-University, Institute of Molecular and Clinical Immunology, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - Jana Sticht
- From the ‡Freie Universität Berlin, Institut für Chemie und Biochemie, Protein Biochemistry group, Thielallee 63, 14195 Berlin, Germany
| | - Natalie Waldt
- ¶Otto-von-Guericke-University, Institute of Molecular and Clinical Immunology, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - Paul Majkut
- §Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany; ‖RiNA GmbH, Volmerstrasse 9, 12489 Berlin, Germany
| | | | - Burkhart Schraven
- ¶Otto-von-Guericke-University, Institute of Molecular and Clinical Immunology, Leipziger Strasse 44, 39120 Magdeburg, Germany; **Helmholtz Center for Infection Research (HZI), Department of Immune Control, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Eberhard Krause
- §Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany;
| | - Stefanie Kliche
- ¶Otto-von-Guericke-University, Institute of Molecular and Clinical Immunology, Leipziger Strasse 44, 39120 Magdeburg, Germany;
| | - Christian Freund
- From the ‡Freie Universität Berlin, Institut für Chemie und Biochemie, Protein Biochemistry group, Thielallee 63, 14195 Berlin, Germany;
| |
Collapse
|
14
|
Bovine gamma delta T cells and the function of gamma delta T cell specific WC1 co-receptors. Cell Immunol 2015; 296:76-86. [PMID: 26008759 DOI: 10.1016/j.cellimm.2015.05.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 05/11/2015] [Accepted: 05/11/2015] [Indexed: 12/28/2022]
Abstract
The study of γδ T cells in ruminants dates to the discovery of the γδ TCR in humans and mice. It is important since cattle offer an alternative model to the mouse for evaluating the role of γδ T cells in zoonotic disease research and for control of disease reservoirs in non-human animals. In addition, maintaining the health of cattle and other members of the order Artiodactyla is critical to meet the global human need for animal-source protein. In this review, we examine the bovine γδ T cell responses to Mycobacteria, which infects a third of the human population, and bovine γ and δ TCR diversity and the relationship to the TCR of human mycobacteria-responsive γδ T cells. We review the utilization of the γδ T cell specific scavenger receptor cysteine-rich (SRCR) glycoproteins known as WC1, and that are part of the CD163 family, which function as both γδ T cell activating co-receptors and pattern recognition receptors (PRR) for bovine γδ T cells and highlight the presence and evolution of this multigenic array, with potential for the same function, in birds, reptiles, jawless and bony fishes, and prototherian and eutherian mammals.
Collapse
|
15
|
Intracellular cytoplasm-specific delivery of SH3 and SH2 domains of SLAP inhibits TcR-mediated signaling. Biochem Biophys Res Commun 2015; 460:603-8. [PMID: 25800872 DOI: 10.1016/j.bbrc.2015.03.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 03/13/2015] [Indexed: 11/21/2022]
Abstract
Signaling events triggered by T cell receptor (TcR) stimulation are important targets for the development of common therapeutics for various autoimmune diseases. SLAP is a negative regulator of TcR-mediated signaling cascade via targeting TcR zeta chain for degradation through recruiting the ubiquitin ligase c-Cbl. In this study, we generated a transducible form of SH3 and SH2 domains of SLAP (ctSLAPΔC) which can be specifically targeted to the cytoplasm of a cell. ctSLAPΔC inhibited tyrosine phosphorylation of signaling mediators such as ZAP-70 and LAT involved in T cell activation, and effectively suppressed transcriptional activity of NFAT and NFκB upon TcR stimulation. The transduced ctSLAPΔC in T cells blocked the secretion of T cell-specific cytokines such as IL-2, IFNγ, IL-17A, and IL-4 and induced the expression of CD69 and CD25 on effector T cells without influencing the cell viability. Inhibition of TcR-mediated signaling via SLAP blocked the differentiation of naïve T cells into Th1, Th2 or Treg cells with different sensitivity, suggesting that qualitative and quantitative intensity of TcR-mediated signaling in the context of polarizing cytokines environment may be a critical factor to determine the differentiation fate of naïve T cells. These results suggest that cytoplasm-specific transduction of the SH3 and SH2 domains of SLAP has a therapeutic potential of being an immunosuppressive reagent for the treatment of various autoimmune diseases.
Collapse
|
16
|
Chen C, Hsu H, Hudgens E, Telfer JC, Baldwin CL. Signal transduction by different forms of the γδ T cell-specific pattern recognition receptor WC1. THE JOURNAL OF IMMUNOLOGY 2014; 193:379-90. [PMID: 24850725 DOI: 10.4049/jimmunol.1400168] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
WC1 coreceptors are scavenger receptor cysteine-rich (SRCR) family members, related to T19 in sheep, SCART in mice, and CD163c-α in humans, and form a 13-member subfamily in cattle exclusively expressed on γδ T cells. Subpopulations of γδ T cells are defined by anti-WC1 mAbs and respond to different pathogen species accordingly. In this study, variegated WC1 gene expression within subpopulations and differences in signaling and cell activation due to endodomain sequences are described. The endodomains designated types I to III differ by a 15- or 18-aa insert in type II and an additional 80 aa containing an additional eight tyrosines for type III. Anti-WC1 mAbs enhanced cell proliferation of γδ T cells when cross-linked with the TCR regardless of the endodomain sequences. Chimeric molecules of human CD4 ectodomain with WC1 endodomains transfected into Jurkat cells showed that the tyrosine phosphorylation of the type II was the same as that of the previously reported archetypal sequence (type I) with only Y24EEL phosphorylated, whereas for type III only Y199DDV and Y56TGD were phosphorylated despite conservation of the Y24EEL/Y24QEI and Y199DDV/I tyrosine motifs among the three types. Time to maximal phosphorylation was more rapid with type III endodomains and sustained longer. Differences in tyrosine phosphorylation were associated with differences in function in that cross-linking of type III chimeras with TCR resulted in significantly greater IL-2 production. Identification of differences in the signal transduction through the endodomains of WC1 contributes to understanding the functional role of the WC1 coreceptors in the γδ T cell responses.
Collapse
Affiliation(s)
- Chuang Chen
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003; and
| | - Haoting Hsu
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003; and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003
| | - Edward Hudgens
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003; and
| | - Janice C Telfer
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003; and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003
| | - Cynthia L Baldwin
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003; and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003
| |
Collapse
|
17
|
Lettau M, Kliche S, Kabelitz D, Janssen O. The adapter proteins ADAP and Nck cooperate in T cell adhesion. Mol Immunol 2014; 60:72-9. [PMID: 24769494 DOI: 10.1016/j.molimm.2014.03.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 03/24/2014] [Accepted: 03/31/2014] [Indexed: 10/25/2022]
Abstract
Nck adapter proteins link receptor and receptor-associated tyrosine kinases with proteins implicated in the regulation of the actin cytoskeleton. Nck is involved in a multitude of receptor-initiated signaling pathways and its physiological role thus covers aspects of tissue development and homeostasis, malignant transformation/invasiveness of tumour cells and also immune cell function. In T cells, changes of cell polarity and morphology associated with cellular activation and effector function crucially rely on the T cell receptor-mediated recruitment and activation of different actin-regulatory proteins to orchestrate and drive cytoskeletal reorganization at the immunological synapse. In a former approach to determine the interactome of Nck in human T cells, we identified the adapter protein ADAP as a Nck-interacting protein. This adhesion and degranulation-promoting adapter protein had already been implicated in the inside-out activation of integrins. Employing co-immunoprecipitations, we demonstrate that both Nck family members Nck1 and Nck2 coprecipitate with ADAP. Specifically, Nck interacts via its Src homology 2 domain with phosphorylated tyrosine Y595DDV and Y651DDV sites of ADAP. Moreover, we show that endogenous ADAP is phosphorylated in primary human T cell blasts and thus associates with Nck. At the functional level, ADAP and Nck adapter proteins cooperatively facilitate T cell adhesion to the LFA-1 ligand ICAM-1. Our data indicate that the ADAP/Nck complex might provide a means to link integrin activation with the actin cytoskeleton.
