1
|
Wasielewski VV, Itani TM, Zakharova YA, Semenov AV. Current trends and new approaches for human norovirus replication in cell culture: a literature review. Arch Virol 2024; 169:71. [PMID: 38459228 DOI: 10.1007/s00705-024-05999-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/21/2024] [Indexed: 03/10/2024]
Abstract
Human norovirus (HuNoV) is one of the world's leading causes of acute gastroenteritis. At present, effective reproduction of the virus in cell cultures remains a challenge for virologists, as there is a lack of a permissive cell line that allows the entire viral life cycle to be reproduced. This is a barrier to the study of the HuNoV life cycle, its tropism, and virus-host interactions. It is also a major hurdle for the development of viral detection platforms, and ultimately for the development of therapeutics. The lack of an inexpensive, technically simple, and easily implemented cultivation method also negatively affects our ability to evaluate the efficacy of a variety of control measures (disinfectants, food processes) for human norovirus. In the process of monitoring this pathogen, it is necessary to detect infectious viral particles in water, food, and other environmental samples. Therefore, improvement of in vitro replication of HuNoV is still needed. In this review, we discuss current trends and new approaches to HuNoV replication in cell culture. We highlight ways in which previous research on HuNoV and other noroviruses has guided and influenced the development of new HuNoV culture systems and discuss the improvement of in vitro replication of HuNoV.
Collapse
Affiliation(s)
- Valentin V Wasielewski
- Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Federal Scientific Research Institute of Viral Infections «Virome», Ekaterinburg, 620030, Russian Federation
| | - Tarek M Itani
- Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Federal Scientific Research Institute of Viral Infections «Virome», Ekaterinburg, 620030, Russian Federation.
| | - Yuliya A Zakharova
- Institute of Disinfectology of the F.F. Erisman Federal Scientific Centre of Hygiene Rospotrebnadzor, Mosсow, Russian Federation
| | - Aleksandr V Semenov
- Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Federal Scientific Research Institute of Viral Infections «Virome», Ekaterinburg, 620030, Russian Federation
- Ural Federal University named after the First President of Russia B.N. Yeltsin, Ekaterinburg, Russian Federation
| |
Collapse
|
2
|
Kusumoto T, Chubachi S, Namkoong H, Tanaka H, Lee H, Azekawa S, Otake S, Nakagawara K, Fukushima T, Morita A, Watase M, Sakurai K, Asakura T, Masaki K, Kamata H, Ishii M, Hasegawa N, Harada N, Ueda T, Ueda S, Ishiguro T, Arimura K, Saito F, Yoshiyama T, Nakano Y, Mutoh Y, Suzuki Y, Edahiro R, Sano H, Sato Y, Okada Y, Koike R, Kitagawa Y, Tokunaga K, Kimura A, Imoto S, Miyano S, Ogawa S, Kanai T, Fukunaga K. Association between ABO blood group/genotype and COVID-19 in a Japanese population. Ann Hematol 2023; 102:3239-3249. [PMID: 37581712 DOI: 10.1007/s00277-023-05407-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023]
Abstract
An association between coronavirus disease 2019 (COVID-19) and the ABO blood group has been reported. However, such an association has not been studied in the Japanese population on a large scale. Little is known about the association between COVID-19 and ABO genotype. This study investigated the association between COVID-19 and ABO blood group/genotype in a large Japanese population. All Japanese patients diagnosed with COVID-19 were recruited through the Japan COVID-19 Task Force between February 2020 and October 2021. We conducted a retrospective cohort study involving 1790 Japanese COVID-19 patients whose DNA was used for a genome-wide association study. We compared the ABO blood group/genotype in a healthy population (n = 611, control) and COVID-19 patients and then analyzed their associations and clinical outcomes. Blood group A was significantly more prevalent (41.6% vs. 36.8%; P = 0.038), and group O was significantly less prevalent (26.2% vs. 30.8%; P = 0.028) in the COVID-19 group than in the control group. Moreover, genotype OO was significantly less common in the COVID-19 group. Furthermore, blood group AB was identified as an independent risk factor for most severe diseases compared with blood group O [aOR (95% CI) = 1.84 (1.00-3.37)]. In ABO genotype analysis, only genotype AB was an independent risk factor for most severe diseases compared with genotype OO. Blood group O is protective, whereas group A is associated with the risk of infection. Moreover, blood group AB is associated with the risk of the "most" severe disease.
Collapse
Affiliation(s)
- Tatsuya Kusumoto
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Shotaro Chubachi
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Ho Namkoong
- Department of Infectious Diseases, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Hiromu Tanaka
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Ho Lee
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Shuhei Azekawa
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Shiro Otake
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kensuke Nakagawara
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Takahiro Fukushima
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Atsuho Morita
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Mayuko Watase
- Department of Respiratory Medicine, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Kaori Sakurai
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Takanori Asakura
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Respiratory Medicine, Kitasato University Kitasato Institute Hospital, Tokyo, Japan
| | - Katsunori Masaki
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hirofumi Kamata
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Makoto Ishii
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoki Hasegawa
- Department of Infectious Diseases, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Norihiro Harada
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - Tetsuya Ueda
- Department of Respiratory Medicine, Osaka Saiseikai Nakatsu Hospital, Osaka, Japan
| | - Soichiro Ueda
- Department of Internal Medicine, JCHO (Japan Community Health Care Organization) Saitama Medical Center, Saitama, Japan
| | - Takashi Ishiguro
- Department of Respiratory Medicine, Saitama Cardiovascular and Respiratory Center, Kumagaya, Japan
| | - Ken Arimura
- Department of Respiratory Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Fukuki Saito
- Department of Emergency and Critical Care Medicine, Kansai Medical University General Medical Center, Moriguchi, Japan
| | - Takashi Yoshiyama
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Yasushi Nakano
- Department of Internal Medicine, Kawasaki Municipal Ida Hospital, Kawasaki, Japan
| | - Yoshikazu Mutoh
- Department of Infectious Diseases, Tosei General Hospital, Seto, Japan
| | - Yusuke Suzuki
- Department of Respiratory Medicine, Kitasato University Kitasato Institute Hospital, Tokyo, Japan
| | - Ryuya Edahiro
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hirohito Sano
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasunori Sato
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- The Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
- Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Ryuji Koike
- Medical Innovation Promotion Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project (Toyama), National Center for Global Health and Medicine, Tokyo, Japan
| | - Akinori Kimura
- Institute of Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Seiya Imoto
- Division of Health Medical Intelligence, Human Genome Center, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Satoru Miyano
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
3
|
Madunić K, Luijkx YMCA, Mayboroda OA, Janssen GMC, van Veelen PA, Strijbis K, Wennekes T, Lageveen-Kammeijer GSM, Wuhrer M. O-Glycomic and Proteomic Signatures of Spontaneous and Butyrate-Stimulated Colorectal Cancer Cell Line Differentiation. Mol Cell Proteomics 2023; 22:100501. [PMID: 36669592 PMCID: PMC9999233 DOI: 10.1016/j.mcpro.2023.100501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Gut microbiota of the gastrointestinal tract provide health benefits to the human host via bacterial metabolites. Bacterial butyrate has beneficial effects on intestinal homeostasis and is the preferred energy source of intestinal epithelial cells, capable of inducing differentiation. It was previously observed that changes in the expression of specific proteins as well as protein glycosylation occur with differentiation. In this study, specific mucin O-glycans were identified that mark butyrate-induced epithelial differentiation of the intestinal cell line CaCo-2 (Cancer Coli-2), by applying porous graphitized carbon nano-liquid chromatography with electrospray ionization tandem mass spectrometry. Moreover, a quantitative proteomic approach was used to decipher changes in the cell proteome. It was found that the fully differentiated butyrate-stimulated cells are characterized by a higher expression of sialylated O-glycan structures, whereas fucosylation is downregulated with differentiation. By performing an integrative approach, we generated hypotheses about the origin of the observed O-glycome changes. These insights pave the way for future endeavors to study the dynamic O-glycosylation patterns in the gut, either produced via cellular biosynthesis or through the action of bacterial glycosidases as well as the functional role of these patterns in homeostasis and dysbiosis at the gut-microbiota interface.
Collapse
Affiliation(s)
- K Madunić
- Center for Proteomics and Metabolomics, Leiden University, The Netherlands
| | - Y M C A Luijkx
- Department Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands; Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - O A Mayboroda
- Center for Proteomics and Metabolomics, Leiden University, The Netherlands
| | - G M C Janssen
- Center for Proteomics and Metabolomics, Leiden University, The Netherlands
| | - P A van Veelen
- Center for Proteomics and Metabolomics, Leiden University, The Netherlands
| | - K Strijbis
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - T Wennekes
- Department Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | | | - M Wuhrer
- Center for Proteomics and Metabolomics, Leiden University, The Netherlands.
| |
Collapse
|
4
|
Characterization of Sialic Acid-Independent Simian Rotavirus Mutants in Viral Infection and Pathogenesis. J Virol 2023; 97:e0139722. [PMID: 36602365 PMCID: PMC9888295 DOI: 10.1128/jvi.01397-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Rotaviruses (RVs) are nonenveloped viruses that cause gastroenteritis in infants and young children. Sialic acid is an initial receptor, especially for animal RVs, including rhesus RV. Sialic acid binds to the VP8* subunit, a part of the outer capsid protein VP4 of RV. Although interactions between virus and glycan receptors influence tissue and host tropism and viral pathogenicity, research has long been limited to biochemical and structural studies due to the unavailability of an RV reverse genetics system. Here, we examined the importance of sialic acid in RV infections using recombinant RVs harboring mutations in sialic acid-binding sites in VP4 via a simian RV strain SA11-based reverse genetics system. RV VP4 mutants that could not bind to sialic acid had replicated to decreased viral titer in MA104 cells. Wild-type virus infectivity was reduced, while that of VP4 mutants was not affected in sialic acid-deficient cells. Unexpectedly, in vivo experiments demonstrated that VP4 mutants suppressed mouse pups' weight gain and exacerbated diarrhea symptoms compared to wild-type viruses. Intestinal contents enhanced VP4 mutants' infectivity. Thus, possibly via interactions with other unknown receptors and/or intestinal contents, VP4 mutants are more likely than wild-type viruses to proliferate in the murine intestine, causing diarrhea and weight loss. These results suggest that RVs binding sialic acid notably affect viral infection in vitro and viral pathogenesis in vivo. IMPORTANCE Various studies have been conducted on the binding of VP8* and glycans, and the direct interaction between purified VP8* and glycans has been investigated by crystalline structure analyses. Here, we used a reverse genetics system to generate rotaviruses (RVs) with various VP4 mutants. The generated mutant strains clarified the importance of glycan binding in vitro and in vivo. Moreover, even when VP4 mutants could not bind to sialic acid, they were able to bind to an unknown receptor. As RVs evolve, pathogenicity can also be modified by easily altering the glycans to which VP4 binds.
