1
|
Waheed AA, Swiderski M, Khan A, Gitzen A, Majadly A, Freed EO. The viral protein U (Vpu)-interacting host protein ATP6V0C down-regulates cell-surface expression of tetherin and thereby contributes to HIV-1 release. J Biol Chem 2020; 295:7327-7340. [PMID: 32291285 PMCID: PMC7247306 DOI: 10.1074/jbc.ra120.013280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
Host proteins with antiviral activity have evolved as first-line defenses to suppress viral replication. The HIV-1 accessory protein viral protein U (Vpu) enhances release of the virus from host cells by down-regulating the cell-surface expression of the host restriction factor tetherin. However, the exact mechanism of Vpu-mediated suppression of antiviral host responses is unclear. To further understand the role of host proteins in Vpu's function, here we carried out yeast two-hybrid screening and identified the V0 subunit C of vacuolar ATPase (ATP6V0C) as a Vpu-binding protein. To examine the role of ATP6V0C in Vpu-mediated tetherin degradation and HIV-1 release, we knocked down ATP6V0C expression in HeLa cells and observed that ATP6V0C depletion impairs Vpu-mediated tetherin degradation, resulting in defective HIV-1 release. We also observed that ATP6V0C overexpression stabilizes tetherin expression. This stabilization effect was specific to ATP6V0C, as overexpression of another subunit of the vacuolar ATPase, ATP6V0C″, had no effect on tetherin expression. ATP6V0C overexpression did not stabilize CD4, another target of Vpu-mediated degradation. Immunofluorescence localization experiments revealed that the ATP6V0C-stabilized tetherin is sequestered in a CD63- and lysosome-associated membrane protein 1 (LAMP1)-positive intracellular compartment. These results indicate that the Vpu-interacting protein ATP6V0C plays a role in down-regulating cell-surface expression of tetherin and thereby contributes to HIV-1 assembly and release.
Collapse
Affiliation(s)
- Abdul A Waheed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702.
| | - Maya Swiderski
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702
| | - Ali Khan
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702
| | - Ariana Gitzen
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702
| | - Ahlam Majadly
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702
| |
Collapse
|
2
|
Yao J, Zhang Z, Li S, Li B, Wang XH. Melittin inhibits proliferation, migration and invasion of bladder cancer cells by regulating key genes based on bioinformatics and experimental assays. J Cell Mol Med 2019; 24:655-670. [PMID: 31691530 PMCID: PMC6933335 DOI: 10.1111/jcmm.14775] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/05/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022] Open
Abstract
The antitumour effect of melittin (MEL) has recently attracted considerable attention. Nonetheless, information regarding the functional role of MEL in bladder cancer (BC) is currently limited. Herein, we investigated the effect of MEL on critical module genes identified in BC. In total, 2015 and 4679 differentially expressed genes (DEGs) associated with BC were identified from the GSE31189 set and The Cancer Genome Atlas database, respectively. GSE‐identified DEGs were mapped and analysed using Gene Ontology and Kyoto Encyclopaedia of Genes and Genomes analyses to determine BC‐involved crucial genes and signal pathways. Coupled with protein–protein interaction network and Molecular Complex Detection analyses, Modules 2 and 4 were highlighted in the progression of BC. In in‐vitro experiments, MEL inhibited the proliferation, migration, and invasion of UM‐UC‐3 and 5637 cells. The expression of NRAS, PAK2, EGFR and PAK1 in Module 4—enriched in the MAPK signalling pathway—was significantly reduced after treatment with MEL at concentrations of 4 or 6 μg/mL. Finally, quantitative reverse transcription‐polymerase chain reaction and Western blotting analyses revealed MEL inhibited the expression of genes at the mRNA (ERK1/2, ERK5, JNK and MEK5), protein (ERK5, MEK5, JNK and ERK1/2) and phosphorylation (p‐ERK1/2, p‐JNK, and p‐38) levels. This novel evidence indicates MEL exerts effects on the ERK5‐MAK pathway—a branch of MAPK signalling pathway. Collectively, these findings provide a theoretical basis for MEL application in BC treatment.
Collapse
Affiliation(s)
- Jie Yao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhan Zhang
- Department of Rehabilitation Medicine, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Sheng Li
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bai Li
- Department of Rehabilitation Medicine, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xing-Huan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Rao VK, Zavala G, Deb Roy A, Mains RE, Eipper BA. A pH-sensitive luminal His-cluster promotes interaction of PAM with V-ATPase along the secretory and endocytic pathways of peptidergic cells. J Cell Physiol 2018; 234:8683-8697. [PMID: 30317586 DOI: 10.1002/jcp.27528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/11/2018] [Indexed: 01/18/2023]
Abstract
The biosynthetic and endocytic pathways of secretory cells are characterized by progressive luminal acidification, a process which is crucial for posttranslational modifications and membrane trafficking. This progressive fall in luminal pH is mainly achieved by the vacuolar-type-H+ ATPase (V-ATPase). V-ATPases are large, evolutionarily ancient rotary proton pumps that consist of a peripheral V1 complex, which hydrolyzes ATP, and an integral membrane V0 complex, which transports protons from the cytosol into the lumen. Upon sensing the desired luminal pH, V-ATPase activity is regulated by reversible dissociation of the complex into its V1 and V0 components. Molecular details of how intraluminal pH is sensed and transmitted to the cytosol are not fully understood. Peptidylglycine α-amidating mono-oxygenase (PAM; EC 1.14.17.3), a secretory pathway membrane enzyme which shares similar topology with two V-ATPase accessory proteins (Ac45 and prorenin receptor), has a pH-sensitive luminal linker region. Immunofluorescence and sucrose gradient analysis of peptidergic cells (AtT-20) identified distinct subcellular compartments exhibiting spatial co-occurrence of PAM and V-ATPase. In vitro binding assays demonstrated direct binding of the cytosolic domain of PAM to V1H. Blue native PAGE identified heterogeneous high-molecular weight complexes of PAM and V-ATPase. A PAM-1 mutant (PAM-1/H3A) with altered pH sensitivity had diminished ability to form high-molecular weight complexes. In addition, V-ATPase assembly status was altered in PAM-1/H3A expressing cells. Our analysis of the secretory and endocytic pathways of peptidergic cells supports the hypothesis that PAM serves as a luminal pH-sensor, regulating V-ATPase action by altering its assembly status.
Collapse
Affiliation(s)
- Vishwanatha K Rao
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut
| | - Gerardo Zavala
- Department of Chemistry, University of Texas at El Paso, El Paso, Texas
| | - Abhijit Deb Roy
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, Connecticut
| | - Richard E Mains
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut
| | - Betty A Eipper
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut.,Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut
| |
Collapse
|
4
|
Shubin AV, Demidyuk IV, Komissarov AA, Rafieva LM, Kostrov SV. Cytoplasmic vacuolization in cell death and survival. Oncotarget 2018; 7:55863-55889. [PMID: 27331412 PMCID: PMC5342458 DOI: 10.18632/oncotarget.10150] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 06/06/2016] [Indexed: 12/15/2022] Open
Abstract
Cytoplasmic vacuolization (also called cytoplasmic vacuolation) is a well-known morphological phenomenon observed in mammalian cells after exposure to bacterial or viral pathogens as well as to various natural and artificial low-molecular-weight compounds. Vacuolization often accompanies cell death; however, its role in cell death processes remains unclear. This can be attributed to studying vacuolization at the level of morphology for many years. At the same time, new data on the molecular mechanisms of the vacuole formation and structure have become available. In addition, numerous examples of the association between vacuolization and previously unknown cell death types have been reported. Here, we review these data to make a deeper insight into the role of cytoplasmic vacuolization in cell death and survival.