Collapse
Affiliation(s)
- Marcus Lettau
- Institute of Immunology, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Bldg 17, D-24105 Kiel, Germany.
| | - Stefanie Kliche
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Leipziger Str. 44, D-39120 Magdeburg, Germany.
| | - Dieter Kabelitz
- Institute of Immunology, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Bldg 17, D-24105 Kiel, Germany.
| | - Ottmar Janssen
- Institute of Immunology, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Bldg 17, D-24105 Kiel, Germany.
| |
Collapse
|
18
|
Ophir MJ, Liu BC, Bunnell SC. The N terminus of SKAP55 enables T cell adhesion to TCR and integrin ligands via distinct mechanisms. ACTA ACUST UNITED AC 2014; 203:1021-41. [PMID: 24368808 PMCID: PMC3871428 DOI: 10.1083/jcb.201305088] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The T cell receptor (TCR) triggers the assembly of "SLP-76 microclusters," which mediate signals required for T cell activation. In addition to regulating integrin activation, we show that Src kinase-associated phosphoprotein of 55 kD (SKAP55) is required for microcluster persistence and movement, junctional stabilization, and integrin-independent adhesion via the TCR. These functions require the dimerization of SKAP55 and its interaction with the adaptor adhesion and degranulation-promoting adaptor protein (ADAP). A "tandem dimer" containing two ADAP-binding SKAP55 Src homology 3 (SH3) domains stabilized SLP-76 microclusters and promoted T cell adhesion via the TCR, but could not support adhesion to integrin ligands. Finally, the SKAP55 dimerization motif (DM) enabled the coimmunoprecipitation of the Rap1-dependent integrin regulator Rap1-GTP-interacting adaptor molecule (RIAM), the recruitment of talin into TCR-induced adhesive junctions, and "inside-out" signaling to β1 integrins. Our data indicate that SKAP55 dimers stabilize SLP-76 microclusters, couple SLP-76 to the force-generating systems responsible for microcluster movement, and enable adhesion via the TCR by mechanisms independent of RIAM, talin, and β1 integrins.
Collapse
Affiliation(s)
- Michael J Ophir
- Program in Immunology, Sackler School of Graduate Biomedical Sciences, and 2 Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA 02111
| | | | | |
Collapse
|
19
|
Majkut P, Claußnitzer I, Merk H, Freund C, Hackenberger CPR, Gerrits M. Completion of proteomic data sets by Kd measurement using cell-free synthesis of site-specifically labeled proteins. PLoS One 2013; 8:e82352. [PMID: 24340019 PMCID: PMC3858276 DOI: 10.1371/journal.pone.0082352] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 10/16/2013] [Indexed: 11/20/2022] Open
Abstract
The characterization of phosphotyrosine mediated protein-protein interactions is vital for the interpretation of downstream pathways of transmembrane signaling processes. Currently however, there is a gap between the initial identification and characterization of cellular binding events by proteomic methods and the in vitro generation of quantitative binding information in the form of equilibrium rate constants (Kd values). In this work we present a systematic, accelerated and simplified approach to fill this gap: using cell-free protein synthesis with site-specific labeling for pull-down and microscale thermophoresis (MST) we were able to validate interactions and to establish a binding hierarchy based on Kd values as a completion of existing proteomic data sets. As a model system we analyzed SH2-mediated interactions of the human T-cell phosphoprotein ADAP. Putative SH2 domain-containing binding partners were synthesized from a cDNA library using Expression-PCR with site-specific biotinylation in order to analyze their interaction with fluorescently labeled and in vitro phosphorylated ADAP by pull-down. On the basis of the pull-down results, selected SH2’s were subjected to MST to determine Kd values. In particular, we could identify an unexpectedly strong binding of ADAP to the previously found binding partner Rasa1 of about 100 nM, while no evidence of interaction was found for the also predicted SH2D1A. Moreover, Kd values between ADAP and its known binding partners SLP-76 and Fyn were determined. Next to expanding data on ADAP suggesting promising candidates for further analysis in vivo, this work marks the first Kd values for phosphotyrosine/SH2 interactions on a phosphoprotein level.
Collapse
Affiliation(s)
- Paul Majkut
- Department Chemical Biology II, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | | | | | - Christian Freund
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Christian P. R. Hackenberger
- Department Chemical Biology II, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Institut für Chemie, Humboldt-Universität zu Berlin, Berlin, Germany
- * E-mail: (MG); (CH)
| | | |
Collapse
|
20
|
Liu H, Thaker YR, Stagg L, Schneider H, Ladbury JE, Rudd CE. SLP-76 sterile α motif (SAM) and individual H5 α helix mediate oligomer formation for microclusters and T-cell activation. J Biol Chem 2013; 288:29539-49. [PMID: 23935094 PMCID: PMC3795252 DOI: 10.1074/jbc.m112.424846] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Despite the importance of the immune adaptor SLP-76 in T-cell immunity, it has been unclear whether SLP-76 directly self-associates to form higher order oligomers for T-cell activation. In this study, we show that SLP-76 self-associates in response to T-cell receptor ligation as mediated by the N-terminal sterile α motif (SAM) domain. SLP-76 co-precipitated alternately tagged SLP-76 in response to anti-CD3 ligation. Dynamic light scattering and fluorescent microscale thermophoresis of the isolated SAM domain (residues 1–78) revealed evidence of dimers and tetramers. Consistently, deletion of the SAM region eliminated SLP-76 co-precipitation of itself, concurrent with a loss of microcluster formation, nuclear factor of activated T-cells (NFAT) transcription, and interleukin-2 production in Jurkat or primary T-cells. Furthermore, the H5 α helix within the SAM domain contributed to self-association. Retention of H5 in the absence of H1–4 sufficed to support SLP-76 self-association with smaller microclusters that nevertheless enhanced anti-CD3-driven AP1/NFAT transcription and IL-2 production. By contrast, deletion of the H5 α helix impaired self-association and anti-CD3 induced AP1/NFAT transcription. Our data identified for the first time a role for the SAM domain in mediating SLP-76 self-association for T-cell function.
Collapse
Affiliation(s)
- Hebin Liu
- From the Cell Signalling Section, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
| | | | | | | | | | | |
Collapse
|
21
|
Mice lacking protein tyrosine kinase fyn develop a T helper-type 1 response and resistLeishmania major infection. Environ Health Prev Med 2012; 6:132-5. [PMID: 21432251 DOI: 10.1007/bf02897960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2001] [Accepted: 04/20/2001] [Indexed: 10/22/2022] Open
Abstract
Fyn is a Src family protein tyrosine kinase associated with TCR/CD3 complex. Fyn appears to play a role in the activation of T cells based on its enzymatic activation and tyrosine phosphorylation following the ligation of TCR/CD3, and it also plays a critical role in the calcium flux and interleukin-2 (IL-2) production. The protective response against murineLeishmania major infection is associated with the T helper-type 1 (Th1) responses and the ability to modulate Th1 cytokines such as IL-2 and interferon-γ, respectively. The role of Fyn tyrosine kinasein vivo was directly examined by the response to infection withL. major in C57BL/6fyn-deficient mice. Despite the absence of Fyn, the mice remained resistant to this infection with only mild lesion development, and, they demonstrated Th1 responses as assessed by the delayed-type hyper-sensitivity response and cytokine milieu. The findings in thefyn-deficient mice failed to support a relationship between the anticipated functions of Fynin vitro and the immune response toL. major infectionin vivo. As a result, in leishmanial disease, Fyn probably plays a minor role in the protective immune response and is, therefore, not a key factor in such a response.
