1
|
Pan Y, Wu M, Cai H. Role of ABCC5 in cancer drug resistance and its potential as a therapeutic target. Front Cell Dev Biol 2024; 12:1446418. [PMID: 39563862 PMCID: PMC11573773 DOI: 10.3389/fcell.2024.1446418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024] Open
Abstract
Over 90% of treatment failures in cancer therapy can be attributed to multidrug resistance (MDR), which can develop intracellularly or through various routes. Numerous pathways contribute to treatment resistance in cancer, but one of the most significant pathways is intracellular drug efflux and reduced drug concentrations within cells, which are controlled by overexpressed drug efflux pumps. As a member of the family of ABC transporter proteins, ABCC5 (ATP Binding Cassette Subfamily C Member 5) reduces the intracellular concentration of a drug and its subsequent effectiveness using an ATP-dependent method to pump the drug out of the cell. Numerous studies have demonstrated that ABCC5 is strongly linked to both poor prognosis and poor treatment response. In addition, elevated ABCC5 expression is noted in a wide variety of malignancies. Given that ABCC5 is regulated by several pathways in a broad range of cancer types, it is a prospective target for cancer treatment. This review examined the expression, structure, function, and role of ABCC5 in various cancer types.
Collapse
Affiliation(s)
- Yinlong Pan
- Department of Emergency, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Mengmeng Wu
- Department of Anesthesiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Huazhong Cai
- Department of Emergency, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
2
|
Ho YS, Torres-Vergara P, Penny J. Regulation of the ATP-binding cassette transporters ABCB1, ABCG2 and ABCC5 by nuclear receptors in porcine blood-brain barrier endothelial cells. Br J Pharmacol 2023; 180:3092-3109. [PMID: 37476954 DOI: 10.1111/bph.16196] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 05/26/2023] [Accepted: 06/22/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND AND PURPOSE Blood-brain barrier (BBB) ABCB1, ABCG2 and ABCC5 transporters influence central therapeutic drug distribution. Transporter expression is regulated by the NR3C1, NR1I3 and NR1I2 nuclear receptors, but their precise roles in brain are poorly understood. We investigated the effects of selective ligand-based activation of NR3C1, NR1I3, NR1I2 and NR2B1 in porcine brain endothelial cells (PBECs). EXPERIMENTAL APPROACH Primary cultures of PBECs were exposed to NR3C1, NR1I3 and NR1I2 ligands and ABCB1, ABCG2 and ABCC5 transporter activities determined by measuring intracellular accumulation of fluorescent probes. Western blotting was used to determine the effects of receptor ligands on expression of ABCB1, ABCG2, ABCC5, NR1I2, NR1I3, NR3C1 and NR2B1. Fluorescent immunocytochemistry was employed to assess the effects of receptor ligands on the cellular localisation of NR1I2 and NR1I3. KEY RESULTS The NR1I2 agonist rifampicin significantly up-regulated ABCG2 activity, which is counteracted by co-treatment with NR1I2 antagonist l-sulforaphane. The NR1I3 agonist 6-(4-chlorophenyl)-imidazo[2,1-b]thiazole-5-carbaldehyde and inverse agonist meclizine significantly down-regulated ABCB1, ABCG2 and ABCC5 activity. NR3C1 agonist dexamethasone significantly increased ABCB1, ABCG2 and ABCC5 activity and ABCG2 and ABCC5 protein expression, which was counteracted by co-treatment with the NR3C1 antagonist mifepristone. This first study demonstrates that NR1I3 and NR3C1 regulate ABCC5 activity and protein expression in BBB endothelial cells. CONCLUSIONS AND IMPLICATIONS In PBECs, expression of key ATP-binding cassette (ABC) transporters and nuclear receptors is differentially regulated by NR1I3, NR1I2, NR3C1 and NR2B1. This will help to better understand the response of the BBB to physiological and pharmacological activation of nuclear receptors.
Collapse
Affiliation(s)
- Yu Siong Ho
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Pablo Torres-Vergara
- Departamento de Farmacia, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Jeffrey Penny
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
3
|
MRP5 and MRP9 play a concerted role in male reproduction and mitochondrial function. Proc Natl Acad Sci U S A 2022; 119:2111617119. [PMID: 35121660 PMCID: PMC8832985 DOI: 10.1073/pnas.2111617119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 12/17/2022] Open
Abstract
Multidrug Resistance Proteins (MRPs) are typically implicated in cancer biology. Here, we show that MRP9 and MRP5 localize to mitochondrial-associated membranes and play a concerted role in maintaining mitochondrial homeostasis and male reproductive fitness. Our work fills in significant gaps in our understanding of MRP9 and MRP5 with wider implications in male fertility. It is plausible that variants in these transporters are associated with male reproductive dysfunction. Multidrug Resistance Proteins (MRPs) are transporters that play critical roles in cancer even though the physiological substrates of these enigmatic transporters are poorly elucidated. In Caenorhabditis elegans, MRP5/ABCC5 is an essential heme exporter because mrp-5 mutants are unviable due to their inability to export heme from the intestine to extraintestinal tissues. Heme supplementation restores viability of these mutants but fails to restore male reproductive deficits. Correspondingly, cell biological studies show that MRP5 regulates heme levels in the mammalian secretory pathway even though MRP5 knockout (KO) mice do not show reproductive phenotypes. The closest homolog of MRP5 is MRP9/ABCC12, which is absent in C. elegans, raising the possibility that MRP9 may genetically compensate for MRP5. Here, we show that MRP5 and MRP9 double KO (DKO) mice are viable but reveal significant male reproductive deficits. Although MRP9 is highly expressed in sperm, MRP9 KO mice show reproductive phenotypes only when MRP5 is absent. Both ABCC transporters localize to mitochondrial-associated membranes, dynamic scaffolds that associate the mitochondria and endoplasmic reticulum. Consequently, DKO mice reveal abnormal sperm mitochondria with reduced mitochondrial membrane potential and fertilization rates. Metabolomics show striking differences in metabolite profiles in the DKO testes, and RNA sequencing shows significant alterations in genes related to mitochondrial function and retinoic acid metabolism. Targeted functional metabolomics reveal lower retinoic acid levels in the DKO testes and higher levels of triglycerides in the mitochondria. These findings establish a model in which MRP5 and MRP9 play a concerted role in regulating male reproductive functions and mitochondrial sufficiency.
Collapse
|
4
|
Poku VO, Iram SH. A critical review on modulators of Multidrug Resistance Protein 1 in cancer cells. PeerJ 2022; 10:e12594. [PMID: 35036084 PMCID: PMC8742536 DOI: 10.7717/peerj.12594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 11/14/2021] [Indexed: 01/11/2023] Open
Abstract
Multidrug resistance protein 1 (MRP1/ABCC1) is an ATP-dependent efflux transporter, and responsible for the transport of a broad spectrum of xenobiotics, toxins, and physiological substrates across the plasma membrane. As an efflux pump, it plays a significant role in the absorption and disposition of drugs including anticancer drugs, antivirals, antimalarials, and antibiotics and their metabolites across physiological barriers in cells. MRP1 is also known to aid in the regulation of several physiological processes such as redox homeostasis, steroid metabolism, and tissue defense. However, its overexpression has been reported to be a key clinical marker associated with multidrug resistance (MDR) of several types of cancers including lung cancer, childhood neuroblastoma, breast and prostate carcinomas, often resulting in a higher risk of treatment failure and shortened survival rates in cancer patients. Aside MDR, overexpression of MRP1 is also implicated in the development of neurodegenerative and cardiovascular diseases. Due to the cellular importance of MRP1, the identification and biochemical/molecular characterization of modulators of MRP1 activity and expression levels are of key interest to cancer research and beyond. This review primarily aims at highlighting the physiological and pharmacological importance of MRP1, known MRP1 modulators, current challenges encountered, and the potential benefits of conducting further research on the MRP1 transporter.
Collapse
Affiliation(s)
- Vivian Osei Poku
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, United States of America
| | - Surtaj Hussain Iram
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, United States of America,American University of Iraq, Sulaimaniya, Sulaimani, KRG, Iraq
| |
Collapse
|
5
|
Patel H, Wu ZX, Chen Y, Bo L, Chen ZS. Drug resistance: from bacteria to cancer. MOLECULAR BIOMEDICINE 2021; 2:27. [PMID: 35006446 PMCID: PMC8607383 DOI: 10.1186/s43556-021-00041-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
The phenomenon of drug resistance has been a hindrance to therapeutic medicine since the late 1940s. There is a plethora of factors and mechanisms contributing to progression of drug resistance. From prokaryotes to complex cancers, drug resistance is a prevailing issue in clinical medicine. Although there are numerous factors causing and influencing the phenomenon of drug resistance, cellular transporters contribute to a noticeable majority. Efflux transporters form a huge family of proteins and are found in a vast number of species spanning from prokaryotes to complex organisms such as humans. During the last couple of decades, various approaches in analyses of biochemistry and pharmacology of transporters have led us to understand much more about drug resistance. In this review, we have discussed the structure, function, potential causes, and mechanisms of multidrug resistance in bacteria as well as cancers.
Collapse
Affiliation(s)
- Harsh Patel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, NY, 11439, USA
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, NY, 11439, USA
| | - Yanglu Chen
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Letao Bo
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, NY, 11439, USA
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, NY, 11439, USA.
| |
Collapse
|
6
|
Ji G, He S, Huang C, Gong Y, Li X, Zhou L. Upregulation of ATP Binding Cassette Subfamily C Member 5 facilitates Prostate Cancer progression and Enzalutamide resistance via the CDK1-mediated AR Ser81 Phosphorylation Pathway. Int J Biol Sci 2021; 17:1613-1628. [PMID: 33994848 PMCID: PMC8120459 DOI: 10.7150/ijbs.59559] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 03/26/2021] [Indexed: 01/25/2023] Open
Abstract
The treatment of advanced prostate cancer, castration-resistant prostate cancer, remains challenging. The mechanisms of action of ATP binding cassette subfamily C member 5 (ABCC5) in prostate cancer and its relationship with drug resistance are still unclear. Expression and prognostic analyses of ABCC5 were performed through bioinformatic methods and immunohistochemistry analyses in multiple public databases as well as in our own prostate cancer cohort. The biological function of ABCC5 in prostate cancer cells was evaluated by in vitro and in vivo cell proliferation and migration and invasion assays. The regulation of CDK1 by ABCC5 was determined via RT-qPCR, western blots, and immunofluorescence. ABCC5 was significantly overexpressed in prostate cancer and positively associated with unfavorable clinicopathological features and prognosis. Upregulation of ABCC5 could enhance the cell proliferation, migration, and invasion of prostate cancer in vitro and in vivo. Mechanistically, ABCC5 exerts a protumor effect by binding to and inhibiting the protein degradation of CDK1, which promotes the phosphorylation of AR at Ser81 by CDK1 and activates the transcriptional activity of AR on target genes. Moreover, the addition of a CDK1 inhibitor or knockdown of CDK1 significantly improved the efficacy of enzalutamide on prostate cancer cells. The ABCC5-CDK1-AR regulatory pathway could be a potential therapeutic target for advanced prostate cancer, especially castration-resistant prostate cancer (CRPC), to enhance the therapeutic effect of enzalutamide.
