1
|
Sfeir A, Tijsterman M, McVey M. Microhomology-Mediated End-Joining Chronicles: Tracing the Evolutionary Footprints of Genome Protection. Annu Rev Cell Dev Biol 2024; 40:195-218. [PMID: 38857538 DOI: 10.1146/annurev-cellbio-111822-014426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
The fidelity of genetic information is essential for cellular function and viability. DNA double-strand breaks (DSBs) pose a significant threat to genome integrity, necessitating efficient repair mechanisms. While the predominant repair strategies are usually accurate, paradoxically, error-prone pathways also exist. This review explores recent advances and our understanding of microhomology-mediated end joining (MMEJ), an intrinsically mutagenic DSB repair pathway conserved across organisms. Central to MMEJ is the activity of DNA polymerase theta (Polθ), a specialized polymerase that fuels MMEJ mutagenicity. We examine the molecular intricacies underlying MMEJ activity and discuss its function during mitosis, where the activity of Polθ emerges as a last-ditch effort to resolve persistent DSBs, especially when homologous recombination is compromised. We explore the promising therapeutic applications of targeting Polθ in cancer treatment and genome editing. Lastly, we discuss the evolutionary consequences of MMEJ, highlighting its delicate balance between protecting genome integrity and driving genomic diversity.
Collapse
Affiliation(s)
- Agnel Sfeir
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA;
| | - Marcel Tijsterman
- Department of Human Genetics, Leiden University Medical Center; Institute of Biology Leiden, Leiden University, Leiden, The Netherlands;
| | - Mitch McVey
- Department of Biology, Tufts University, Medford, Massachusetts, USA;
| |
Collapse
|
2
|
Yu Y, Wang X, Fox J, Yu R, Thakre P, McCauley B, Nikoloutsos N, Yu Y, Li Q, Hastings PJ, Dang W, Chen K, Ira G. Yeast EndoG prevents genome instability by degrading extranuclear DNA species. Nat Commun 2024; 15:7653. [PMID: 39227600 PMCID: PMC11372161 DOI: 10.1038/s41467-024-52147-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 08/28/2024] [Indexed: 09/05/2024] Open
Abstract
In metazoans mitochondrial DNA (mtDNA) or retrotransposon cDNA released to cytoplasm are degraded by nucleases to prevent sterile inflammation. It remains unknown whether degradation of these DNA also prevents nuclear genome instability. We used an amplicon sequencing-based method in yeast enabling analysis of millions of DSB repair products. In non-dividing stationary phase cells, Pol4-mediated non-homologous end-joining increases, resulting in frequent insertions of 1-3 nucleotides, and insertions of mtDNA (NUMTs) or retrotransposon cDNA. Yeast EndoG (Nuc1) nuclease limits insertion of cDNA and transfer of very long mtDNA ( >10 kb) to the nucleus, where it forms unstable circles, while promoting the formation of short NUMTs (~45-200 bp). Nuc1 also regulates transfer of extranuclear DNA to nucleus in aging or meiosis. We propose that Nuc1 preserves genome stability by degrading retrotransposon cDNA and long mtDNA, while short NUMTs originate from incompletely degraded mtDNA. This work suggests that nucleases eliminating extranuclear DNA preserve genome stability.
Collapse
Affiliation(s)
- Yang Yu
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Xin Wang
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, 25 Shattuck Street, Boston, MA, USA
| | - Jordan Fox
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Ruofan Yu
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
- Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Pilendra Thakre
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Brenna McCauley
- Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Nicolas Nikoloutsos
- Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX, USA
| | - Yang Yu
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, 25 Shattuck Street, Boston, MA, USA
| | - Qian Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - P J Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Weiwei Dang
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
- Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Kaifu Chen
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, 25 Shattuck Street, Boston, MA, USA.
| | - Grzegorz Ira
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA.
| |
Collapse
|
3
|
Yu Y, Wang X, Fox J, Yu R, Thakre P, McCauley B, Nikoloutsos N, Li Q, Hastings PJ, Dang W, Chen K, Ira G. Yeast EndoG prevents genome instability by degrading cytoplasmic DNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.13.571550. [PMID: 38168242 PMCID: PMC10760121 DOI: 10.1101/2023.12.13.571550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
In metazoans release of mitochondrial DNA or retrotransposon cDNA to cytoplasm can cause sterile inflammation and disease. Cytoplasmic nucleases degrade these DNA species to limit inflammation. It remains unknown whether degradation these DNA also prevents nuclear genome instability. To address this question, we decided to identify the nuclease regulating transfer of these cytoplasmic DNA species to the nucleus. We used an amplicon sequencing-based method in yeast enabling analysis of millions of DSB repair products. Nu clear mt DNA (NUMTs) and retrotransposon cDNA insertions increase dramatically in nondividing stationary phase cells. Yeast EndoG (Nuc1) nuclease limits insertions of cDNA and transfer of very long mtDNA (>10 kb) that forms unstable circles or rarely insert in the genome, but it promotes formation of short NUMTs (∼45-200 bp). Nuc1 also regulates transfer of cytoplasmic DNA to nucleus in aging or during meiosis. We propose that Nuc1 preserves genome stability by degrading retrotransposon cDNA and long mtDNA, while short NUMTs can originate from incompletely degraded mtDNA. This work suggests that nucleases eliminating cytoplasmic DNA play a role in preserving genome stability.
Collapse
|
4
|
Shaltz S, Jinks-Robertson S. Genetic control of the error-prone repair of a chromosomal double-strand break with 5' overhangs in yeast. Genetics 2023; 225:iyad122. [PMID: 37418686 PMCID: PMC10471200 DOI: 10.1093/genetics/iyad122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/09/2023] Open
Abstract
A targeted double-strand break introduced into the genome of Saccharomyces cerevisiae is repaired by the relatively error-prone nonhomologous end joining (NHEJ) pathway when homologous recombination is not an option. A zinc finger nuclease cleavage site was inserted out-of-frame into the LYS2 locus of a haploid yeast strain to study the genetic control of NHEJ when the ends contain 5' overhangs. Repair events that destroyed the cleavage site were identified either as Lys+ colonies on selective medium or as surviving colonies on rich medium. Junction sequences in Lys+ events solely reflected NHEJ and were influenced by the nuclease activity of Mre11 as well as by the presence/absence of the NHEJ-specific polymerase Pol4 and the translesion-synthesis DNA polymerases Pol ζ and Pol η. Although most NHEJ events were dependent on Pol4, a 29-bp deletion with endpoints in 3-bp repeats was an exception. The Pol4-independent deletion required translesion synthesis polymerases as well as the exonuclease activity of the replicative Pol δ DNA polymerase. Survivors were equally split between NHEJ events and 1.2 or 11.7 kb deletions that reflected microhomology-mediated end joining (MMEJ). MMEJ events required the processive resection activity of Exo1/Sgs1, but there unexpectedly was no dependence on the Rad1-Rad10 endonuclease for the removal of presumptive 3' tails. Finally, NHEJ was more efficient in nongrowing than in growing cells and was most efficient in G0 cells. These studies provide novel insights into the flexibility and complexity of error-prone DSB repair in yeast.
Collapse
Affiliation(s)
- Samantha Shaltz
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| |
Collapse
|
5
|
Cerqueira PG, Meyer D, Zhang L, Mallory B, Liu J, Hua Fu BX, Zhang X, Heyer WD. Saccharomyces cerevisiae DNA polymerase IV overcomes Rad51 inhibition of DNA polymerase δ in Rad52-mediated direct-repeat recombination. Nucleic Acids Res 2023; 51:5547-5564. [PMID: 37070185 PMCID: PMC10287921 DOI: 10.1093/nar/gkad281] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 04/19/2023] Open
Abstract
Saccharomyces cerevisiae DNA polymerase IV (Pol4) like its homolog, human DNA polymerase lambda (Polλ), is involved in Non-Homologous End-Joining and Microhomology-Mediated Repair. Using genetic analysis, we identified an additional role of Pol4 also in homology-directed DNA repair, specifically in Rad52-dependent/Rad51-independent direct-repeat recombination. Our results reveal that the requirement for Pol4 in repeat recombination was suppressed by the absence of Rad51, suggesting that Pol4 counteracts the Rad51 inhibition of Rad52-mediated repeat recombination events. Using purified proteins and model substrates, we reconstituted in vitro reactions emulating DNA synthesis during direct-repeat recombination and show that Rad51 directly inhibits Polδ DNA synthesis. Interestingly, although Pol4 was not capable of performing extensive DNA synthesis by itself, it aided Polδ in overcoming the DNA synthesis inhibition by Rad51. In addition, Pol4 dependency and stimulation of Polδ DNA synthesis in the presence of Rad51 occurred in reactions containing Rad52 and RPA where DNA strand-annealing was necessary. Mechanistically, yeast Pol4 displaces Rad51 from ssDNA independent of DNA synthesis. Together our in vitro and in vivo data suggest that Rad51 suppresses Rad52-dependent/Rad51-independent direct-repeat recombination by binding to the primer-template and that Rad51 removal by Pol4 is critical for strand-annealing dependent DNA synthesis.