Collapse
|
22
|
Block H, Herter JM, Rossaint J, Stadtmann A, Kliche S, Lowell CA, Zarbock A. Crucial role of SLP-76 and ADAP for neutrophil recruitment in mouse kidney ischemia-reperfusion injury. ACTA ACUST UNITED AC 2012; 209:407-21. [PMID: 22291096 PMCID: PMC3280874 DOI: 10.1084/jem.20111493] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Leukocyte recruitment to the kidney during acute injury is mediated by E-selectin–mediated rolling and requires SLP-76 and the adaptor protein ADAP. Neutrophils trigger inflammation-induced acute kidney injury (AKI), a frequent and potentially lethal occurrence in humans. Molecular mechanisms underlying neutrophil recruitment to sites of inflammation have proved elusive. In this study, we demonstrate that SLP-76 (SH2 domain–containing leukocyte phosphoprotein of 76 kD) and ADAP (adhesion and degranulation promoting adaptor protein) are involved in E-selectin–mediated integrin activation and slow leukocyte rolling, which promotes ischemia-reperfusion–induced AKI in mice. By using genetically engineered mice and transduced Slp76−/− primary leukocytes, we demonstrate that ADAP as well as two N-terminal–located tyrosines and the SH2 domain of SLP-76 are required for downstream signaling and slow leukocyte rolling. The Tec family kinase Bruton tyrosine kinase is downstream of SLP-76 and, together with ADAP, regulates PI3Kγ (phosphoinositide 3-kinase–γ)- and PLCγ2 (phospholipase Cγ2)-dependent pathways. Blocking both pathways completely abolishes integrin affinity and avidity regulation. Thus, SLP-76 and ADAP are involved in E-selectin–mediated integrin activation and neutrophil recruitment to inflamed kidneys, which may underlie the development of life-threatening ischemia-reperfusion–induced AKI in humans.
Collapse
Affiliation(s)
- Helena Block
- Department of Anesthesiology and Critical Care Medicine, University of Münster, 48149 Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Stephanowitz H, Lange S, Lang D, Freund C, Krause E. Improved Two-Dimensional Reversed Phase-Reversed Phase LC-MS/MS Approach for Identification of Peptide-Protein Interactions. J Proteome Res 2011; 11:1175-83. [DOI: 10.1021/pr200900s] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Heike Stephanowitz
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Sabine Lange
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Diana Lang
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Christian Freund
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany
- Freie Universität Berlin, 14195 Berlin, Germany
| | - Eberhard Krause
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| |
Collapse
|
24
|
Raab M, Smith X, Matthess Y, Strebhardt K, Rudd CE. SKAP1 protein PH domain determines RapL membrane localization and Rap1 protein complex formation for T cell receptor (TCR) activation of LFA-1. J Biol Chem 2011; 286:29663-70. [PMID: 21669874 PMCID: PMC3191007 DOI: 10.1074/jbc.m111.222661] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although essential for T cell function, the identity of the T cell receptor (TCR) "inside-out" pathway for the activation of lymphocyte function-associated antigen 1 (LFA-1) is unclear. SKAP1 (SKAP-55) is the upstream regulator needed for TCR-induced RapL-Rap1 complex formation and LFA-1 activation. In this paper, we show that SKAP1 is needed for RapL binding to membranes in a manner dependent on the PH domain of SKAP1 and the PI3K pathway. A SKAP1 PH domain-inactivating mutation (i.e. R131M) markedly impaired RapL translocation to membranes for Rap1 and LFA-1 binding and the up-regulation of LFA-1-intercellular adhesion molecule 1 (ICAM-1) binding. Further, N-terminal myr-tagged SKAP1 for membrane binding facilitated constitutive RapL membrane and Rap1 binding and effectively substituted for PI3K and TCR ligation in the activation of LFA-1 in T cells.
Collapse
Affiliation(s)
- Monika Raab
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom.
| | | | | | | | | |
Collapse
|
25
|
Burbach BJ, Srivastava R, Ingram MA, Mitchell JS, Shimizu Y. The pleckstrin homology domain in the SKAP55 adapter protein defines the ability of the adapter protein ADAP to regulate integrin function and NF-kappaB activation. THE JOURNAL OF IMMUNOLOGY 2011; 186:6227-37. [PMID: 21525391 DOI: 10.4049/jimmunol.1002950] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Adhesion and degranulation promoting adapter protein (ADAP) is a multifunctional hematopoietic adapter protein that regulates TCR-dependent increases in both integrin function and activation of the NF-κB transcription factor. Activation of integrin function requires both ADAP and the ADAP-associated adapter Src kinase-associated phosphoprotein of 55 kDa (SKAP55). In contrast, ADAP-mediated regulation of NF-κB involves distinct binding sites in ADAP that promote the inducible association of ADAP, but not SKAP55, with the CARMA1 adapter and the TAK1 kinase. This suggests that the presence or absence of associated SKAP55 defines functionally distinct pools of ADAP. To test this hypothesis, we developed a novel SKAP-ADAP chimeric fusion protein and demonstrated that physical association of ADAP with SKAP55 is both sufficient and necessary for the rescue of integrin function in ADAP-deficient T cells. Similar to wild-type ADAP, the SKAP-ADAP chimera associated with the LFA-1 integrin after TCR stimulation. Although the SKAP-ADAP chimera contains the CARMA1 and TAK1 binding sequences from ADAP, expression of the chimera does not restore NF-κB signaling in ADAP(-/-) T cells. A single point mutation in the pleckstrin homology domain of SKAP55 (R131M) blocks the ability of the SKAP-ADAP chimera to restore integrin function and to associate with LFA-1. However, the R131M mutant was now able to restore NF-κB signaling in ADAP-deficient T cells. We conclude that integrin regulation by ADAP involves the recruitment of ADAP to LFA-1 integrin complexes by the pleckstrin homology domain of SKAP55, and this recruitment restricts the ability of ADAP to interact with the NF-κB signalosome and regulate NF-κB activation.
Collapse
Affiliation(s)
- Brandon J Burbach
- Department of Laboratory Medicine and Pathology, Center for Immunology, Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN 55414, USA.
| | | | | | | | | |
Collapse
|
26
|
Sylvester M, Kliche S, Lange S, Geithner S, Klemm C, Schlosser A, Großmann A, Stelzl U, Schraven B, Krause E, Freund C. Adhesion and degranulation promoting adapter protein (ADAP) is a central hub for phosphotyrosine-mediated interactions in T cells. PLoS One 2010; 5:e11708. [PMID: 20661443 PMCID: PMC2908683 DOI: 10.1371/journal.pone.0011708] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 06/08/2010] [Indexed: 01/13/2023] Open
Abstract
TCR stimulation leads to an increase in cellular adhesion among other outcomes. The adhesion and degranulation promoting adapter protein (ADAP) is known to be rapidly phosphorylated after T cell stimulation and relays the TCR signal to adhesion molecules of the integrin family. While three tyrosine phosphorylation sites have been characterized biochemically, the binding capabilities and associated functions of several other potential phosphotyrosine motifs remain unclear. Here, we utilize in vitro phosphorylation and mass spectrometry to map novel phosphotyrosine sites in the C-terminal part of human ADAP (486–783). Individual tyrosines were then mutated to phenylalanine and their relevance for cellular adhesion and migration was tested experimentally. Functionally important tyrosine residues include two sites within the folded hSH3 domains of ADAP and two at the C-terminus. Furthermore, using a peptide pulldown approach in combination with stable isotope labeling in cell culture (SILAC) we identified SLP-76, PLCγ, PIK3R1, Nck, CRK, Gads, and RasGAP as phospho-dependent binding partners of a central YDDV motif of ADAP. The phosphorylation-dependent interaction between ADAP and Nck was confirmed by yeast two-hybrid analysis, immunoprecipitation and binary pulldown experiments, indicating that ADAP directly links integrins to modulators of the cytoskeleton independent of SLP-76.