Collapse
|
5
|
Pohl C, Szczepankiewicz G, Liebert UG. Analysis and optimization of a Caco-2 cell culture model for infection with human norovirus. Arch Virol 2022; 167:1421-1431. [PMID: 35415782 PMCID: PMC9123034 DOI: 10.1007/s00705-022-05437-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 03/05/2022] [Indexed: 11/25/2022]
Abstract
Human noroviruses (hNoVs) are an important cause of acute gastroenteritis worldwide. However, the lack of a reproducible in vitro cell culture system has impaired research and the development of preventive measures, therapeutic drugs, and vaccines. The aim of this study was to analyze and optimize a suitable cell line for in vitro cultivation of hNoV. The Caco-2 cell line, which is of colorectal origin and differentiates spontaneously into intestinal enterocyte-like cells, was chosen as a model. It was found that differentiated cells were more susceptible to infection with hNoV, resulting in a higher virus yield. This was accompanied by an increase in H type 1 antigen in the cell membrane during differentiation, which functions as an attachment factor for hNoV. Induced overexpression of H type 1 antigen in undifferentiated Caco-2 cells resulted in an increase in viral output to a level similar to that in differentiated cells. However, the relatively low level of viral output, which contrasts with what is observed in vivo, shows that the viral replication cycle is restricted in this model. The results indicate that there is a block at the level of viral release.
Collapse
Affiliation(s)
- Clara Pohl
- Department of Virology, University of Leipzig, Johannisallee 30, 04103, Leipzig, Germany
| | - Grit Szczepankiewicz
- Department of Virology, University of Leipzig, Johannisallee 30, 04103, Leipzig, Germany
| | - Uwe Gerd Liebert
- Department of Virology, University of Leipzig, Johannisallee 30, 04103, Leipzig, Germany.
| |
Collapse
|
6
|
Kawahara T, Shimizu I, Tanaka Y, Tobita K, Tomokiyo M, Watanabe I. Lactobacillus crispatus Strain KT-11 S-Layer Protein Inhibits Rotavirus Infection. Front Microbiol 2022; 13:783879. [PMID: 35273580 PMCID: PMC8902352 DOI: 10.3389/fmicb.2022.783879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
S-layer proteins (SLPs), which are present in the external layer of certain strains of lactic acid bacteria isolated from the intestinal tract, are known to recognize and bind to specific proteins and glycan structures and contribute to adsorption to the host intestinal mucosa. The binding properties of certain SLPs are considered to exert a competitive inhibitory effect on infection because similar properties are involved in the infection mechanisms of several viruses. However, little is known regarding whether SLPs directly inhibit viral infection. In the present study, we investigated the effect of an SLP of the Lactobacillus crispatus KT-11 strain, a probiotic strain isolated from a healthy human infant, on human rotavirus infection. The impact of KT-11 lithium chloride extract (KT-11 LE), which contains SLP, on the infection of the P[4] genotype human rotavirus strain DS-1 was evaluated by monitoring the amplification of viral protein 6 (VP6) expression in human intestinal epithelial Caco-2 cells by quantitative reverse transcription-polymerase chain reaction assay after infection. KT-11 LE showed a significant suppressive effect on DS-1 infection in a dose-dependent manner with pre-infection treatment, whereas post-infection treatment was not effective. A 45 KDa protein isolated from KT-11 LE was investigated for homology using the BLAST database and was found to be a novel SLP. KT-11 SLP concentrate (KT-11 SLP) significantly inhibited the proliferative process of the DS-1 strain but not that of the P[8] genotype human rotavirus strain Wa. KT-11 SLP exerted significant inhibitory effect on DS-1 infection by pre-infection treatment even after digestion with gastric juice up to 2 h. Our results provided crucial evidence that SLPs from certain Lactobacillus strains can inhibit human rotavirus infection of intestinal epithelial cells.
Collapse
Affiliation(s)
| | - Issei Shimizu
- Faculty of Agriculture, Shinshu University, Nagano, Japan
| | - Yuuki Tanaka
- Faculty of Agriculture, Shinshu University, Nagano, Japan
| | | | | | | |
Collapse
|
7
|
Luijkx YMCA, Bleumink NMC, Jiang J, Overkleeft HS, Wösten MMSM, Strijbis K, Wennekes T. Bacteroides fragilis fucosidases facilitate growth and invasion of Campylobacter jejuni in the presence of mucins. Cell Microbiol 2020; 22:e13252. [PMID: 32827216 PMCID: PMC7685106 DOI: 10.1111/cmi.13252] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022]
Abstract
The enteropathogenic bacterium, Campylobacter jejuni, was considered to be non‐saccharolytic, but recently it emerged that l‐fucose plays a central role in C. jejuni virulence. Half of C. jejuni clinical isolates possess an operon for l‐fucose utilisation. In the intestinal tract, l‐fucose is abundantly available in mucin O‐linked glycan structures, but C. jejuni lacks a fucosidase enzyme essential to release the l‐fucose. We set out to determine how C. jejuni can gain access to these intestinal l‐fucosides. Growth of the fuc + C. jejuni strains, 129,108 and NCTC 11168, increased in the presence of l‐fucose while fucose permease knockout strains did not benefit from additional l‐fucose. With fucosidase assays and an activity‐based probe, we confirmed that Bacteriodes fragilis, an abundant member of the intestinal microbiota, secretes active fucosidases. In the presence of mucins, C. jejuni was dependent on B. fragilis fucosidase activity for increased growth. Campylobacter jejuni invaded Caco‐2 intestinal cells that express complex O‐linked glycan structures that contain l‐fucose. In infection experiments, C. jejuni was more invasive in the presence of B. fragilis and this increase is due to fucosidase activity. We conclude that C. jejuni fuc + strains are dependent on exogenous fucosidases for increased growth and invasion.
Collapse
Affiliation(s)
- Yvette M C A Luijkx
- Department Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.,Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Nancy M C Bleumink
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jianbing Jiang
- Leiden institute of Chemistry, Leiden University, Leiden, The Netherlands.,Health Science Center, School of Pharmacy, Shenzhen University, Shenzhen, China
| | | | - Marc M S M Wösten
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Karin Strijbis
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Tom Wennekes
- Department Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
8
|
ABO blood group antigens may be associated with increased susceptibility to schistosomiasis: a systematic review and meta-analysis. J Helminthol 2018; 94:e21. [PMID: 30526698 DOI: 10.1017/s0022149x18001116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Schistosomiasis or bilharzia is a widespread parasitic disease caused by blood flukes of the genus Schistosoma. Some factors have been investigated previously regarding their effect on the pathophysiological mechanism of human schistosomiasis, but the possible influence of the ABO blood group on the severity of Schistosoma infection has been the most promising. Hence, we performed a systematic review and meta-analysis to further investigate the association of the ABO blood group with schistosomiasis susceptibility. Selected publications were retrieved from PubMed up to 21 August 2018, for related studies written in English. Number of cases (with schistosomiasis) and controls (without schistosomiasis) were extracted across all ABO blood types. Odds ratios (OR) and 95% confidence intervals (CI) were computed, pooled and interpreted. Subgroup analysis by the species of Schistosoma infecting the population and the participants' ethnicity was also performed. The overall analysis revealed heterogeneity in the outcomes, which warranted the identification of the cause using the Galbraith plot. Post-outlier outcomes of the pooled ORs show that individuals who are not blood type O are more susceptible (OR: 1.40; 95% CI: 1.17-1.67; PA < 0.001) to schistosomiasis than those who are blood type O (OR: 0.71; 95% CI: 0.60-0.85; PA < 0.001). Subgroup analysis yielded the same observations regardless of the species of schistosome and the ethnicity of the participants. Results of this meta-analysis suggest that individuals who are blood type B and A are more susceptible to schistosomiasis than those who are blood type O. However, more studies are needed to confirm our claims.
Collapse
|
9
|
Wong M, Xu G, Park D, Barboza M, Lebrilla CB. Intact glycosphingolipidomic analysis of the cell membrane during differentiation yields extensive glycan and lipid changes. Sci Rep 2018; 8:10993. [PMID: 30030471 PMCID: PMC6054638 DOI: 10.1038/s41598-018-29324-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/05/2018] [Indexed: 11/09/2022] Open
Abstract
Glycosphingolipids (GSLs) are found in cellular membranes of most organisms and play important roles in cell-cell recognition, signaling, growth, and adhesion, among others. A method based on nanoflow high performance liquid chromatography-chip-quadrupole-time-of-flight mass spectrometry (nanoHPLC Chip-Q-TOF MS) was applied towards identifying and quantifying intact GSLs from a variety of samples, including cultured cell lines and animal tissue. The method provides the composition and sequence of the glycan, as well as variations in the ceramide portion of the GSL. It was used to profile the changes in the glycolipidome of Caco-2 cells as they undergo differentiation. A total of 226 unique GSLs were found among Caco-2 samples from five differentiation time-points. The method provided a comprehensive glycolipidomic profile of a cell during differentiation to yield the dynamic variation of intact GSL structures.
Collapse
Affiliation(s)
- Maurice Wong
- Department of Chemistry, University of California, Davis, 1 Shields Ave., Davis, California, 95616, USA
| | - Gege Xu
- Department of Chemistry, University of California, Davis, 1 Shields Ave., Davis, California, 95616, USA
| | - Dayoung Park
- Department of Chemistry, University of California, Davis, 1 Shields Ave., Davis, California, 95616, USA
| | - Mariana Barboza
- Department of Chemistry, University of California, Davis, 1 Shields Ave., Davis, California, 95616, USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis, 1 Shields Ave., Davis, California, 95616, USA.
| |
Collapse
|
10
|
Wang X, Wang S, Zhang C, Zhou Y, Xiong P, Liu Q, Huang Z. Development of a Surrogate Neutralization Assay for Norovirus Vaccine Evaluation at the Cellular Level. Viruses 2018; 10:E27. [PMID: 29304015 PMCID: PMC5795440 DOI: 10.3390/v10010027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 12/27/2017] [Accepted: 01/04/2018] [Indexed: 12/14/2022] Open
Abstract
Noroviruses (NoVs) are the main pathogens responsible for sporadic and epidemic nonbacterial gastroenteritis, causing an estimated 219,000 deaths annually worldwide. There is no commercially available vaccine for NoVs, due partly to the difficulty in establishing NoV cell culture models. The histo-blood group antigen (HBGA) blocking assay is used extensively to assess the protective potential of candidate vaccine-elicited antibodies, but there is still no widely used cellular evaluation model. In this study, we have established a cell line-based NoV vaccine evaluation model through the construction of human α1,2-fucosyltransferase 2-overexpressing 293T (293T-FUT2) cell lines. The 293T-FUT2 cells stably expressed H type 2 and Lewis y antigens. Virus-like particles (VLPs) of the NoV prototype strain genogroup I.1 (GI.1) and the predominant strains GII.4 and GII.17 could attach to the cell line efficiently in a dose-dependent manner. Importantly, antisera against these NoV VLPs could inhibit the attachment of the VLPs, where the inhibitory effects measured by the attachment inhibition assay correlated significantly with the antibody levels determined by the HBGA blocking assay. Collectively, our attachment inhibition assay could serve as a surrogate neutralization assay for the evaluation of NoV vaccines at the cellular level.