Collapse
Affiliation(s)
- Paula G Cerqueira
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Avenue, Davis, CA 95616-8665, USA
| | - Damon Meyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Avenue, Davis, CA 95616-8665, USA
| | - Lilin Zhang
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Avenue, Davis, CA 95616-8665, USA
| | - Benjamin Mallory
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Avenue, Davis, CA 95616-8665, USA
| | - Jie Liu
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Avenue, Davis, CA 95616-8665, USA
| | - Becky Xu Hua Fu
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Avenue, Davis, CA 95616-8665, USA
| | - Xiaoping Zhang
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Avenue, Davis, CA 95616-8665, USA
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Avenue, Davis, CA 95616-8665, USA
- Department of Molecular and Cellular Biology, University of California, Davis, One Shields Avenue, Davis, CA 95616-8665, USA
| |
Collapse
|
6
|
Shaltz S, Jinks-Robertson S. Genetic control of the error-prone repair of a chromosomal double-strand break with 5' overhangs in yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.04.539391. [PMID: 37205473 PMCID: PMC10187297 DOI: 10.1101/2023.05.04.539391] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A targeted double-strand break introduced into the genome of Saccharomyces cerevisiae is repaired by the relatively error-prone nonhomologous-end joining (NHEJ) pathway when homologous recombination is not an option. A ZFN cleavage site was inserted out-of-frame into the LYS2 locus of a haploid yeast strain to study the genetic control of NHEJ when the ends contain 5' overhangs. Repair events that destroyed the cleavage site were identified either as Lys + colonies on selective medium or as surviving colonies on rich medium. Junction sequences in Lys + events solely reflected NHEJ and were influenced by the nuclease activity of Mre11 as well as by the presence/absence of the NHEJ-specific polymerase Pol4 and the translesion-synthesis DNA polymerases Pol σ and Pol 11. Although most NHEJ events were dependent on Pol4, a 29-bp deletion with endpoints in 3-bp repeats was an exception. The Pol4-independent deletion required TLS polymerases as well as the exonuclease activity of the replicative Pol DNA polymerase. Survivors were equally split between NHEJ events and 1 kb or 11 kb deletions that reflected microhomology-mediated end joining (MMEJ). MMEJ events required the processive resection activity of Exo1/Sgs1, but there unexpectedly was no dependence on the Rad1-Rad10 endonuclease for the removal of presumptive 3' tails. Finally, NHEJ was more efficient in non-growing than in growing cells and was most efficient in G0 cells. These studies provide novel insight into the flexibility and complexity of error-prone DSB repair in yeast.
Collapse
Affiliation(s)
- Samantha Shaltz
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710
| |
Collapse
|
7
|
Schusterbauer V, Fischer JE, Gangl S, Schenzle L, Rinnofner C, Geier M, Sailer C, Glieder A, Thallinger GG. Whole Genome Sequencing Analysis of Effects of CRISPR/Cas9 in Komagataella phaffii: A Budding Yeast in Distress. J Fungi (Basel) 2022; 8:jof8100992. [PMID: 36294556 PMCID: PMC9605565 DOI: 10.3390/jof8100992] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
The industrially important non-conventional yeast Komagataella phaffii suffers from low rates of homologous recombination, making site specific genetic engineering tedious. Therefore, genome editing using CRISPR/Cas represents a simple and efficient alternative. To characterize on- and off-target mutations caused by CRISPR/Cas9 followed by non-homologous end joining repair, we chose a diverse set of CRISPR/Cas targets and conducted whole genome sequencing on 146 CRISPR/Cas9 engineered single colonies. We compared the outcomes of single target CRISPR transformations to double target experiments. Furthermore, we examined the extent of possible large deletions by targeting a large genomic region, which is likely to be non-essential. The analysis of on-target mutations showed an unexpectedly high number of large deletions and chromosomal rearrangements at the CRISPR target loci. We also observed an increase of on-target structural variants in double target experiments as compared to single target experiments. Targeting of two loci within a putatively non-essential region led to a truncation of chromosome 3 at the target locus in multiple cases, causing the deletion of 20 genes and several ribosomal DNA repeats. The identified de novo off-target mutations were rare and randomly distributed, with no apparent connection to unspecific CRISPR/Cas9 off-target binding sites.
Collapse
Affiliation(s)
- Veronika Schusterbauer
- bisy GmbH, Wuenschendorf 292, 8200 Hofstaetten, Austria
- Institute of Biomedical Imaging, Graz University of Technology, Stremayrgasse 16, 8010 Graz, Austria
| | | | - Sarah Gangl
- bisy GmbH, Wuenschendorf 292, 8200 Hofstaetten, Austria
| | - Lisa Schenzle
- bisy GmbH, Wuenschendorf 292, 8200 Hofstaetten, Austria
| | | | - Martina Geier
- bisy GmbH, Wuenschendorf 292, 8200 Hofstaetten, Austria
| | - Christian Sailer
- Institute of Biomedical Informatics, Graz University of Technology, Stremayrgasse 16, 8010 Graz, Austria
| | - Anton Glieder
- bisy GmbH, Wuenschendorf 292, 8200 Hofstaetten, Austria
| | - Gerhard G. Thallinger
- Institute of Biomedical Informatics, Graz University of Technology, Stremayrgasse 16, 8010 Graz, Austria
- OMICS Center Graz, BioTechMed Graz, Stiftingtalstraße 24, 8010 Graz, Austria
- Correspondence: ; Tel.: +43-316-873-5343
| |
Collapse
|
8
|
Shaltz S, Jinks-Robertson S. Mutagenic repair of a ZFN-induced double-strand break in yeast: Effects of cleavage site sequence and spacer size. DNA Repair (Amst) 2021; 108:103228. [PMID: 34601383 DOI: 10.1016/j.dnarep.2021.103228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/17/2021] [Accepted: 09/14/2021] [Indexed: 11/27/2022]
Abstract
Double-strand breaks are repaired by error-free homologous recombination or by relatively error-prone pathways that directly join broken ends. Both types of repair have been extensively studied in Saccharomyces cerevisiae using enzymes HO or I-SceI, which create breaks with 4-nt 3' overhangs. In the current study, a galactose-regulated zinc-finger nuclease (ZFN) designed to cleave the Drosophila rosy locus was used to generate breaks with 4-nt 5' overhangs at out-of-frame cleavage sites inserted into the yeast LYS2 gene. Mutagenic repair was examined following selection of prototrophs on lysine-deficient medium containing galactose or surviving colonies on galactose-containing rich medium. Following cleavage of the original rosy spacer (ACGAAT), most Lys+ colonies contained 1- or 4-bp insertions at the cleavage site while most survivors had either a 2-bp insertion or a large deletion. Small insertions reflected nonhomologous end joining (NHEJ) and large deletions were the product of microhomology-mediated end joining (MMEJ). Changing the original ACGAAT spacer to either AGCAAT, ACGCGT or CTATTA altered the molecular features of NHEJ events as well as their frequency relative to MMEJ. Altering the optimal 6-bp spacer size between the zinc-finger protein binding sites to 5 bp or 7 bp eliminated the effect of continuous ZFN expression on survival, but Lys+ prototrophs were still generated. Analysis of Lys+ revertants after cleavage of the 5-bp spacer indicated that both the position and spacing of ZFN-generated nicks were variable. Results provide insight into effects of overhang sequence on mutagenic outcomes and demonstrate ZFN cleavage of 5- or 7-bp spacers in vivo.