Collapse
Affiliation(s)
- Marc Sylvester
- Protein Engineering Group, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Berlin, Germany
| | - Stefanie Kliche
- Institut für Molekulare und Klinische Immunologie, Otto-von-Guericke-Universität, Magdeburg, Germany
| | - Sabine Lange
- Mass Spectrometry Group, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Sabine Geithner
- Protein Engineering Group, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Berlin, Germany
| | - Clementine Klemm
- Mass Spectrometry Group, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Andreas Schlosser
- Institut für Medizinische Immunologie CCM, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Arndt Großmann
- Otto-Warburg-Laboratorium, Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
| | - Ulrich Stelzl
- Otto-Warburg-Laboratorium, Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
| | - Burkhart Schraven
- Institut für Molekulare und Klinische Immunologie, Otto-von-Guericke-Universität, Magdeburg, Germany
| | - Eberhard Krause
- Mass Spectrometry Group, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Christian Freund
- Protein Engineering Group, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
27
|
Lange S, Sylvester M, Schümann M, Freund C, Krause E. Identification of Phosphorylation-Dependent Interaction Partners of the Adapter Protein ADAP using Quantitative Mass Spectrometry: SILAC vs 18O-Labeling. J Proteome Res 2010; 9:4113-22. [DOI: 10.1021/pr1003054] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Sabine Lange
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Marc Sylvester
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Michael Schümann
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Christian Freund
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Eberhard Krause
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| |
Collapse
|
28
|
SH2 domain containing leukocyte phosphoprotein of 76-kDa (SLP-76) feedback regulation of ZAP-70 microclustering. Proc Natl Acad Sci U S A 2010; 107:10166-71. [PMID: 20534575 DOI: 10.1073/pnas.0909112107] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
T cell receptor (TCR) signaling involves CD4/CD8-p56lck recruitment of ZAP-70 to the TCR receptor, ZAP-70 phosphorylation of LAT that is followed by LAT recruitment of the GADS-SLP-76 complex. Back regulation of ZAP-70 by SLP-76 has not been documented. In this paper, we show that anti-CD3 induced ZAP-70 cluster formation is significantly reduced in the absence of SLP-76 (i.e., J14 cells) and in the presence of a mutant of SLP-76 (4KE) in Jurkat and primary T cells. Both the number of cells with clusters and the number of clusters per cell were reduced. This effect was not mediated by SLP-76 SH2 domain binding to ZAP-70 because SLP-76 failed to precipitate ZAP-70 and an inactivating SH2 domain mutation (i.e., R448L) on SLP-76 4KE did not reverse the inhibition of ZAP-70 clustering. Mutation of R448 on WT SLP-76 still supported ZAP-70 clustering. Intriguingly, by contrast, LAT clustering occurred normally in the absence of SLP-76, or the presence of 4KE SLP-76 indicating that this transmembrane adaptor can operate independently of ZAP-70-GADS-SLP-76. Our findings reconfigure the TCR signaling pathway by showing SLP-76 back-regulation of ZAP-70, an event that could ensure that signaling components are in balance for optimal T cell activation.
Collapse
|
29
|
Raab M, Wang H, Lu Y, Smith X, Wu Z, Strebhardt K, Ladbury JE, Rudd CE. T cell receptor "inside-out" pathway via signaling module SKAP1-RapL regulates T cell motility and interactions in lymph nodes. Immunity 2010; 32:541-56. [PMID: 20346707 DOI: 10.1016/j.immuni.2010.03.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2009] [Revised: 11/05/2009] [Accepted: 01/15/2010] [Indexed: 10/19/2022]
Abstract
Although essential for T cell function, the identity of the T cell receptor "inside-out" pathway for lymphocyte function-associated antigen 1 (LFA-1) adhesion has proved elusive. Here, we define the "inside-out" pathway mediated by N-terminal SKAP1 (SKAP-55) domain binding to the C-terminal SARAH domain of RapL. TcR induced Rap1-RapL complex formation and LFA-1 binding failed to occur in Skap1(-/-) primary T cells. SKAP1 generated a SKAP1-RapL-Rap1 complex that bound to LFA-1, whereas a RapL mutation (L224A) that abrogated SKAP1 binding without affecting MST1 disrupted component colocalization in vesicles as well as T cell-dendritic cell (DC) conjugation. RapL expression also "slowed" T cell motility in D011.10 transgenic T cells in lymph nodes (LNs), an effect reversed by the L224A mutation with reduced dwell times between T cells and DCs. Overall, our findings define a TCR "inside-out" pathway via N-SKAP1-C-RapL that regulates T cell adhesion, motility, and arrest times with DCs in LNs.
Collapse
Affiliation(s)
- Monika Raab
- Cell Signaling Section, Department of Pathology, Tennis Court Road, University of Cambridge, Cambridge UK, CB2 1Q
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Immunopathologies linked to integrin signalling. Semin Immunopathol 2010; 32:173-82. [DOI: 10.1007/s00281-010-0202-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 02/08/2010] [Indexed: 02/07/2023]
|
31
|
SLP-76-ADAP adaptor module regulates LFA-1 mediated costimulation and T cell motility. Proc Natl Acad Sci U S A 2009; 106:12436-41. [PMID: 19617540 DOI: 10.1073/pnas.0900510106] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although adaptor ADAP (FYB) and its binding to SLP-76 has been implicated in TcR-induced "inside-out" signaling for LFA-1 activation in T cells, little is known regarding its role in LFA-1-mediated "outside-in" signaling. In this study, we demonstrate that ADAP and SLP-76-ADAP binding are coupled to LFA-1 costimulation of IL-2 production, F-actin clustering, cell polarization, and T cell motility. LFA-1 enhancement of anti-CD3-induced IL-2 production was completely dependent on SLP-76-ADAP binding. Further, anti-CD3 was found to require CD11a ligation by antibody or ICAM1 to cause T cell polarization. ADAP augmented this polarization induced by anti-CD3/CD11a, but not by anti-CD3 alone. ADAP expression with LFA-1 ligation alone was sufficient to polarize T cells directly and to increase T cell motility whereas the loss of ADAP in ADAP-/- primary T cells reduced motility. A mutant lacking SLP-76-binding sites (M12) blocked LFA-1 costimulation of IL-2 production, polarization, and motility. LFA-1-ADAP polarization was also dependent on src kinases, Rho GTPases, phospholipase C, and phosphoinositol 3-kinase. Our findings provide evidence of an obligatory role for the SLP-76-ADAP module in LFA-1-mediated costimulation in T cells.
Collapse
|
32
|
Abstract
Integrins are cell surface heterodimers that bind adhesion molecules expressed on other cells or in the extracellular matrix. Integrin-mediated interactions are critical for T cell development in the thymus, migration of T cells in the periphery, and induction of T cell effector functions. In resting T cells, integrins are maintained in a low affinity state. Engagement of the T cell receptor or chemokine receptors increases integrin affinity, enabling integrins to bind their ligands and initiate a signaling cascade resulting in altered cell morphology and motility. Our laboratory is interested how adapter proteins, mediators of intracellular signal transduction, regulate both signals from the T cell receptor to integrins (inside-out signaling) and (outside-in) signals from integrins into the cell.