Collapse
Affiliation(s)
- Andrey V Shubin
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Moscow, Russia.,Laboratory of Chemical Carcinogenesis, N.N. Blokhin Russian Cancer Research Center, Moscow, Russia.,Laboratory of Biologically Active Nanostructures, N.F. Gamaleya Institute of Epidemiology and Microbiology, Moscow, Russia
| | - Ilya V Demidyuk
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Moscow, Russia
| | - Alexey A Komissarov
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Moscow, Russia
| | - Lola M Rafieva
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Moscow, Russia
| | - Sergey V Kostrov
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Moscow, Russia
| |
Collapse
|
5
|
Holliday LS. Vacuolar H +-ATPases (V-ATPases) as therapeutic targets: a brief review and recent developments. ACTA ACUST UNITED AC 2017; 1. [PMID: 30957075 DOI: 10.21037/biotarget.2017.12.01] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Vacuolar H+-ATPases (V-ATPases) are multi-subunit enzymes that play housekeeping roles in eukaryotic cells by acidifying lysosomes, late endosomes, Golgi, and other membrane-bounded compartments. Beyond that, V-ATPases have specialized functions in certain cell types linked to diseases including osteoporosis and cancer. Efforts to identify strategies to develop inhibitors selective for V-ATPases that are involved in disease progression have been ongoing for more than two decades, but so far have not yielded a therapeutic agent that has been translated to the clinic. Recent basic science studies have identified unexpected roles for V-ATPases in nutrient and energy sensing, and renin/angiotensin signaling, which offer additional incentives for considering V-ATPases as therapeutic targets. This article briefly reviews efforts to utilize inhibitors of V-ATPases as drugs. Primary focus is on recent "rational" efforts to identify small molecule inhibitors of the V-ATPases that are selectively expressed in osteoclasts and cancer cells. Enoxacin and bis-enoxacin are two molecules that emerged from these efforts. These molecules block a binding interaction between V-ATPases and microfilaments that occurs in osteoclasts, but not most other cell types, which relates to the specialized function of V-ATPases in bone resorption. Enoxacin and bis-enoxacin have proven useful in the treatment of bone diseases and cancer in animal models and display therapeutic effects that are different, and perhaps better, than current drugs. These results provide evidence that agents targeting subsets of V-ATPases may prove useful in the clinic.
Collapse
Affiliation(s)
- L Shannon Holliday
- Departments of Orthodontics and Anatomy & Cell Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| |
Collapse
|
6
|
Xu X, You J, Pei F. Silencing of a novel tumor metastasis suppressor gene LASS2/TMSG1 promotes invasion of prostate cancer cell in vitro through increase of vacuolar ATPase activity. J Cell Biochem 2012; 113:2356-63. [PMID: 22573553 DOI: 10.1002/jcb.24106] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Homo sapiens longevity assurance homologue 2 of yeast LAG1 (LASS2), also known as tumor metastasis suppressor gene 1 (TMSG1), is a newly found tumor metastasis suppressor gene in 1999. Preliminary studies showed that it not only suppressed tumor growth but also closely related to tumor metastasis, however, its molecular mechanisms is still unclear. There have been reported that protein encoded by LASS2/TMSG-1 could directly interact with the C subunit of Vacuolar ATPase (V-ATPase), which suggested that LASS2/TMSG1 might inhibit the invasion and metastasis through regulating the function of V-ATPase. Thus, in this study, we explored the effect of small interference RNA (siRNA) targeting LASS2/TMSG1 on the invasion of human prostate carcinoma cell line PC-3M-2B4 and its molecular mechanisms associated with the V-ATPase. Real-time fluorogentic quantitative PCR (RFQ-PCR) and Western blot revealed dramatic reduction of 84.5% and 60% in the levels of LASS2/TMSG1 mRNA and protein after transfection of siRNA in PC-3M-2B4 cells. The V-ATPase activity and extracellular hydrogen ion concentration were significantly increased in 2B4 cells transfected with the LASS2/TMSG1-siRNA compared with the controls. The activity of secreted MMP-2 was up-regulated in LASS2/TMSG1-siRNA treated cells compared with the controls; and the capacity for migration and invasion in LASS2/TMSG1-siRNA treated cells was significantly higher than the controls. Thus, we concluded that silencing of LASS2/TMSG1 may promote invasion of prostate cancer cell in vitro through increase of V-ATPase activity and extracellular hydrogen ion concentration and in turn the activation of secreted MMP-2.
Collapse
Affiliation(s)
- Xiaoyan Xu
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, PR China
| | | | | |
Collapse
|
7
|
Novel anti-cancer compounds for developing combinatorial therapies to target anoikis-resistant tumors. Pharm Res 2011; 29:621-36. [PMID: 22203324 DOI: 10.1007/s11095-011-0645-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 12/05/2011] [Indexed: 01/31/2023]
Abstract
Anoikis, a cell death pathway induced by loss of normal cell-matrix attachment or upon adhesion to a non-native matrix, ensures the balance between proliferative potential of normal cells and maintenance of tissue integrity. Thereby, anoikis serves as a potential molecular barrier against oncogenic transformation of normal cells. Cancer cells acquire anoikis resistance for survival and distant metastatic progression. During the acquisition of anoikis resistance, tumors modulate multiple cell signaling parameters through changes in the expression of up-stream receptors and by dynamically calibrating the dependency on down-stream signaling cascades. Many compounds that target the tumor-acquired switches in integrins, tumor antigens, growth factors, metabolic pathways, oxidative and osmotic-stress signaling are in various phases of pre-clinical and clinical development. Combinatorial approaches maximize the therapeutic efficacy and minimize the activation of alternate signaling pathways, which will otherwise contribute to drug resistance. In this regard, an integrated analysis of the mechanisms of action of potential drugs and lead compounds that can target significant nodes of anoikis signaling networks will provide a rational frame-work for further development and clinical use of respective agents, by formulating more effective combinatorial therapies, in patients with distinct drug-sensitivity profiles.
Collapse
|
8
|
Byun YJ, Lee SB, Lee HO, Son MJ, Kim HS, Kwon OJ, Jeong SW. Vacuolar H+-ATPase c protects glial cell death induced by sodium nitroprusside under glutathione-depleted condition. J Cell Biochem 2011; 112:1985-96. [DOI: 10.1002/jcb.23105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
9
|
Dykstra T, Utermoehlen O, Haas A. Defined particle ligands trigger specific defense mechanisms of macrophages. Innate Immun 2010; 17:388-402. [PMID: 20682584 DOI: 10.1177/1753425910374889] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Phagocytosis is a receptor-mediated process for sequestration and inactivation of infectious microbes. It can be triggered by microbial surface compounds or particle-attached host proteins. We monitored the effector functions of murine bone marrow-derived macrophages (BMMs) in response to polystyrene-streptavidin beads coated with the defined ligands IgG1, β-glucan, mannan, complement factors C1q or iC3b, or fibronectin (FN). Cell-autonomous effector mechanisms (uptake, phagosome maturation, cytokine responses and killing activity) were differentially triggered. All particle-ligand complexes stimulated the release of nitric oxide, but only beads coated with IgG, complement factors or FN caused production of superoxide. Beads coated with C1q, iC3b or FN strongly stimulated the secretion of pro-inflammatory TNF-α, IL-6, and IL-1β and also of anti-inflammatory IL-10. Escherichia coli coated with C1q, iC3b or FN was killed much less efficiently than with any of the other ligands, depending on the presence of IL-10 activity. This indicated an important role of IL-10 as regulator of cell-autonomous immune functions of macrophages. Our data show that defined ligands on microbial surfaces are interesting candidates to activate innate defense mechanisms selectively and specifically.