Collapse
Affiliation(s)
- Guangjie Ji
- Institute of Urology, Peking University. Department of Urology, Peking University First Hospital. National Urological Cancer Center of China, Beijing, China
| | - Shiming He
- Institute of Urology, Peking University. Department of Urology, Peking University First Hospital. National Urological Cancer Center of China, Beijing, China
| | - Cong Huang
- Institute of Urology, Peking University. Department of Urology, Peking University First Hospital. National Urological Cancer Center of China, Beijing, China
| | - Yanqing Gong
- Institute of Urology, Peking University. Department of Urology, Peking University First Hospital. National Urological Cancer Center of China, Beijing, China
| | - Xuesong Li
- Institute of Urology, Peking University. Department of Urology, Peking University First Hospital. National Urological Cancer Center of China, Beijing, China
| | - Liqun Zhou
- Institute of Urology, Peking University. Department of Urology, Peking University First Hospital. National Urological Cancer Center of China, Beijing, China
| |
Collapse
|
7
|
Wang JQ, Yang Y, Cai CY, Teng QX, Cui Q, Lin J, Assaraf YG, Chen ZS. Multidrug resistance proteins (MRPs): Structure, function and the overcoming of cancer multidrug resistance. Drug Resist Updat 2021; 54:100743. [PMID: 33513557 DOI: 10.1016/j.drup.2021.100743] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/21/2020] [Accepted: 12/25/2020] [Indexed: 02/08/2023]
Abstract
ATP-binding cassette (ABC) transporters mediate the ATP-driven translocation of structurally and mechanistically distinct substrates against steep concentration gradients. Among the seven human ABC subfamilies namely ABCA-ABCG, ABCC is the largest subfamily with 13 members. In this respect, 9 of the ABCC members are termed "multidrug resistance proteins" (MRPs1-9) due to their ability to mediate cancer multidrug resistance (MDR) by extruding various chemotherapeutic agents or their metabolites from tumor cells. Furthermore, MRPs are also responsible for the ATP-driven efflux of physiologically important organic anions such as leukotriene C4, folic acid, bile acids and cAMP. Thus, MRPs are involved in important regulatory pathways. Blocking the anticancer drug efflux function of MRPs has shown promising results in overcoming cancer MDR. As a result, many novel MRP modulators have been developed in the past decade. In the current review, we summarize the structure, tissue distribution, biological and pharmacological functions as well as clinical insights of MRPs. Furthermore, recent updates in MRP modulators and their therapeutic applications in clinical trials are also discussed.
Collapse
Affiliation(s)
- Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Chao-Yun Cai
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Qingbin Cui
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA; School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong 511436, China; Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Jun Lin
- Department of Anesthesiology, Stony Brook University Health Sciences Center, Stony Brook, NY, 11794, USA
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
8
|
Lv H, Xu J, Bo T, Wang W. Comparative transcriptome analysis uncovers roles of hydrogen sulfide for alleviating cadmium toxicity in Tetrahymena thermophila. BMC Genomics 2021; 22:21. [PMID: 33407108 PMCID: PMC7788932 DOI: 10.1186/s12864-020-07337-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 12/22/2020] [Indexed: 11/10/2022] Open
Abstract
Background Cadmium (Cd) is a nonessential heavy metal with potentially deleterious effects on different organisms. The organisms have evolved sophisticated defense system to alleviate heavy metal toxicity. Hydrogen sulfide (H2S) effectively alleviates heavy metal toxicity in plants and reduces oxidative stress in mammals. However, the function of H2S for alleviating heavy metal toxicity in aquatic organisms remains less clear. Tetrahymena thermophila is an important model organism to evaluate toxic contaminants in an aquatic environment. In this study, the molecular roles of exogenously H2S application were explored by RNA sequencing under Cd stress in T. thermophila. Results The exposure of 30 μM Cd resulted in T. thermophila growth inhibition, cell nigrescence, and malondialdehyde (MDA) content considerably increase. However, exogenous NaHS (donor of H2S, 70 μM) significantly alleviated the Cd-induced toxicity by inhibiting Cd absorbtion, promoting CdS nanoparticles formation and improving antioxidant system. Comparative transcriptome analysis showed that the expression levels of 9152 genes changed under Cd stress (4658 upregulated and 4494 downregulated). However, only 1359 genes were differentially expressed with NaHS treatment under Cd stress (1087 upregulated and 272 downregulated). The functional categories of the differentially expressed genes (DEGs) by gene ontology (GO) revealed that the transcripts involved in the oxidation–reduction process, oxidoreductase activity, glutathione peroxidase activity, and cell redox homeostasis were the considerable enrichments between Cd stress and NaHS treatment under Cd stress. Kyoto Encyclopedia of Genes and Genomes (KEGG) indicated that the carbon metabolism, glutathione metabolism, metabolism of xenobiotics by cytochrome P450, and ABC transporters were significantly differentially expressed components between Cd stress and NaHS treatment under Cd stress in T. thermophila. The relative expression levels of six DEGs were further confirmed through quantitative real-time polymerase chain reaction (qRT-PCR). Conclusion NaHS alleviated Cd stress mainly through inhibiting Cd absorbtion, promoting CdS nanoparticles formation, increasing oxidation resistance, and regulation of transport in free-living unicellular T. thermophila. These findings will expand our understanding for H2S functions in the freshwater protozoa. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07337-9.
Collapse
Affiliation(s)
- Hongrui Lv
- School of Life Science, Shanxi University, Taiyuan, 030006, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Jing Xu
- School of Life Science, Shanxi University, Taiyuan, 030006, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Tao Bo
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Wei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
9
|
Chambers IG, Willoughby MM, Hamza I, Reddi AR. One ring to bring them all and in the darkness bind them: The trafficking of heme without deliverers. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:118881. [PMID: 33022276 PMCID: PMC7756907 DOI: 10.1016/j.bbamcr.2020.118881] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023]
Abstract
Heme, as a hydrophobic iron-containing organic ring, is lipid soluble and can interact with biological membranes. The very same properties of heme that nature exploits to support life also renders heme potentially cytotoxic. In order to utilize heme, while also mitigating its toxicity, cells are challenged to tightly control the concentration and bioavailability of heme. On the bright side, it is reasonable to envision that, analogous to other transition metals, a combination of membrane-bound transporters, soluble carriers, and chaperones coordinate heme trafficking to subcellular compartments. However, given the dual properties exhibited by heme as a transition metal and lipid, it is compelling to consider the dark side: the potential role of non-proteinaceous biomolecules including lipids and nucleic acids that bind, sequester, and control heme trafficking and bioavailability. The emergence of inter-organellar membrane contact sites, as well as intracellular vesicles derived from various organelles, have raised the prospect that heme can be trafficked through hydrophobic channels. In this review, we aim to focus on heme delivery without deliverers - an alternate paradigm for the regulation of heme homeostasis through chaperone-less pathways for heme trafficking.
Collapse
Affiliation(s)
- Ian G Chambers
- Department of Animal and Avian Sciences, Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20740, United States of America
| | - Mathilda M Willoughby
- School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, United States of America
| | - Iqbal Hamza
- Department of Animal and Avian Sciences, Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20740, United States of America.
| | - Amit R Reddi
- School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, United States of America.
| |
Collapse
|
10
|
Channels, transporters and receptors for cadmium and cadmium complexes in eukaryotic cells: myths and facts. Biometals 2019; 32:469-489. [DOI: 10.1007/s10534-019-00176-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 12/21/2022]
|
11
|
Prenatal exposure to zearalenone disrupts reproductive potential and development via hormone-related genes in male rats. Food Chem Toxicol 2018; 116:11-19. [DOI: 10.1016/j.fct.2018.04.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 03/25/2018] [Accepted: 04/04/2018] [Indexed: 10/17/2022]
|
12
|
Fujikawa Y, Nampo T, Mori M, Kikkawa M, Inoue H. Fluorescein diacetate (FDA) and its analogue as substrates for Pi-class glutathione S-transferase (GSTP1) and their biological application. Talanta 2017; 179:845-852. [PMID: 29310316 DOI: 10.1016/j.talanta.2017.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/02/2017] [Accepted: 12/02/2017] [Indexed: 10/18/2022]
Abstract
Pi class glutathione S-transferase (GSTP1) is highly expressed in various cancerous cells and pre-neoplastic legions, where it is involved in apoptotic resistance or metabolism of several anti-tumour chemotherapeutics. Therefore, GSTP1 is a marker of malignant and pre-malignant cells and is a promising target for visualization and drug development. Here we demonstrate that fluorescein diacetate (FDA), a fluorescent probe used for vital staining, is a fluorescently activated by esterolytic activity of human GSTP1 (hGSTP1) selectively among various cytosolic GSTs. Fluorescence activation of FDA susceptible to GST inhibitors was observed in MCF7 cells exogenously overexpressing hGSTP1, but not in cells overexpressing hGSTA1 or hGSTM1. Inhibitor-sensitive fluorescence activation was also observed in several cancer cell lines endogenously expressing GSTP1, suggesting that GSTP1 is involved in FDA esterolysis in these cells. Among the FDA derivatives examined, FOMe-Ac, the acetyl ester of fluorescein O-methyl ether, was found to be a potential reporter for GSH-dependent GSTP1 activity as well as for carboxylesterase activity. Since GSTP1 is highly expressed in various types of cancer cells compared to their normal counterparts, improving the fluorogenic substrates to be more selective to the esterolysis activity of GSTP1 rather than carboxylesterases should lead to development of tools for detecting GSTP1-overexpressing cancer cells and investigating the biological functions of GSTP1.