Collapse
|
33
|
Burbach BJ, Srivastava R, Medeiros RB, O'Gorman WE, Peterson EJ, Shimizu Y. Distinct regulation of integrin-dependent T cell conjugate formation and NF-kappa B activation by the adapter protein ADAP. THE JOURNAL OF IMMUNOLOGY 2008; 181:4840-51. [PMID: 18802088 DOI: 10.4049/jimmunol.181.7.4840] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Following TCR stimulation, T cells utilize the hematopoietic specific adhesion and degranulation-promoting adapter protein (ADAP) to control both integrin adhesive function and NF-kappaB transcription factor activation. We have investigated the molecular basis by which ADAP controls these events in primary murine ADAP(-/-) T cells. Naive DO11.10/ADAP(-/-) T cells show impaired adhesion to OVAp (OVA aa 323-339)-bearing APCs that is restored following reconstitution with wild-type ADAP. Mutational analysis demonstrates that the central proline-rich domain and the C-terminal domain of ADAP are required for rescue of T:APC conjugate formation. The ADAP proline-rich domain is sufficient to bind and stabilize the expression of SKAP55 (Src kinase-associated phosphoprotein of 55 kDa), which is otherwise absent from ADAP(-/-) T cells. Interestingly, forced expression of SKAP55 in the absence of ADAP is insufficient to drive T:APC conjugate formation, demonstrating that both ADAP and SKAP55 are required for optimal LFA-1 function. Additionally, the ADAP proline-rich domain is required for optimal Ag-induced activation of CD69, CD25, and Bcl-x(L), but is not required for assembly of the CARMA1/Bcl10/Malt1 (caspase-recruitment domain (CARD) membrane-associated guanylate kinase (MAGUK) protein 1/B-cell CLL-lymphoma 10/mucosa-associated lymphoid tissue lymphoma translocation protein 1) signaling complex and subsequent TCR-dependent NF-kappaB activity. Our results indicate that ADAP is used downstream of TCR engagement to delineate two distinct molecular programs in which the ADAP/SKAP55 module is required for control of T:APC conjugate formation and functions independently of ADAP/CARMA1-mediated NF-kappaB activation.
Collapse
Affiliation(s)
- Brandon J Burbach
- Department of Laboratory Medicine and Pathology, Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
34
|
Wang H, Rudd CE. SKAP-55, SKAP-55-related and ADAP adaptors modulate integrin-mediated immune-cell adhesion. Trends Cell Biol 2008; 18:486-93. [PMID: 18760924 DOI: 10.1016/j.tcb.2008.07.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 07/15/2008] [Accepted: 07/16/2008] [Indexed: 11/25/2022]
Abstract
Integrin adhesion is essential for aspects of immune function, including antigen presentation and migration in lymph nodes, germinal centers and sites of inflammation. Antigen receptors on B and T cells generate 'inside-out' signals for increased integrin clustering and adhesion. Although upstream components of B-cell-receptor or T-cell-receptor signaling are needed, the identity of key downstream effectors that mediate integrin adhesion is only just emerging. New candidates include immune-cell-specific adaptor proteins ADAP, SKAP-55 and SKAP-55-related (SKAP-55R). SKAP-55 has recently been identified as an effector in T cells in SKAP-55-deficient mice, whereas SKAP-55R is needed for B-cell adhesion. ADAP is required for SKAP-55 and SKAP-55R protein stability. SKAP-55 and SKAP-55R have unexpectedly specialized roles in T- and B-cell adhesion of the immune system.
Collapse
Affiliation(s)
- Hongyan Wang
- Cambridge Institute for Medical Research, Cambridge, UK
| | | |
Collapse
|
35
|
Abstract
Integrin adhesion receptors are critical for antigen recognition by T cells and for regulated recirculation and trafficking into and through various tissues in the body. T-cell receptor (TCR) signaling induces rapid increases in integrin function that facilitate T-cell activation by promoting stable contact with antigen-presenting cells and extracellular proteins in the environment. In this review, we outline the molecular mechanisms by which the TCR signals to integrins and present a model that highlights four key events: (i) initiation of proximal TCR signals nucleated by the linker for activated T cells (LAT) adapter protein and involving Itk, phospholipase C-gamma1, Vav1, and Src homology 2 domain-containing leukocyte-specific phosphoprotein of 76 kDa; (ii) transmission of integrin activation signals from the LAT signalosome to integrins by protein kinase (PK) C and the adapter protein, adhesion and degranulation-promoting adapter protein; (iii) assembly of integrin-associated signaling complexes that include PKD, the guanosine triphosphatase Rap1 and its effectors, and talin; and (iv) reorganization of the actin cytoskeleton by WAVE2 and other actin-remodeling proteins. These events coordinate changes in integrin conformation and clustering that result in enhanced integrin functional activity following TCR stimulation.
Collapse
Affiliation(s)
- Brandon J Burbach
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
36
|
Ménasché G, Kliche S, Bezman N, Schraven B. Regulation of T-cell antigen receptor-mediated inside-out signaling by cytosolic adapter proteins and Rap1 effector molecules. Immunol Rev 2007; 218:82-91. [PMID: 17624945 DOI: 10.1111/j.1600-065x.2007.00543.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Integrins are critical for the migration of T cells to lymphoid organs and to sites of inflammation and are also necessary for productive interactions between T cells and antigen-presenting cells. Integrin activation is enhanced following T-cell receptor (TCR) engagement, as signals initiated by the TCR increase affinity and avidity of integrins for their ligands. This process, known as inside-out signaling, has been shown to require several molecular components including the cytosolic adapter proteins adhesion and degranulation-promoting adapter protein and Src homology 2 domain-containing adapter protein of 55 kDa, the low molecular weight guanosine triphosphatase Rap1, and the Rap1 effector proteins Rap1 guanosine triphosphate-interacting adapter molecule, regulator of adhesion and cell polarization enriched in lymphoid tissues, and protein kinase D1. Herein, we review recent findings about how the TCR is linked to integrin activation through inside-out signaling.
Collapse
Affiliation(s)
- Gaël Ménasché
- Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
37
|
Wang H, Liu H, Lu Y, Lovatt M, Wei B, Rudd CE. Functional defects of SKAP-55-deficient T cells identify a regulatory role for the adaptor in LFA-1 adhesion. Mol Cell Biol 2007; 27:6863-75. [PMID: 17646386 PMCID: PMC2099233 DOI: 10.1128/mcb.00556-07] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The ADAP-SKAP-55 module regulates T-cell receptor (TCR)-induced integrin clustering and adhesion in T cells. However, it has been unclear whether ADAP and/or SKAP-55 is an effector of the response. ADAP controls SKAP-55 expression such that ADAP(-/-) T cells are also deficient in SKAP-55 expression. In this study, we report the phenotype of the SKAP-55-deficient mouse. SKAP-55(-/-) T cells retain ADAP expression yet show defects in beta1 and beta2 integrin adhesion, leukocyte function-associated antigen 1 (LFA-1) clustering, production of the cytokines interleukin-2 and gamma interferon, and proliferation. This dependency was also reflected in more-transient conjugation times in response to the superantigen staphylococcal enterotoxin A on dendritic cells and a reduced number of cells with TCR/CD3 microcluster localization at the immunological synapse. SKAP-55(-/-) T cells showed the same general impairment of function as ADAP(-/-) T cells, indicating that SKAP-55 is an effector of the ADAP-SKAP-55 module. At the same time, the requirement for ADAP and SKAP-55 was not absolute, since a subset of peripheral T cells adhered with loss of expression of either adaptor. Further, dependency on SKAP-55 or ADAP differed with the strength of the TCR signal. As with the ADAP(-/-) mouse, SKAP-55-deficient mice showed no major effects on lymphoid development or the appearance of peripheral T cells, B cells, and NK cells. Our findings identify a clear effector role for SKAP-55 in LFA-1 adhesion in peripheral T cells and demonstrate that dependency on SKAP-55 and ADAP differs among T cells and differs with the strength of the TCR signal.