Collapse
Affiliation(s)
- Xiaoli Wang
- Unit of Vaccinology and Antiviral Strategies, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shuxia Wang
- Unit of Vaccinology and Antiviral Strategies, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Chao Zhang
- Unit of Vaccinology and Antiviral Strategies, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yu Zhou
- Unit of Vaccinology and Antiviral Strategies, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Pei Xiong
- Unit of Vaccinology and Antiviral Strategies, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qingwei Liu
- Unit of Vaccinology and Antiviral Strategies, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Zhong Huang
- Unit of Vaccinology and Antiviral Strategies, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
11
|
|
12
|
Carmona-Vicente N, Allen DJ, Rodríguez-Díaz J, Iturriza-Gómara M, Buesa J. Antibodies against Lewis antigens inhibit the binding of human norovirus GII.4 virus-like particles to saliva but not to intestinal Caco-2 cells. Virol J 2016; 13:82. [PMID: 27206610 PMCID: PMC4875664 DOI: 10.1186/s12985-016-0538-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/12/2016] [Indexed: 12/01/2022] Open
Abstract
Background Human noroviruses (NoVs) are the main cause of gastroenteritis worldwide. The most commonly detected NoV strains belong to the genetically diverse GII.4 genotype, with new pandemic variants emerging periodically. Despite extensive efforts, NoV investigation has been hampered by the lack of an effective in vitro cell culture system. However, NoV-derived recombinant virus-like particles (VLPs) resembling empty capsids are good surrogates for analysing NoV antigenicity and virus-ligand interactions. NoV VLPs have been reported to bind to histo-blood group antigens (HBGAs). We have analysed the ability of NoV VLPs derived from GI.1 genotype and from three GII.4 genotype variants, GII.4-1999, GII.4-2004 and GII.4-2006b, to bind to porcine gastric mucin (PGM), human saliva and differentiated human intestinal Caco-2 cells (D-Caco-2 cells). Results Distinct patterns of saliva binding with the NoV GII.4 variant VLPs were observed, although they bound to D-Caco-2 cells independently of the expression of HBGAs. Monoclonal antibodies against Lewis antigens were able to block the binding of NoV VLPs to saliva, but not to D-Caco-2 cells. Blocking HBGAs on the surface of D-Caco-2 cells with specific monoclonal antibodies did not affect NoV VLP binding to cellular membranes. Co-localisation of Lewis y (Ley) and H-type 2 antigens with NoV VLPs was not observed by immunofluorescence assays. Conclusion Although the binding of NoV VLPs of GII.4 genotype variants to human saliva samples occur with distinct HBGA binding patterns and can be blocked by antibodies against Lewis antigens, their attachment to D-Caco-2 cells can be mediated by other receptors, which still need further investigation.
Collapse
Affiliation(s)
- Noelia Carmona-Vicente
- Department of Microbiology, School of Medicine, University of Valencia, Avda. Blasco Ibáñez, 17, 46010, Valencia, Spain
| | - David J Allen
- Virus Reference Department, Public Health England, London, UK.,NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK
| | - Jesús Rodríguez-Díaz
- Department of Microbiology, School of Medicine, University of Valencia, Avda. Blasco Ibáñez, 17, 46010, Valencia, Spain
| | - Miren Iturriza-Gómara
- CIMI, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.,NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK
| | - Javier Buesa
- Department of Microbiology, School of Medicine, University of Valencia, Avda. Blasco Ibáñez, 17, 46010, Valencia, Spain.
| |
Collapse
|
13
|
Infection models of human norovirus: challenges and recent progress. Arch Virol 2016; 161:779-88. [PMID: 26780772 DOI: 10.1007/s00705-016-2748-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 12/30/2015] [Indexed: 10/22/2022]
Abstract
Human norovirus (hNoV) infections cause acute gastroenteritis, accounting for millions of disease cases and more than 200,000 deaths annually. However, the lack of in vitro infection models and robust small-animal models has posed barriers to the development of virus-specific therapies and preventive vaccines. Promising recent progress in the development of a norovirus infection model is reviewed in this article, as well as attempts and efforts made since the discovery of hNoV more than 40 years ago. Because suitable experimental animal models for human norovirus are lacking, attractive alternatives are also discussed.
Collapse
|
14
|
|
15
|
Glycan:glycan interactions: High affinity biomolecular interactions that can mediate binding of pathogenic bacteria to host cells. Proc Natl Acad Sci U S A 2015; 112:E7266-75. [PMID: 26676578 DOI: 10.1073/pnas.1421082112] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cells from all domains of life express glycan structures attached to lipids and proteins on their surface, called glycoconjugates. Cell-to-cell contact mediated by glycan:glycan interactions have been considered to be low-affinity interactions that precede high-affinity protein-glycan or protein-protein interactions. In several pathogenic bacteria, truncation of surface glycans, lipooligosaccharide (LOS), or lipopolysaccharide (LPS) have been reported to significantly reduce bacterial adherence to host cells. Here, we show that the saccharide component of LOS/LPS have direct, high-affinity interactions with host glycans. Glycan microarrays reveal that LOS/LPS of four distinct bacterial pathogens bind to numerous host glycan structures. Surface plasmon resonance was used to determine the affinity of these interactions and revealed 66 high-affinity host-glycan:bacterial-glycan pairs with equilibrium dissociation constants (K(D)) ranging between 100 nM and 50 µM. These glycan:glycan affinity values are similar to those reported for lectins or antibodies with glycans. Cell assays demonstrated that glycan:glycan interaction-mediated bacterial adherence could be competitively inhibited by either host cell or bacterial glycans. This is the first report to our knowledge of high affinity glycan:glycan interactions between bacterial pathogens and the host. The discovery of large numbers of glycan:glycan interactions between a diverse range of structures suggests that these interactions may be important in all biological systems.
Collapse
|
16
|
Abstract
Blood group antigens represent polymorphic traits inherited among individuals and populations. At present, there are 34 recognized human blood groups and hundreds of individual blood group antigens and alleles. Differences in blood group antigen expression can increase or decrease host susceptibility to many infections. Blood groups can play a direct role in infection by serving as receptors and/or coreceptors for microorganisms, parasites, and viruses. In addition, many blood group antigens facilitate intracellular uptake, signal transduction, or adhesion through the organization of membrane microdomains. Several blood groups can modify the innate immune response to infection. Several distinct phenotypes associated with increased host resistance to malaria are overrepresented in populations living in areas where malaria is endemic, as a result of evolutionary pressures. Microorganisms can also stimulate antibodies against blood group antigens, including ABO, T, and Kell. Finally, there is a symbiotic relationship between blood group expression and maturation of the gastrointestinal microbiome.
Collapse
Affiliation(s)
- Laura Cooling
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
17
|
Pinto R, Barros R, Pereira-Castro I, Mesquita P, da Costa LT, Bennett EP, Almeida R, David L. CDX2 homeoprotein is involved in the regulation of ST6GalNAc-I gene in intestinal metaplasia. J Transl Med 2015; 95:718-27. [PMID: 25867765 DOI: 10.1038/labinvest.2015.52] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/08/2015] [Accepted: 03/07/2015] [Indexed: 01/08/2023] Open
Abstract
De novo expression of Sialyl-Tn (STn) antigen is one of the most common features of intestinal metaplasia (IM) and gastric carcinomas, and its biosynthesis has been mostly attributed to ST6GalNAc-I activity. However, the regulation of this glycosyltransferase expression is not elucidated. In IM lesions and in the intestine, CDX2 homeobox transcription factor is co-expressed with STn and ST6GalNAc-I. We therefore hypothesized that CDX2 might induce STn expression by positive regulation of ST6GalNAc-I. We showed that ST6GalNAc-I transcript levels and CDX2 have a coordinated expression upon Caco-2 in vitro differentiation, and overexpression of CDX2 in MKN45 gastric cells increases ST6GalNAc-I transcript levels. Nine putative CDX-binding sites in the ST6GalNAc-I-regulatory sequence were identified and analyzed by chromatin immunoprecipitation in Caco-2 cells and in IM. The results showed that CDX2 protein is recruited to all regions, being the most proximal sites preferentially occupied in vivo. Luciferase assays demonstrated that CDX2 is able to transactivate ST6GalNac-I-regulatory region. The induction was stronger for the regions mapped in the neighbourhood of ATG start codon and site-directed mutagenesis of these sites confirmed their importance. In conclusion, we show that CDX2 transcriptionally regulates ST6GalNAc-I gene expression, specifically in the preneoplastic IM lesion.
Collapse
Affiliation(s)
- Rita Pinto
- 1] Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal [2] Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal [3] Faculty of Medicine, University of Porto, Porto, Portugal
| | - Rita Barros
- 1] Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal [2] Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Isabel Pereira-Castro
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Patricia Mesquita
- Instituto Nacional de Investigação Agrária e Veterinária, Quinta da Fonte Boa, Vale de Santarém, Portugal
| | | | - Eric P Bennett
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Raquel Almeida
- 1] Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal [2] Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal [3] Faculty of Medicine, University of Porto, Porto, Portugal [4] Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Leonor David
- 1] Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal [2] Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal [3] Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
18
|
Mahdavi J, Pirinccioglu N, Oldfield NJ, Carlsohn E, Stoof J, Aslam A, Self T, Cawthraw SA, Petrovska L, Colborne N, Sihlbom C, Borén T, Wooldridge KG, Ala'Aldeen DAA. A novel O-linked glycan modulates Campylobacter jejuni major outer membrane protein-mediated adhesion to human histo-blood group antigens and chicken colonization. Open Biol 2014; 4:130202. [PMID: 24451549 PMCID: PMC3909276 DOI: 10.1098/rsob.130202] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Campylobacter jejuni is an important cause of human foodborne gastroenteritis; strategies to prevent infection are hampered by a poor understanding of the complex interactions between host and pathogen. Previous work showed that C. jejuni could bind human histo-blood group antigens (BgAgs) in vitro and that BgAgs could inhibit the binding of C. jejuni to human intestinal mucosa ex vivo. Here, the major flagella subunit protein (FlaA) and the major outer membrane protein (MOMP) were identified as BgAg-binding adhesins in C. jejuni NCTC11168. Significantly, the MOMP was shown to be O-glycosylated at Thr268; previously only flagellin proteins were known to be O-glycosylated in C. jejuni. Substitution of MOMP Thr268 led to significantly reduced binding to BgAgs. The O-glycan moiety was characterized as Gal(β1–3)-GalNAc(β1–4)-GalNAc(β1–4)-GalNAcα1-Thr268; modelling suggested that O-glycosylation has a notable effect on the conformation of MOMP and this modulates BgAg-binding capacity. Glycosylation of MOMP at Thr268 promoted cell-to-cell binding, biofilm formation and adhesion to Caco-2 cells, and was required for the optimal colonization of chickens by C. jejuni, confirming the significance of this O-glycosylation in pathogenesis.