Collapse
|
10
|
Di Giovanni J, Boudkkazi S, Mochida S, Bialowas A, Samari N, Lévêque C, Youssouf F, Brechet A, Iborra C, Maulet Y, Moutot N, Debanne D, Seagar M, El Far O. V-ATPase Membrane Sector Associates with Synaptobrevin to Modulate Neurotransmitter Release. Neuron 2010; 67:268-79. [DOI: 10.1016/j.neuron.2010.06.024] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2010] [Indexed: 10/19/2022]
|
11
|
Missihoun C, Zisa D, Shabbir A, Lin H, Lee T. Myocardial oxidative stress, osteogenic phenotype, and energy metabolism are differentially involved in the initiation and early progression of delta-sarcoglycan-null cardiomyopathy. Mol Cell Biochem 2008; 321:45-52. [PMID: 18726675 DOI: 10.1007/s11010-008-9908-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Accepted: 08/19/2008] [Indexed: 12/11/2022]
Abstract
Dilated cardiomyopathy (DCM) is a common cause of heart failure, and identification of early pathogenic events occurring prior to the onset of cardiac dysfunction is of mechanistic, diagnostic, and therapeutic importance. The work characterized early biochemical pathogenesis in TO2 strain hamsters lacking delta-sarcoglycan. Although the TO2 hamster heart exhibits normal function at 1 month of age (presymptomatic stage), elevated levels of myeloperoxidase, monocyte chemotactic protein-1, malondialdehyde, osteopontin, and alkaline phosphatase were evident, indicating the presence of inflammation, oxidative stress, and osteogenic phenotype. These changes were localized primarily to the myocardium. Derangement in energy metabolism was identified at the symptomatic stage (4 month), and is marked by attenuated activity and expression of pyruvate dehydrogenase E1 subunit, which catalyzes the rate-limiting step in aerobic glucose metabolism. Thus, this study illustrates differential involvement of oxidative stress, osteogenic phenotype, and glucose metabolism in the initiation and early progression of delta-sarcoglycan-null DCM.
Collapse
Affiliation(s)
- Comlan Missihoun
- Department of Biochemistry and Center for Research in Cardiovascular Medicine, University at Buffalo, Buffalo, NY 14214, USA
| | | | | | | | | |
Collapse
|
12
|
Axelrod S, Oschkinat H, Enders J, Schlegel B, Brinkmann V, Kaufmann SHE, Haas A, Schaible UE. Delay of phagosome maturation by a mycobacterial lipid is reversed by nitric oxide. Cell Microbiol 2008; 10:1530-45. [DOI: 10.1111/j.1462-5822.2008.01147.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
13
|
Byun YJ, Lee SB, Kim DJ, Lee HO, Son MJ, Yang CW, Sung KW, Kim HS, Kwon OJ, Kim IK, Jeong SW. Protective effects of vacuolar H+-ATPase c on hydrogen peroxide-induced cell death in C6 glioma cells. Neurosci Lett 2007; 425:183-7. [PMID: 17845832 DOI: 10.1016/j.neulet.2007.08.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 08/14/2007] [Accepted: 08/14/2007] [Indexed: 01/27/2023]
Abstract
We have isolated a gene, the c subunit (ATP6L) of vacuolar H(+)-ATPase, involved in oxidative stress response. In this study, we examined the role of ATP6L and its molecular mechanisms in glial cell death induced by H(2)O(2). Expression of the ATP6L gene was increased by H(2)O(2) treatment in C6 glial cells. ATP6L siRNA-transfected C6 cells treated with H(2)O(2) showed a significant decrease in viability. ATP6L siRNA-transfected cells that were pretreated with MEK1/2 inhibitor completely recovered cell viability. Pretreatment of the transfected cells with zVAD-fmk, a pan-specific caspase inhibitor, did not result in the recovery of cell viability, as determined by a H(2)O(2)-induced cytotoxicity assay. The ultrastructural morphology of the transfected cells as seen by the use of transmission electron microscopy showed numerous cytoplasmic autophagic vacuoles with double membrane. These results suggest that ATP6L has a protective role against H(2)O(2)-induced cytotoxicity via an inhibition of the Erk1/2 signaling pathway, leading to inhibition of autophagic cell death.
Collapse
Affiliation(s)
- Yu Jeong Byun
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Socho-gu, Seoul 137-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Chen J, Skinner MA, Shi W, Yu QC, Wildeman AG, Chan YMM. The 16 kDa subunit of vacuolar H+-ATPase is a novel sarcoglycan-interacting protein. Biochim Biophys Acta Mol Basis Dis 2007; 1772:570-9. [PMID: 17382524 DOI: 10.1016/j.bbadis.2007.01.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 01/30/2007] [Accepted: 01/31/2007] [Indexed: 11/24/2022]
Abstract
The sarcoglycan complex in muscle consists of alpha-, beta-, gamma- and delta-sarcoglycan and is part of the larger dystrophin-glycoprotein complex (DGC), which is essential for maintaining muscle membrane integrity. Mutations in any of the four sarcoglycans cause limb-girdle muscular dystrophies (LGMD). In this report, we have identified a novel interaction between delta-sarcoglycan and the 16 kDa subunit c (16K) of vacuolar H(+)-ATPase. Co-expression studies in heterologous cell system revealed that 16K interacts specifically with delta-sarcoglycan and the highly related gamma-sarcoglycan through the transmembrane domains. In cultured C2C12 myotubes, 16K forms a complex with sarcoglycans at the plasma membrane. Loss of sarcoglycans in the sarcoglycan-deficient BIO14.6 hamster destabilizes the DGC and alters the localization of 16K at the sarcolemma. In addition, the steady state level of beta(1)-integrin is increased. Recent studies have shown that 16K also interacts directly with beta(1)-integrin and our data demonstrated that sarcoglycans, 16K and beta(1)-integrin were immunoprecipitated together in C2C12 myotubes. Since sarcoglycans have been proposed to participate in bi-directional signaling with integrins, our findings suggest that 16K might mediate the communication between sarcoglycans and integrins and play an important role in the pathogenesis of muscular dystrophy.
Collapse
Affiliation(s)
- Jiwei Chen
- Sigfried and Janet Weis Center for Research, The Geisinger Clinic, Danville, PA 17822, USA
| | | | | | | | | | | |
Collapse
|
15
|
Yahiro K, Morinaga N, Satoh M, Matsuura G, Tomonaga T, Nomura F, Moss J, Noda M. Identification and characterization of receptors for vacuolating activity of subtilase cytotoxin. Mol Microbiol 2006; 62:480-90. [PMID: 16965518 DOI: 10.1111/j.1365-2958.2006.05379.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Some shiga toxin-producing Escherichia coli secrete a novel AB5 cytotoxin, named subtilase cytotoxin (SubAB), which induces vacuole formation in addition to cytotoxicity in susceptible cells. By immunoprecipitation with SubAB from Vero cells, we discovered proteins of 100 kDa, 135 kDa and 155 kDa as potential candidates for its receptor. These proteins were N-glycosylated in their extracellular domains, a modification that was necessary for interaction with SubAB. Biotinylated receptors were partially purified by Datura stramonium agglutinin affinity chromatography and avidin-agarose and analysed by TOF mass spectroscopy. The peptide sequences of p135 were identical to beta1 integrin, and its identification was confirmed with anti-integrin beta1 antibody. The p155 protein was identified as alpha2 integrin using anti-integrin alpha2 antibody. In addition, treatment of Vero cells with beta1 integrin RNAi before exposure to SubAB prevented vacuolating activity. These results suggested that SubAB recognizes alpha2beta1 integrin as a functional receptor; this first interaction may be an important key step leading to the SubAB-induced morphological changes in Vero cells.