Collapse
Affiliation(s)
- Yuuta Fujikawa
- Laboratory of Molecular and Chemical Biology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| | - Taiki Nampo
- Laboratory of Molecular and Chemical Biology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| | - Masaya Mori
- Laboratory of Molecular and Chemical Biology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| | - Manami Kikkawa
- Laboratory of Molecular and Chemical Biology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| | - Hideshi Inoue
- Laboratory of Molecular and Chemical Biology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| |
Collapse
|
13
|
Kim H, Yim B, Kim J, Kim H, Lee YM. Molecular characterization of ABC transporters in marine ciliate, Euplotes crassus: Identification and response to cadmium and benzo[a]pyrene. MARINE POLLUTION BULLETIN 2017; 124:725-735. [PMID: 28139231 DOI: 10.1016/j.marpolbul.2017.01.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 01/12/2017] [Accepted: 01/24/2017] [Indexed: 06/06/2023]
Abstract
ATP-binding cassette (ABC) transporters participate in transporting various substances, including xenobiotics, in or out of cells. However, their genetic information and function in ciliates remain still unclear. In this study, we sequenced and characterized two ABC transporter genes (EcABCB and EcABCC), and investigated the effect of cadmium (Cd) and benzo[a]pyrene (B[a]P) on their function and gene expression, using efflux assay and real-time reverse transcription-polymerase chain reaction (qRT-PCR), respectively, in the marine ciliate, Euplotes crassus. Sequencing analysis and efflux assay showed that EcABCB and EcABCC are typical ABC transporters, possessing conserved function. Exposure to Cd (≥5mg/L) and B[a]P (≥50.5μg/L) enhanced accumulation of a substrate. A significant increase in the expression of EcABCB and EcABC mRNA was observed at lower concentration in response to Cd and B[a]P. Our findings indicate that Cd and B[a]P could inhibit the efflux function of ABC transporters, leading to cellular toxicity in the ciliate.
Collapse
Affiliation(s)
- Hokyun Kim
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul 03016, South Korea
| | - Bora Yim
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul 03016, South Korea
| | - Jisoo Kim
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul 03016, South Korea
| | - Haeyeon Kim
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul 03016, South Korea
| | - Young-Mi Lee
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul 03016, South Korea.
| |
Collapse
|
14
|
Roggenbeck BA, Banerjee M, Leslie EM. Cellular arsenic transport pathways in mammals. J Environ Sci (China) 2016; 49:38-58. [PMID: 28007179 DOI: 10.1016/j.jes.2016.10.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 10/07/2016] [Accepted: 10/08/2016] [Indexed: 06/06/2023]
Abstract
Natural contamination of drinking water with arsenic results in the exposure of millions of people world-wide to unacceptable levels of this metalloid. This is a serious global health problem because arsenic is a Group 1 (proven) human carcinogen and chronic exposure is known to cause skin, lung, and bladder tumors. Furthermore, arsenic exposure can result in a myriad of other adverse health effects including diseases of the cardiovascular, respiratory, neurological, reproductive, and endocrine systems. In addition to chronic environmental exposure to arsenic, arsenic trioxide is approved for the clinical treatment of acute promyelocytic leukemia, and is in clinical trials for other hematological malignancies as well as solid tumors. Considerable inter-individual variability in susceptibility to arsenic-induced disease and toxicity exists, and the reasons for such differences are incompletely understood. Transport pathways that influence the cellular uptake and export of arsenic contribute to regulating its cellular, tissue, and ultimately body levels. In the current review, membrane proteins (including phosphate transporters, aquaglyceroporin channels, solute carrier proteins, and ATP-binding cassette transporters) shown experimentally to contribute to the passage of inorganic, methylated, and/or glutathionylated arsenic species across cellular membranes are discussed. Furthermore, what is known about arsenic transporters in organs involved in absorption, distribution, and metabolism and how transport pathways contribute to arsenic elimination are described.
Collapse
Affiliation(s)
- Barbara A Roggenbeck
- Department of Physiology and Membrane Protein Disease Research Group, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
| | - Mayukh Banerjee
- Department of Physiology and Membrane Protein Disease Research Group, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Elaine M Leslie
- Department of Physiology and Membrane Protein Disease Research Group, University of Alberta, Edmonton, AB, T6G 2H7, Canada; Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada.
| |
Collapse
|
15
|
Bai X, Chen Y, Hou X, Huang M, Jin J. Emerging role of NRF2 in chemoresistance by regulating drug-metabolizing enzymes and efflux transporters. Drug Metab Rev 2016; 48:541-567. [PMID: 27320238 DOI: 10.1080/03602532.2016.1197239] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemoresistance is a disturbing barrier in cancer therapy, which always results in limited therapeutic options and unfavorable prognosis. Nuclear factor E2-related factor 2 (NRF2) controls the expression of genes encoding cytoprotective enzymes and transporters that protect against oxidative stress and electrophilic injury to maintain intrinsic redox homeostasis. However, recent studies have demonstrated that aberrant activation of NRF2 due to genetic and/or epigenetic mutations in tumor contributes to the high expression of phase I and phase II drug-metabolizing enzymes, phase III transporters, and other cytoprotective proteins, which leads to the decreased therapeutic efficacy of anticancer drugs through biotransformation or extrusion during chemotherapy. Therefore, a better understanding of the role of NRF2 in regulation of these enzymes and transporters in tumors is necessary to find new strategies that improve chemotherapeutic efficacy. In this review, we summarized the recent findings about the chemoresistance-promoting role of NRF2, NRF2-regulated phase I and phase II drug-metabolizing enzymes, phase III drug efflux transporters, and other cytoprotective genes. Most importantly, the potential of NRF2 was proposed to counteract drug resistance in cancer treatment.
Collapse
Affiliation(s)
- Xupeng Bai
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , China
| | - Yibei Chen
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , China
| | - Xiangyu Hou
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , China
| | - Min Huang
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , China
| | - Jing Jin
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , China
| |
Collapse
|
16
|
Jansen RS, Mahakena S, de Haas M, Borst P, van de Wetering K. ATP-binding Cassette Subfamily C Member 5 (ABCC5) Functions as an Efflux Transporter of Glutamate Conjugates and Analogs. J Biol Chem 2015; 290:30429-40. [PMID: 26515061 DOI: 10.1074/jbc.m115.692103] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Indexed: 01/12/2023] Open
Abstract
The ubiquitous efflux transporter ABCC5 (ATP-binding cassette subfamily C member 5) is present at high levels in the blood-brain barrier, neurons, and glia, but its in vivo substrates and function are not known. Using untargeted metabolomic screens, we show that Abcc5(-/-) mice accumulate endogenous glutamate conjugates in several tissues, but brain in particular. The abundant neurotransmitter N-acetylaspartylglutamate was 2.4-fold higher in Abcc5(-/-) brain. The metabolites that accumulated in Abcc5(-/-) tissues were depleted in cultured cells that overexpressed human ABCC5. In a vesicular membrane transport assay, ABCC5 also transported exogenous glutamate analogs, like the classic excitotoxic neurotoxins kainic acid, domoic acid, and NMDA; the therapeutic glutamate analog ZJ43; and, as previously shown, the anti-cancer drug methotrexate. Glutamate conjugates and analogs are of physiological relevance because they can affect the function of glutamate, the principal excitatory neurotransmitter in the brain. After CO2 asphyxiation, several immediate early genes were expressed at lower levels in Abcc5(-/-) brains than in wild type brains, suggesting altered glutamate signaling. Our results show that ABCC5 is a general glutamate conjugate and analog transporter that affects the disposition of endogenous metabolites, toxins, and drugs.
Collapse
Affiliation(s)
- Robert S Jansen
- From the Division of Molecular Oncology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Sunny Mahakena
- From the Division of Molecular Oncology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Marcel de Haas
- From the Division of Molecular Oncology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Piet Borst
- From the Division of Molecular Oncology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Koen van de Wetering
- From the Division of Molecular Oncology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
17
|
Shipp LE, Hill RZ, Moy GW, Gökırmak T, Hamdoun A. ABCC5 is required for cAMP-mediated hindgut invagination in sea urchin embryos. Development 2015; 142:3537-48. [PMID: 26395488 DOI: 10.1242/dev.126144] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/14/2015] [Indexed: 12/31/2022]
Abstract
ATP-binding cassette (ABC) transporters are evolutionarily conserved proteins that pump diverse substrates across membranes. Many are known to efflux signaling molecules and are extensively expressed during development. However, the role of transporters in moving extracellular signals that regulate embryogenesis is largely unexplored. Here, we show that a mesodermal ABCC (MRP) transporter is necessary for endodermal gut morphogenesis in sea urchin embryos. This transporter, Sp-ABCC5a (C5a), is expressed in pigment cells and their precursors, which are a subset of the non-skeletogenic mesoderm (NSM) cells. C5a expression depends on Delta/Notch signaling from skeletogenic mesoderm and is downstream of Gcm in the aboral NSM gene regulatory network. Long-term imaging of development reveals that C5a knockdown embryos gastrulate, but ∼90% develop a prolapse of the hindgut by the late prism stage (∼8 h after C5a protein expression normally peaks). Since C5a orthologs efflux cyclic nucleotides, and cAMP-dependent protein kinase (Sp-CAPK/PKA) is expressed in pigment cells, we examined whether C5a could be involved in gastrulation through cAMP transport. Consistent with this hypothesis, membrane-permeable pCPT-cAMP rescues the prolapse phenotype in C5a knockdown embryos, and causes archenteron hyper-invagination in control embryos. In addition, the cAMP-producing enzyme soluble adenylyl cyclase (sAC) is expressed in pigment cells, and its inhibition impairs gastrulation. Together, our data support a model in which C5a transports sAC-derived cAMP from pigment cells to control late invagination of the hindgut. Little is known about the ancestral functions of ABCC5/MRP5 transporters, and this study reveals a novel role for these proteins in mesoderm-endoderm signaling during embryogenesis.