Collapse
Affiliation(s)
- Jafar Mahdavi
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Herbst-Kralovetz MM, Radtke AL, Lay MK, Hjelm BE, Bolick AN, Sarker SS, Atmar RL, Kingsley DH, Arntzen CJ, Estes MK, Nickerson CA. Lack of norovirus replication and histo-blood group antigen expression in 3-dimensional intestinal epithelial cells. Emerg Infect Dis 2013; 19:431-8. [PMID: 23622517 PMCID: PMC3647661 DOI: 10.3201/eid1903.121029] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
TOC summary: The 3-dimensional intestinal model is not sufficient as a virus replication system for developing vaccines or drugs to control human norovirus infections. Noroviruses (NoVs) are a leading cause of gastroenteritis worldwide. An in vitro model for NoV replication remains elusive, making study of the virus difficult. A previous study, which used a 3-dimensional (3-D) intestinal model derived from INT-407 cells reported NoV replication and extensive cytopathic effects (CPE). Using the same 3-D model, but with highly purified Norwalk virus (NV), we attempted to replicate this study. Our results showed no evidence of NV replication by real-time PCR of viral RNA or by immunocytochemical detection of viral structural and nonstructural proteins. Immunocytochemical analysis of the 3-D cultures also showed no detectable presence of histo-blood group antigens that participate in NV binding and host tropism. To determine the potential cause of CPE observed in the previous study, we exposed 3-D cultures to lipopolysaccharide concentrations consistent with contaminated stool samples and observed morphologic features similar to CPE. We conclude that the 3-D INT-407 model does not support NV replication.
Collapse
|
20
|
Takanashi S, Saif LJ, Hughes JH, Meulia T, Jung K, Scheuer KA, Wang Q. Failure of propagation of human norovirus in intestinal epithelial cells with microvilli grown in three-dimensional cultures. Arch Virol 2013; 159:257-66. [PMID: 23974469 DOI: 10.1007/s00705-013-1806-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 06/21/2013] [Indexed: 12/11/2022]
Abstract
Human noroviruses (HuNoVs) are a leading cause of acute gastroenteritis. Establishment of a cell culture system for in vitro HuNoV growth remains challenging. Replication of HuNoVs in human intestinal cell lines (INT-407 and Caco-2) that differentiate to produce microvilli in rotation wall vessel (RWV) three-dimensional cultures has been reported (Straub et al. in Emerg Infect Dis 13:396-403, 2007; J Water Health 9:225-240, 2011, and Water Sci Technol 67:863-868, 2013). We used a similar RWV system, intestinal cell lines, and the same (Genogroup [G] I.1) plus additional (GII.4 and GII.12) HuNoV strains to test the system's reproducibility and to expand the earlier findings. Apical microvilli were observed on the surface of both cell lines by light and electron microscopy. However, none of the cell types tested resulted in productive viral replication of any of the HuNoV strains, as confirmed by plateau or declining viral RNA titers in the supernatants and cell lysates of HuNoV-infected cells, determined by real-time reverse transcription PCR. These trends were the same when culture supplements were added that have been reported to be effective for replication of other fastidious enteric viruses in vitro. Additionally, by confocal microscopy and orthoslice analysis, viral capsid proteins were mainly observed above the actin filament signals, which suggested that the majority of viral antigens were on the cell surface. We conclude that even intestinal cells displaying microvilli were not sufficient to support HuNoV replication under the conditions tested.
Collapse
Affiliation(s)
- Sayaka Takanashi
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Murakami K, Kurihara C, Oka T, Shimoike T, Fujii Y, Takai-Todaka R, Park Y, Wakita T, Matsuda T, Hokari R, Miura S, Katayama K. Norovirus binding to intestinal epithelial cells is independent of histo-blood group antigens. PLoS One 2013; 8:e66534. [PMID: 23799113 PMCID: PMC3682964 DOI: 10.1371/journal.pone.0066534] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 05/06/2013] [Indexed: 12/18/2022] Open
Abstract
Human noroviruses (NoVs) are a major cause of non-bacterial gastroenteritis. Although histo-blood group antigens (HBGAs) have been implicated in the initial binding of NoV, the mechanism of that binding before internalization is not clear. To determine the involvement of NoVs and HBGAs in cell binding, we examined the localization of NoV virus-like particles (VLPs) and HBGAs in a human intestinal cell line and the human ileum biopsy specimens by immunofluorescence microscopy. The localizations of Ueno 7k VLPs (genogroup II.6) and each HBGA (type H1-, H2- and Le(b)-HBGAs) on the human intestinal cell line, Caco-2, were examined by confocal laser-scanning microscopy. To explore any interactions of NoVs and HBGAs in vivo, fresh biopsy specimens from human ileum were directly incubated with NoV VLPs and examined by immunofluorescence microscopy. We found that VLP binding depended on the state of cell differentiation, but not on the presence of HBGAs. In differentiated Caco-2 cells, we detected no type H1 HBGAs, but VLPs bound to the cells anyway. We incubated fresh biopsies of human ileum directly with VLPs, a model that better replicates the in vivo environment. VLPs mainly bound epithelial cells and goblet cells. Although the incubations were performed at 4°C to hinder internalization, VLPs were still detected inside cells. Our results suggest that VLPs utilize molecule(s) other than HBGAs during binding and internalization into cells.
Collapse
Affiliation(s)
- Kosuke Murakami
- Department of Virology II, National Institute of Infectious Diseases, Musashi-murayama, Tokyo, Japan
| | - Chie Kurihara
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Tomoichiro Oka
- Department of Virology II, National Institute of Infectious Diseases, Musashi-murayama, Tokyo, Japan
| | - Takashi Shimoike
- Department of Virology II, National Institute of Infectious Diseases, Musashi-murayama, Tokyo, Japan
| | - Yoshiki Fujii
- Department of Virology II, National Institute of Infectious Diseases, Musashi-murayama, Tokyo, Japan
| | - Reiko Takai-Todaka
- Department of Virology II, National Institute of Infectious Diseases, Musashi-murayama, Tokyo, Japan
| | - YoungBin Park
- Department of Virology II, National Institute of Infectious Diseases, Musashi-murayama, Tokyo, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Musashi-murayama, Tokyo, Japan
| | - Tsukasa Matsuda
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, Japan
| | - Ryota Hokari
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Soichiro Miura
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Kazuhiko Katayama
- Department of Virology II, National Institute of Infectious Diseases, Musashi-murayama, Tokyo, Japan
- * E-mail:
| |
Collapse
|
22
|
Papafragkou E, Hewitt J, Park GW, Greening G, Vinjé J. Challenges of culturing human norovirus in three-dimensional organoid intestinal cell culture models. PLoS One 2013; 8:e63485. [PMID: 23755105 PMCID: PMC3670855 DOI: 10.1371/journal.pone.0063485] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 04/03/2013] [Indexed: 12/22/2022] Open
Abstract
Human noroviruses are the most common cause of acute gastroenteritis worldwide. Recently, cell culture systems have been described using either human embryonic intestinal epithelial cells (Int-407) or human epithelial colorectal adenocarcinoma cells (Caco-2) growing on collagen-I porous micro carrier beads in a rotating bioreactor under conditions of physiological fluid shear. Here, we describe the efforts from two independent laboratories to implement this three dimensional (3D) cell culture system for the replication of norovirus. Int-407 and Caco-2 were grown in a rotating bioreactor for up to 28 days. Prior to infection, cells were screened for the presence of microvilli by electron microscopy and stained for junction proteins (zonula occludens-1, claudin-1, and β-catenin). Differentiated 3D cells were transferred to 24-well plates and infected with bacteria-free filtrates of various norovirus genotypes (GI.1, GI.3, GI.8, GII.2, GII.4, GII.7, and GII.8). At 12 h, 24 h, and 48 h post inoculation, viral RNA from both cells and supernatants were collected and analyzed for norovirus RNA by real-time reverse transcription PCR. Despite observations of high expression of junction proteins and microvilli development in stained thin sections, our data suggest no significant increase in viral titer based on norovirus RNA copy number during the first 48 h after inoculation for the different samples and virus culture conditions tested. Our combined efforts demonstrate that 3D cell culture models using Int-407 or Caco-2 cells do not support norovirus replication and highlight the complexity and difficulty of developing a reproducible in vitro cell culture system for human norovirus.
Collapse
Affiliation(s)
- Efstathia Papafragkou
- Division of Viral Diseases, Center for Disease Control and Prevention, Atlanta, Georgia United States of America
- Center for Food Safety and Applied Nutrition, Division of Molecular Biology, Food and Drug Administration, Laurel, Maryland, United States of America
| | - Joanne Hewitt
- Institute of Environmental Science and Research Ltd, Kenepuru Science Centre, Porirua, New Zealand
| | - Geun Woo Park
- Division of Viral Diseases, Center for Disease Control and Prevention, Atlanta, Georgia United States of America
| | - Gail Greening
- Institute of Environmental Science and Research Ltd, Kenepuru Science Centre, Porirua, New Zealand
| | - Jan Vinjé
- Division of Viral Diseases, Center for Disease Control and Prevention, Atlanta, Georgia United States of America
- * E-mail:
| |
Collapse
|
23
|
Li D, Baert L, Zhang D, Xia M, Zhong W, Van Coillie E, Jiang X, Uyttendaele M. Effect of grape seed extract on human norovirus GII.4 and murine norovirus 1 in viral suspensions, on stainless steel discs, and in lettuce wash water. Appl Environ Microbiol 2012; 78:7572-8. [PMID: 22904060 PMCID: PMC3485726 DOI: 10.1128/aem.01987-12] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 08/10/2012] [Indexed: 02/05/2023] Open
Abstract
The anti-norovirus (anti-NoV) effect of grape seed extract (GSE) was examined by plaque assay for murine norovirus 1 (MNV-1), cell-binding reverse transcription-PCR for human NoV GII.4, and saliva-binding enzyme-linked immunosorbent assay for human NoV GII.4 P particles, with or without the presence of interfering substances (dried milk and lettuce extract). GSE at 0.2 and 2 mg/ml was shown to reduce the infectivity of MNV-1 (>3-log PFU/ml) and the specific binding ability of NoV GII.4 to Caco-2 cells (>1-log genomic copies/ml), as well as of its P particles to salivary human histo-blood group antigen receptors (optical density at 450 nm of >0.8). These effects were decreased as increasing concentrations of dried milk (0.02 and 0.2%) or lettuce extract were added. Under an electron microscope, human NoV GII.4 virus-like particles showed inflation and deformation after treatment with GSE. Under conditions that simulated applications in the food industry, the anti-NoV effect of GSE using MNV-1 as a target organism was shown to be limited in surface disinfection (<1-log PFU/ml, analyzed in accordance with EN 13697:2001). However, a 1.5- to 2-log PFU/ml reduction in MNV-1 infectivity was noted when 2 mg of GSE/ml was used to sanitize water in the washing bath of fresh-cut lettuce, and this occurred regardless of the chemical oxygen demand (0 to 1,500 mg/ml) of the processing water.