Collapse
Affiliation(s)
- Hongyan Wang
- Department of Pathology, Cambridge University, Tennis Court Road, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
38
|
Kasirer-Friede A, Moran B, Nagrampa-Orje J, Swanson K, Ruggeri ZM, Schraven B, Neel BG, Koretzky G, Shattil SJ. ADAP is required for normal alphaIIbbeta3 activation by VWF/GP Ib-IX-V and other agonists. Blood 2006; 109:1018-25. [PMID: 17003372 PMCID: PMC1785130 DOI: 10.1182/blood-2006-05-022301] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Interaction between von Willebrand factor (VWF) and platelet GP Ib-IX-V is required for hemostasis, in part because intracellular signals from VWF/GP Ib-IX-V activate the ligand-binding function of integrin alphaIIbbeta3. Because they also induce tyrosine phosphorylation of the ADAP adapter, we investigated ADAP's role in GP Ib-IX-V signal transduction. Fibrinogen or ligand-mimetic POW-2 Fab binding to alphaIIbbeta3 was stimulated by adhesion of ADAP+/+ murine platelets to dimeric VWF A1A2 but was significantly reduced in ADAP-/- platelets (P<.01). alphaIIbbeta3 activation by ADP or a Par4 thrombin receptor agonist was also decreased in ADAP-/- platelets. ADAP stabilized the expression of another adapter, SKAP-HOM, via interaction with the latter's SH3 domain. However, no abnormalities in alphaIIbbeta3 activation were observed in SKAP-HOM-/- platelets, which express normal ADAP levels, further implicating ADAP as a modulator of alphaIIbbeta3 function. Under shear flow conditions over a combined surface of VWF A1A2 and fibronectin to test interactions involving GP Ib-IX-V and alphaIIbbeta3, respectively, ADAP-/- platelets displayed reduced alphaIIbbeta3-dependent stable adhesion. Furthermore, ADAP-/- mice demonstrated increased rebleeding from tail wounds. These studies establish ADAP as a component of inside-out signaling pathways that couple GP Ib-IX-V and other platelet agonist receptors to alphaIIbbeta3 activation.
Collapse
Affiliation(s)
- Ana Kasirer-Friede
- Department of Medicine, University of California San Diego, La Jolla 92093-0726, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Combs J, Kim SJ, Tan S, Ligon LA, Holzbaur ELF, Kuhn J, Poenie M. Recruitment of dynein to the Jurkat immunological synapse. Proc Natl Acad Sci U S A 2006; 103:14883-8. [PMID: 16990435 PMCID: PMC1595445 DOI: 10.1073/pnas.0600914103] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Binding of T cells to antigen-presenting cells leads to the formation of the immunological synapse, translocation of the microtubule-organizing center (MTOC) to the synapse, and focused secretion of effector molecules. Here, we show that upon activation of Jurkat cells microtubules project from the MTOC to a ring of the scaffolding protein ADAP, localized at the synapse. Loss of ADAP, but not lymphocyte function-associated antigen 1, leads to a severe defect in MTOC polarization at the immunological synapse. The microtubule motor protein cytoplasmic dynein clusters into a ring at the synapse, colocalizing with the ADAP ring. ADAP coprecipitates with dynein from activated Jurkat cells, and loss of ADAP prevents MTOC translocation and the specific recruitment of dynein to the synapse. These results suggest a mechanism that links signaling through the T cell receptor to translocation of the MTOC, in which the minus end-directed motor cytoplasmic dynein, localized at the synapse through an interaction with ADAP, reels in the MTOC, allowing for directed secretion along the polarized microtubule cytoskeleton.
Collapse
Affiliation(s)
- Jeffrey Combs
- *Department of Molecular Cell and Developmental Biology, University of Texas, 1 University Station, MC C0930, Austin, TX 78712
| | - Soo Jin Kim
- *Department of Molecular Cell and Developmental Biology, University of Texas, 1 University Station, MC C0930, Austin, TX 78712
| | - Sarah Tan
- *Department of Molecular Cell and Developmental Biology, University of Texas, 1 University Station, MC C0930, Austin, TX 78712
| | - Lee A. Ligon
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Erika L. F. Holzbaur
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Jeffrey Kuhn
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520
| | - Martin Poenie
- *Department of Molecular Cell and Developmental Biology, University of Texas, 1 University Station, MC C0930, Austin, TX 78712
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
40
|
Wu JN, Gheith S, Bezman NA, Liu QH, Fostel LV, Swanson AM, Freedman BD, Koretzky GA, Peterson EJ. Adhesion- and degranulation-promoting adapter protein is required for efficient thymocyte development and selection. THE JOURNAL OF IMMUNOLOGY 2006; 176:6681-9. [PMID: 16709827 DOI: 10.4049/jimmunol.176.11.6681] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Adhesion- and degranulation-promoting adapter protein (ADAP) is required in TCR-induced activation and proliferation of peripheral T cells. Loss of ADAP also impairs TCR-initiated inside-out activation of the integrin LFA-1 (CD11a/CD18, alphaLbeta2). In this study, we demonstrate that ADAP-deficient CD4/CD8 double-positive (DP) cells have a diminished ability to proliferate, and that these DP thymocytes up-regulate CD69 poorly in vivo. Moreover, in both MHC class I- and class II-restricted TCR transgenic models, loss of ADAP interferes with both positive and negative selection. ADAP deficiency also impairs the ability of transgene-bearing DP thymocytes to form conjugates with Ag-loaded presenting cells. These findings suggest that ADAP is critical for thymocyte development and selection.
Collapse
Affiliation(s)
- Jennifer N Wu
- Abramson Family Cancer Research Institute and Department of Laboratory Medicine and Pathology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Martín-Cófreces NB, Sancho D, Fernández E, Vicente-Manzanares M, Gordón-Alonso M, Montoya MC, Michel F, Acuto O, Alarcón B, Sánchez-Madrid F. Role of Fyn in the rearrangement of tubulin cytoskeleton induced through TCR. THE JOURNAL OF IMMUNOLOGY 2006; 176:4201-7. [PMID: 16547257 DOI: 10.4049/jimmunol.176.7.4201] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The translocation of the microtubule-organizing center (MTOC), its associated signaling complex, and the secretory apparatus is the most characteristic early event that involves the tubulin cytoskeleton of T or NK cells after their interaction with APC or target cells. Our results show that Fyn kinase activity is essential for MTOC reorientation in an Ag-dependent system. Moreover, T cells from Fyn-deficient mice are unable to rearrange their tubulin cytoskeleton in response to anti-CD3-coated beads. Analysis of conjugates of T cells from transgenic OT-I mice with dendritic cells revealed that an antagonist peptide induces translocation of the MTOC, and that this process is impaired in T cells from Fyn(-/-) OT-I mice. In addition, Fyn deficiency significantly affects the MTOC relocation mediated by agonist peptide stimulation. These results reveal Fyn to be a key regulator of tubulin cytoskeleton reorganization in T cells.