Collapse
Affiliation(s)
- Lauren E Shipp
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0202, USA
| | - Rose Z Hill
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0202, USA
| | - Gary W Moy
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0202, USA
| | - Tufan Gökırmak
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0202, USA
| | - Amro Hamdoun
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0202, USA
| |
Collapse
|
18
|
Qiu L, Finley J, Taimi M, Aleo MD, Strock C, Gilbert J, Qin S, Will Y. High-Content Imaging in Human and Rat Hepatocytes Using the Fluorescent Dyes CLF and CMFDA Is Not Specific Enough to Assess BSEP/Bsep and/or MRP2/Mrp2 Inhibition by Cholestatic Drugs. ACTA ACUST UNITED AC 2015. [DOI: 10.1089/aivt.2015.0014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Luping Qiu
- Center for Therapeutic Innovation, Pfizer Global R&D, New York, New York
| | - James Finley
- Drug Safety Research and Development, Global Pfizer R&D, Groton, Connecticut
| | - Mohammed Taimi
- Drug Safety Research and Development, Global Pfizer R&D, Groton, Connecticut
| | - Michael D. Aleo
- Drug Safety Research and Development, Global Pfizer R&D, Groton, Connecticut
| | | | | | | | - Yvonne Will
- Drug Safety Research and Development, Global Pfizer R&D, Groton, Connecticut
| |
Collapse
|
19
|
N-lactoyl-amino acids are ubiquitous metabolites that originate from CNDP2-mediated reverse proteolysis of lactate and amino acids. Proc Natl Acad Sci U S A 2015; 112:6601-6. [PMID: 25964343 DOI: 10.1073/pnas.1424638112] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Despite technological advances in metabolomics, large parts of the human metabolome are still unexplored. In an untargeted metabolomics screen aiming to identify substrates of the orphan transporter ATP-binding cassette subfamily C member 5 (ABCC5), we identified a class of mammalian metabolites, N-lactoyl-amino acids. Using parallel protein fractionation in conjunction with shotgun proteomics on fractions containing N-lactoyl-Phe-forming activity, we unexpectedly found that a protease, cytosolic nonspecific dipeptidase 2 (CNDP2), catalyzes their formation. N-lactoyl-amino acids are ubiquitous pseudodipeptides of lactic acid and amino acids that are rapidly formed by reverse proteolysis, a process previously considered to be negligible in vivo. The plasma levels of these metabolites strongly correlate with plasma levels of lactate and amino acid, as shown by increased levels after physical exercise and in patients with phenylketonuria who suffer from elevated Phe levels. Our approach to identify unknown metabolites and their biosynthesis has general applicability in the further exploration of the human metabolome.
Collapse
|
20
|
Gökirmak T, Shipp LE, Campanale JP, Nicklisch SCT, Hamdoun A. Transport in technicolor: mapping ATP-binding cassette transporters in sea urchin embryos. Mol Reprod Dev 2014; 81:778-93. [PMID: 25156004 DOI: 10.1002/mrd.22357] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/27/2014] [Indexed: 12/15/2022]
Abstract
One quarter of eukaryotic genes encode membrane proteins. These include nearly 1,000 transporters that translocate nutrients, signaling molecules, and xenobiotics across membranes. While it is well appreciated that membrane transport is critical for development, the specific roles of many transporters have remained cryptic, in part because of their abundance and the diversity of their substrates. Multidrug resistance ATP-binding cassette (ABC) efflux transporters are one example of cryptic membrane proteins. Although most organisms utilize these ABC transporters during embryonic development, many of these transporters have broad substrate specificity, and their developmental functions remain incompletely understood. Here, we review advances in our understanding of ABC transporters in sea urchin embryos, and methods developed to spatially and temporally map these proteins. These studies reveal that multifunctional transporters are required for signaling, homeostasis, and protection of the embryo, and shed light on how they are integrated into ancestral developmental pathways recapitulated in disease.
Collapse
Affiliation(s)
- Tufan Gökirmak
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California
| | | | | | | | | |
Collapse
|
21
|
Korolnek T, Zhang J, Beardsley S, Scheffer GL, Hamza I. Control of metazoan heme homeostasis by a conserved multidrug resistance protein. Cell Metab 2014; 19:1008-19. [PMID: 24836561 PMCID: PMC4052561 DOI: 10.1016/j.cmet.2014.03.030] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 01/23/2014] [Accepted: 03/25/2014] [Indexed: 01/30/2023]
Abstract
Several lines of evidence predict that specific pathways must exist in metazoans for the escorted movement of heme, an essential but cytotoxic iron-containing organic ring, within and between cells and tissues, but these pathways remain obscure. In Caenorhabditis elegans, embryonic development is inextricably dependent on both maternally derived heme and environmentally acquired heme. Here, we show that the multidrug resistance protein MRP-5/ABCC5 likely acts as a heme exporter, and targeted depletion of mrp-5 in the intestine causes embryonic lethality. Transient knockdown of mrp5 in zebrafish leads to morphological defects and failure to hemoglobinize red blood cells. MRP5 resides on the plasma membrane and endosomal compartments and regulates export of cytosolic heme. Together, our genetic studies in worms, yeast, zebrafish, and mammalian cells identify a conserved, physiological role for a multidrug resistance protein in regulating systemic heme homeostasis. We envision other MRP family members may play similar unanticipated physiological roles in animal development.
Collapse
Affiliation(s)
- Tamara Korolnek
- Department of Animal and Avian Sciences and Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Jianbing Zhang
- Department of Animal and Avian Sciences and Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Simon Beardsley
- Department of Animal and Avian Sciences and Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - George L Scheffer
- Department of Pathology, VU University Medical Center, 1007 MB Amsterdam, the Netherlands
| | - Iqbal Hamza
- Department of Animal and Avian Sciences and Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
22
|
Banerjee M, Carew MW, Roggenbeck BA, Whitlock BD, Naranmandura H, Le XC, Leslie EM. A Novel Pathway for Arsenic Elimination: Human Multidrug Resistance Protein 4 (MRP4/ABCC4) Mediates Cellular Export of Dimethylarsinic Acid (DMAV) and the Diglutathione Conjugate of Monomethylarsonous Acid (MMAIII). Mol Pharmacol 2014; 86:168-79. [DOI: 10.1124/mol.113.091314] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
23
|
Schinkel AH, Jonker JW. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev 2012. [DOI: 10.1016/j.addr.2012.09.027] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
24
|
Molinas A, Sicard G, Jakob I. Functional evidence of multidrug resistance transporters (MDR) in rodent olfactory epithelium. PLoS One 2012; 7:e36167. [PMID: 22563480 PMCID: PMC3341370 DOI: 10.1371/journal.pone.0036167] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 04/02/2012] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND P-glycoprotein (Pgp) and multidrug resistance-associated protein (MRP1) are membrane transporter proteins which function as efflux pumps at cell membranes and are considered to exert a protective function against the entry of xenobiotics. While evidence for Pgp and MRP transporter activity is reported for olfactory tissue, their possible interaction and participation in the olfactory response has not been investigated. PRINCIPAL FINDINGS Functional activity of putative MDR transporters was assessed by means of the fluorometric calcein acetoxymethyl ester (calcein-AM) accumulation assay on acute rat and mouse olfactory tissue slices. Calcein-AM uptake was measured as fluorescence intensity changes in the presence of Pgp or MRP specific inhibitors. Epifluorescence microscopy measured time course analysis in the olfactory epithelium revealed significant inhibitor-dependent calcein uptake in the presence of each of the selected inhibitors. Furthermore, intracellular calcein accumulation in olfactory receptor neurons was also significantly increased in the presence of either one of the Pgp or MRP inhibitors. The presence of Pgp or MRP1 encoding genes in the olfactory mucosa of rat and mouse was confirmed by RT-PCR with appropriate pairs of species-specific primers. Both transporters were expressed in both newborn and adult olfactory mucosa of both species. To assess a possible involvement of MDR transporters in the olfactory response, we examined the electrophysiological response to odorants in the presence of the selected MDR inhibitors by recording electroolfactograms (EOG). In both animal species, MRPs inhibitors induced a marked reduction of the EOG magnitude, while Pgp inhibitors had only a minor or no measurable effect. CONCLUSIONS The findings suggest that both Pgp and MRP transporters are functional in the olfactory mucosa and in olfactory receptor neurons. Pgp and MRPs may be cellular constituents of olfactory receptor neurons and represent potential mechanisms for modulation of the olfactory response.
Collapse
Affiliation(s)
- Adrien Molinas
- Equipe Neurophysiologie de la Peripherie des Systèmes Chimiosensoriels, Centre des Sciences du Goût et de l'Alimentation, CNRS UMR 6265, INRA, Université de Bourgogne, Dijon, France
| | - Gilles Sicard
- Equipe Neurophysiologie de la Peripherie des Systèmes Chimiosensoriels, Centre des Sciences du Goût et de l'Alimentation, CNRS UMR 6265, INRA, Université de Bourgogne, Dijon, France
| | - Ingrid Jakob
- Equipe Neurophysiologie de la Peripherie des Systèmes Chimiosensoriels, Centre des Sciences du Goût et de l'Alimentation, CNRS UMR 6265, INRA, Université de Bourgogne, Dijon, France
| |
Collapse
|
25
|
Leslie EM. Arsenic-glutathione conjugate transport by the human multidrug resistance proteins (MRPs/ABCCs). J Inorg Biochem 2011; 108:141-9. [PMID: 22197475 DOI: 10.1016/j.jinorgbio.2011.11.009] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 10/14/2011] [Accepted: 11/11/2011] [Indexed: 12/13/2022]
Abstract
Millions of people world-wide are chronically exposed to inorganic forms of the environmental toxicant arsenic in drinking water. This has led to a public health crisis because arsenic is a human carcinogen, and causes a myriad of other adverse health effects. In order to prevent and treat arsenic-induced toxicity it is critical to understand the cellular handling of this metalloid. A large body of literature describes the importance of the cellular tripeptide glutathione (γ-Glu-Cys-Gly,GSH/GS) in the excretion of arsenic. The triglutathione conjugate of arsenite [As(III)(GS)(3)] and the diglutathione conjugate of monomethylarsonous acid [MMA(III)(GS)(2)] have been isolated from rat bile and mouse urine, and account for the majority of excreted arsenic, suggesting these are important transportable forms. The ATP-binding cassette (ABC) transporter proteins, multidrug resistance protein 1 (MRP1/ABCC1) and the related protein MRP2 (ABCC2), are thought to play an important role in arsenic detoxification through the cellular efflux of arsenic-GSH conjugates. Current knowledge on the cellular handling of arsenic with a special emphasis on the transport pathways of the arsenic-GSH conjugates As(III)(GS)(3), MMA(III)(GS)(2), and dimethylarsenic glutathione DMA(III)(GS), as well as, the seleno-bis(S-glutathionyl) arsinium ion [(GS)(2)AsSe](-) are reviewed.