Collapse
Affiliation(s)
- Dan Li
- Laboratory of Food Microbiology and Food Preservation, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Suzuki Y, Yanagisawa M, Ariga T, Yu RK. Histone acetylation-mediated glycosyltransferase gene regulation in mouse brain during development. J Neurochem 2011; 116:874-80. [PMID: 21214566 DOI: 10.1111/j.1471-4159.2010.07042.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Gangliosides are sialic acid-containing glycosphingolipids abundant in the central nervous tissues. The quantity and expression pattern of gangliosides in brain change drastically during early development and are mainly regulated through stage-specific expression of glycosyltransferase (ganglioside synthase) genes. It is still unclear, however, how the transcriptional activation of glycosyltransferase genes is regulated during development. In this study, we investigated the epigenetic regulation of two key glycosyltransferases, N-acetylgalactosaminyltransferase I (GA2/GM2/GD2/GT2-synthase) and sialyltransferase II (GD3-synthase), in embryonic, postnatal, and adult mouse brains. Combined bisulfite restriction analysis assay showed that DNA methylation in the 5' regions of these glycosyltransferase genes was not associated with their expression patterns. On the other hand, chromatin immunoprecipitation assay of both glycosyltransferase genes showed that their histone H3 acetylation was highly correlated to their mRNA expression levels during development. In fact, we confirmed that the expression patterns of gangliosides and glycosyltransferases in neuroepithelial cells were changed after treatment with a histone deacetylase inhibitor, sodium butyrate. Our studies provide the first evidence that efficient histone acetylation of the glycosyltransferase genes in mouse brain contributes to the developmental alteration of ganglioside expression.
Collapse
Affiliation(s)
- Yusuke Suzuki
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | | | |
Collapse
|
25
|
Maenuma K, Yim M, Komatsu K, Hoshino M, Takahashi Y, Bovin N, Irimura T. Use of a library of mutated Maackia amurensis hemagglutinin for profiling the cell lineage and differentiation. Proteomics 2008; 8:3274-83. [PMID: 18690646 DOI: 10.1002/pmic.200800037] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Thirty-five variant lectins were prepared by mutations of two amino acids within the carbohydrate-recognition domain of Maackia amurensis hemagglutinin (MAH). Each lectin showed unique carbohydrate specificity according to their bindings to soluble polyacrylamide with various mono- and oligosaccharides and to glycophorin A. The relative intensity of the bindings of carcinoma, myeloid, fibroblastic, and melanoma cells to immobilized MAH variant lectins was examined. Each cell line showed distinct profiles regarding the number of cells bound to wild-type and 35 MAH variants and the differences and the similarities in these binding profiles were quantitatively documented by the cluster analysis. The cell lines were classified into several groups and these groups surprisingly corresponded to the lineage of the cells. These results indicated that a library of mutated MAH is useful as a tool for the profiling of various cells based on the variations of the surface glycans.
Collapse
Affiliation(s)
- Keisuke Maenuma
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Chessa D, Winter MG, Jakomin M, Bäumler AJ. Salmonella enterica serotype Typhimurium Std fimbriae bind terminal alpha(1,2)fucose residues in the cecal mucosa. Mol Microbiol 2008; 71:864-75. [PMID: 19183274 DOI: 10.1111/j.1365-2958.2008.06566.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The std operon encodes a fimbrial adhesin of Salmonella enterica serotype Typhimurium that is required for attachment to intestinal epithelial cells and for cecal colonization in the mouse. To study the mechanism by which this virulence factor contributes to colonization we characterized its binding specificity. Std-mediated binding to human colonic epithelial (Caco-2) cells could be abrogated by removing N-linked glycans. Adherence of Std fimbriated S. Typhimurium to Caco-2 cells could be blocked by co-incubation with H type 2 oligosaccharide (Fucalpha1-2Galbeta1-4GlcNAc) or by pretreatment of cells with alpha1-2 fucosidase. In contrast, pretreatment of Caco-2 cells with neuraminidase or co-incubation with the type 2 disaccharide precursor (Galbeta1-4GlcNAc) did not reduce adherence of Std fimbriated S. Typhimurium. Binding of purified Std fimbriae to Fucalpha1-2Galbeta1-4GlcNAc in a solid phase binding assay was competitively inhibited by Ulex europaeus agglutinin-I (UEA-I), a lectin specific for Fucalpha1-2 moieties. Purified Std fimbriae and UEA both bound to a receptor localized in the mucus layer of the murine cecum. These data suggest that the std operon encodes an adhesin that binds an alpha1-2 fucosylated receptor(s) present in the cecal mucosa.
Collapse
Affiliation(s)
- Daniela Chessa
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave., Davis, CA 95616-8645, USA
| | | | | | | |
Collapse
|
27
|
Löfling J, Diswall M, Eriksson S, Borén T, Breimer ME, Holgersson J. Studies of Lewis antigens and H. pylori adhesion in CHO cell lines engineered to express Lewis b determinants. Glycobiology 2008; 18:494-501. [PMID: 18400963 DOI: 10.1093/glycob/cwn030] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many microbes bind and adhere via adhesins to host cell carbohydrates as an initial step for infection. Therefore, cell lines expressing Lewis b (Le(b)) determinants were generated as a potential model system for Helicobacter pylori colonization and infection, and their expression of blood group Lewis determinants was characterized. CHO-K1 cells were stably transfected with selected glycosyltransferase cDNAs, and two Le(b) positive clones, 1C5 and 2C2, were identified. Expression of Lewis (Le(a), Le(b), Le(x), and Le(y)) determinants was analyzed by flow cytometry of intact cells, SDS-PAGE/Western blot of solubilized glycoproteins, and thin layer chromatography immunostaining of isolated glycolipids (GL). Binding of H. pylori to cells was examined by microscopy and quantified. Flow cytometry showed that 1C5 and 2C2 were Le(a) and Le(b) positive. 1C5 expressed Le(b) on O-linked, but not N-linked, glycans and only weakly on GLs. In contrast, 2C2 expressed Le(b) on N-, O-glycans, and GLs. Furthermore, both clones expressed Le(a) on N- and O-glycans but not on GLs. 2C2, but not 1C5, stained positively for Le(y) on N-linked glycans and GLs. Both clones, as well as the parental CHO-K1 cells, expressed Le(x) on GLs. A Le(b)-binding H. pylori strain bound to the 1C5 and 2C2 cells. In summary, two glycosyltransferase transfected CHO-K1 cell clones differed regarding Lewis antigen expression on N- and O-linked glycans as well as on GLs. Both clones examined supported adhesion of a Le(b)-binding H. pylori strain and may thus be a useful in vitro model system for H. pylori colonization/infection studies.
Collapse
Affiliation(s)
- Jonas Löfling
- Division of Clinical Immunology and Transfusion Medicine, Karolinska Institute, SE 14186 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
28
|
Wang S, Ng LHM, Chow WL, Lee YK. Infant intestinal Enterococcus faecalis down-regulates inflammatory responses in human intestinal cell lines. World J Gastroenterol 2008; 14:1067-76. [PMID: 18286689 PMCID: PMC2689410 DOI: 10.3748/wjg.14.1067] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the ability of Lactic acid bacteria (LAB) to modulate inflammatory reaction in human intestinal cell lines (Caco-2, HT-29 and HCT116). Different strains of LAB isolated from new born infants and fermented milk, together with the strains obtained from culture collections were tested.
METHODS: LABs were treated with human intestinal cell lines. ELISA was used to detect IL-8 and TGF-β protein secretion. Cytokines and Toll like receptors (TLRs) gene expression were assessed using RT-PCR. Conditional medium, sonicated bacteria and UV killed bacteria were used to find the effecter molecules on the bacteria. Carbohydrate oxidation and protein digestion were applied to figure out the molecules’ residues. Adhesion assays were further carried out.
RESULTS: It was found that Enterococcus faecalis is the main immune modulator among the LABs by downregulation of IL-8 secretion and upregulation of TGF-β. Strikingly, the effect was only observed in four strains of E. faecalis out of the 27 isolated and tested. This implies strain dependent immunomodulation in the host. In addition, E. faecalis may regulate inflammatory responses through TLR3, TLR4, TLR9 and TRAF6. Carbohydrates on the bacterial cell surface are involved in both its adhesion to intestinal cells and regulation of inflammatory responses in the host.
CONCLUSION: These data provide a case for the modulation of intestinal mucosal immunity in which specific strains of E. faecalis have uniquely evolved to maintain colonic homeostasis and regulate inflammatory responses.
Collapse
|
29
|
Guix S, Asanaka M, Katayama K, Crawford SE, Neill FH, Atmar RL, Estes MK. Norwalk virus RNA is infectious in mammalian cells. J Virol 2007; 81:12238-48. [PMID: 17855551 PMCID: PMC2168986 DOI: 10.1128/jvi.01489-07] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 08/30/2007] [Indexed: 12/25/2022] Open
Abstract
Human noroviruses are positive-sense RNA viruses and are the leading cause of epidemic acute viral gastroenteritis in developed countries. The absence of an in vitro cell culture model for human norovirus infection has limited the development of effective antivirals and vaccines. Human histo-blood group antigens have been regarded as receptors for norovirus infection, and expression of the alpha(1,2) fucosyltransferase gene (FUT2) responsible for the secretor phenotype is required for susceptibility to Norwalk virus (NV) infection. We report for the first time that transfection of NV RNA, isolated from stool samples from human volunteers, into human hepatoma Huh-7 cells leads to viral replication, with expression of viral antigens, RNA replication, and release of viral particles into the medium. Prior treatment of the RNA with proteinase K completely abolishes RNA infectivity, suggesting a key role of an RNA-protein complex. Although overexpression of the human FUT2 gene enhances virus binding to cells, it is not sufficient to allow a complete viral infection, and viral spread from NV-transfected cells to naïve cells does not occur. Finally, no differences in NV RNA replication are observed between Huh-7 and Huh-7.5.1 cells, which contain an inactivating mutation in retinoic acid-inducible gene I (RIG-I), suggesting that the RIG-I pathway does not play a role in limiting NV replication. Our results strongly suggest that the block(s) to NV replication in vitro is at the stage of receptor and/or coreceptor binding and/or uncoating, either because cells lack some specific factor or activation of cellular antiviral responses independent of RIG-I inhibits virus replication.