Collapse
Affiliation(s)
- Kinnosuke Yahiro
- Departments of Molecular Infectiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Lu X, Qin W, Li J, Tan N, Pan D, Zhang H, Xie L, Yao G, Shu H, Yao M, Wan D, Gu J, Yang S. The growth and metastasis of human hepatocellular carcinoma xenografts are inhibited by small interfering RNA targeting to the subunit ATP6L of proton pump. Cancer Res 2005; 65:6843-9. [PMID: 16061667 DOI: 10.1158/0008-5472.can-04-3822] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Extracellular pH is usually low in solid tumors, in contrast to the approximately neutral intracellular pH. V-ATPase, which overly functions in some cancers with metastatic potential, plays an important role in maintaining neutral cytosolic pH, very acidic luminal pH, and acidic extracellular pH. ATP6L, the 16 kDa subunit of proton pump V-ATPase, can provide proton hydrophilic transmembrane path. In this study, ATP6L in a human hepatocellular carcinoma cell line with highly metastatic potential (HCCLM3) was knocked down using DNA vector-based small interfering RNA (siRNA) to suppress the metastasis. The expression of ATP6L in stable siRNA transfectants, designated as si-HCCLM3 cells, was inhibited by approximately 60%. The proton secretion and the intracellular pH recovery from NH4Cl-prepulsed acidification were inhibited in si-HCCLM3 cells. The invasion of the si-HCCLM3 cells was suppressed in vitro; simultaneously, the expressions of matrix metalloproteinase-2 and gelatinase activity were reduced. In vivo, at 35th day after implantation of the si-HCCLM3 xenografts into the livers in BalB/c (nu+/nu+) mice, the size of liver tumor tissues was dramatically smaller in siRNA group than in the controlled group. The most impressing effect of ATP6L siRNA is its striking reduction of the metastatic potential of HCCLM3 cells. In control, all eight mice had the intrahepatic metastasis and six of eight the pulmonary metastasis, whereas in ATP6L siRNA-treated group, three of eight had the intrahepatic metastasis and only one of eight the pulmonary metastasis. The results suggest that the inhibition of V-ATPase function via knockdown of ATP6L expression using RNA interfering technology can effectively retard the cancer growth and suppress the cancer metastasis by the decrease of proton extrusion and the down-regulation of gelatinase activity.
Collapse
Affiliation(s)
- Xiaodong Lu
- National Laboratory for Oncogenes and Related Genes, WHO Collaborating Center for Research on Cancer, Shanghai Cancer Institute, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Fernandez-Mora E, Polidori M, Lührmann A, Schaible UE, Haas A. Maturation of Rhodococcus equi-containing vacuoles is arrested after completion of the early endosome stage. Traffic 2005; 6:635-53. [PMID: 15998320 DOI: 10.1111/j.1600-0854.2005.00304.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rhodococcus equi is a facultative intracellular bacterium that can cause bronchopneumonia in foals and AIDS patients. Here, we have analyzed R. equi-containing vacuoles (RCVs) in murine macrophages by confocal laser scanning microscopy, by transmission electron microscopy and by immunochemistry upon purification. We show that RCVs progress normally through the early stages of phagosome maturation acquiring PI3P, early endosome antigen-1, and Rab5, and loosing all or much of them within minutes. Although mature RCVs possess the normally late endocytic markers, lysosome-associated membrane proteins, lysobisphosphatidic acid and Rab7, they lack other hallmark features of late endocytic organelles such as possession of cathepsin D, acid beta-glucuronidase, proton-pumping ATPase and the ability to fuse with prelabeled lysosomes. Bacterial strains possessing a virulence-associated plasmid maintain a nonacidified compartment for 48 h, whereas isogenic strains lacking such plasmids acidify progressively. In summary, RCVs represent a novel phagosome maturation stage positioned after completion of the early endosome stage and before reaching a fully mature late endosome compartment. In addition, vacuole biogenesis can be influenced by bacterial plasmids.
Collapse
Affiliation(s)
- Eugenia Fernandez-Mora
- Institut für Zellbiologie and Bonner Forum Biomedizin, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | | | | | | | | |
Collapse
|
18
|
Lee I, Skinner MA, Guo HB, Sujan A, Pierce M. Expression of the Vacuolar H+-ATPase 16-kDa Subunit Results in the Triton X-100-insoluble Aggregation of β1 Integrin and Reduction of Its Cell Surface Expression. J Biol Chem 2004; 279:53007-14. [PMID: 15466867 DOI: 10.1074/jbc.m405717200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vacuolar H(+)-ATPase functions as a vacuolar proton pump and is responsible for acidification of intracellular compartments such as the endoplasmic reticulum, Golgi, lysosomes, and endosomes. Previous reports have demonstrated that a 16-kDa subunit (16K) of vacuolar H(+)-ATPase via one of its transmembrane domains, TMD4, strongly associates with beta(1) integrin, affecting beta(1) integrin N-linked glycosylation and inhibiting its function as a matrix adhesion receptor. Because of this dramatic inhibition of beta(1) integrin-mediated HEK-293 cell motility by 16K expression, we investigated the mechanism by which 16 kDa was having this effect. Using HT1080 cells whose alpha(5)beta(1) integrin-mediated adhesion to fibronectin has been extensively studied, the expression of 16 kDa also resulted in reduced cell spreading on fibronectin-coated substrates. A pulse-chase study of beta(1) integrin biosynthesis indicated that 16K expression down-regulated the level of the 110-kDa biosynthetic form of beta(1) integrin (premature form) and, consequently, the level of the 130-kDa form of beta(1) integrin (mature form). Further experiments showed that the normal levels of association between the premature beta(1) integrin form and calnexin were significantly decreased by the expression of either 16 kDa or TMD4. Expression of 16 kDa also resulted in a Triton X-100-insoluble aggregation of an unusual 87-kDa form of beta(1) integrin. Interestingly, both Western blotting and a pulse-chase experiment showed co-immunoprecipitation of calnexin and 16K. These results indicate that 16K expression inhibits beta(1) integrin surface expression and spreading on matrix by a novel mechanism that results in reduced levels of functional beta(1) integrin.
Collapse
Affiliation(s)
- Intaek Lee
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30605, USA
| | | | | | | | | |
Collapse
|
19
|
Abstract
Vacuolar H(+)-ATPases are ubiquitous multisubunit complexes mediating the ATP-dependent transport of protons. In addition to their role in acidifying the lumen of various intracellular organelles, vacuolar H(+)-ATPases fulfill special tasks in the kidney. Vacuolar H(+)-ATPases are expressed in the plasma membrane in the kidney almost along the entire length of the nephron with apical and/or basolateral localization patterns. In the proximal tubule, a high number of vacuolar H(+)-ATPases are also found in endosomes, which are acidified by the pump. In addition, vacuolar H(+)-ATPases contribute to proximal tubular bicarbonate reabsorption. The importance in final urinary acidification along the collecting system is highlighted by monogenic defects in two subunits (ATP6V0A4, ATP6V1B1) of the vacuolar H(+)-ATPase in patients with distal renal tubular acidosis. The activity of vacuolar H(+)-ATPases is tightly regulated by a variety of factors such as the acid-base or electrolyte status. This regulation is at least in part mediated by various hormones and protein-protein interactions between regulatory proteins and multiple subunits of the pump.