Collapse
Affiliation(s)
- Elaine M Leslie
- Department of Physiology, University of Alberta, Edmonton, AB, Canada,
| |
Collapse
|
26
|
Sodani K, Patel A, Kathawala RJ, Chen ZS. Multidrug resistance associated proteins in multidrug resistance. CHINESE JOURNAL OF CANCER 2011; 31:58-72. [PMID: 22098952 PMCID: PMC3777468 DOI: 10.5732/cjc.011.10329] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Multidrug resistance proteins (MRPs) are members of the C family of a group of proteins named ATP-binding cassette (ABC) transporters. These ABC transporters together form the largest branch of proteins within the human body. The MRP family comprises of 13 members, of which MRP1 to MRP9 are the major transporters indicated to cause multidrug resistance in tumor cells by extruding anticancer drugs out of the cell. They are mainly lipophilic anionic transporters and are reported to transport free or conjugates of glutathione (GSH), glucuronate, or sulphate. In addition, MRP1 to MRP3 can transport neutral organic drugs in free form in the presence of free GSH. Collectively, MRPs can transport drugs that differ structurally and mechanistically, including natural anticancer drugs, nucleoside analogs, antimetabolites, and tyrosine kinase inhibitors. Many of these MRPs transport physiologically important anions such as leukotriene C4, bilirubin glucuronide, and cyclic nucleotides. This review focuses mainly on the physiological functions, cellular resistance characteristics, and probable in vivo role of MRP1 to MRP9.
Collapse
Affiliation(s)
- Kamlesh Sodani
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY 11439, USA
| | | | | | | |
Collapse
|
27
|
Chen ZS, Tiwari AK. Multidrug resistance proteins (MRPs/ABCCs) in cancer chemotherapy and genetic diseases. FEBS J 2011; 278:3226-45. [PMID: 21740521 DOI: 10.1111/j.1742-4658.2011.08235.x] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The ATP-binding cassette (ABC) transporters are a superfamily of membrane proteins that are best known for their ability to transport a wide variety of exogenous and endogenous substances across membranes against a concentration gradient via ATP hydrolysis. There are seven subfamilies of human ABC transporters, one of the largest being the 'C' subfamily (gene symbol ABCC). Nine ABCC subfamily members, the so-called multidrug resistance proteins (MRPs) 1-9, have been implicated in mediating multidrug resistance in tumor cells to varying degrees as the efflux extrude chemotherapeutic compounds (or their metabolites) from malignant cells. Some of the MRPs are also known to either influence drug disposition in normal tissues or modulate the elimination of drugs (or their metabolites) via hepatobiliary or renal excretory pathways. In addition, the cellular efflux of physiologically important organic anions such as leukotriene C(4) and cAMP is mediated by one or more of the MRPs. Finally, mutations in several MRPs are associated with human genetic disorders. In this minireview, the current biochemical and physiological knowledge of MRP1-MRP9 in cancer chemotherapy and human genetic disease is summarized. The mutations in MRP2/ABCC2 leading to conjugated hyperbilirubinemia (Dubin-Johnson syndrome) and in MRP6/ABCC6 leading to the connective tissue disorder Pseudoxanthoma elasticum are also discussed.
Collapse
Affiliation(s)
- Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John's University, Queens, NY 11439, USA.
| | | |
Collapse
|
28
|
Munić V, Hlevnjak M, Eraković Haber V. Characterization of rhodamine-123, calcein and 5(6)-carboxy-2',7'-dichlorofluorescein (CDCF) export via MRP2 (ABCC2) in MES-SA and A549 cells. Eur J Pharm Sci 2011; 43:359-69. [PMID: 21605668 DOI: 10.1016/j.ejps.2011.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 04/06/2011] [Accepted: 05/07/2011] [Indexed: 11/17/2022]
Abstract
Based on our initial results on the effects of several ATP-binding cassette (ABC) transporter inhibitors on rhodamine-123 efflux from A549, a human lung carcinoma, and MES-SA, a human uterine sarcoma cell line, the aim of this study was to identify the transporter responsible for this export. Export of two fluorescent dyes, rhodamine-123 and calcein, was investigated in both cell lines by testing five commonly used inhibitors of ABC transporters: verapamil, cyclosporin A, MK571, GF129018 and fumitremorgin C. A very high degree of correlation (R(2)=0.91-0.99) between results obtained in the two cell lines suggested that the same transporter was involved in the export of tested fluorescent substrates in both cell lines. Expression analysis and gene silencing techniques, as well as transport of additional substrate 5(6)-carboxy-2',7'-dichlorofluorescein (CDCF) on membrane vesicles revealed that the transporter was multidrug resistance related protein 2 (MRP2, ABCC2). Furthermore, it was found that the tested modulators showed very diverse effects on the export of three fluorescent substrates via MRP2, with some modulators being inhibitory in one, while having no effect or even stimulating the transport in the other fluorescent dye assay. Verapamil inhibited rhodamine-123, but stimulated CDCF transport and did not affect calcein export. GF129018 did not affect calcein and CDCF transport, but it inhibited rhodamine-123 transport. These results demonstrate the importance of studying various combinations of potential substrates and modulators of MRP2 in order to estimate possible drug-drug interactions in living organisms. In addition, A549 and MES-SA cells were shown to be good cell models for studying interactions of compounds with human MRP2.
Collapse
Affiliation(s)
- Vesna Munić
- GlaxoSmithKline Research Centre Zagreb Ltd., Prilaz baruna Filipovića 29, Zagreb, Croatia.
| | | | | |
Collapse
|
29
|
Long Y, Li Q, Wang Y, Cui Z. MRP proteins as potential mediators of heavy metal resistance in zebrafish cells. Comp Biochem Physiol C Toxicol Pharmacol 2011; 153:310-7. [PMID: 21147257 DOI: 10.1016/j.cbpc.2010.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 11/30/2010] [Accepted: 12/01/2010] [Indexed: 11/18/2022]
Abstract
Acquired resistance of mammalian cells to heavy metals is closely relevant to enhanced expression of several multidrug resistance-associated proteins (MRP), but it remains unclear whether MRP proteins confer resistance to heavy metals in zebrafish. In this study, we obtained zebrafish (Danio rerio) fibroblast-like ZF4 cells with resistance to toxic heavy metals after chronic cadmium exposure and selection for 6months. These cadmium-resistant cells (ZF4-Cd) were maintained in 5μM cadmium and displayed cross-resistance to cadmium, mercury, arsenite and arsenate. ZF4-Cd cells remained the resistance to heavy metals after protracted culture in cadmium-free medium. In comparison with ZF4-WT cells, ZF4-Cd cells exhibited accelerated rate of cadmium excretion, enhanced activity of MRP-like transport, elevated expression of abcc2, abcc4 and mt2 genes, and increased content of cellular GSH. Inhibition of MRP-like transport activity, GSH biosynthesis and GST activity significantly attenuated the resistance of ZF4-Cd cells to heavy metals. The results indicate that some of MRP transporters are involved in the efflux of heavy metals conjugated with cellular GSH and thus play crucial roles in heavy metal detoxification of zebrafish cells.
Collapse
Affiliation(s)
- Yong Long
- Key Laboratory of Biodiversity and Conservation of Aquatic Organism, Institute of Hydrobiology, Chinese Academy of Sciences, 7 Donghu Rd., Wuhan, Hubei 430072, PR China
| | | | | | | |
Collapse
|
30
|
Kobayashi Y, Kawakami K, Ohbayashi M, Kohyama N, Yamamoto T. Ribosomal protein L3 mediated the transport of digoxin in Xenopus laevis oocyte. J Toxicol Sci 2011; 35:827-34. [PMID: 21139332 DOI: 10.2131/jts.35.827] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Ribosomal protein L3 (RPL3) is known to be an indispensable and essential component for the peptidyltransferase center. In the present study, we found a novel function of RPL3 using a Xenopus laevis oocyte expression system. When expressed in X. oocytes, RPL3 mediated the high affinity transport of [(3)H]digoxin (K(m) = 213.3 ± 46.8 nM) in a time-, concentration-, and sodium-dependent manners. The maximum velocity of the transport of [(3)H]digoxin via RPL3 produced at physiological pH. However, we did not observe RPL3-mediated transport of several organic solutes such as [(14)C]androstenedione, [(3)H]dexamethasone, [(3)H]dehydroepiandrosterone sulfate, [(3)H]L-tryptophan, [(14)C]L-ascorbic acid, [(14)C]α-ketoglutarate, [(14)C]glutarate, [(3)H]methotrexate, [(3)H]bumetanide, [(3)H]probenecid, [(14)C]salicylic acid, [(14)C]theophylline and [(3)H]valproate. Our results suggest that RPL3 functions as a drug carrier protein and may be involved in the digoxin toxicity in the human body.