Collapse
Affiliation(s)
- Susana Guix
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza BCM-385, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Radhakrishnan P, Beum PV, Tan S, Cheng PW. Butyrate induces sLex synthesis by stimulation of selective glycosyltransferase genes. Biochem Biophys Res Commun 2007; 359:457-62. [PMID: 17553459 PMCID: PMC1986676 DOI: 10.1016/j.bbrc.2007.05.165] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 05/18/2007] [Indexed: 10/23/2022]
Abstract
Sialyl Lewis(x) (sLe(x)) is an important tumor-associated carbohydrate antigen present on the cell surface glycoconjugates involved in leukocyte migration and cancer metastasis. We report the formation of sLe(x) epitope in butyrate-treated human pancreatic adenocarcinoma cells expressing MUC1 and core 2 N-acetylglucosaminyltransferase (C2GnT). Butyrate treatment stimulates not only the transgene but also a group of endogenous glycosyltransferase genes involved in the synthesis of sLe(x). Current finding raises a concern about the proposed use of butyrate as a cancer therapeutic agent.
Collapse
Affiliation(s)
- Prakash Radhakrishnan
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Paul V. Beum
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Shuhua Tan
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Pi-Wan Cheng
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE
- Eppley Cancer Center for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
- *Corresponding author: Dr. Pi-Wan Cheng, Department of Biochemistry and Molecular Biology, College of Medicine, 985870 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, Tel: 402 559-5776, Fax: 402 559-6650, E-mail:
| |
Collapse
|
31
|
Holgersson J, Löfling J. Glycosyltransferases involved in type 1 chain and Lewis antigen biosynthesis exhibit glycan and core chain specificity. Glycobiology 2006; 16:584-93. [PMID: 16484342 DOI: 10.1093/glycob/cwj090] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Sialyl Lewis A (SLe(a)), Lewis A (Le(a)), and Lewis B (Le(b)) have been studied in many different biological contexts, for example in microbial adhesion and cancer. Their biosynthesis is complex and involves beta1,3-galactosyltransferases (beta3Gal-Ts) and a combined action of alpha2- and/or alpha4-fucosyltransferases (Fuc-Ts). Further, O-glycans with different core structures have been identified, and the ability of beta3Gal-Ts and Fuc-Ts to use these as substrates has not been resolved. Therefore, to examine the in vivo specificity of enzymes involved in SLe(a), Le(a), and Le(b) synthesis, we have transiently transfected CHO-K1 cells with relevant human glycosyltransferases and, on secreted reporter proteins, detected the resulting Lewis antigens on N- and O-linked glycans using western blotting and Le-specific antibodies. beta3Gal-T1, -T2, and -T5 could synthesize type 1 chains on N-linked glycans, but only beta3Gal-T5 worked on O-linked glycans. The latter enzyme could use both core 2 and core 3 precursor structures. Furthermore, the specificity of FUT5 and FUT3 in Le(a) and Le(b) synthesis was different, with FUT5 fucosylating H type 1 only on core 2, but FUT3 fucosylating H type 1 much more efficient on core 3 than on core 2. Finally, FUT1 and FUT2 were both found to direct alpha2-fucosylation on type 1 chains on both N- and O-linked structures. This knowledge enables us to engineer recombinant glycoproteins with glycan- and core chain-specific Lewis antigen substitution. Such tools will be important for investigations on the fine carbohydrate specificity of Le(b)-binding lectins, such as Helicobacter pylori adhesins and DC-SIGN, and may also prove useful as therapeutics.
Collapse
Affiliation(s)
- Jan Holgersson
- Division of Clinical Immunology, Karolinska Institutet, Karolinska University Hospital, Huddinge, S-141 86 Stockholm, Sweden
| | | |
Collapse
|
32
|
Molecular Virology of Enteric Viruses (with Emphasis on Caliciviruses). VIRUSES IN FOODS 2006:43-100. [PMCID: PMC7120911 DOI: 10.1007/0-387-29251-9_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
|
33
|
Iwai T, Kudo T, Kawamoto R, Kubota T, Togayachi A, Hiruma T, Okada T, Kawamoto T, Morozumi K, Narimatsu H. Core 3 synthase is down-regulated in colon carcinoma and profoundly suppresses the metastatic potential of carcinoma cells. Proc Natl Acad Sci U S A 2005; 102:4572-7. [PMID: 15755813 PMCID: PMC555466 DOI: 10.1073/pnas.0407983102] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The core 3 structure of the O-glycan, GlcNAcbeta1-3GalNAcalpha1-Ser/Thr, an important precursor in the biosynthesis of mucin-type glycoproteins, is synthesized by beta1,3-N-acetylglucosaminyltransferase 6 (beta3Gn-T6; core 3 synthase). We generated an anti-beta3Gn-T6 mAb (G8-144 mAb) and performed immunohistochemical analyses. In normal stomach and colon, beta3Gn-T6 was strongly expressed in the Golgi region of epithelia. In contrast, its expression was markedly down-regulated in gastric and colorectal carcinomas. Tissue specimens from a familial adenomatous polyposis patient showed a clear correlation between the down-regulation of beta3Gn-T6 expression and the degree of dysplasia/neoplasia. In vitro, the level of beta3Gn-T6 transcript was increased according to the differentiation of Caco-2 cells. These results suggested that the expression of beta3Gn-T6 is closely regulated during differentiation and dedifferentiation. beta3Gn-T6 would be a useful marker for distinguishing between benign adenomas and premalignant lesions. HT1080 FP-10 cells stably transfected with the beta3Gn-T6 gene showed a decrease in the core 1 structure, Galbeta1,3GalNAcalpha1-Ser/Thr, probably due to competition between the core 1 synthase and core 3 synthase. The migration activity of the transfectants was markedly lower than that of mock transfectants in vitro, and lung metastasis after i.v. injection of the transfectants into nude mice was significantly suppressed. These findings indicated that the core structures of O-glycans are profoundly involved in the metastatic capacity of cancer cells.
Collapse
Affiliation(s)
- Toshie Iwai
- Glycogene Function Team, Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology, OSL C-2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Noroviruses cause the majority of acute viral gastroenteritis cases that occur worldwide. The increased recognition of noroviruses as the cause of outbreaks and sporadic disease is due to the recent availability of improved norovirus-specific diagnostics. Transmission of these viruses is facilitated by their high prevalence in the community, shedding of infectious virus particles from asymptomatic individuals and the high stability of the virus in the environment. Currently, the spectrum of clinical disease and the understanding of host susceptibility factors are changing. Cases of chronic norovirus gastroenteritis have been observed in transplant recipients and unusual clinical presentations have been recognized in otherwise healthy adults that are under physical stress. Recently, noroviruses were found to bind to gut-expressed carbohydrates, leading to a correlation between a person's genetically determined carbohydrate expression and their susceptibility to Norwalk virus infection. Greater community surveillance and further investigation of carbohydrate receptor-binding properties could provide further insights into norovirus transmission, susceptibility and pathogenesis, and should aid in developing vaccines and antiviral therapies for this common viral disease.
Collapse
Affiliation(s)
- Anne M Hutson
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, One Baylor Plaza BCM-385, Houston, TX 77030, USA
| | - Robert L Atmar
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, One Baylor Plaza BCM-385, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mary K Estes
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, One Baylor Plaza BCM-385, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
35
|
Tamura M, Natori K, Kobayashi M, Miyamura T, Takeda N. Genogroup II noroviruses efficiently bind to heparan sulfate proteoglycan associated with the cellular membrane. J Virol 2004; 78:3817-26. [PMID: 15047797 PMCID: PMC374263 DOI: 10.1128/jvi.78.8.3817-3826.2004] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2003] [Accepted: 12/12/2003] [Indexed: 11/20/2022] Open
Abstract
Norovirus (NV), a member of the family Caliciviridae, is one of the important causative agents of acute gastroenteritis. In the present study, we found that virus-like particles (VLPs) derived from genogroup II (GII) NV were bound to cell surface heparan sulfate proteoglycan. Interestingly, the VLPs derived from GII were more than ten times likelier to bind to cells than were those derived from genogroup I (GI). Heparin, a sulfated glycosaminoglycan, and suramin, a highly sulfated derivative of urea, efficiently blocked VLP binding to mammalian cell surfaces. The reagents known to bind to cell surface heparan sulfate, as well as the enzymes that specifically digest heparan sulfate, markedly reduced VLP binding to the cells. Treatment of the cells with chlorate revealed that sulfation of heparan sulfate plays an important role in the NV-heparan sulfate interaction. The binding efficiency of NV to undifferentiated Caco-2 (U-Caco-2) cells differed largely between GI NV and GII NV, whereas the efficiency of binding to differentiated Caco-2 (D-Caco-2) cells did not differ significantly between the two genogroups, although slight differences between strains were observed. Digestion with heparinase I resulted in a reduction of up to 90% in U-Caco-2 cells and a reduction of up to only 50% in D-Caco-2 cells, indicating that heparan sulfate is the major binding molecule for U-Caco-2 cells, while it contributed to only half of the binding in the case of D-Caco-2 cells. The other half of those VLPs was likely to be associated with H-type blood antigen, suggesting that GII NV has two separate binding sites. The present study is the first to address the possible role of cell surface glycosaminoglycans in the binding of recombinant VLPs of NV.