Collapse
Affiliation(s)
- Carsten A Wagner
- Institute of Physiology, Univ. of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Acidification of some organelles, including the Golgi complex, lysosomes, secretory granules, and synaptic vesicles, is important for many of their biochemical functions. In addition, acidic pH in some compartments is also required for the efficient sorting and trafficking of proteins and lipids along the biosynthetic and endocytic pathways. Despite considerable study, however, our understanding of how pH modulates membrane traffic remains limited. In large part, this is due to the diversity of methods to perturb and monitor pH, as well as to the difficulties in isolating individual transport steps within the complex pathways of membrane traffic. This review summarizes old and recent evidence for the role of acidification at various steps of biosynthetic and endocytic transport in mammalian cells. We describe the mechanisms by which organelle pH is regulated and maintained, as well as how organelle pH is monitored and quantitated. General principles that emerge from these studies as well as future directions of interest are discussed.
Collapse
Affiliation(s)
- Ora A Weisz
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| |
Collapse
|
21
|
Sun AQ, Balasubramaniyan N, Liu CJ, Shahid M, Suchy FJ. Association of the 16-kDa subunit c of vacuolar proton pump with the ileal Na+-dependent bile acid transporter: protein-protein interaction and intracellular trafficking. J Biol Chem 2004; 279:16295-300. [PMID: 14752118 DOI: 10.1074/jbc.m312838200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The rat ileal apical sodium-dependent bile acid transporter (Asbt) transports conjugated bile acids in a Na+-dependent fashion and localizes specifically to the apical surface of ileal enterocytes. The mechanisms that target organic anion transporters to different domains of the ileal enterocyte plasma membrane have not been well defined. Previous studies (Sung, A.-Q., Arresa, M. A., Zeng, L., Swaby, I'K., Zhou, M. M., and Suchy, F. J. (2001) J. Biol. Chem. 276, 6825-6833) from our laboratory demonstrated that rat Asbt follows an apical sorting pathway that is brefeldin A-sensitive and insensitive to protein glycosylation, monensin treatment, and low temperature shift. Furthermore, a 14-mer signal sequence that adopts a beta-turn conformation is required for apical localization of rat Asbt. In this study, a vacuolar proton pump subunit (VPP-c, the 16-kDa subunit c of vacuolar H+-ATPase) has been identified as an interacting partner of Asbt by a bacterial two-hybrid screen. A direct protein-protein interaction between Asbt and VPP-c was confirmed in an in vitro pull-down assay and in an in vivo mammalian two-hybrid analysis. Indirect immunofluorescence confocal microscopy demonstrated that the Asbt and VPP-c colocalized in transfected COS-7 and MDCK cells. Moreover, bafilomycin A1 (a specific inhibitor of VPP) interrupted the colocalization of Asbt and VPP-c. A taurocholate influx assay and membrane biotinylation analysis showed that treatment with bafilomycin A1 resulted in a significant decrease in bile acid transport activity and the apical membrane localization of Asbt in transfected cells. Thus, these results suggest that the apical membrane localization of Asbt is mediated in part by the vacuolar proton pump associated apical sorting machinery.
Collapse
Affiliation(s)
- An-Qiang Sun
- Department of Pediatrics, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | | | | | | | |
Collapse
|
22
|
Izumi H, Torigoe T, Ishiguchi H, Uramoto H, Yoshida Y, Tanabe M, Ise T, Murakami T, Yoshida T, Nomoto M, Kohno K. Cellular pH regulators: potentially promising molecular targets for cancer chemotherapy. Cancer Treat Rev 2003; 29:541-9. [PMID: 14585264 DOI: 10.1016/s0305-7372(03)00106-3] [Citation(s) in RCA: 457] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
One of the major obstacles to the successful treatment of cancer is the complex biology of solid tumour development. Although regulation of intracellular pH has been shown to be critically important for many cellular functions, pH regulation has not been fully investigated in the field of cancer. It has, however, been shown that cellular pH is crucial for biological functions such as cell proliferation, invasion and metastasis, drug resistance and apoptosis. Hypoxic conditions are often observed during the development of solid tumours and lead to intracellular and extracellular acidosis. Cellular acidosis has been shown to be a trigger in the early phase of apoptosis and leads to activation of endonucleases inducing DNA fragmentation. To avoid intracellular acidification under such conditions, pH regulators are thought to be up-regulated in tumour cells. Four major types of pH regulator have been identified: the proton pump, the sodium-proton exchanger family (NHE), the bicarbonate transporter family (BCT) and the monocarboxylate transporter family (MCT). Here, we describe the structure and function of pH regulators expressed in tumour tissue. Understanding pH regulation in tumour cells may provide new ways of inducing tumour-specific apoptosis, thus aiding cancer chemotherapy.
Collapse
Affiliation(s)
- Hiroto Izumi
- Department of Molecular Biology, University of Occupational and Environmental Health, School of medicine, Fukuoka 807-8555, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Mohan RR, Possin DE, Mohan RR, Sinha S, Wilson SE. Development of genetically engineered tet HPV16-E6/E7 transduced human corneal epithelial clones having tight regulation of proliferation and normal differentiation. Exp Eye Res 2003; 77:395-407. [PMID: 12957140 DOI: 10.1016/s0014-4835(03)00175-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lack of an optimal in vitro model of human corneal epithelial (HCE) cells is a major limitation in studying normal functions and gene regulations in HCE. Moreover, availability of a multi-layered HCE culture can reduce the usage of animals in the toxicity testing of consumer products. We have developed tetracycline-responsive human papilloma virus (HPV) 16-E6/E7 transduced HCE clones showing tight regulation of proliferation and normal differentiation. Expression of HPV16-E6/E7 mRNA and HPV16-E7 and keratin K3 proteins was examined by RNase protection assay and western blotting, respectively, in presence and absence (+/-) of Dox in identified clones. Localization of cornea-specific keratin k3 in +/- of Dox was evaluated by immunocytochemistry. The response of growth factors such as hepatocyte growth factor (HGF) and epidermal growth factor to the cellular proliferation in +/- of Dox in the newly identified clones was measured by cell counting. Cellular morphology, formation of multi-layered cultures at air-liquid interface and ultrastructural features were evaluated by light and transmission electron microscopy. The physical barrier established by the newly developed clones was determined by the transepithelial permeability to sodium fluorescein and transepithelial electrical resistance assays in the airlifted-stratified cultures.