Collapse
Affiliation(s)
- Yasuna Kobayashi
- Department of Clinical Pharmacy, School of Pharmacy, Showa University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
31
|
Keppler D. Multidrug resistance proteins (MRPs, ABCCs): importance for pathophysiology and drug therapy. Handb Exp Pharmacol 2011:299-323. [PMID: 21103974 DOI: 10.1007/978-3-642-14541-4_8] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The nine multidrug resistance proteins (MRPs) represent the major part of the 12 members of the MRP/CFTR subfamily belonging to the 48 human ATP-binding cassette (ABC) transporters. Cloning, functional characterization, and cellular localization of most MRP subfamily members have identified them as ATP-dependent efflux pumps with a broad substrate specificity for the transport of endogenous and xenobiotic anionic substances localized in cellular plasma membranes. Prototypic substrates include glutathione conjugates such as leukotriene C(4) for MRP1, MRP2, and MRP4, bilirubin glucuronosides for MRP2 and MRP3, and cyclic AMP and cyclic GMP for MRP4, MRP5, and MRP8. Reduced glutathione (GSH), present in living cells at millimolar concentrations, modifies the substrate specificities of several MRPs, as exemplified by the cotransport of vincristine with GSH by MRP1, or by the cotransport of GSH with bile acids or of GSH with leukotriene B(4) by MRP4.The role of MRP subfamily members in pathophysiology may be illustrated by the MRP-mediated release of proinflammatory and immunomodulatory mediators such as leukotrienes and prostanoids. Pathophysiological consequences of many genetic variants leading to a lack of functional MRP protein in the plasma membrane are observed in the hereditary MRP2 deficiency associated with conjugated hyperbilirubinemia in Dubin-Johnson syndrome, in pseudoxanthoma elasticum due to mutations in the MRP6 (ABCC6) gene, or in the type of human earwax and osmidrosis determined by single nucleotide polymorphisms in the MRP8 (ABCC8) gene. The hepatobiliary and renal elimination of many drugs and their metabolites is mediated by MRP2 in the hepatocyte canalicular membrane and by MRP4 as well as MRP2 in the luminal membrane of kidney proximal tubules. Therefore, inhibition of these efflux pumps affects pharmacokinetics, unless compensated by other ATP-dependent efflux pumps with overlapping substrate specificities.
Collapse
|
32
|
Long Y, Li Q, Li J, Cui Z. Molecular analysis, developmental function and heavy metal-induced expression of ABCC5 in zebrafish. Comp Biochem Physiol B Biochem Mol Biol 2011; 158:46-55. [DOI: 10.1016/j.cbpb.2010.09.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2010] [Revised: 09/14/2010] [Accepted: 09/14/2010] [Indexed: 01/07/2023]
|
33
|
Li Y, Revalde JL, Reid G, Paxton JW. Modulatory effects of curcumin on multi-drug resistance-associated protein 5 in pancreatic cancer cells. Cancer Chemother Pharmacol 2010; 68:603-10. [PMID: 21116627 DOI: 10.1007/s00280-010-1515-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 10/07/2010] [Indexed: 12/11/2022]
Abstract
PURPOSE Chemotherapy of pancreatic cancer often fails due to the development of intrinsic and acquired resistance during drug treatment. Recent studies have suggested that MRP5 conferred resistance to first-line drugs 5-fluorouracil and gemcitabine by active efflux of drugs from the cell. Our aim was to evaluate whether curcumin could reverse this multi-drug resistance by inhibition of MRP5-mediated efflux. METHODS MRP5 protein was detected and localized by immunocytochemistry using a monoclonal antibody in MRP5 over-expressing HEK293 (HEK293/MRP5) cells and two pancreatic cancer cell lines PANC-1 and MiaPaCa-2. The cellular accumulation of a specific MRP5 fluorescent substrate 2',7'-Bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF) into these cells was measured by flow cytometry and the cell proliferation determined by a 72-h CyQuant assay. RESULTS The cellular accumulation of BCECF in HEK293/MRP5 cells and in PANC-1 and MiaPaCa-2 cells was significantly increased by curcumin in a concentration-dependent manner. Curcumin and a MRP5 inhibitor MK571 had no apparent effects on cellular accumulation of BCECF in parental HEK293 cells. In the proliferation assays, curcumin caused a concentration-dependant increase in the sensitivity to the cytotoxic drug 5-fluorouracil in HEK293/MRP5 cells, PANC-1 and MiaPaCa-2 pancreatic cancer cells, but not in parental HEK293 cells. CONCLUSIONS Our results suggest that curcumin is an inhibitor of MRP5 and may be useful in the reversal of multi-drug resistance in pancreatic cancer chemotherapy.
Collapse
Affiliation(s)
- Yan Li
- Department of Pharmacology & Clinical Pharmacology, The University of Auckland, Auckland, New Zealand.
| | | | | | | |
Collapse
|
34
|
8-Prenylnaringenin is an inhibitor of multidrug resistance-associated transporters, P-glycoprotein and MRP1. Eur J Pharmacol 2010; 644:32-40. [PMID: 20633549 DOI: 10.1016/j.ejphar.2010.06.069] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 06/30/2010] [Indexed: 11/22/2022]
Abstract
Flavonoids with hydrophobic e.g. prenyl substituents might constitute the promising candidates for multidrug resistance (MDR) reversal agents. The interaction of 8-prenylnaringenin (8-isopentenylnaringenin), a potent phytoestrogen isolated from common hop (Humulus lupulus), with two multidrug resistance-associated ABC transporters of cancer cells, P-glycoprotein and MRP1, has been studied for the first time. Functional test based on the transport of fluorescent substrate BCECF revealed that the flavonoid strongly inhibited MRP1 transport activity in human erythrocytes (IC(50)=5.76+/-1.80muM). Expression of MDR-related transporters in drug-sensitive (LoVo) and doxorubicin-resistant (LoVo/Dx) human colon adenocarcinoma cell lines was characterized by RT-PCR and immunochemical methods and elevated expression of P-glycoprotein in resistant cells was found to be the main difference between these two cell lines. By means of flow cytometry it was shown that 8-prenylnaringenin significantly increased the accumulation of rhodamine 123 in LoVo/Dx cells. Doxorubicin accumulation in both LoVo and LoVo/Dx cells observed by confocal microscopy was also altered in the presence of 8-prenylnaringenin. However, the presence of the studied compound did not increase doxorubicin cytotoxicity to LoVo/Dx cells. It was concluded that 8-prenylnaringenin was not able to modulate MDR in human adenocarcinoma cell line in spite of the ability to inhibit both P-glycoprotein and MRP1 activities. To our best knowledge, this is the first report of 8-prenylnaringenin interaction with clinically important ABC transporters.
Collapse
|
35
|
Luna-Tortós C, Rambeck B, Jürgens UH, Löscher W. The antiepileptic drug topiramate is a substrate for human P-glycoprotein but not multidrug resistance proteins. Pharm Res 2010; 26:2464-70. [PMID: 19730994 DOI: 10.1007/s11095-009-9961-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 08/20/2009] [Indexed: 12/20/2022]
Abstract
PURPOSE Resistance to antiepileptic drugs (AEDs) is the major problem in the treatment of epilepsy. One of the candidate mechanisms of pharmacoresistance is the limitation of AED access to the seizure focus by overexpression of efflux transporters, including P-glycoprotein (Pgp) and multidrug resistance proteins (MRPs).In this respect, it is important to know which AEDs are substrates for such drug transporters in humans. METHODS In the present study, we used polarized kidney cell lines (LLC, MDCK) transfected with human drug transporters (Pgp, MRP1, MRP2 or MRP5) to evaluate whether the AED topiramate is a substrate for any of these transporters. Known Pgp and MRP substrates were used for comparison. RESULTS Basolateral-to-apical transport of topiramate, which could be counteracted with the Pgp inhibitor, tariquidar, was determined in Pgp overexpressing LLC cells, whereas topiramate was not transported by any of the MRPs. A comparison with previous experiments in the same transport assay showed that topiramate exhibited the most pronounced Pgp-mediated efflux transport among the AEDS that have been studied as yet. CONCLUSIONS Thus, these data indicate that brain levels of topiramate may be affected by overexpression of Pgp as determined in patients with intractable epilepsy.
Collapse
Affiliation(s)
- Carlos Luna-Tortós
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Hannover, Germany
| | | | | | | |
Collapse
|
36
|
Vellonen KS, Mannermaa E, Turner H, Häkli M, Wolosin JM, Tervo T, Honkakoski P, Urtti A. Effluxing ABC transporters in human corneal epithelium. J Pharm Sci 2010; 99:1087-98. [PMID: 19623615 DOI: 10.1002/jps.21878] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
ATP-binding cassette (ABC) transporters are able to efflux their substrate drugs from the cells. We compared expression of efflux proteins in normal human corneal epithelial tissue, primary human corneal epithelial cells (HCEpiC), and corneal epithelial cell culture model (HCE model) based on human immortal cell line. Expression of multidrug resistance protein 1 (MDR1), multidrug resistance-associated protein 1-6 (MRP1-6) and breast cancer resistance protein (BCRP) was studied using quantitative RT-PCR, Western blot, and immunohistochemistry. Only MRP1, MRP5, and BCRP were expressed in the freshly excised human corneal epithelial tissue. Expression of MRP1 and MRP5 was localized predominantly in the basal cells of the central cornea and limbus. Functional efflux activity was shown in the cell models, but they showed over-expression of most efflux transporters compared to that of normal corneal epithelium. In conclusion, MRP1, MRP5, and BCRP are expressed in the corneal epithelium, but MDR1, MRP2, MRP3, MRP4, and MRP6 are not significantly expressed. HCE cell model and commercially available primary cells deviate from this expression profile.
Collapse
|
37
|
Klaassen CD, Aleksunes LM. Xenobiotic, bile acid, and cholesterol transporters: function and regulation. Pharmacol Rev 2010; 62:1-96. [PMID: 20103563 PMCID: PMC2835398 DOI: 10.1124/pr.109.002014] [Citation(s) in RCA: 566] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transporters influence the disposition of chemicals within the body by participating in absorption, distribution, and elimination. Transporters of the solute carrier family (SLC) comprise a variety of proteins, including organic cation transporters (OCT) 1 to 3, organic cation/carnitine transporters (OCTN) 1 to 3, organic anion transporters (OAT) 1 to 7, various organic anion transporting polypeptide isoforms, sodium taurocholate cotransporting polypeptide, apical sodium-dependent bile acid transporter, peptide transporters (PEPT) 1 and 2, concentrative nucleoside transporters (CNT) 1 to 3, equilibrative nucleoside transporter (ENT) 1 to 3, and multidrug and toxin extrusion transporters (MATE) 1 and 2, which mediate the uptake (except MATEs) of organic anions and cations as well as peptides and nucleosides. Efflux transporters of the ATP-binding cassette superfamily, such as ATP-binding cassette transporter A1 (ABCA1), multidrug resistance proteins (MDR) 1 and 2, bile salt export pump, multidrug resistance-associated proteins (MRP) 1 to 9, breast cancer resistance protein, and ATP-binding cassette subfamily G members 5 and 8, are responsible for the unidirectional export of endogenous and exogenous substances. Other efflux transporters [ATPase copper-transporting beta polypeptide (ATP7B) and ATPase class I type 8B member 1 (ATP8B1) as well as organic solute transporters (OST) alpha and beta] also play major roles in the transport of some endogenous chemicals across biological membranes. This review article provides a comprehensive overview of these transporters (both rodent and human) with regard to tissue distribution, subcellular localization, and substrate preferences. Because uptake and efflux transporters are expressed in multiple cell types, the roles of transporters in a variety of tissues, including the liver, kidneys, intestine, brain, heart, placenta, mammary glands, immune cells, and testes are discussed. Attention is also placed upon a variety of regulatory factors that influence transporter expression and function, including transcriptional activation and post-translational modifications as well as subcellular trafficking. Sex differences, ontogeny, and pharmacological and toxicological regulation of transporters are also addressed. Transporters are important transmembrane proteins that mediate the cellular entry and exit of a wide range of substrates throughout the body and thereby play important roles in human physiology, pharmacology, pathology, and toxicology.