Collapse
Affiliation(s)
- Samantha Shaltz
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
9
|
The PHP domain of PolX from Staphylococcus aureus aids high fidelity DNA synthesis through the removal of misincorporated deoxyribo-, ribo- and oxidized nucleotides. Sci Rep 2021; 11:4178. [PMID: 33603016 PMCID: PMC7893174 DOI: 10.1038/s41598-021-83498-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 01/27/2021] [Indexed: 01/31/2023] Open
Abstract
The X family is one of the eight families of DNA polymerases (dPols) and members of this family are known to participate in the later stages of Base Excision Repair. Many prokaryotic members of this family possess a Polymerase and Histidinol Phosphatase (PHP) domain at their C-termini. The PHP domain has been shown to possess 3'-5' exonuclease activity and may represent the proofreading function in these dPols. PolX from Staphylococcus aureus also possesses the PHP domain at the C-terminus, and we show that this domain has an intrinsic Mn2+ dependent 3'-5' exonuclease capable of removing misincorporated dNMPs from the primer. The misincorporation of oxidized nucleotides such as 8oxodGTP and rNTPs are known to be pro-mutagenic and can lead to genomic instability. Here, we show that the PHP domain aids DNA replication by the removal of misincorporated oxidized nucleotides and rNMPs. Overall, our study shows that the proofreading activity of the PHP domain plays a critical role in maintaining genomic integrity and stability. The exonuclease activity of this enzyme can, therefore, be the target of therapeutic intervention to combat infection by methicillin-resistant-Staphylococcus-aureus.
Collapse
|
10
|
Wu ZJ, Liu JC, Man X, Gu X, Li TY, Cai C, He MH, Shao Y, Lu N, Xue X, Qin Z, Zhou JQ. Cdc13 is predominant over Stn1 and Ten1 in preventing chromosome end fusions. eLife 2020; 9:53144. [PMID: 32755541 PMCID: PMC7406354 DOI: 10.7554/elife.53144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 06/12/2020] [Indexed: 12/16/2022] Open
Abstract
Telomeres define the natural ends of eukaryotic chromosomes and are crucial for chromosomal stability. The budding yeast Cdc13, Stn1 and Ten1 proteins form a heterotrimeric complex, and the inactivation of any of its subunits leads to a uniformly lethal phenotype due to telomere deprotection. Although Cdc13, Stn1 and Ten1 seem to belong to an epistasis group, it remains unclear whether they function differently in telomere protection. Here, we employed the single-linear-chromosome yeast SY14, and surprisingly found that the deletion of CDC13 leads to telomere erosion and intrachromosome end-to-end fusion, which depends on Rad52 but not Yku. Interestingly, the emergence frequency of survivors in the SY14 cdc13Δ mutant was ~29 fold higher than that in either the stn1Δ or ten1Δ mutant, demonstrating a predominant role of Cdc13 in inhibiting telomere fusion. Chromosomal fusion readily occurred in the telomerase-null SY14 strain, further verifying the default role of intact telomeres in inhibiting chromosome fusion.
Collapse
Affiliation(s)
- Zhi-Jing Wu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Jia-Cheng Liu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Xin Man
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Xin Gu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Ting-Yi Li
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Chen Cai
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ming-Hong He
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Yangyang Shao
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Ning Lu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaoli Xue
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Zhongjun Qin
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Jin-Qiu Zhou
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
11
|
Xia W, Ci S, Li M, Wang M, Dianov GL, Ma Z, Li L, Hua K, Alagamuthu KK, Qing L, Luo L, Edick AM, Liu L, Hu Z, He L, Pan F, Guo Z. Two-way crosstalk between BER and c-NHEJ repair pathway is mediated by Pol-β and Ku70. FASEB J 2019; 33:11668-11681. [PMID: 31348687 PMCID: PMC6902736 DOI: 10.1096/fj.201900308r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 07/01/2019] [Indexed: 11/11/2022]
Abstract
Multiple DNA repair pathways may be involved in the removal of the same DNA lesion caused by endogenous or exogenous agents. Although distinct DNA repair machinery fulfill overlapping roles in the repair of DNA lesions, the mechanisms coordinating different pathways have not been investigated in detail. Here, we show that Ku70, a core protein of nonhomologous end-joining (NHEJ) repair pathway, can directly interact with DNA polymerase-β (Pol-β), a central player in the DNA base excision repair (BER), and this physical complex not only promotes the polymerase activity of Pol-β and BER efficiency but also enhances the classic NHEJ repair. Moreover, we find that DNA damages caused by methyl methanesulfonate (MMS) or etoposide promote the formation of Ku70-Pol-β complexes at the repair foci. Furthermore, suppression of endogenous Ku70 expression by small interfering RNA reduces BER efficiency and leads to higher sensitivity to MMS and accumulation of the DNA strand breaks. Similarly, Pol-β knockdown impairs total-NHEJ capacity but only has a slight influence on alternative NHEJ. These results suggest that Pol-β and Ku70 coordinate 2-way crosstalk between the BER and NHEJ pathways.-Xia, W., Ci, S., Li, M., Wang, M., Dianov, G. L., Ma, Z., Li, L., Hua, K., Alagamuthu, K. K., Qing, L., Luo, L., Edick, A. M., Liu, L., Hu, Z., He, L., Pan, F., Guo, Z. Two-way crosstalk between BER and c-NHEJ repair pathway is mediated by Pol-β and Ku70.
Collapse
Affiliation(s)
- Wen Xia
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shusheng Ci
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Menghan Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Meina Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Grigory L. Dianov
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russian Federation
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Zhuang Ma
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Lulu Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ke Hua
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Karthick Kumar Alagamuthu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Lihong Qing
- The Seventh People’s Hospital, Changzhou, China
| | - Libo Luo
- The Seventh People’s Hospital, Changzhou, China
| | - Ashlin M. Edick
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada; and
| | - Lingjie Liu
- College of Life Science, Southern University of Science and Technology, Shenzhen, China
| | - Zhigang Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Lingfeng He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Feiyan Pan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
12
|
Ray S, Breuer G, DeVeaux M, Zelterman D, Bindra R, Sweasy JB. DNA polymerase beta participates in DNA End-joining. Nucleic Acids Res 2019; 46:242-255. [PMID: 29161447 PMCID: PMC5758893 DOI: 10.1093/nar/gkx1147] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 10/31/2017] [Indexed: 12/21/2022] Open
Abstract
DNA double strand breaks (DSBs) are one of the most deleterious lesions and if left unrepaired, they lead to cell death, genomic instability and carcinogenesis. Cells combat DSBs by two pathways: homologous recombination (HR) and non-homologous end-joining (NHEJ), wherein the two DNA ends are re-joined. Recently a back-up NHEJ pathway has been reported and is referred to as alternative NHEJ (aNHEJ), which joins ends but results in deletions and insertions. NHEJ requires processing enzymes including nucleases and polymerases, although the roles of these enzymes are poorly understood. Emerging evidence indicates that X family DNA polymerases lambda (Pol λ) and mu (Pol μ) promote DNA end-joining. Here, we show that DNA polymerase beta (Pol β), another member of the X family of DNA polymerases, plays a role in aNHEJ. In the absence of DNA Pol β, fewer small deletions are observed. In addition, depletion of Pol β results in cellular sensitivity to bleomycin and DNA protein kinase catalytic subunit inhibitors due to defective repair of DSBs. In summary, our results indicate that Pol β in functions in aNHEJ and provide mechanistic insight into its role in this process.