Collapse
Affiliation(s)
- Masaru Tamura
- Department of Virology II, National Institute of Infectious Diseases, Musashi-Murayama, Tokyo 208-0011, Japan
| | | | | | | | | |
Collapse
|
36
|
Mare L, Trinchera M. Suppression of beta 1,3galactosyltransferase beta 3Gal-T5 in cancer cells reduces sialyl-Lewis a and enhances poly N-acetyllactosamines and sialyl-Lewis x on O-glycans. ACTA ACUST UNITED AC 2004; 271:186-94. [PMID: 14686931 DOI: 10.1046/j.1432-1033.2003.03919.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We investigated the role of beta 3 Gal-T5, a member of the beta 1,3galactosyltransferase (beta 1,3Gal-T) family, in cancer-associated glycosylation, focusing on the expression of sialyl-Lewis a (sLea, the epitope of CA19.9 antigen), poly N-acetyllactosamines, and sialyl-Lewis x (sLex) antigen. A clone permanently expressing an antisense fragment of beta 3Gal-T5 was obtained from the human pancreas adenocarcinoma cell line BxPC3 and characterized. Both beta 1,3Gal-T activity and sLea expression are dramatically impaired in the clone. Analysis of the oligosaccharides synthesized in cells metabolically labelled with tritiated galactose shows that a relevant amount of radioactivity is associated to large O-glycans. Endo-beta-galactosidase mostly releases NeuAc alpha 2-3Gal beta 1-3[Fuc alpha 1-4]GlcNAc beta 1-3Gal and NeuAc alpha 2-3Gal beta 1-3GlcNAc beta 1-3Gal from such O-glycans of BxPC3 membranes, but GlcNAc beta 1-3Gal and type 2 chain oligosaccharides, including NeuAc alpha 2-3Gal beta 1-4[Fuc alpha 1-3]GlcNAc beta 1-3Gal, from those of the antisense clone. Furthermore, BxPC3 cells secrete sLea in the culture media but not sLex, while antisense clone secretes mostly sLex, and accumulation of both antigens is prevented by benzyl-alpha-GalNAc. These data indicate that beta 3Gal-T5 suppression turns synthesis of type 1 chain O-glycans to poly N-acetyllactosamine elongation and termination by sLex. In other cell lines and clones, beta 3Gal-T5 transcript, beta 1,3Gal-T activity, and sLea antigen are also correlated, but quantitatively the relative expression ratios are very different from cell type to cell type. We suggest that beta 3Gal-T5 plays a relevant role in gastrointestinal and pancreatic tissues counteracting the glycosylation pattern associated to malignancy, and is necessary for the synthesis and secretion of CA19.9 antigen, whose expression still depends on multiple interacting factors.
Collapse
Affiliation(s)
- Lydia Mare
- Department of Biomedical Sciences Experimental and Clinical (DSBSC), University of Insubria, Varese, Italy
| | | |
Collapse
|
37
|
Duizer E, Schwab KJ, Neill FH, Atmar RL, Koopmans MPG, Estes MK. Laboratory efforts to cultivate noroviruses. J Gen Virol 2004; 85:79-87. [PMID: 14718622 DOI: 10.1099/vir.0.19478-0] [Citation(s) in RCA: 416] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Noroviruses (NoVs) are a leading cause of gastroenteritis worldwide and are recognized as the foremost cause of foodborne illness. Despite numerous efforts, routine cell cultures have failed to yield replicating NoV. This paper describes methods used to try to grow NoV in vitro in two laboratories. Cells (A549, AGS, Caco-2, CCD-18, CRFK, CR-PEC, Detroit 551, Detroit 562, FRhK-4, HCT-8, HeLa, HEC, HEp-2, Ht-29, HuTu-80, I-407, IEC-6, IEC-18, Kato-3, L20B, MA104, MDBK, MDCK, RD, TMK, Vero and 293) were cultured on solid or permeable surfaces. Differentiation was induced using cell culture supplements such as insulin, DMSO and butyric acid. In some cases, the cells and the NoV-containing stool samples were treated with bioactive digestive additives. Variables evaluated in cultivation experiments included the method of preparation of the virus inoculum, the genotype of the virus, conditions for maintenance of cell monolayers, additives in the maintenance medium and the method of inoculation of the cells. Serial blind passage studies were performed routinely. In addition to evaluation for CPE, evidence of virus replication was sought using immunofluorescent assays to detect newly produced viral capsid antigen and RT-PCR assays to detect the viral genome. Although some infected cultures remained NoV positive by RT-PCR for up to five passages and an occasional cell in a monolayer showed evidence of specific immunofluorescence, no reproducible NoV-induced CPE was observed and all RT-PCR results that were positive initially were negative following continued passaging. Thus, attempts to develop a method for the cultivation of NoV were unsuccessful.
Collapse
Affiliation(s)
- Erwin Duizer
- Diagnostic Laboratory for Infectious Diseases and Perinatal Screening, National Institutes for Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven, The Netherlands
| | - Kellogg J Schwab
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Frederick H Neill
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Robert L Atmar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Marion P G Koopmans
- Diagnostic Laboratory for Infectious Diseases and Perinatal Screening, National Institutes for Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven, The Netherlands
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
38
|
Isshiki S, Kudo T, Nishihara S, Ikehara Y, Togayachi A, Furuya A, Shitara K, Kubota T, Watanabe M, Kitajima M, Narimatsu H. Lewis type 1 antigen synthase (beta3Gal-T5) is transcriptionally regulated by homeoproteins. J Biol Chem 2003; 278:36611-20. [PMID: 12855703 DOI: 10.1074/jbc.m302681200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The type 1 carbohydrate chain, Galbeta1-3GlcNAc, is synthesized by UDP-galactose:beta-N-acetylglucosamine beta1,3-galactosyltransferase (beta3Gal-T). Among six beta3Gal-Ts cloned to date, beta3Gal-T5 is an essential enzyme for the synthesis of type 1 chain in epithelium of digestive tracts or pancreatic tissue. It forms the type 1 structure on glycoproteins produced from such tissues. In the present study, we found that the transcriptional regulation of the beta3Gal-T5 gene is controlled by homeoproteins, i.e. members of caudal-related homeobox protein (Cdx) and hepatocyte nuclear factor (HNF) families. We found an important region (-151 to -121 from the transcription initiation site), named the beta3Gal-T5 control element (GCE), for the promoter activity. GCE contained the consensus sequences for members of the Cdx and HNF families. Mutations introduced into this sequence abolished the transcriptional activity. Four factors, Cdx1, Cdx2, HNF1alpha, and HNF1beta, could bind to GCE and transcriptionally activate the beta3Gal-T5 gene. Transcriptional regulation of the beta3Gal-T5 gene was consistent with that of members of the Cdx and HNF1 families in two in vivo systems. 1) During in vitro differentiation of Caco-2 cells, transcriptional up-regulation of beta3Gal-T5 was observed in correlation with the increase in transcripts for Cdx2 and HNF1alpha. 2) Both transcript and protein levels of beta3Gal-T5 were determined to be significantly reduced in colon cancer. This down-regulation was correlated with the decrease of Cdx1 and HNF1beta expression in cancer tissue. This is the first finding that a glycosyltransferase gene is transcriptionally regulated under the control of homeoproteins in a tissue-specific manner. beta3Gal-T5, controlled by the intestinal homeoproteins, may play an important role in the specific function of intestinal cells by modifying the carbohydrate structure of glycoproteins.
Collapse
Affiliation(s)
- Soichiro Isshiki
- Division of Cell Biology, Institute of Life Science, Soka University, Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Hutson AM, Atmar RL, Marcus DM, Estes MK. Norwalk virus-like particle hemagglutination by binding to h histo-blood group antigens. J Virol 2003; 77:405-15. [PMID: 12477845 PMCID: PMC140602 DOI: 10.1128/jvi.77.1.405-415.2003] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2002] [Accepted: 09/24/2002] [Indexed: 11/20/2022] Open
Abstract
Noroviruses are a major cause of epidemic acute nonbacterial gastroenteritis worldwide. Here we report our discovery that recombinant Norwalk virus virus-like particles (rNV VLPs) agglutinate red blood cells (RBCs). Since histo-blood group antigens are expressed on gut mucosa as well as RBCs, we used rNV VLP hemagglutination (HA) as a model system for studying NV attachment to cells in order to help identify a potential NV receptor(s). rNV VLP HA is dependent on low temperature (4 degrees C) and acidic pH. Of the 13 species of RBCs tested, rNV VLPs hemagglutinated only chimpanzee and human RBCs. The rNV VLPs hemagglutinated all human type O (11 of 11), A (9 of 9), and AB (4 of 4) RBCs; however, few human type B RBC samples (4 of 14) were hemagglutinated. HA with periodate- and neuraminidase-treated RBCs indicated that rNV VLP binding was carbohydrate dependent and did not require sialic acid. The rNV VLPs did not hemagglutinate Bombay RBCs (zero of seven) that lack H type 2 antigen, and an anti-H type 2 antibody inhibited rNV VLP HA of human type O RBCs. These data indicated that the H type 2 antigen functions as the rNV VLP HA receptor on human type O RBCs. The rNV VLP HA was also inhibited by rNV VLP-specific monoclonal antibody 8812, an antibody that inhibits VLP binding to Caco-2 cells. Convalescent-phase sera from NV-infected individuals showed increased rNV VLP HA inhibition titers compared to prechallenge sera. In carbohydrate binding assays, the rNV VLPs bound to synthetic Lewis d (Le(d)), Le(b), H type 2, and Le(y) antigens, and these antigens also inhibited rNV VLP HA of human type O RBCs. Overall, our results indicate that carbohydrate antigens in the gut are a previously unrecognized factor in NV pathogenesis.
Collapse
Affiliation(s)
- Anne M Hutson
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
40
|
Sugahara D, Amano J, Irimura T. Fluorescence labeling of oligosaccharides useful in the determination of molecular interactions. ANAL SCI 2003; 19:167-9. [PMID: 12558044 DOI: 10.2116/analsci.19.167] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A simple method to label oligosaccharides with a multifunctional fluorescent group was developed. Oligosaccharides were quantitatively labeled at their reducing termini with pyrene butanoic acid hydrazide. The pyrene-labeled oligosaccharides were successfully applied to fluorescence polarization measurements and ELISA at picomole quantity, which was not previously reached by other procedures. This labeling method should prove to be useful in a variety of aspects in glycobiology.
Collapse
Affiliation(s)
- Daisuke Sugahara
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
41
|
Marionneau S, Ruvoën N, Le Moullac-Vaidye B, Clement M, Cailleau-Thomas A, Ruiz-Palacois G, Huang P, Jiang X, Le Pendu J. Norwalk virus binds to histo-blood group antigens present on gastroduodenal epithelial cells of secretor individuals. Gastroenterology 2002; 122:1967-77. [PMID: 12055602 PMCID: PMC7172544 DOI: 10.1053/gast.2002.33661] [Citation(s) in RCA: 365] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Norwalk Virus (NV) is a member of the Caliciviridae family, which causes acute epidemic gastroenteritis in humans of all ages and its cellular receptors have not yet been characterized. Another calicivirus, Rabbit Hemorrhagic Disease Virus, attaches to H type 2 histo-blood group oligosaccharide present on rabbit epithelial cells. Our aim was to test if, by analogy, recombinant NV-like particles (rNV VLPs) use carbohydrates present on human gastroduodenal epithelial cells as ligands. METHODS Attachment of rNV VLPs was tested on tissue sections of the gastroduodenal junction and on saliva from individuals of known ABO, Lewis, and secretor phenotypes. It was also tested on human Caco-2 cells and on animal cell lines transfected with glycosyltransferases complementary DNA (cDNA). Competition experiments were performed with synthetic oligosaccharides and anticarbohydrate antibodies. Internalization was monitored by confocal microscopy. RESULTS Attachment of rNV VLPs to surface epithelial cells of the gastroduodenal junction as well as to saliva was detected, yet only from secretor donors. It was abolished by alpha1,2fucosidase treatment, and by competition with the H types 1 and 3 trisaccharides or with anti-H type 1 and anti-H types (3/4) antibodies. Transfection of CHO and TS/A cells with an alpha1,2fucosyltransferase cDNA allowed attachment of VLPs. These transfectants as well as differentiated Caco-2 cells expressing H type 1 structures internalized the bound particles. CONCLUSIONS rNV VLPs use H type 1 and/or H types (3/4) as ligands on gastroduodenal epithelial cells of secretor individuals.