Collapse
Affiliation(s)
- Curtis D Klaassen
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160-7417, USA.
| | | |
Collapse
|
38
|
Luna-Tortós C, Fedrowitz M, Löscher W. Evaluation of transport of common antiepileptic drugs by human multidrug resistance-associated proteins (MRP1, 2 and 5) that are overexpressed in pharmacoresistant epilepsy. Neuropharmacology 2010; 58:1019-32. [PMID: 20080116 DOI: 10.1016/j.neuropharm.2010.01.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 01/06/2010] [Accepted: 01/07/2010] [Indexed: 12/27/2022]
Abstract
Resistance to antiepileptic drugs (AEDs) is one of the most serious problems in the treatment of epilepsy. Accumulating experimental evidence suggests that increased expression of the drug efflux transporter P-glycoprotein (Pgp) at the blood-brain barrier may be involved in the mechanisms leading to AED resistance. In addition to Pgp, increased expression of several multidrug resistance-associated proteins (MRPs) has been determined in epileptogenic brain regions of patients with pharmacoresistant epilepsy. However, it is not known whether AEDs are substrates for MRPs. In the present experiments, we evaluated whether common AEDs are transported by human MRPs (MRP1, 2 and 5) that are overexpressed in AED resistant epilepsy. For this purpose, we used a highly sensitive assay (concentration equilibrium transport assay; CETA) in polarized kidney cell lines (LLC, MDCKII) transfected with human MRPs. The assay was validated by known MRP substrates, including calcein-AM (MRP1), vinblastine (MRP2) and chloromethylfluorescein diacetate (CMFDA; MRP5). The directional transport determined with these drugs in MRP-transfected cell lines could be blocked with the MRP inhibitor MK571. However, in contrast to transport of known MRP substrates, none of the common AEDs (carbamazepine, valproate, levetiracetam, phenytoin, lamotrigine and phenobarbital) used in this study was transported by MRP1, MRP2 or MRP5. A basolateral-to-apical transport of valproate, which could be inhibited by MK571 and probenecid, was determined in LLC cells (both wildtype and transfected), but the specific transporter involved was not identified. The data indicate that common AEDs are not substrates for human MRP1, MRP2 or MRP5, at least in the in vitro models used in this study.
Collapse
Affiliation(s)
- Carlos Luna-Tortós
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Bünteweg 17, D-30559 Hannover, Germany
| | | | | |
Collapse
|
39
|
Aszalos A, Taylor BJ. Flow cytometric evaluation of multidrug resistance proteins. Methods Mol Biol 2010; 596:123-39. [PMID: 19949923 PMCID: PMC7325859 DOI: 10.1007/978-1-60761-416-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
There are several ways to detect proteins on cells. One quite frequently used method is flow cytometry. This method needs fluorescently labeled antibodies that can attach selectively to the protein to be investigated for flow cytometric detection. Flow cytometry scans individual cells, virtually without their surrounding liquid, and can scan many cells in a very short time. Because of this advantage of flow cytometry, it was adapted to investigate transport proteins on normal and cancerous human cells and cell lines. These transport proteins play important roles in human metabolism. Absorption in the intestine, excretion at the kidney, protection of the CNS compartment and the fetus from xenobiotics, and other vital functions depend on these transporters. However, several transporters are overexpressed in cancer cells. These overexpressed transporters pump out anticancer drugs from the cells and prevent their curative effects. The detection and quantitation of these types of transporters in cancer cells is important for this reason. Here, we review literature on flow cytometric detection of the three most studied transporters: P-glycoprotein, multidrug resistance-associated proteins, and breast cancer resistance protein.
Collapse
Affiliation(s)
- Adorjan Aszalos
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|
40
|
Vähäkangas K, Myllynen P. Drug transporters in the human blood-placental barrier. Br J Pharmacol 2009; 158:665-78. [PMID: 19788499 DOI: 10.1111/j.1476-5381.2009.00336.x] [Citation(s) in RCA: 183] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Studies on the increasing number of transporters found in the placental barrier are gaining momentum, because of their tissue-specific expression, significance in physiology and disease, and the possible utilization of the emerging knowledge in pharmacology. In the placenta, both syncytiotrophoblast and fetal capillary endothelium express transporters. Fetal exposure is determined by the net effect of combination of transporters, their nature and localization in relation to placental cells and their substrate specificity. Although the significance of placental transporters on human fetal drug exposure is almost an unstudied field so far, their potential use to design drugs that do not cross the placenta is already being pursued. It is thus of interest to review the existing knowledge of human placental transporters. Transporters in all groups which take part in drug transport are found in human placenta. Especially, ATP-binding cassette transporters ABCG2/breast cancer resistance protein, ABCB1/P-glycoprotein and ABCC2/MRP2 are all expressed at the apical surface of syncytiotrophoblast facing maternal blood and are putatively important protective proteins both for placental tissue and the fetus, because they are efflux transporters and their substrates include many drugs and also environmental chemicals. Such protective effect has been shown in animals, but these results cannot be directly extrapolated to humans due to interspecies differences in placental structure and function. Experimental models utilizing human placental tissue, especially human placental perfusion, offer valuable possibilities, which have been insufficiently studied so far.
Collapse
Affiliation(s)
- Kirsi Vähäkangas
- Department of Pharmacology and Toxicology, University of Kuopio, Kuopio, Finland.
| | | |
Collapse
|
41
|
Kuppens IELM, Breedveld P, Beijnen JH, Schellens JHM. Modulation of Oral Drug Bioavailability: From Preclinical Mechanism to Therapeutic Application. Cancer Invest 2009; 23:443-64. [PMID: 16193644 DOI: 10.1081/cnv-58823] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Currently, more than one fourth of all anticancer drugs are developed as oral formulations, and it is expected that this number will increase substantially in the near future. To enable oral drug therapy, adequate oral bioavailability must be achieved. Factors that have proved to be important in limiting the oral bioavailability are the presence of ATP-binding cassette drug transporters (ABC transporters) and the cytochrome P450 enzymes. We discuss the tissues distribution and physiological function of the ABC transporters in the human body, their expression in tumors, currently known polymorphisms and drugs that are able to inhibit their function as transporter. Furthermore, the role of the ABC transporters and drug-metabolizing enzymes as mechanisms to modulate the pharmacokinetics of anticancer agents, will be reviewed. Finally, some clinical examples of oral drug modulation are discussed. Among these examples are the coadministration of paclitaxel with CsA, a CYP3A4 substrate with P-glycoprotein (P-gp) modulating activity, and topotecan combined with the BCRP/P-gp transport inhibitor elacridar. Both are good examples of improvement of oral drug bioavailability by temporary inhibition of drug transporters in the gut epithelium.
Collapse
Affiliation(s)
- Isa E L M Kuppens
- Department of Medical Oncology, Antoni van Leeuwenhoek Hospital/The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
42
|
Mannermaa E, Vellonen KS, Ryhänen T, Kokkonen K, Ranta VP, Kaarniranta K, Urtti A. Efflux protein expression in human retinal pigment epithelium cell lines. Pharm Res 2009; 26:1785-91. [PMID: 19384462 DOI: 10.1007/s11095-009-9890-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 04/02/2009] [Indexed: 12/15/2022]
Abstract
PURPOSE The objective of this study was to characterize efflux proteins (P-glycoprotein (P-gp), multidrug resistance proteins (MRP1-6) and breast cancer resistance protein (BCRP)) of retinal pigment epithelium (RPE) cell lines. METHODS Expression of efflux proteins in two secondary (ARPE-19, D407) and two primary (HRPEpiC and bovine) RPE cell lines was measured by quantitative RT-PCR and western blotting. Furthermore, activity of MRP1 and MRP5 of ARPE-19 cell line was assessed with calcein-AM and carboxydichlorofluorescein (CDCF) probes. RESULTS Similar efflux protein profile was shared between ARPE-19 and primary RPE cells, whereas D407 cell line was notably different. D407 cells expressed MRP2 and BCRP, which were absent in other cell lines and furthermore higher MRP3 transcript expression was found. MRP1, MRP4 and MRP5 were identified from all human RPE cell lines and MRP6 was not expressed in any cell lines. The pattern of efflux protein expression did not change when ARPE-19 cells were differentiated on filters. The calcein-AM and CDCF efflux tests provided evidence supporting MRP1 and MRP5 activity in ARPE-19 cells. CONCLUSIONS MRP1, MRP4 and MRP5 are the main efflux transporters in RPE cell lines. There are differences in efflux protein expression between RPE cell lines.