Collapse
Affiliation(s)
- Sreerupa Ray
- Department of Therapeutic Radiology, School of Public Health, Yale University School of Medicine, New Haven, CT 06520-8034, USA
| | - Gregory Breuer
- Department of Therapeutic Radiology, School of Public Health, Yale University School of Medicine, New Haven, CT 06520-8034, USA.,Department of Pathology, School of Public Health, Yale University School of Medicine, New Haven, CT 06520-8034, USA
| | - Michelle DeVeaux
- School of Public Health, Yale University School of Medicine, New Haven, CT 06520-8034, USA
| | - Daniel Zelterman
- School of Public Health, Yale University School of Medicine, New Haven, CT 06520-8034, USA
| | - Ranjit Bindra
- Department of Therapeutic Radiology, School of Public Health, Yale University School of Medicine, New Haven, CT 06520-8034, USA.,Department of Pathology, School of Public Health, Yale University School of Medicine, New Haven, CT 06520-8034, USA
| | - Joann B Sweasy
- Department of Therapeutic Radiology, School of Public Health, Yale University School of Medicine, New Haven, CT 06520-8034, USA.,Department of Genetics, School of Public Health, Yale University School of Medicine, New Haven, CT 06520-8034, USA
| |
Collapse
|
13
|
Li C, Wong JTY. DNA Damage Response Pathways in Dinoflagellates. Microorganisms 2019; 7:E191. [PMID: 31284474 PMCID: PMC6680887 DOI: 10.3390/microorganisms7070191] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/29/2019] [Accepted: 07/01/2019] [Indexed: 12/17/2022] Open
Abstract
Dinoflagellates are a general group of phytoplankton, ubiquitous in aquatic environments. Most dinoflagellates are non-obligate autotrophs, subjected to potential physical and chemical DNA-damaging agents, including UV irradiation, in the euphotic zone. Delay of cell cycles by irradiation, as part of DNA damage responses (DDRs), could potentially lead to growth inhibition, contributing to major errors in the estimation of primary productivity and interpretations of photo-inhibition. Their liquid crystalline chromosomes (LCCs) have large amount of abnormal bases, restricted placement of coding sequences at the chromosomes periphery, and tandem repeat-encoded genes. These chromosome characteristics, their large genome sizes, as well as the lack of architectural nucleosomes, likely contribute to possible differential responses to DNA damage agents. In this study, we sought potential dinoflagellate orthologues of eukaryotic DNA damage repair pathways, and the linking pathway with cell-cycle control in three dinoflagellate species. It appeared that major orthologues in photoreactivation, base excision repair, nucleotide excision repair, mismatch repair, double-strand break repair and homologous recombination repair are well represented in dinoflagellate genomes. Future studies should address possible differential DNA damage responses of dinoflagellates over other planktonic groups, especially in relation to possible shift of life-cycle transitions in responses to UV irradiation. This may have a potential role in the persistence of dinoflagellate red tides with the advent of climatic change.
Collapse
Affiliation(s)
- Chongping Li
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China.
- Division of Life Science, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China.
| | - Joseph Tin Yum Wong
- Division of Life Science, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
14
|
Frequency of DNA end joining in trans is not determined by the predamage spatial proximity of double-strand breaks in yeast. Proc Natl Acad Sci U S A 2019; 116:9481-9490. [PMID: 31019070 DOI: 10.1073/pnas.1818595116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
DNA double-strand breaks (DSBs) are serious genomic insults that can lead to chromosomal rearrangements if repaired incorrectly. To gain insight into the nuclear mechanisms contributing to these rearrangements, we developed an assay in yeast to measure cis (same site) vs. trans (different site) repair for the majority process of precise nonhomologous end joining (NHEJ). In the assay, the HO endonuclease gene is placed between two HO cut sites such that HO expression is self-terminated upon induction. We further placed an additional cut site in various genomic loci such that NHEJ in trans led to expression of a LEU2 reporter gene. Consistent with prior reports, cis NHEJ was more efficient than trans NHEJ. However, unlike homologous recombination, where spatial distance between a single DSB and donor locus was previously shown to correlate with repair efficiency, trans NHEJ frequency remained essentially constant regardless of the position of the two DSB loci, even when they were on the same chromosome or when two trans repair events were put in competition. Repair of similar DSBs via single-strand annealing of short terminal direct repeats showed substantially higher repair efficiency and trans repair frequency, but still without a strong correlation of trans repair to genomic position. Our results support a model in which yeast cells mobilize, and perhaps compartmentalize, multiple DSBs in a manner that no longer reflects the predamage position of two broken loci.
Collapse
|
15
|
Ku DNA End-Binding Activity Promotes Repair Fidelity and Influences End-Processing During Nonhomologous End-Joining in Saccharomyces cerevisiae. Genetics 2018; 209:115-128. [PMID: 29500182 DOI: 10.1534/genetics.117.300672] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 02/25/2018] [Indexed: 12/21/2022] Open
Abstract
The Ku heterodimer acts centrally in nonhomologous end-joining (NHEJ) of DNA double-strand breaks (DSB). Saccharomyces cerevisiae Ku, like mammalian Ku, binds and recruits NHEJ factors to DSB ends. Consequently, NHEJ is virtually absent in yeast Ku null (yku70∆ or yku80∆) strains. Previously, we unexpectedly observed imprecise NHEJ proficiency in a yeast Ku mutant with impaired DNA end-binding (DEB). However, how DEB impairment supported imprecise NHEJ was unknown. Here, we found imprecise NHEJ proficiency to be a feature of a panel of DEB-impaired Ku mutants and that DEB impairment resulted in a deficiency in precise NHEJ. These results suggest that DEB-impaired Ku specifically promotes error-prone NHEJ. Epistasis analysis showed that classical NHEJ factors, as well as novel and previously characterized NHEJ-specific residues of Ku, are required for the distinct error-prone repair in a Ku DEB mutant. However, sequencing of repair junctions revealed that imprecise repair in Ku DEB mutants was almost exclusively characterized by small deletions, in contrast to the majority of insertions that define imprecise repair in wild-type strains. Notably, while sequencing indicated a lack of Pol4-dependent insertions at the site of repair, Pol2 exonuclease activity, which mediates small deletions in NHEJ, contributed to imprecise NHEJ in a Ku DEB mutant. The deletions were smaller than in Ku-independent microhomology-mediated end-joining (MMEJ) and were neither promoted by Mre11 nuclease activity nor Sae2 Thus, the quality of Ku's engagement at the DNA end influences end-processing during NHEJ and DEB impairment unmasks a Ku-dependent error-prone pathway of end-joining distinct from MMEJ.
Collapse
|
16
|
Li J, Summerlin M, Nitiss KC, Nitiss JL, Hanakahi LA. TDP1 is required for efficient non-homologous end joining in human cells. DNA Repair (Amst) 2017; 60:40-49. [PMID: 29078113 DOI: 10.1016/j.dnarep.2017.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 11/29/2022]
Abstract
Tyrosyl-DNA phosphodiesterase 1 (TDP1) can remove a wide variety of 3' and 5' terminal DNA adducts. Genetic studies in yeast identified TDP1 as a regulator of non-homologous end joining (NHEJ) fidelity in the repair of double-strand breaks (DSBs) lacking terminal adducts. In this communication, we show that TDP1 plays an important role in joining cohesive DSBs in human cells. To investigate the role of TDP1 in NHEJ in live human cells we used CRISPR/cas9 to produce TDP1-knockout (TDP1-KO) HEK-293 cells. As expected, human TDP1-KO cells were highly sensitive to topoisomerase poisons and ionizing radiation. Using a chromosomally-integrated NHEJ reporter substrate to compare end joining between wild type and TDP1-KO cells, we found that TDP1-KO cells have a 5-fold reduced ability to repair I-SceI-generated DSBs. Extracts prepared from TDP1-KO cells had reduced NHEJ activity in vitro, as compared to extracts from wild type cells. Analysis of end-joining junctions showed that TDP1 deficiency reduced end-joining fidelity, with a significant increase in insertion events, similar to previous observations in yeast. It has been reported that phosphorylation of TDP1 serine 81 (TDP1-S81) by ATM and DNA-PK stabilizes TDP1 and recruits TDP1 to sites of DNA damage. We found that end joining in TDP1-KO cells was partially restored by the non-phosphorylatable mutant TDP1-S81A, but not by the phosphomimetic TDP1-S81E. We previously reported that TDP1 physically interacted with XLF. In this study, we found that XLF binding by TDP1 was reduced 2-fold by the S81A mutation, and 10-fold by the S81E phosphomimetic mutation. Our results demonstrate a novel role for TDP1 in NHEJ in human cells. We hypothesize that TDP1 participation in human NHEJ is mediated by interaction with XLF, and that TDP1-XLF interactions and subsequent NHEJ events are regulated by phosphorylation of TDP1-S81.