Collapse
Key Words
- bsa, bovine serum albumin
- fitc, fluorescein isothiocyanate
- gal, galactose
- hucv, human calicivirus
- mab, monoclonal antibody
- nlv, norwalk-like virus
- nv, norwalk virus
- race-pcr, rapid amplification cdna end polymerase chain reaction
- rhdv, rabbit hemorrhagic disease virus
- rnv vlps, recombinant norwalk virus–like particles
- uea-i, agglutinin i from ulex europeus
Collapse
|
42
|
Amano J, Kobayashi K, Oshima M. Comparative study of glycosyltransferase activities in Caco-2 cells before and after enterocytic differentiation using lectin-affinity high-performance liquid chromatography. Arch Biochem Biophys 2001; 395:191-8. [PMID: 11697856 DOI: 10.1006/abbi.2001.2572] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Human colonic adenocarcinoma Caco-2 cells differentiate into enterocytes by induction with sodium butyrate after confluence. Our previous studies have shown that there are high levels of H type 1 blood group antigen and core 2 structure present in O-glycans of the glycoproteins from these differentiated cells and these O-glycans appear to be indispensable for the process of differentiation of the cells (J. Amano and M. Oshima, 1999, J. Biol. Chem. 274, 21209-21216). Here, we have determined the glycosyltransferase activities using lectin-affinity HPLC because the method enabled easy separation and identification of mixtures of isomeric oligosaccharide structures due to the high resolution and reproducibility. The activities of beta 3-galactosyltransferase, alpha 2-fucosyltransferase, which are responsible for H type 1 antigen biosynthesis, and core 2 beta 6-N-acetylglucosaminyltransferase in differentiated Caco-2 cells were higher than those in undifferentiated cells. These results demonstrate that an increase in specific glycosyltransferase activities brought on a change of the O-glycan structures during differentiation.
Collapse
Affiliation(s)
- J Amano
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan.
| | | | | |
Collapse
|
43
|
Amano J, Morimoto C, Irimura T. Intestinal epithelial cells express and secrete the CD43 glycoform that contains core 2 O-glycans. Microbes Infect 2001; 3:723-8. [PMID: 11489420 DOI: 10.1016/s1286-4579(01)01431-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Several glycoforms of CD43 are known to regulate cellular interactions in the immune system. One such glycoform, the CD43 that bears core 2 O-glycans, is also known to be expressed on T lymphocytes and natural killer cells, but only after their activation. Previous studies have also shown that when Caco-2 cells, which are derived from human colon carcinoma, differentiate into enterocytes, they also express core 2 O-glycans, though proteins bearing this glycan are unknown. To examine whether CD43 glycosylation is altered during enterocytic differentiation of Caco-2 cells, we conducted immunocytochemical studies with a monoclonal antibody, 1D4, that recognizes a glycoform of CD43 bearing core 2 O-glycans. We found that 1D4 could bind to intracellular granules but not the cell surface of differentiated Caco-2 cells, whereas hematopoietic cells expressed 1D4 epitope on the cell surface as previously shown. The reactivity with this antibody increased as the degree of cell differentiation progressed as shown by the activity of the apical enzyme marker, dipeptidyl peptidase IV. 1D4-reactive CD43 was also found in the culture medium of differentiated Caco-2 cells, suggesting this molecule may be stored and secreted. The production and secretion of this CD43 glycoform by enterocyte-like Caco-2 cells was enhanced, and most 1D4 epitope converted to a soluble form when bacterial lipopolysaccharide was present. These observations strongly support the possibility that core 2 O-glycans on mucins such as CD43 are important to primary defense on the intestinal epithelium against infection.
Collapse
Affiliation(s)
- J Amano
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | |
Collapse
|
44
|
Gouyer V, Leteurtre E, Delmotte P, Steelant WF, Krzewinski-Recchi MA, Zanetta JP, Lesuffleur T, Trugnan G, Delannoy P, Huet G. Differential effect of GalNAc(α)-O-bn on intracellular trafficking in enterocytic HT-29 and Caco-2 cells: correlation with the glycosyltransferase expression pattern. J Cell Sci 2001; 114:1455-71. [PMID: 11282022 DOI: 10.1242/jcs.114.8.1455] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our previous work has shown that long-term treatment of mucus-secreting HT-29 cells with 1-benzyl-2-acetamido-2-deoxy-(α)-D-galactopyranoside (GalNAc(α)-O-bn), a competitive inhibitor of O-glycosylation, induced several phenotypic changes, in particular a blockade in the secretion of mucins, which are extensively O-glycosylated glycoproteins. Here, we have analyzed the effects of GalNAc(α)-O-bn upon the intracellular trafficking of basolateral and apical membrane glycoproteins at the cellular and biochemical levels in two types of cells, HT-29 G(-) and Caco-2, differentiated into an enterocyte-like phenotype. In HT-29 G(-) cells, but not in Caco-2 cells, DPP-IV and CD44 failed to be targeted to the apical or basolateral membrane, respectively, and accumulated inside intracytoplasmic vesicles together with GalNAc(α)-O-bn metabolites. We observed a strong inhibition of (α)2,3-sialylation of glycoproteins in HT-29 G(-) cells correlated to the high expression of (α)2,3-sialyltransferases ST3Gal I and ST3Gal IV. In these cells, DPP-IV and CD44 lost the sialic acid residue substituting the O-linked core 1 structure Gal(β)1-3GalNAc (T-antigen). In contrast, sialylation was not modified in Caco-2 cells, but a decrease of (α)1,2-fucosylation was observed, in correlation with the high expression of (α)1,2-fucosyltransferases Fuc-TI and Fuc-TII. In conclusion, in HT-29 G(-) cells, GalNAc(α)-O-bn induces a specific cellular phenotype, which is morphologically characterized by the formation of numerous intracellular vesicles, in which are accumulated defectively sialylated O-glycosylproteins originally targeted to basolateral or apical membranes, and GalNAc(α)-O-bn metabolites.
Collapse
Affiliation(s)
- V Gouyer
- Unité INSERM 377, place de Verdun, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Beum PV, Cheng PW. Biosynthesis and function of beta 1,6 branched mucin-type glycans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001; 491:279-312. [PMID: 14533804 DOI: 10.1007/978-1-4615-1267-7_19] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The contribution of carbohydrate structure to biomolecular, cellular, and organismal function is well-established, but has not yet received the attention it deserves, perhaps due to the complexity of the structures involved and to a lack of simple experimental methods for relating structure and function. In particular, beta1,6 GlcNAc branching plays a key functional role in processes ranging from inflammation and immune system function to tumor cell metastasis. For instance, synthesis of the core 2 beta1,6 branched structure in the mucin glycan chain by C2GnT enables the expression of functional structures at the termini of polylactosamine chains, such as blood group antigens and sialyl Lewis x. Also, IGnT can create multiple branches on the polylactosamine chain, which may serve as a mechanism for amplifying the functional potency of cell surface glycoproteins and glycolipids. The family of enzymes which creates beta1,6 branched structure in mucin glycans is proving to be quite complex, since multiple isoforms appear to exist for these enzymes, and some of the enzymes are adept at forming more than one type of beta1,6 branched structure, as in the case of C2GnT-M. Furthermore, the enzymes do not appear to be restricted to acting on mucin-type acceptor structures, but are able to act on glycolipid structures as well. Much remains to be learned regarding the specific biological niche filled by each of these enzymes and how their activities complement one another, as well as the manner in which the activities of these enzymes are regulated in the cell.
Collapse
Affiliation(s)
- P V Beum
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center Omaha, NE 68198-4525, USA
| | | |
Collapse
|
46
|
ISHIDA Y, KUSUDA D, IKEDA N, KANEKO K, TAKANO T, YAMAMOTO N. Isolation and characterization of a Lactobacillus acidophilus strain L92 that can survive in human gastrointestinal tract. ACTA ACUST UNITED AC 2001. [DOI: 10.4109/jslab1997.12.28] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
47
|
Malagolini N, Cavallone D, Serafini-Cessi F. Differentiation-dependent glycosylation of gp190, an oncofetal crypt cell antigen expressed by Caco-2 cells. Glycoconj J 2000; 17:307-14. [PMID: 11261839 DOI: 10.1023/a:1007117520609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
gp190 is a glycoprotein expressed on the cell surface of several human colon carcinoma cells in culture, on epithelial cells of fetal colon, but not on the normal mucosa of adult colon; thus it is referred to as an oncofetal crypt cell antigen. We report the characterisation of O-linked glycans carried by gp190 synthesised by [3H]glucosamine-labelled Caco-2 cells at the confluence (undifferentiated cells) and at three weeks of postconfluence (differentiated cells). By using a specific monoclonal antibody, gp190 was isolated and analysed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The mobility of gp190 from differentiated cells was found to be lower than that from undifferentiated cells, suggesting a more extensive glycosylation process in the former glycoprotein. The major results of the glycan characterisation have been as follows: (i) gp190 carries mainly, if not exclusively, O-linked glycans with the core-2 structure; (ii) the elongation with N-acetyllactosamine units of the Gal beta1,4GlcNAc beta1,6(Gal beta1,3)GalNAc tetrasaccharide predominates in gp190 synthesised by differentiated cells, whereas the direct alpha2,3sialylation of the tetrasaccharide is prevalent in gp190 synthesised by undifferentiated cells. The increment in the core-2 beta1,6GlcNAc-transferase activity under the Caco-2 differentiation process may be relevant in producing the larger occurrence of polylactosaminoglycans in gp190 from differentiated cells. Since no change in the activity of the alpha2,3sialyltransferases upon cell differentiation was observed, we suggest that the lower alpha2,3sialylation in gp190 synthesised by polarised cells might be due to a changed transit-rate through the distal Golgi apparatus.
Collapse
Affiliation(s)
- N Malagolini
- Department of Experimental Pathology, University of Bologna, Italy
| | | | | |
Collapse
|