Collapse
Affiliation(s)
- Noa B Martín-Cófreces
- Servicio de Inmunología, Hospital de la Princesa, Universidad Autónoma de Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Duke-Cohan JS, Kang H, Liu H, Rudd CE. Regulation and Function of SKAP-55 Non-canonical Motif Binding to the SH3c Domain of Adhesion and Degranulation-promoting Adaptor Protein. J Biol Chem 2006; 281:13743-13750. [PMID: 16461356 DOI: 10.1074/jbc.m508774200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The immune cell adaptor adhesion and degranulation promoting adaptor protein (ADAP) and its binding to T-cell adaptor Src kinase-associated protein of 55 kDa (SKAP-55) play a key role in the modulation of T-cell adhesion. While primary binding occurs via SKAP-55 SH3 domain binding to a proline-rich region in ADAP, a second interaction occurs between the ADAP C-terminal SH3 domain (ADAP-SH3c) and a non-canonical RKXXY294XXY297 motif in SKAP-55. Increasing numbers of non-canonical SH3 domain binding motifs have been identified in a number of biological systems. The presence of tyrosine residues in the SKAP-55 RKXXY294XXY297 motif suggested that phosphorylation might influence this unusual SH3 domain interaction. Here, we show that the Src kinase p59fyn can induce the in vivo phosphorylation of the motif, and this event blocks ADAP-SH3c domain binding to the peptide motif. The importance of tyrosine phosphorylation was confirmed by plasmon resonance interaction analysis showing that phosphorylation of Tyr294 residue plays a central role in mediating dissociation, whereas phosphorylation of the second Tyr297 had no effect. Although loss of this secondary interaction did not result in the disruption of the complex, the Y294F mutation blocked T-cell receptor-induced up-regulation of lymphocyte function-associated antigen-1-mediated adhesion to intercellular adhesion molecule-1 and interleukin-2 promoter activity. Our findings identify a RKXXY294 motif in SKAP-55 that mediates unique ADAP SH3c domain binding and is needed for LFA-1-mediated adhesion and cytokine production.
Collapse
Affiliation(s)
- Jonathan S Duke-Cohan
- Department of Medical Oncology, Harvard Medical School, Boston, Massachusetts 02115.
| | - Hyun Kang
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, and Departments of Medicine and Pathology, Harvard Medical School, Boston, Massachusetts 02115
| | - Hebin Liu
- Molecular Immunology Section, Department of Immunology, Division of Investigative Sciences, Division of Medicine, Imperial College, Hammersmith Campus, Du Cane Road, London W12 ONN, United Kingdom
| | - Christopher E Rudd
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, and Departments of Medicine and Pathology, Harvard Medical School, Boston, Massachusetts 02115; Molecular Immunology Section, Department of Immunology, Division of Investigative Sciences, Division of Medicine, Imperial College, Hammersmith Campus, Du Cane Road, London W12 ONN, United Kingdom.
| |
Collapse
|
43
|
Koga S, Yogo K, Yoshikawa K, Samori H, Goto M, Uchida T, Ishida N, Takeya T. Physical and Functional Association of c-Src and Adhesion and Degranulation Promoting Adaptor Protein (ADAP) in Osteoclastogenesis in Vitro. J Biol Chem 2005; 280:31564-71. [PMID: 16020549 DOI: 10.1074/jbc.m502703200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
c-Src plays a crucial role in osteoclastogenesis. In this study, we searched for c-Src-binding proteins using a combination of pull-down assays and mass spectrometric analysis, and identified the association of adhesion and degranulation promoting adaptor protein (ADAP) with c-Src in RAW264 cells and osteoclast precursors prepared from bone marrow cells. The kinase activity and the SH2 domain of c-Src were required for this association and Tyr807 in the extreme carboxyl terminus of ADAP was identified as a major recognition site. ADAP was found to be expressed in cells at the prefusion stage and localized mainly in the leading edge of lamellipodia and in pseudopodia. Tyrosine phosphorylation of ADAP was induced in an integrin-dependent manner, and the level was Src kinase-dependent. ADAP-knockdown RAW264 cells showed retarded migration and formed few multinucleated cells. Cas, known to be phosphorylated by c-Src, was identified as a major tyrosine-phosphorylated protein in differentiating RAW264 cells and the phosphorylation appeared to be decreased in ADAP-knockdown cells. ADAP thus may play an important role as a partner of c-Src for cell migration and progression to the multinucleated cell stage in osteoclastogenesis in vitro.
Collapse
Affiliation(s)
- Shintaro Koga
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Kwon J, Qu CK, Maeng JS, Falahati R, Lee C, Williams MS. Receptor-stimulated oxidation of SHP-2 promotes T-cell adhesion through SLP-76-ADAP. EMBO J 2005; 24:2331-41. [PMID: 15933714 PMCID: PMC1173147 DOI: 10.1038/sj.emboj.7600706] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Accepted: 05/11/2005] [Indexed: 11/08/2022] Open
Abstract
Receptor-stimulated generation of intracellular reactive oxygen species (ROS) modulates signal transduction, although the mechanism(s) is unclear. One potential basis is the reversible oxidation of the active site cysteine of protein tyrosine phosphatases (PTPs). Here, we show that activation of the antigen receptor of T cells (TCR), which induces production of ROS, induces transient inactivation of the SH2 domain-containing PTP, SHP-2, but not the homologous SHP-1. SHP-2 is recruited to the LAT-Gads-SLP-76 complex and directly regulates the phosphorylation of key signaling proteins Vav1 and ADAP. Furthermore, the association of ADAP with the adapter SLP-76 is regulated by SHP-2 in a redox-dependent manner. The data indicate that TCR-mediated ROS generation leads to SHP-2 oxidation, which promotes T-cell adhesion through effects on an SLP-76-dependent signaling pathway to integrin activation.
Collapse
Affiliation(s)
- Jaeyul Kwon
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Rockville, MD, USA
| | - Cheng-Kui Qu
- Department of Pathology, University of Maryland School of Medicine, Rockville, MD, USA
| | - Jin-Soo Maeng
- Laboratory of Biophysical Chemistry, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rustom Falahati
- Department of Immunology, George Washington University School of Medicine, Washington, DC, USA
| | | | - Mark S Williams
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Rockville, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 15601 Crabbs Branch Way, Rockville, MD 20855, USA. Tel.: +1 301 738 0468; Fax: +1 301 517 0344; E-mail:
| |
Collapse
|
45
|
Abstract
Adapter molecules are multidomain proteins lacking intrinsic catalytic activity, functioning instead by nucleating molecular complexes during signal transduction. The SLP-76 family of adapters includes SH2 domain-containing leukocyte phosphoprotein of 76kDa (SLP-76), B cell linker protein (BLNK), and cytokine-dependent hematopoietic cell linker (Clnk). These proteins are critical for integration of numerous signaling cascades downstream of immunotyrosine-based activation motif (ITAM)-bearing receptors and integrins in diverse hematopoietic cell types. Mutations in genes encoding SLP-76 family adapters result in severe phenotypes, underscoring the critical role these proteins play in cellular development and function by directing formation of signaling complexes in a temporally- and spatially-specific manner.
Collapse
Affiliation(s)
- Jennifer N Wu
- Department of Laboratory Medicine and Pathology, School of Medicine, Abramson Family Cancer Research Institute, University of Pennsylvania, 415 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | | |
Collapse
|
46
|
Abstract
Memory T cells exhibit low activation thresholds and mediate rapid effector responses when recalled by antigen; contrasting the higher activation threshold, slower responses and predominant IL-2 production by naive T cells. While the sequence of intracellular events coupling the T cell-receptor (TCR) to naive T cell activation is well characterized, biochemical control of memory T cell differentiation and function remains undefined. In this review, we will discuss recent developments in T cell-receptor signal transduction as they pertain to memory T cells, and will discuss how signal dampening may drive memory generation, and more efficient spatial organization of signaling molecules may promote rapid recall responses.