Collapse
Affiliation(s)
- Jing Li
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois, 1601 Parkview Ave. Rockford, Chicago, IL, 61107, United States
| | - Matthew Summerlin
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois, 1601 Parkview Ave. Rockford, Chicago, IL, 61107, United States
| | - Karin C Nitiss
- Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, 1601 Parkview Ave. Rockford, Chicago, IL, 61107, United States
| | - John L Nitiss
- Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, 1601 Parkview Ave. Rockford, Chicago, IL, 61107, United States
| | - Leslyn A Hanakahi
- Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, 1601 Parkview Ave. Rockford, Chicago, IL, 61107, United States.
| |
Collapse
|
17
|
Sastre-Moreno G, Pryor JM, Díaz-Talavera A, Ruiz JF, Ramsden DA, Blanco L. Polμ tumor variants decrease the efficiency and accuracy of NHEJ. Nucleic Acids Res 2017; 45:10018-10031. [PMID: 28973441 PMCID: PMC5622330 DOI: 10.1093/nar/gkx625] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/03/2017] [Accepted: 07/12/2017] [Indexed: 11/14/2022] Open
Abstract
The non homologous end-joining (NHEJ) pathway of double-strand break (DSB) repair often requires DNA synthesis to fill the gaps generated upon alignment of the broken ends, a complex task performed in human cells by two specialized DNA polymerases, Polλ and Polμ. It is now well established that Polμ is the one adapted to repair DSBs with non-complementary ends, the most challenging scenario, although the structural basis and physiological implications of this adaptation are not fully understood. Here, we demonstrate that two human Polμ point mutations, G174S and R175H, previously identified in two different tumor samples and affecting two adjacent residues, limit the efficiency of accurate NHEJ by Polμ in vitro and in vivo. Moreover, we show that this limitation is the consequence of a decreased template dependency during NHEJ, which renders the error-rate of the mutants higher due to the ability of Polμ to randomly incorporate nucleotides at DSBs. These results highlight the relevance of the 8 kDa domain of Polμ for accurate and efficient NHEJ, but also its contribution to the error-prone behavior of Polμ at 2-nt gaps. This work provides the first demonstration that mutations affecting Polμ identified in tumors can alter the efficiency and fidelity of NHEJ.
Collapse
Affiliation(s)
- Guillermo Sastre-Moreno
- Centro de Biología Molecular ‘Severo Ochoa’, Universidad Autónoma de Madrid/CSIC, Madrid, Spain
| | - John M. Pryor
- Department of Biochemistry and Biophysics and Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Alberto Díaz-Talavera
- Centro de Biología Molecular ‘Severo Ochoa’, Universidad Autónoma de Madrid/CSIC, Madrid, Spain
| | - José F. Ruiz
- Departamento Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, Sevilla, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla/CSIC, Sevilla, Spain
| | - Dale A. Ramsden
- Department of Biochemistry and Biophysics and Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Luis Blanco
- Centro de Biología Molecular ‘Severo Ochoa’, Universidad Autónoma de Madrid/CSIC, Madrid, Spain
| |
Collapse
|
18
|
Seol JH, Shim EY, Lee SE. Microhomology-mediated end joining: Good, bad and ugly. Mutat Res 2017; 809:81-87. [PMID: 28754468 DOI: 10.1016/j.mrfmmm.2017.07.002] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/21/2017] [Accepted: 07/03/2017] [Indexed: 01/06/2023]
Abstract
DNA double-strand breaks (DSBs) are induced by a variety of genotoxic agents, including ionizing radiation and chemotherapy drugs for treating cancers. The elimination of DSBs proceeds via distinctive error-free and error-prone pathways. Repair by homologous recombination (HR) is largely error-free and mediated by RAD51/BRCA2 gene products. Classical non-homologous end joining (C-NHEJ) requires the Ku heterodimer and can efficiently rejoin breaks, with occasional loss or gain of DNA information. Recently, evidence has unveiled another DNA end-joining mechanism that is independent of recombination factors and Ku proteins, termed alternative non-homologous end joining (A-NHEJ). While A-NHEJ-mediated repair does not require homology, in a subtype of A-NHEJ, DSB breaks are sealed by microhomology (MH)-mediated base-pairing of DNA single strands, followed by nucleolytic trimming of DNA flaps, DNA gap filling, and DNA ligation, yielding products that are always associated with DNA deletion. This highly error-prone DSB repair pathway is termed microhomology-mediated end joining (MMEJ). Dissecting the mechanisms of MMEJ is of great interest because of its potential to destabilize the genome through gene deletions and chromosomal rearrangements in cells deficient in canonical repair pathways, including HR and C-NHEJ. In addition, evidence now suggests that MMEJ plays a physiological role in normal cells.
Collapse
Affiliation(s)
- Ja-Hwan Seol
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, United States
| | - Eun Yong Shim
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, United States
| | - Sang Eun Lee
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, United States; Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, United States.
| |
Collapse
|
19
|
Wang Y, Chen X, Sun Q, Zang W, Li M, Dong Z, Zhao G. Overexpression of A613T and G462T variants of DNA polymerase β weakens chemotherapy sensitivity in esophageal cancer cell lines. Cancer Cell Int 2016; 16:85. [PMID: 27843412 PMCID: PMC5103481 DOI: 10.1186/s12935-016-0362-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 11/07/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human DNA polymerase β (polβ) is a small monomeric protein that is essential for short-patch base excision repair. It plays an important role in regulating the sensitivity of tumor cells to chemotherapy. METHODS We evaluated the mutation of polβ in a larger cohort of esophageal cancer (EC) patients by RT-PCR and sequencing analysis. The function of the mutation was evaluated by CCK-8, in vivo tumor growth, and flow cytometry assays. RESULTS There are 229 patients with the polβ mutation, 18 patients with A613T mutation, 12 patients with G462T mutation among 538 ECs. Analysis results of survival time showed that EC patients with A613T, G462T mutation had a shorter survival than the others (P < 0.05). CCK-8 and flow cytometry assays results showed the A613T, G462T EC9706 cells were less sensitive than WT cells to 5-FU and cisplatin (P < 0.05). Experiments results in vivo showed that the tumor sizes of A613T and G462T group were larger than WT and polβ-/- groups (P < 0.05). CONCLUSIONS In this study, we discovered A to T point mutation at nucleotide 613 (A613T) and G to T point mutation at nucleotide 462 (G462T) in the polβ gene through 538 EC patients cohort study. A613T and G462T variant of DNA polymerase β weaken chemotherapy sensitivity of esophageal cancer.
Collapse
Affiliation(s)
- Yuanyuan Wang
- School of Basic Medical Sciences, Zhengzhou University, No.100 Kexue Road, 450001 Zhengzhou, Henan China
| | - Xiaonan Chen
- School of Basic Medical Sciences, Zhengzhou University, No.100 Kexue Road, 450001 Zhengzhou, Henan China
| | - Qianqian Sun
- School of Basic Medical Sciences, Zhengzhou University, No.100 Kexue Road, 450001 Zhengzhou, Henan China
| | - Wenqiao Zang
- School of Basic Medical Sciences, Zhengzhou University, No.100 Kexue Road, 450001 Zhengzhou, Henan China
| | - Min Li
- School of Basic Medical Sciences, Zhengzhou University, No.100 Kexue Road, 450001 Zhengzhou, Henan China
| | - Ziming Dong
- School of Basic Medical Sciences, Zhengzhou University, No.100 Kexue Road, 450001 Zhengzhou, Henan China.,Collaborative Innovation Center of Cancer Chemoprevention of Henan, 450001 Zhengzhou, Henan China
| | - Guoqiang Zhao
- School of Basic Medical Sciences, Zhengzhou University, No.100 Kexue Road, 450001 Zhengzhou, Henan China.,Collaborative Innovation Center of Cancer Chemoprevention of Henan, 450001 Zhengzhou, Henan China
| |
Collapse
|
20
|
Emerson CH, Bertuch AA. Consider the workhorse: Nonhomologous end-joining in budding yeast. Biochem Cell Biol 2016; 94:396-406. [PMID: 27240172 DOI: 10.1139/bcb-2016-0001] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
DNA double strand breaks (DSBs) are dangerous sources of genome instability and must be repaired by the cell. Nonhomologous end-joining (NHEJ) is an evolutionarily conserved pathway to repair DSBs by direct ligation of the ends, with no requirement for a homologous template. While NHEJ is the primary DSB repair pathway in mammalian cells, conservation of the core NHEJ factors throughout eukaryotes makes the pathway attractive for study in model organisms. The budding yeast, Saccharomyces cerevisiae, has been used extensively to develop a functional picture of NHEJ. In this review, we will discuss the current understanding of NHEJ in S. cerevisiae. Topics include canonical end-joining, alternative end-joining, and pathway regulation. Particular attention will be paid to the NHEJ mechanism involving core factors, including Yku70/80, Dnl4, Lif1, and Nej1, as well as the various factors implicated in the processing of the broken ends. The relevance of chromatin dynamics to NHEJ will also be discussed. This review illustrates the use of S. cerevisiae as a powerful system to understand the principles of NHEJ, as well as in pioneering the direction of the field.