Collapse
Affiliation(s)
- Eliisa Mannermaa
- Department of Pharmaceutics, University of Kuopio, Yliopistonranta 1C, 70210 Kuopio, Finland.
| | | | | | | | | | | | | |
Collapse
|
43
|
Hendig D, Langmann T, Zarbock R, Schmitz G, Kleesiek K, Götting C. Characterization of the ATP-binding cassette transporter gene expression profile in Y79: a retinoblastoma cell line. Mol Cell Biochem 2009; 328:85-92. [DOI: 10.1007/s11010-009-0077-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 02/24/2009] [Indexed: 11/24/2022]
|
44
|
Wesołowska O, Hendrich AB, Łaniapietrzak B, Wiśniewski J, Molnar J, Ocsovszki I, Michalak K. Perturbation of the lipid phase of a membrane is not involved in the modulation of MRP1 transport activity by flavonoids. Cell Mol Biol Lett 2008; 14:199-221. [PMID: 19020811 PMCID: PMC6275984 DOI: 10.2478/s11658-008-0044-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 09/03/2008] [Indexed: 11/20/2022] Open
Abstract
The expression of transmembrane transporter multidrug resistance-associated protein 1 (MRP1) confers the multidrug-resistant phenotype (MDR) on cancer cells. Since the activity of the other MDR transporter, P-glycoprotein, is sensitive to membrane perturbation, we aimed to check whether the changes in lipid bilayer properties induced by flavones (apigenin, acacetin) and flavonols (morin, myricetin) were related to their MRP1 inhibitory activity. All the flavonoids inhibited the efflux of MRP1 fluorescent substrate from human erythrocytes and breast cancer cells. Morin was also found to stimulate the ATPase activity of erythrocyte ghosts. All flavonoids intercalated into phosphatidylcholine bilayers as judged by differential scanning calorimetry and fluorescence spectroscopy with the use of two carbocyanine dyes. The model of an intramembrane localization for flavones and flavonols was proposed. No clear relationship was found between the membrane-perturbing activity of flavonoids and their potency to inhibit MRP1. We concluded that mechanisms other than perturbation of the lipid phase of membranes were responsible for inhibition of MRP1 by the flavonoids.
Collapse
Affiliation(s)
- Olga Wesołowska
- Department of Biophysics, Wrocław Medical University, ul. Chałubińskiego 10, 50-368 Wrocław, Poland.
| | | | | | | | | | | | | |
Collapse
|
45
|
van de Water FM, Masereeuw R, Russel FGM. Function and Regulation of Multidrug Resistance Proteins (MRPs) in the Renal Elimination of Organic Anions. Drug Metab Rev 2008; 37:443-71. [PMID: 16257830 DOI: 10.1080/03602530500205275] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The reabsorptive and excretory capacity of the kidney has an important influence on the systemic concentration of drugs. Multidrug resistance proteins (MRP/ABCC) expressed in the kidney play a critical role in the tubular efflux of a wide variety of drugs and toxicants, and, in particular, of their negatively charged phase II metabolites. Nine structurally and functionally related MRP family members have been identified (MRP1-9), which differ from each other by their localization, expression levels, and substrate specificity. During altered physiological circumstances, adaptations in these transporters are required to avoid systemic toxicity as well as renal tubular damage. Key players in these events are hormones, protein kinases, nuclear receptors, and disease conditions, which all may affect transporter protein expression levels. This review discusses current knowledge on the renal characteristics of MRP1-9, with specific focus on their regulation.
Collapse
Affiliation(s)
- Femke M van de Water
- Department of Pharmacology and Toxicology 233, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | |
Collapse
|
46
|
Ballatori N, Krance SM, Marchan R, Hammond CL. Plasma membrane glutathione transporters and their roles in cell physiology and pathophysiology. Mol Aspects Med 2008; 30:13-28. [PMID: 18786560 DOI: 10.1016/j.mam.2008.08.004] [Citation(s) in RCA: 219] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2008] [Revised: 08/15/2008] [Accepted: 08/15/2008] [Indexed: 12/16/2022]
Abstract
Reduced glutathione (GSH) is critical for many cellular processes, and both its intracellular and extracellular concentrations are tightly regulated. Intracellular GSH levels are regulated by two main mechanisms: by adjusting the rates of synthesis and of export from cells. Some of the proteins responsible for GSH export from mammalian cells have recently been identified, and there is increasing evidence that these GSH exporters are multispecific and multifunctional, regulating a number of key biological processes. In particular, some of the multidrug resistance-associated proteins (Mrp/Abcc) appear to mediate GSH export and homeostasis. The Mrp proteins mediate not only GSH efflux, but they also export oxidized glutathione derivatives (e.g., glutathione disulfide (GSSG), S-nitrosoglutathione (GS-NO), and glutathione-metal complexes), as well as other glutathione S-conjugates. The ability to export both GSH and oxidized derivatives of GSH, endows these transporters with the capacity to directly regulate the cellular thiol-redox status, and therefore the ability to influence many key signaling and biochemical pathways. Among the many processes that are influenced by the GSH transporters are apoptosis, cell proliferation, and cell differentiation. This report summarizes the evidence that Mrps contribute to the regulation of cellular GSH levels and the thiol-redox state, and thus to the many biochemical processes that are influenced by this tripeptide.
Collapse
Affiliation(s)
- Nazzareno Ballatori
- Department of Environmental Medicine, University of Rochester School of Medicine, 575 Elmwood Avenue, Box EHSC, Rochester, NY 14642, USA.
| | | | | | | |
Collapse
|
47
|
Domek-Łopacińska K, Strosznajder JB. The effect of selective inhibition of cyclic GMP hydrolyzing phosphodiesterases 2 and 5 on learning and memory processes and nitric oxide synthase activity in brain during aging. Brain Res 2008; 1216:68-77. [PMID: 18499090 DOI: 10.1016/j.brainres.2008.02.108] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Revised: 02/26/2008] [Accepted: 02/27/2008] [Indexed: 01/30/2023]
Abstract
Our previous studies have shown that there is a lower cGMP concentration in the aged brain as well as an alteration in the activity of cGMP-hydrolyzing phosphodiesterases (PDEs) and nitric oxide synthase (NOS). The aim of this study was to investigate the effect of specific inhibitors of selected PDEs on object recognition memory and locomotor activity during aging, and to correlate their action with NOS activity in the following brain regions: hippocampus, striatum, and cerebral cortex. The study was carried out using 3, 12, and 24 month-old rats. Inhibitors of PDE2 and PDE5 (Bayer 60-7550 and zaprinast, respectively) were used. Evaluation of memory and locomotor activity was carried out using an object recognition task and the open field test. NOS activity was determined using a radiochemical method after behavioral analysis in the cytosolic fraction from all brain areas investigated. We have found that the inhibitor of PDE2, Bay60-7550, improves object recognition memory in all age groups investigated and increases basal constitutive NOS activity in the hippocampus and striatum. Moreover, in 3 month-old rats, additional inhibition of PDE5 by zaprinast improves object memory and elevates NOS activity in all brain regions studied. Specific inhibition of nNOS eliminates the effect of Bay60-7550 on memory function and on NOS activity in 24 month-old rats. In summary, our results indicate that inhibition of PDE2 is able to improve cognition and memory function in 3, 12, and 24 month-old rats through the enhancement of nNOS activity in the brain, whereas inhibition of PDE5 is effective only in 3 month-old animals.
Collapse
Affiliation(s)
- K Domek-Łopacińska
- Department of Cellular Signaling, Medical Research Center, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland.
| | | |
Collapse
|
48
|
Ravna AW, Sylte I, Sager G. A molecular model of a putative substrate releasing conformation of multidrug resistance protein 5 (MRP5). Eur J Med Chem 2008; 43:2557-67. [PMID: 18313803 DOI: 10.1016/j.ejmech.2008.01.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 10/08/2007] [Accepted: 01/07/2008] [Indexed: 01/31/2023]
Abstract
The ATP-binding cassette (ABC) transporter multidrug resistance protein 5 (MRP5) contributes to the cellular export of organic anions, including guanosine 3'-5' cyclic monophosphate (cGMP). The structural knowledge of this protein is limited, and in lack of an MRP5 X-ray structure, a model of MRP5 was constructed based on the homology with the bacterial ABC transporter Sav1866 from Staphylococcus aureus, which has been crystallised in an outward-facing, substrate releasing conformation. Two putative binding sites were identified, and docking of cGMP indicated that TMHs 1-3, 6, 11 and 12 were in contact with the ligands in binding site 1, while TMHs 1, 3, 5-8 were in contact with the ligands in binding site 2. The proposed MRP5 model may be used for further experimental studies of the molecular structure and function of this member of the ABC-transporter superfamily.
Collapse
Affiliation(s)
- Aina Westrheim Ravna
- Department of Pharmacology, Institute of Medical Biology, Faculty of Medicine, University of Tromsø, MH-Building, Breivika, N-9037 Tromsø, Norway
| | | | | |
Collapse
|
49
|
Ravna AW, Sager G, Dahl SG, Sylte I. Membrane Transporters: Structure, Function and Targets for Drug Design. TOPICS IN MEDICINAL CHEMISTRY 2008. [DOI: 10.1007/7355_2008_023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
50
|
Abstract
BACKGROUND AND PURPOSE cAMP is a key intracellular signalling molecule that regulates multiple processes of the vertebrate skeletal muscle. We have shown that cAMP can be actively pumped out from the skeletal muscle cell. Since in other tissues, cAMP efflux had been associated with extracellular generation of adenosine, in the present study we have assessed the fate of interstitial cAMP and the existence of an extracellular cAMP-adenosine signalling pathway in skeletal muscle. EXPERIMENTAL APPROACH cAMP efflux and/or its extracellular degradation were analysed by incubating rat cultured skeletal muscle with exogenous cAMP, forskolin or isoprenaline. cAMP and its metabolites were quantified by radioassay or HPLC, respectively. KEY RESULTS Incubation of cells with exogenous cAMP was followed by interstitial accumulation of 5'-AMP and adenosine, a phenomenon inhibited by selective inhibitors of ecto-phosphodiesterase (DPSPX) and ecto-nucleotidase (AMPCP). Activation of adenylyl cyclase (AC) in cultured cells with forskolin or isoprenaline increased cAMP efflux and extracellular generation of 5'-AMP and adenosine. Extracellular cAMP-adenosine pathway was also observed after direct and receptor-dependent stimulation of AC in rat extensor muscle ex vivo. These events were attenuated by probenecid, an inhibitor of ATP binding cassette family transporters. CONCLUSIONS AND IMPLICATIONS Our results show the existence of an extracellular biochemical cascade that converts cAMP into adenosine. The functional relevance of this extracellular signalling system may involve a feedback modulation of cellular response initiated by several G protein-coupled receptor ligands, amplifying cAMP influence to a paracrine mode, through its metabolite, adenosine.
Collapse
|