Collapse
Affiliation(s)
- Rajiv R Mohan
- Department of Ophthalmology, School of Medicine, University of Washington, Seattle 98195 6485, USA.
| | | | | | | | | |
Collapse
|
24
|
Kracklauer MP, Schmidt C, Sclabas GM. TGFbeta1 signaling via alphaVbeta6 integrin. Mol Cancer 2003; 2:28. [PMID: 12935295 PMCID: PMC184456 DOI: 10.1186/1476-4598-2-28] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2003] [Accepted: 08/07/2003] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Transforming growth factor beta1 (TGFbeta1) is a potent inhibitor of epithelial cell growth, thus playing an important role in tissue homeostasis. Most carcinoma cells exhibit a reduced sensitivity for TGFbeta1 mediated growth inhibition, suggesting TGFbeta1 participation in the development of these cancers. The tumor suppressor gene DPC4/SMAD4, which is frequently inactivated in carcinoma cells, has been described as a key player in TGFbeta1 mediated growth inhibition. However, some carcinoma cells lacking functional SMAD4 are sensitive to TGFbeta1 induced growth inhibition, thus requiring a SMAD4 independent TGFbeta1 pathway. RESULTS Here we report that mature TGFbeta1 is a ligand for the integrin alphaVbeta6, independent of the common integrin binding sequence motif RGD. After TGFbeta1 binds to alphaVbeta6 integrin, different signaling proteins are activated in TGFbeta1-sensitive carcinoma cells, but not in cells that are insensitive to TGFbeta1. Among others, interaction of TGFbeta1 with the alphaVbeta6 integrin resulted in an upregulation of the cell cycle inhibitors p21/WAF1 and p27 leading to growth inhibition in SMAD4 deleted as well as in SMAD4 wildtype carcinoma cells. CONCLUSIONS Our data provide support for the existence of an alternate TGFbeta1 signaling pathway that is independent of the known SMAD pathway. This alternate pathway involves alphaVbeta6 integrin and the Ras/MAP kinase pathway and does not employ an RGD motif in TGFbeta1-sensitive tumor cells. The combined action of these two pathways seems to be necessary to elicit a complete TGFbeta1 signal.
Collapse
Affiliation(s)
- Martin P Kracklauer
- Section of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, 1 University Station, A4800, 78712, Austin, TX, USA
| | - Christian Schmidt
- Department of Surgical Oncology and Molecular Oncology, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | - Guido M Sclabas
- Department of Surgical Oncology and Molecular Oncology, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
- Department of Visceral and Transplantation Surgery, The University of Bern, Inselspital, Bern, 3010, Switzerland
| |
Collapse
|
25
|
Zhan H, Yokoyama K, Otani H, Tanigaki K, Shirota N, Takano S, Ohkuma S. Different roles of proteolipids and 70-kDa subunits of V-ATPase in growth and death of cultured human cells. Genes Cells 2003; 8:501-13. [PMID: 12786941 DOI: 10.1046/j.1365-2443.2003.00651.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The vacuolar-type proton-translocating adenosine triphosphatase (V-ATPase) plays important roles in cell growth and tumour progression. V-ATPase is composed of two distinct structures, a hydrophilic catalytic cytosolic sector (V(1)) and a hydrophobic transmembrane sector (V(0)). The V(1) sector is composed of 5-8 different subunits with the structure A(3)B(3)C(1)D(1)E(1)F(1)G(1)H(1). The V0 sector is composed of 5 different subunits with the structure 1161381191166. The over-expression of 16-kDa proteolipid subunit of V-ATPase in the perinuclear region of the human adventitial fibroblasts promotes phenotypic modulation that contributes to neointimal formation and medial thickening. A relationship between oncogenicity and the expression of the 16-kDa proteolipid has also been suggested in human pancreatic carcinoma tissue. RESULTS We found that the mRNA levels of the 16-kDa proteolipid but not of the 70-kDa subunit of V-ATPase in human myofibroblasts were more abundant in serum-containing medium (MF(+) cells) than serum-free medium (MF(-) cells). In HeLa cells, the levels of mRNA and protein of the 16-kDa, 21-kDa or 70-kDa were clearly suppressed when the corresponding anti-sense oligonucleotides were administered to the culture medium. The growth rate and viability (mostly due to necrosis) of HeLa cells were reduced markedly by the 16-kDa and 21-kDa anti-sense, but little by the 70-kDa anti-sense, and not at all by any sense oligonucleotides. The localization of 16-kDa/21-kDa proteolipid subunits was different from that of the 70-kDa subunit in HeLa cells. CONCLUSION These results suggest that the 16-kDa and 21-kDa proteolipid subunits of the V0 sector play crucial roles in growth and death of cultured human cells. Our results may provide new insights into the mechanism and therapeutic implications for vessel wall hyperplasia and tumorigenesis.
Collapse
Affiliation(s)
- Hong Zhan
- Department of Dynamic Physiology, Graduate School of Natural Science and Technology, Ishikawa 920-0934, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Lu M, Vergara S, Zhang L, Holliday LS, Aris J, Gluck SL. The amino-terminal domain of the E subunit of vacuolar H(+)-ATPase (V-ATPase) interacts with the H subunit and is required for V-ATPase function. J Biol Chem 2002; 277:38409-15. [PMID: 12163484 DOI: 10.1074/jbc.m203521200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vacuolar H(+)-ATPases (V-ATPases) are highly conserved proton pumps that couple hydrolysis of cytosolic ATP to proton transport out of the cytosol. Although it is generally believed that V-ATPases transport protons by a rotary catalytic mechanism analogous to that used by F(1)F(0)-ATPases, the structure and subunit composition of the central or peripheral stalk of the multisubunit complex are not well understood. We searched for proteins that bind to the E subunit of V-ATPase using the yeast two-hybrid assay and identified the H subunit as an interacting partner. Physical association between the E and H subunits of V-ATPase was confirmed in vitro by precipitation assays. Deletion mapping analysis revealed that a 78-amino acid fragment at the amino terminus of the E subunit was sufficient for binding to the H subunit. Expression of the amino-terminal fragments of the E subunits from human and yeast as dominant-negative mutants resulted in dramatic decreases in bafilomycin A(1)-sensitive ATP hydrolysis and proton transport activities of V-ATPase. Our data demonstrate the physiological significance of the interaction between the E and H subunits of V-ATPase and extend previous studies on the arrangement of subunits on the peripheral stalk of V-ATPase.
Collapse
Affiliation(s)
- Ming Lu
- Department of Medicine University of Florida College of Medicine, Gainesville, Florida 32610, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Torigoe T, Izumi H, Ishiguchi H, Uramoto H, Murakami T, Ise T, Yoshida Y, Tanabe M, Nomoto M, Itoh H, Kohno K. Enhanced expression of the human vacuolar H+-ATPase c subunit gene (ATP6L) in response to anticancer agents. J Biol Chem 2002; 277:36534-43. [PMID: 12133827 DOI: 10.1074/jbc.m202605200] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have isolated two overlapping genomic clones that contain the 5'-terminal portion of the human vacuolar H(+)-ATPase c subunit (ATP6L) gene. The sequence preceding the transcription initiation site, which is GC-rich, contains four GC boxes and one Oct1-binding site, but there is no TATA box or CCAAT box. In vivo footprint analysis in human cancer cells shows that two GC boxes and the Oct1-binding site are occupied by Sp1 and Oct1, respectively. We show here that treatment with anticancer agents enhances ATP6L expression. Although cisplatin did not induce ATP6L promoter activity, it altered ATP6L mRNA stability. On the other hand, the DNA topoisomerase II inhibitor, TAS-103, strongly induced promoter activity, and this effect was completely eradicated when a mutation was introduced into the Oct1-binding site. Treatment with TAS-103 increased the levels of both Sp1/Sp3 and Oct1 in nuclear extracts. Cooperative binding of Sp1 and Oct1 to the promoter is required for promoter activation by TAS-103. Incubation of a labeled oligonucleotide probe encompassing the -73/-68 GC box and -64/-57 Oct1-binding site with a nuclear extract from drug-treated KB cells yielded higher levels of the specific DNA-protein complex than an extract of untreated cells. Thus, the two transcription factors, Sp1 and Oct1 interact, in an adaptive response to DNA damage, by up-regulating expression of the vacuolar H(+)-ATPase genes. Furthermore, combination of the vacuolar H(+)-ATPase (V-ATPase) inhibitor, bafilomycin A1, with TAS-103 enhanced apoptosis of KB cells with an associated increase in caspase-3 activity. Our data suggest that the induction of V-ATPase expression is an anti-apoptotic defense, and V-ATPase inhibitors in combination with low-dose anticancer agents may provide a new therapeutic approach.