Collapse
Affiliation(s)
- Charlene H Emerson
- a Graduate Program in Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,b Departments of Pediatrics and Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alison A Bertuch
- b Departments of Pediatrics and Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
21
|
DNA polymerases δ and λ cooperate in repairing double-strand breaks by microhomology-mediated end-joining in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2015; 112:E6907-16. [PMID: 26607450 DOI: 10.1073/pnas.1507833112] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Maintenance of genome stability is carried out by a suite of DNA repair pathways that ensure the repair of damaged DNA and faithful replication of the genome. Of particular importance are the repair pathways, which respond to DNA double-strand breaks (DSBs), and how the efficiency of repair is influenced by sequence homology. In this study, we developed a genetic assay in diploid Saccharomyces cerevisiae cells to analyze DSBs requiring microhomologies for repair, known as microhomology-mediated end-joining (MMEJ). MMEJ repair efficiency increased concomitant with microhomology length and decreased upon introduction of mismatches. The central proteins in homologous recombination (HR), Rad52 and Rad51, suppressed MMEJ in this system, suggesting a competition between HR and MMEJ for the repair of a DSB. Importantly, we found that DNA polymerase delta (Pol δ) is critical for MMEJ, independent of microhomology length and base-pairing continuity. MMEJ recombinants showed evidence that Pol δ proofreading function is active during MMEJ-mediated DSB repair. Furthermore, mutations in Pol δ and DNA polymerase 4 (Pol λ), the DNA polymerase previously implicated in MMEJ, cause a synergistic decrease in MMEJ repair. Pol λ showed faster kinetics associating with MMEJ substrates following DSB induction than Pol δ. The association of Pol δ depended on RAD1, which encodes the flap endonuclease needed to cleave MMEJ intermediates before DNA synthesis. Moreover, Pol δ recruitment was diminished in cells lacking Pol λ. These data suggest cooperative involvement of both polymerases in MMEJ.
Collapse
|
22
|
Yeast DNA ligase IV mutations reveal a nonhomologous end joining function of BRCT1 distinct from XRCC4/Lif1 binding. DNA Repair (Amst) 2015; 24:37-45. [PMID: 25457772 DOI: 10.1016/j.dnarep.2014.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 08/23/2014] [Accepted: 10/02/2014] [Indexed: 02/03/2023]
Abstract
LIG4/Dnl4 is the DNA ligase that (re)joins DNA double-strand breaks (DSBs) via nonhomologous end joining (NHEJ), an activity supported by binding of its tandem BRCT domains to the ligase accessory protein XRCC4/Lif1. We screened a panel of 88 distinct ligase mutants to explore the structure–function relationships of the yeast Dnl4 BRCT domains and inter-BRCT linker in NHEJ. Screen results suggested two distinct classes of BRCT mutations with differential effects on Lif1 interaction as compared to NHEJ completion. Validated constructs confirmed that D800K and GG(868:869)AA mutations, which target the Lif1 binding interface, showed a severely defective Dnl4–Lif1 interaction but a less consistent and often small decrease in NHEJ activity in some assays, as well as nearly normal levels of Dnl4 accumulation at DSBs. In contrast, mutants K742A and KTT(742:744)ATA, which target the β3-α2 region of the first BRCT domain, substantially decreased NHEJ function commensurate with a large defect in Dnl4 recruitment to DSBs, despite a comparatively greater preservation of the Lif1 interaction. Together, these separation-of-function mutants indicate that Dnl4 BRCT1 supports DSB recruitment and NHEJ in a manner distinct from Lif1 binding and reveal a complexity of Dnl4 BRCT domain functions in support of stable DSB association.
Collapse
|
23
|
Wang Y, Sun Q, Guo W, Chen X, Du Y, Zang W, Dong Z, Zhao G. G648C variant of DNA polymerase β sensitizes esophageal cancer to chemotherapy. Tumour Biol 2015; 37:1941-7. [PMID: 26334617 DOI: 10.1007/s13277-015-3978-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 08/24/2015] [Indexed: 11/24/2022] Open
Abstract
Human DNA polymerase β (polβ) is a small monomeric protein that is essential for short-patch base excision repair. It plays an important role in regulating the sensitivity of tumor cells to chemotherapy. We have previously identified a G to C point mutation at nucleotide 648 (G648C) of polβ in esophageal cancer (EC). In this study, we evaluated the mutation of polβ in a larger cohort of EC patients by RT-PCR and sequencing analysis. The function of the mutation was evaluated by MTT, in vivo tumor growth, and flow cytometry assays. The G648C mutation occurred in 15 (3.45 %) of 435 EC patients. In addition, patients with this mutation had significantly longer survival time than those without, following postoperative chemotherapy. Cell lines with G648C mutation in polβ gene were more sensitive to treatment with 5-fluorouracil and cisplatin than those with wild-type polβ. These results suggest that polβ gene with G648C mutation in surgically resected esophagus may be clinically useful for predicting responsiveness to chemotherapy in patients with EC. The polβ gene alteration may serve as a prognostic biomarker for EC.
Collapse
Affiliation(s)
- Yuanyuan Wang
- College of Basic Medical Sciences, Zhengzhou University, No.100 Kexue Road, Zhengzhou, Henan, 450001, China.,Collaborative Innovation Center of Cancer Chemoprevention of Henan, Zhengzhou, Henan, 450001, China
| | - Qianqian Sun
- College of Basic Medical Sciences, Zhengzhou University, No.100 Kexue Road, Zhengzhou, Henan, 450001, China
| | - Wei Guo
- Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xiaonan Chen
- College of Basic Medical Sciences, Zhengzhou University, No.100 Kexue Road, Zhengzhou, Henan, 450001, China
| | - Yuwen Du
- College of Basic Medical Sciences, Zhengzhou University, No.100 Kexue Road, Zhengzhou, Henan, 450001, China
| | - Wenqiao Zang
- College of Basic Medical Sciences, Zhengzhou University, No.100 Kexue Road, Zhengzhou, Henan, 450001, China
| | - Ziming Dong
- College of Basic Medical Sciences, Zhengzhou University, No.100 Kexue Road, Zhengzhou, Henan, 450001, China.,Collaborative Innovation Center of Cancer Chemoprevention of Henan, Zhengzhou, Henan, 450001, China
| | - Guoqiang Zhao
- College of Basic Medical Sciences, Zhengzhou University, No.100 Kexue Road, Zhengzhou, Henan, 450001, China. .,Collaborative Innovation Center of Cancer Chemoprevention of Henan, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
24
|
Char SN, Unger-Wallace E, Frame B, Briggs SA, Main M, Spalding MH, Vollbrecht E, Wang K, Yang B. Heritable site-specific mutagenesis using TALENs in maize. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:1002-10. [PMID: 25644697 DOI: 10.1111/pbi.12344] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/18/2014] [Accepted: 12/22/2014] [Indexed: 05/02/2023]
Abstract
Transcription activator-like effector nuclease (TALEN) technology has been utilized widely for targeted gene mutagenesis, especially for gene inactivation, in many organisms, including agriculturally important plants such as rice, wheat, tomato and barley. This report describes application of this technology to generate heritable genome modifications in maize. TALENs were employed to generate stable, heritable mutations at the maize glossy2 (gl2) locus. Transgenic lines containing mono- or di-allelic mutations were obtained from the maize genotype Hi-II at a frequency of about 10% (nine mutated events in 91 transgenic events). In addition, three of the novel alleles were tested for function in progeny seedlings, where they were able to confer the glossy phenotype. In a majority of the events, the integrated TALEN T-DNA segregated independently from the new loss of function alleles, producing mutated null-segregant progeny in T1 generation. Our results demonstrate that TALENs are an effective tool for genome mutagenesis in maize, empowering the discovery of gene function and the development of trait improvement.