Collapse
Affiliation(s)
- Meena R Chandok
- Division of Transplantation, Department of Surgery, University of Maryland School of Medicine, MSTF Building, Room 400, 685 W. Baltimore St., Baltimore, MD 21201, USA
| | | |
Collapse
|
47
|
Huang Y, Norton DD, Precht P, Martindale JL, Burkhardt JK, Wange RL. Deficiency of ADAP/Fyb/SLAP-130 destabilizes SKAP55 in Jurkat T cells. J Biol Chem 2005; 280:23576-83. [PMID: 15849195 DOI: 10.1074/jbc.m413201200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ADAP (adhesion and degranulation-promoting adaptor protein) and SKAP55 (Src kinase-associated phosphoprotein of 55 kDa) are T cell adaptors that mediate inside-out signaling from the T cell antigen receptor to integrins, giving rise to increased integrin affinity/avidity and formation of the immunological synapse between the T cell and the antigen-presenting cell. These two proteins are tightly and constitutively associated with one another, and their ability to interact is required for inside-out signaling. Here we show in an ADAP-deficient Jurkat T cell line that the co-dependence of ADAP and SKAP55 extends beyond their functional and physical interactions and show that SKAP55 protein is unstable in the absence of ADAP. Restoration of ADAP to the ADAP-deficient Jurkat T cell line restores SKAP55 expression by causing a 5-fold decrease in the rate of SKAP55 proteolysis. Inactivation of the Src homology 3 domain of SKAP55, which mediates the association between SKAP55 with ADAP, blocks the protective effect of ADAP. The half-life of SKAP55, in the absence of ADAP, is approximately 15-20 min, increasing to 90 min in the presence of ADAP. This is a remarkably rapid rate of turnover for a signaling protein and suggests the possibility that stimuli that signal for the stabilization of SKAP55 may play an important role in T cell adhesion and conjugate formation.
Collapse
Affiliation(s)
- Yanping Huang
- Laboratory of Cellular and Molecular Biology, NIA, National Institutes of Health, Intramural Research Program/Department of Health and Human Services, Baltimore, Maryland 21224, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Clemens RA, Newbrough SA, Chung EY, Gheith S, Singer AL, Koretzky GA, Peterson EJ. PRAM-1 is required for optimal integrin-dependent neutrophil function. Mol Cell Biol 2004; 24:10923-32. [PMID: 15572693 PMCID: PMC533979 DOI: 10.1128/mcb.24.24.10923-10932.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PML-retinoic acid receptor alpha (RARalpha) regulated adaptor molecule 1 (PRAM-1) is an intracellular adaptor molecule that is upregulated during the induced granulocytic differentiation of promyelocytic leukemic cells and during normal human myelopoiesis. This report describes the generation of PRAM-1-deficient mice and an analysis of the function of this adaptor in neutrophil differentiation and mature neutrophil function. We demonstrate here that neutrophil differentiation is not impaired in PRAM-1-deficient mice and that PRAM-1-deficient neutrophils function normally following engagement of Fcgamma receptors. In contrast, mature PRAM-1-null neutrophils exhibit significant defects in adhesion-dependent reactive oxygen intermediate production and degranulation. Surprisingly, other integrin-dependent responses, such as cell spreading and activation of several signaling pathways, are normal. Together, these findings demonstrate the uncoupling of key integrin-dependent responses in the absence of PRAM-1 and show this adaptor to be critical for select integrin functions in neutrophils.
Collapse
Affiliation(s)
- Regina A Clemens
- Dept. of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Paccani SR, Patrussi L, Ulivieri C, Masferrer JL, D'Elios MM, Baldari CT. Nonsteroidal anti-inflammatory drugs inhibit a Fyn-dependent pathway coupled to Rac and stress kinase activation in TCR signaling. Blood 2004; 105:2042-8. [PMID: 15514010 DOI: 10.1182/blood-2004-04-1299] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In addition to their anti-inflammatory properties, nonsteroidal anti-inflammatory drugs (NSAIDs) harbor immunosuppressive activities related to their capacity both to inhibit cyclooxygenases (COXs) and to act as peroxisome proliferator-activated receptor (PPAR) ligands. We have previously shown that the stress-activated kinase p38 is a selective target of NSAIDs in T cells. Here we have investigated the effect of NSAIDs on the signaling pathway triggered by the T-cell antigen receptor (TCR) and leading to stress kinase activation. The results show that nonselective and COX-1-selective NSAIDs also block activation of the stress kinase c-Jun N-terminal kinase (JNK) and that prostaglandin-E2 (PGE2) reverses this block and enhances TCR-dependent JNK activation. Analysis of the activation state of the components upstream of p38 and JNK showed that NSAIDs inhibit the serine-threonine kinase p21-activated protein kinase 1 (Pak1) and the small guanosine 5'-triphosphatase (GTPase) Rac, as well as the Rac-specific guanine nucleotide exchanger, Vav. Furthermore, activation of Fyn, which controls Vav phosphorylation, is inhibited by NSAIDs, whereas activation of lymphocyte-specific protein tyrosine kinase (Lck) and of the Lck-dependent tyrosine kinase cascade is unaffected. Accordingly, constitutively active Fyn reverses the NSAID-dependent stress kinase inhibition. The data identify COX-1 as an important early modulator of TCR signaling and highlight a TCR proximal pathway selectively coupling the TCR to stress kinase activation.
Collapse
Affiliation(s)
- Silvia Rossi Paccani
- Department of Evolutionary Biology, University of Siena, Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | | | | | | | | | | |
Collapse
|
50
|
Wang H, McCann FE, Gordan JD, Wu X, Raab M, Malik TH, Davis DM, Rudd CE. ADAP-SLP-76 binding differentially regulates supramolecular activation cluster (SMAC) formation relative to T cell-APC conjugation. ACTA ACUST UNITED AC 2004; 200:1063-74. [PMID: 15477347 PMCID: PMC2211848 DOI: 10.1084/jem.20040780] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
T cell–APC conjugation as mediated by leukocyte function-associated antigen-1 (LFA-1)–intercellular adhesion molecule (ICAM)-1 binding is followed by formation of the supramolecular activation cluster (SMAC) at the immunological synapse. The intracellular processes that regulate SMAC formation and its influence on T cell function are important questions to be addressed. Here, using a mutational approach, we demonstrate that binding of adaptor adhesion and degranulation promoting adaptor protein (ADAP) to SLP-76 differentially regulates peripheral SMAC (pSMAC) formation relative to conjugation. Although mutation of the YDDV sites (termed M12) disrupted SLP-76 SH2 domain binding and prevented the ability of ADAP to increase conjugation and LFA-1 clustering, M12 acted selectively as a dominant negative (DN) inhibitor of pSMAC formation, an effect that was paralleled by a DN effect on interleukin-2 production. ADAP also colocalized with LFA-1 at the immunological synapse. Our findings identify ADAP–SLP-76 binding as a signaling event that differentially regulates SMAC formation, and support a role for SMAC formation in T cell cytokine production.
Collapse
Affiliation(s)
- Hongyan Wang
- Molecular Immunology Section, Department of Immunology, Imperial College London, Hammersmith Campus, London W12 ONN, England, UK
| | | | | | | | | | | | | | | |
Collapse
|