Collapse
Affiliation(s)
- Takayuki Torigoe
- Department of Molecular Biology, University of Occupational and Environmental Health, School of Medicine, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Torigoe T, Izumi H, Ise T, Murakami T, Uramoto H, Ishiguchi H, Yoshida Y, Tanabe M, Nomoto M, Kohno K. Vacuolar H(+)-ATPase: functional mechanisms and potential as a target for cancer chemotherapy. Anticancer Drugs 2002; 13:237-43. [PMID: 11984067 DOI: 10.1097/00001813-200203000-00005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Tumor cells in vivo often exist in a hypoxic microenvironment with a lower extracellular pH than that surrounding normal cells. Ability to upregulate proton extrusion may be important for tumor cell survival. Such microenvironmental factors may be involved in the development of resistant subpopulations of tumor cells. In solid tumors, both intracellular and extracellular pH differ between drug-sensitive and -resistant cells, and pH appears critical to the therapeutic effectiveness of anticancer agents. Four major types of pH regulators have been identified in tumor cells: the sodium-proton antiporter, the bicarbonate transporter, the proton-lactate symporter and proton pumps. Understanding mechanisms regulating tumor acidity opens up novel opportunities for cancer chemotherapy. In this minireview, we describe the structure and function of certain proton pumps overexpressed in many tumors--vacuolar H(+)-ATPases--and consider their potential as targets for cancer chemotherapy.
Collapse
Affiliation(s)
- Takayuki Torigoe
- Department of Molecular Biology, University of Occupational and Environmental Health, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
The pH of intracellular compartments in eukaryotic cells is a carefully controlled parameter that affects many cellular processes, including intracellular membrane transport, prohormone processing and transport of neurotransmitters, as well as the entry of many viruses into cells. The transporters responsible for controlling this crucial parameter in many intracellular compartments are the vacuolar (H+)-ATPases (V-ATPases). Recent advances in our understanding of the structure and regulation of the V-ATPases, together with the mapping of human genetic defects to genes that encode V-ATPase subunits, have led to tremendous excitement in this field.
Collapse
Affiliation(s)
- Tsuyoshi Nishi
- Department of Physiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
30
|
The E5 protein of papillomaviruses. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0168-7069(02)08020-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
31
|
Skinner MA, Wildeman AG. Suppression of tumor-related glycosylation of cell surface receptors by the 16-kDa membrane subunit of vacuolar H+-ATPase. J Biol Chem 2001; 276:48451-7. [PMID: 11604389 DOI: 10.1074/jbc.m103569200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The glycosylation of integrins and other cell surface receptors is altered in many transformed cells. Notably, an increase in the number of beta1,6-branched N-linked oligosaccharides correlates strongly with invasive growth of cells. An ectopic expression of the Golgi enzyme N-acetylglucosaminyltransferase V (GlcNAc-TV), which forms beta1,6 linkages, promotes metastasis of a number of cell types. It is shown here that the 16-kDa transmembrane subunit (16K) of vacuolar H(+)-ATPase suppresses beta1,6 branching of beta(1) integrin and the epidermal growth factor receptor. Overexpression of 16K inhibits cell adhesion and invasion. 16K contains four hydrophobic membrane-spanning alpha-helices, and its ability to influence glycosylation is localized primarily within the second and fourth membrane-spanning alpha-helices. 16K also interacts directly with the transmembrane domain of beta(1) integrin, but its effects on glycosylation were independent of its binding to beta(1) integrin. These data link cell surface tumor-related glycosylation to a component of the enzyme responsible for acidification of the exocytic pathway.
Collapse
Affiliation(s)
- M A Skinner
- Department of Molecular Biology and Genetics, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | | |
Collapse
|
32
|
Nishi T, Kawasaki-Nishi S, Forgac M. Expression and localization of the mouse homologue of the yeast V-ATPase 21-kDa Subunit c" (Vma16p). J Biol Chem 2001; 276:34122-30. [PMID: 11441017 DOI: 10.1074/jbc.m104682200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have identified a cDNA encoding the mouse homologue of the yeast V-ATPase 21-kDa subunit c" (Vma16p). The encoded protein contains 205 amino acid residues with five putative membrane spanning segments and shows 48% identity and 64% similarity to the yeast protein. Despite this homology, however, the mouse cDNA does not complement the phenotype of a yeast strain in which the VMA16 gene has been disrupted. Northern blot analysis demonstrated that the 21-kDa subunit is expressed in most tissues examined and showed an expression pattern almost identical to that of the 16-kDa proteolipid subunit (subunit c). The presence of multiple mRNA species suggests the existence of alternatively spliced forms of the 21-kDa subunit which, from Southern blot analysis, are derived from a single gene. Promoter analysis using the luciferase reporter gene revealed that a region 186 bases upstream of the initiation site is sufficient to show a low level of transcriptional activity but that transcription is significantly enhanced by inclusion of the region -186 to -706. The 21-kDa protein was Myc-tagged and the 16-kDa protein was HA-tagged and the tagged proteins were co-expressed in COS-1 cells in order to study their intracellular localization by immunofluorescence microscopy. Both proteins showed significant punctate and perinuclear staining and were predominantly co-localized throughout the cell, consistent with their presence in the same V(0) complexes. Selective permeabilization of cells with digitonin (to permeabilize the plasma membrane) or Triton X-100 (to permeabilize both intracellular and plasma membranes) followed by immunofluorescence microscopy revealed that the carboxyl terminus of the 21-kDa subunit is exposed on the cytoplasmic side of the membrane whereas the carboxyl terminus of the 16-kDa subunit is located on the lumenal side of the membrane.
Collapse
MESH Headings
- 3T3 Cells
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Blotting, Southern
- COS Cells
- Cell Membrane/metabolism
- DNA, Complementary/metabolism
- Detergents/pharmacology
- Escherichia coli/metabolism
- Genetic Complementation Test
- Mice
- Microscopy, Fluorescence
- Models, Biological
- Molecular Sequence Data
- Octoxynol/pharmacology
- Phenotype
- Promoter Regions, Genetic
- Protein Binding
- Protein Structure, Tertiary
- Proton-Translocating ATPases/chemistry
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Amino Acid
- Tissue Distribution
- Transcription, Genetic
- Transfection
- Vacuolar Proton-Translocating ATPases
Collapse
Affiliation(s)
- T Nishi
- Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
33
|
Murakami T, Shibuya I, Ise T, Chen ZS, Akiyama S, Nakagawa M, Izumi H, Nakamura T, Matsuo K, Yamada Y, Kohno K. Elevated expression of vacuolar proton pump genes and cellular PH in cisplatin resistance. Int J Cancer 2001; 93:869-74. [PMID: 11519050 DOI: 10.1002/ijc.1418] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
V-ATPases are proton-translocating enzymes, which are found not only in numerous intracellular organelles but also in the plasma membranes of many eukaryotic cells. Using differential display, we have identified one of the proton pump subunit genes, ATP6C, as a cisplatin-inducible gene. Northern blot analysis demonstrated that expression of other members of the subunit is inducible by cisplatin treatment. Proton pump gene expression is also upregulated in 3 independent cisplatin-resistant cell lines but not in vincristine- or etoposide-resistant cell lines. Cellular pH was significantly higher in cisplatin-resistant cells than in sensitive parental cells. In vitro DNA-binding activity of cisplatin was markedly increased in acidic conditions, suggesting that the cytotoxicity of cisplatin is modulated by cellular pH. Furthermore, the proton pump inhibitor bafilomycin can synergistically potentiate the cytotoxicity of cisplatin but not of etoposide or camptothecin. These results indicate that cellular pH is one of the critical parameters for effective cancer chemotherapy with cisplatin.