Collapse
Affiliation(s)
- Si Nian Char
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Erica Unger-Wallace
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Bronwyn Frame
- Department of Agronomy, Iowa State University, Ames, IA, USA
| | - Sarah A Briggs
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Marcy Main
- Department of Agronomy, Iowa State University, Ames, IA, USA
| | - Martin H Spalding
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Erik Vollbrecht
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Kan Wang
- Department of Agronomy, Iowa State University, Ames, IA, USA
| | - Bing Yang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
25
|
Galli A, Chan CY, Parfenova L, Cervelli T, Schiestl RH. Requirement of POL3 and POL4 on non-homologous and microhomology-mediated end joining in rad50/xrs2 mutants of Saccharomyces cerevisiae. Mutagenesis 2015; 30:841-9. [PMID: 26122113 DOI: 10.1093/mutage/gev046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Non-homologous end joining (NHEJ) directly joins two broken DNA ends without sequence homology. A distinct pathway called microhomology-mediated end joining (MMEJ) relies on a few base pairs of homology between the recombined DNA. The majority of DNA double-strand breaks caused by endogenous oxygen species or ionizing radiation contain damaged bases that hinder direct religation. End processing is required to remove mismatched nucleotides and fill in gaps during end joining of incompatible ends. POL3 in Saccharomyces cerevisiae encodes polymerase δ that is required for DNA replication and other DNA repair processes. Our previous results have shown that POL3 is involved in gap filling at 3' overhangs in POL4-independent NHEJ. Here, we studied the epistatic interaction between POL3, RAD50, XRS2 and POL4 in NHEJ using a plasmid-based endjoining assay in yeast. We demonstrated that either rad50 or xrs2 mutation is epistatic for end joining of compatible ends in the rad50 pol3-t or xrs2 pol3-t double mutants. However, the pol3-t and rad50 or pol3-t and xrs2 mutants caused an additive decrease in the end-joining efficiency of incompatible ends, suggesting that POL3 and RAD50 or POL3 and XRS2 exhibit independent functions in NHEJ. In the rad50 pol4 mutant, end joining of incompatible ends was not detected. In the rad50 or xrs2 mutants, NHEJ events did not contain any microhomology at the rejoined junctions. The pol3-t mutation restored MMEJ in the rad50 or xrs2 mutant backgrounds. Moreover, we demonstrated that NHEJ of incompatible ends required RAD50 and POL4 more than POL3. In conclusion, POL3 and POL4 have differential functions in NHEJ, independent of the RAD50-mediated repair pathway.
Collapse
Affiliation(s)
| | - Cecilia Y Chan
- Departments of Pathology, Environmental Health, and Radiation Oncology, David Geffen School of Medicine at UCLA and UCLA School of Public Health, 71-295 CHS, 650 Charles E. Young Drive South, Los Angeles, CA, USA
| | - Liubov Parfenova
- Departments of Pathology, Environmental Health, and Radiation Oncology, David Geffen School of Medicine at UCLA and UCLA School of Public Health, 71-295 CHS, 650 Charles E. Young Drive South, Los Angeles, CA, USA
| | | | - Robert H Schiestl
- Departments of Pathology, Environmental Health, and Radiation Oncology, David Geffen School of Medicine at UCLA and UCLA School of Public Health, 71-295 CHS, 650 Charles E. Young Drive South, Los Angeles, CA, USA
| |
Collapse
|
26
|
Krasner DS, Daley JM, Sung P, Niu H. Interplay between Ku and Replication Protein A in the Restriction of Exo1-mediated DNA Break End Resection. J Biol Chem 2015; 290:18806-16. [PMID: 26067273 DOI: 10.1074/jbc.m115.660191] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Indexed: 11/06/2022] Open
Abstract
DNA double-strand breaks can be eliminated via non-homologous end joining or homologous recombination. Non-homologous end joining is initiated by the association of Ku with DNA ends. In contrast, homologous recombination entails nucleolytic resection of the 5'-strands, forming 3'-ssDNA tails that become coated with replication protein A (RPA). Ku restricts end access by the resection nuclease Exo1. It is unclear how partial resection might affect Ku engagement and Exo1 restriction. Here, we addressed these questions in a reconstituted system with yeast proteins. With blunt-ended DNA, Ku protected against Exo1 in a manner that required its DNA end-binding activity. Despite binding poorly to ssDNA, Ku could nonetheless engage a 5'-recessed DNA end with a 40-nucleotide (nt) ssDNA overhang, where it localized to the ssDNA-dsDNA junction and efficiently blocked resection by Exo1. Interestingly, RPA could exclude Ku from a partially resected structure with a 22-nt ssDNA tail and thus restored processing by Exo1. However, at a 40-nt tail, Ku remained stably associated at the ssDNA-dsDNA junction, and RPA simultaneously engaged the ssDNA region. We discuss a model in which the dynamic equilibrium between Ku and RPA binding to a partially resected DNA end influences the timing and efficiency of the resection process.
Collapse
Affiliation(s)
- Danielle S Krasner
- From the Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520 and
| | - James M Daley
- From the Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520 and
| | - Patrick Sung
- From the Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520 and
| | - Hengyao Niu
- the Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana 47405
| |
Collapse
|
27
|
Role of the yeast DNA repair protein Nej1 in end processing during the repair of DNA double strand breaks by non-homologous end joining. DNA Repair (Amst) 2015; 31:1-10. [PMID: 25942368 DOI: 10.1016/j.dnarep.2015.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/06/2015] [Accepted: 04/13/2015] [Indexed: 11/22/2022]
Abstract
DNA double strand breaks (DSB)s often require end processing prior to joining during their repair by non-homologous end joining (NHEJ). Although the yeast proteins, Pol4, a Pol X family DNA polymerase, and Rad27, a nuclease, participate in the end processing reactions of NHEJ, the mechanisms underlying the recruitment of these factors to DSBs are not known. Here we demonstrate that Nej1, a NHEJ factor that interacts with and modulates the activity of the NHEJ DNA ligase complex (Dnl4/Lif1), physically and functionally interacts with both Pol4 and Rad27. Notably, Nej1 and Dnl4/Lif1, which also interacts with both Pol4 and Rad27, independently recruit the end processing factors to in vivo DSBs via mechanisms that are additive rather than redundant. As was observed with Dnl4/Lif1, the activities of both Pol4 and Rad27 were enhanced by the interaction with Nej1. Furthermore, Nej1 increased the joining of incompatible DNA ends in reconstituted reactions containing Pol4, Rad27 and Dnl4/Lif1, indicating that the stimulatory activities of Nej1 and Dnl4/Lif1 are also additive. Together our results reveal novel roles for Nej1 in the recruitment of Pol4 and Rad27 to in vivo DSBs and the coordination of the end processing and ligation reactions of NHEJ.
Collapse
|
28
|
Marcand S. How do telomeres and NHEJ coexist? Mol Cell Oncol 2014; 1:e963438. [PMID: 27308342 PMCID: PMC4904885 DOI: 10.4161/23723548.2014.963438] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 08/01/2014] [Accepted: 08/07/2014] [Indexed: 12/21/2022]
Abstract
The telomeres of eukaryotes are stable open double-strand ends that coexist with nonhomologous end joining (NHEJ), the repair pathway that directly ligates DNA ends generated by double-strand breaks. Since a single end-joining event between 2 telomeres generates a circular chromosome or an unstable dicentric chromosome, NHEJ must be prevented from acting on telomeres. Multiple mechanisms mediated by telomere factors act in synergy to achieve this inhibition.
Collapse
Affiliation(s)
- Stéphane Marcand
- CEA; DSV/IRCM/SIGRR/LTR; Fontenay-aux-roses; France; INSERM UMR 967; Fontenay-aux-roses; France
| |
Collapse
|
29
|
Enhancement of silencing DNA polymerase β on the radiotherapeutic sensitivity of human esophageal carcinoma cell lines. Tumour Biol 2014; 35:10067-74. [PMID: 25015190 DOI: 10.1007/s13277-014-2308-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/03/2014] [Indexed: 10/25/2022] Open
Abstract
Human DNA polymerase β (DNA polymeraseβ (polβ)) is a small monomeric protein which is essential for short-patch base excision repair (BER). It plays an important role in regulating the radiation sensitivity of tumor cells in the course of tumor radiation therapy. In this study, qRT-PCR and Western blot assays were used to quantify polβ expression levels in esophageal carcinoma (EC) cells that were transfected with polβ small interfering RNA (siRNA). Cell counting Kit-8 (CCK-8), flow cytometry, and Hoechst/PI stain assays were conducted to evaluate the effects of silencing polβ on the radiotherapeutic sensitivity of EC cells. We found that the expression levels of polβ in EC cells were significantly decreased after transfection with polβ siRNA. Then, we found that polβ silencing increased the sensitivity of EC cells to radiation therapy. In conclusion, our study paves the way for a better understanding of the mechanism of the polβ gene in DNA repair, and we propose that RNA interference technology will have important applications in gene therapy of EC and other cancers in the future.