Collapse
Affiliation(s)
- T Murakami
- Department of Molecular Biology, University of Occupational and Environmental Health, Yahatanishi-ku Kitakyushu, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lu M, Holliday LS, Zhang L, Dunn WA, Gluck SL. Interaction between aldolase and vacuolar H+-ATPase: evidence for direct coupling of glycolysis to the ATP-hydrolyzing proton pump. J Biol Chem 2001; 276:30407-13. [PMID: 11399750 DOI: 10.1074/jbc.m008768200] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vacuolar H(+)-ATPases (V-ATPases) are essential for acidification of intracellular compartments and for proton secretion from the plasma membrane in kidney epithelial cells and osteoclasts. The cellular proteins that regulate V-ATPases remain largely unknown. A screen for proteins that bind the V-ATPase E subunit using the yeast two-hybrid assay identified the cDNA clone coded for aldolase, an enzyme of the glycolytic pathway. The interaction between E subunit and aldolase was confirmed in vitro by precipitation assays using E subunit-glutathione S-transferase chimeric fusion proteins and metabolically labeled aldolase. Aldolase was isolated associated with intact V-ATPase from bovine kidney microsomes and osteoclast-containing mouse marrow cultures in co-immunoprecipitation studies performed using an anti-E subunit monoclonal antibody. The interaction was not affected by incubation with aldolase substrates or products. In immunocytochemical assays, aldolase was found to colocalize with V-ATPase in the renal proximal tubule. In osteoclasts, the aldolase-V-ATPase complex appeared to undergo a subcellular redistribution from perinuclear compartments to the ruffled membranes following activation of resorption. In yeast cells deficient in aldolase, the peripheral V(1) domain of V-ATPase was found to dissociate from the integral membrane V(0) domain, indicating direct coupling of glycolysis to the proton pump. The direct binding interaction between V-ATPase and aldolase may be a new mechanism for the regulation of the V-ATPase and may underlie the proximal tubule acidification defect in hereditary fructose intolerance.
Collapse
Affiliation(s)
- M Lu
- Departments of Medicine and Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida 32610, USA.
| | | | | | | | | |
Collapse
|
35
|
Thomsen P, van Deurs B, Norrild B, Kayser L. The HPV16 E5 oncogene inhibits endocytic trafficking. Oncogene 2000; 19:6023-32. [PMID: 11146554 DOI: 10.1038/sj.onc.1204010] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The small hydrophobic E5 protein of Human Papillomavirus type 16 (HPV16) binds to the 16-kDa subunit of the V-H+-ATPase. This binding has been suggested to interfere with acidification of late endocytic structures. We here used video microscopy, ratio imaging and confocal microscopy of living C127 fibroblasts to study the effects of E5. Various endocytic markers including the pH-sensitive probe DM-NERF coupled to dextran, TransFluoSpheres and TRITC-concanavalin A, were applied. In E5-transfected cells, none of these markers colocalized with the membrane permeable probe LysoTracker Red, which accumulates in acidic, late endocytic structures, or with a green fluorescent version of the small GTPase Rab7 labeling late endocytic structures. Importantly, however, late endocytic structures accumulating LysoTracker were still present in the E5-transfected cells. It is therefore concluded that HPV16 E5 perturbs trafficking from early to late endocytic structures rather than acidification.
Collapse
Affiliation(s)
- P Thomsen
- Department of Medical Anatomy, The Panum Institute, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
36
|
Kubota S, Seyama Y. Overexpression of vacuolar ATPase 16-kDa subunit in 10T1/2 fibroblasts enhances invasion with concomitant induction of matrix metalloproteinase-2. Biochem Biophys Res Commun 2000; 278:390-4. [PMID: 11097847 DOI: 10.1006/bbrc.2000.3802] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies show that the vacuolar-type H(+)-ATPase (V-ATPase) 16 kDa subunit is expressed on plasma membrane of cancer cells. We hypothesized that V-ATPase 16 kDa subunit is directly involved in cell invasion. In the present study we established transfectants overexpressing V-ATPase 16 kDa subunit at the mRNA level, and found that these transfectants showed an enhanced invasiveness through matrigel with a concomitant increases in secretion of matrix metalloproteinase-2. Moreover, antisense oligonucleotides of the V-ATPase 16 kDa subunit suppressed invasive human A549 cell invasion with concomitant decreases in secretion of matrix metalloproteinase-2. The results suggest that the V-ATPase 16 kDa subunit is directly involved in cell invasion and that matrix metalloproteinase-2 is responsible for promoting the invasion by the V-ATPase 16 kDa subunit.
Collapse
Affiliation(s)
- S Kubota
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | | |
Collapse
|
37
|
Abstract
TGN38 luminal domain (TGN38LD) was expressed in Cos-7 cells to identify potential binding partners. The luminal domain was secreted but, surprisingly, a significant portion bound to the plasma membrane. Cells overexpressing TGN38LD or the full-length molecule detached from the substratum and left footprints positive for TGN38. Unexpectedly, in these cells, TGN38 colocalizes with integrin alpha 5 beta 1 at the Golgi, the cell surface or in the footprints and an increased amount of both integrin subunits on the plasma membrane was observed. Under physiological conditions when TGN38 is not overexpressed, it interacts with integrin beta 1. This was demonstrated by reciprocal co-immunoprecipitation of integrin beta 1 and TGN38. Functional analysis reveals that modification of the trafficking of TGN38 results in a parallel change in the distribution of integrin alpha 5 beta 1, leading to the conclusion that TGN38 is involved in the trafficking of integrin beta 1.
Collapse
Affiliation(s)
- J Wang
- Department of Cellular & Structural Biology, Box B-111, University of Colorado School of Medicine, 4200 E 9th Ave., Denver, CO 80262, USA
| | | |
Collapse
|
38
|
Rodríguez MI, Finbow ME, Alonso A. Binding of human papillomavirus 16 E5 to the 16 kDa subunit c (proteolipid) of the vacuolar H+-ATPase can be dissociated from the E5-mediated epidermal growth factor receptor overactivation. Oncogene 2000; 19:3727-32. [PMID: 10949926 DOI: 10.1038/sj.onc.1203718] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human papillomavirus type 16 E5 protein (HPV16 E5) upregulates ligand-mediated activation of the epidermal growth factor receptor (EGFR) in transfected human keratinocytes. HPV16 E5 binds to the 16 kDa proteolipid (subunit c) of the vacuolar H+-ATPase (16K), responsible for endosomal acidification, and this binding has been suggested to be responsible for increased recycling of the EGFRs. Using mutant deletions we show here that amino acids 54-78, but not 79-83 are necessary for binding to the 16K proteolipid. EGF treatment of cells expressing wild type or mutants of the E5 protein show that deletion of the last carboxy terminal 5 amino acids results in loss of E5-mediated EGFR overactivation. Thus, our results show that the binding capacity of HPV16 E5 to 16K can be dissociated from the effect of the viral protein on EGFR activation.
Collapse
Affiliation(s)
- M I Rodríguez
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | |
Collapse
|