Collapse
|
30
|
The fidelity of the ligation step determines how ends are resolved during nonhomologous end joining. Nat Commun 2014; 5:4286. [PMID: 24989324 PMCID: PMC4107315 DOI: 10.1038/ncomms5286] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 06/03/2014] [Indexed: 12/21/2022] Open
Abstract
Nonhomologous end joining (NHEJ) can effectively resolve chromosome breaks despite diverse end structures, but it is unclear how the steps employed for resolution are determined. We sought to address this question by analyzing cellular NHEJ of ends with systematically mispaired and damaged termini. We show NHEJ is uniquely proficient at bypassing subtle terminal mispairs and radiomimetic damage by direct ligation. Nevertheless, bypass ability varies widely, with increases in mispair severity gradually reducing bypass products from 85% to 6%. End-processing by nucleases and polymerases is increased to compensate, though paths with the fewest number of steps to generate a substrate suitable for ligation are favored. Thus, both the frequency and nature of end processing are tailored to meet the needs of the ligation step. We propose a model where the ligase organizes all steps during NHEJ within the stable paired-end complex to limit end processing and associated errors.
Collapse
|
31
|
Pears CJ, Lakin ND. Emerging models for DNA repair: Dictyostelium discoideum as a model for nonhomologous end-joining. DNA Repair (Amst) 2014; 17:121-31. [DOI: 10.1016/j.dnarep.2014.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 01/09/2014] [Accepted: 01/24/2014] [Indexed: 02/03/2023]
|
32
|
Non-homologous end joining often uses microhomology: implications for alternative end joining. DNA Repair (Amst) 2014; 17:74-80. [PMID: 24613510 DOI: 10.1016/j.dnarep.2014.02.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 01/27/2014] [Accepted: 02/10/2014] [Indexed: 11/20/2022]
Abstract
Artemis and PALF (also called APLF) appear to be among the primary nucleases involved in non-homologous end joining (NHEJ) and responsible for most nucleolytic end processing in NHEJ. About 60% of NHEJ events show an alignment of the DNA ends that use 1 or 2bp of microhomology (MH) between the two DNA termini. Thus, MH is a common feature of NHEJ. For most naturally occurring human chromosomal deletions (e.g., after oxidative damage or radiation) and translocations, such as those seen in human neoplasms and as well as inherited chromosomal structural variations, MH usage occurs at a frequency that is typical of NHEJ, and does not suggest major involvement of alternative pathways that require more extensive MH. Though we mainly focus on human NHEJ at double-strand breaks, comparison on these points to other eukaryotes, primarily S. cerevisiae, is informative.
Collapse
|
33
|
Bétermier M, Bertrand P, Lopez BS. Is non-homologous end-joining really an inherently error-prone process? PLoS Genet 2014; 10:e1004086. [PMID: 24453986 PMCID: PMC3894167 DOI: 10.1371/journal.pgen.1004086] [Citation(s) in RCA: 283] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
DNA double-strand breaks (DSBs) are harmful lesions leading to genomic instability or diversity. Non-homologous end-joining (NHEJ) is a prominent DSB repair pathway, which has long been considered to be error-prone. However, recent data have pointed to the intrinsic precision of NHEJ. Three reasons can account for the apparent fallibility of NHEJ: 1) the existence of a highly error-prone alternative end-joining process; 2) the adaptability of canonical C-NHEJ (Ku- and Xrcc4/ligase IV-dependent) to imperfect complementary ends; and 3) the requirement to first process chemically incompatible DNA ends that cannot be ligated directly. Thus, C-NHEJ is conservative but adaptable, and the accuracy of the repair is dictated by the structure of the DNA ends rather than by the C-NHEJ machinery. We present data from different organisms that describe the conservative/versatile properties of C-NHEJ. The advantages of the adaptability/versatility of C-NHEJ are discussed for the development of the immune repertoire and the resistance to ionizing radiation, especially at low doses, and for targeted genome manipulation.
Collapse
Affiliation(s)
- Mireille Bétermier
- CNRS, Centre de Génétique Moléculaire, UPR3404, Gif-sur-Yvette, France
- CNRS, Centre de Recherches de Gif-sur-Yvette, FRC3115, Gif-sur-Yvette, France
- Université Paris-Sud, Département de Biologie, Orsay, France
| | - Pascale Bertrand
- CEA, DSV, Institut de Radiobiologie Moléculaire et Cellulaire, Laboratoire Réparation et Vieillissement, Fontenay-aux-Roses, France
- UMR 8200 CNRS, Villejuif, France
| | - Bernard S. Lopez
- Université Paris-Sud, Département de Biologie, Orsay, France
- UMR 8200 CNRS, Villejuif, France
- Institut de Cancérologie, Gustave Roussy, Villejuif, France
- * E-mail:
| |
Collapse
|
34
|
An C, Beard WA, Chen D, Wilson SH, Makridakis NM. Understanding the loss-of-function in a triple missense mutant of DNA polymerase β found in prostate cancer. Int J Oncol 2013; 43:1131-40. [PMID: 23877444 PMCID: PMC3981039 DOI: 10.3892/ijo.2013.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/07/2013] [Indexed: 11/06/2022] Open
Abstract
Human DNA polymerase (pol) β is essential for base excision repair. We previously reported a triple somatic mutant of pol β (p.P261L/T292A/I298T) found in an early onset prostate tumor. This mutation abolishes polymerase activity, and the wild-type allele was not present in the tumor, indicating a complete deficiency in pol β function. The effect on polymerase activity is unexpected because the point mutations that comprise the triple mutant are not part of the active site. Herein, we demonstrate the mechanism of this loss-of-function. In order to understand the effect of the individual point mutations we biochemically analyzed all single and double mutants that comprise the triple mutant. We found that the p.I298T mutation is responsible for a marked instability of the triple mutant protein at 37°C. At room temperature the triple mutant’s low efficiency is also due to a decrease in the apparent binding affinity for the dNTP substrate, which is due to the p.T292A mutation. Furthermore, the triple mutant displays lower fidelity for transversions in vitro, due to the p.T292A mutation. We conclude that distinct mutations of the triple pol β mutant are responsible for the loss of activity, lower fidelity, and instability observed in vitro.
Collapse
Affiliation(s)
- Changlong An
- Department of Epidemiology and Tulane Cancer Center, Tulane University, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
35
|
Yeast pol4 promotes tel1-regulated chromosomal translocations. PLoS Genet 2013; 9:e1003656. [PMID: 23874240 PMCID: PMC3715435 DOI: 10.1371/journal.pgen.1003656] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 06/05/2013] [Indexed: 01/09/2023] Open
Abstract
DNA double-strand breaks (DSBs) are one of the most dangerous DNA lesions, since their erroneous repair by nonhomologous end-joining (NHEJ) can generate harmful chromosomal rearrangements. PolX DNA polymerases are well suited to extend DSB ends that cannot be directly ligated due to their particular ability to bind to and insert nucleotides at the imperfect template-primer structures formed during NHEJ. Herein, we have devised genetic assays in yeast to induce simultaneous DSBs in different chromosomes in vivo. The repair of these breaks in trans could result in reciprocal chromosomal translocations that were dependent on classical Ku-dependent NHEJ. End-joining events leading to translocations were mainly based on the formation of short base pairing between 3′-overhanging DNA ends coupled to gap-filling DNA synthesis. A major proportion of these events were specifically dependent on yeast DNA polymerase Pol4 activity. In addition, we have discovered that Pol4-Thr540 amino acid residue can be phosphorylated by Tel1/ATM kinase, which could modulate Pol4 activity during NHEJ. Our data suggest that the role of Tel1 in preventing break-induced chromosomal translocations can, to some extent, be due to its stimulating effect on gap-filling activity of Pol4 to repair DSBs in cis. Overall, this work provides further insight to the molecular mechanisms of DSB repair by NHEJ and presents a new perspective to the understanding of how chromosomal translocations are formed in eukaryotic cells. Chromosomal translocations are one of the most common types of genomic rearrangements, which may have a relevant impact on cell development. They are often generated from DNA double-strand breaks that are inaccurately repaired by DNA repair machinery. In this study, we have developed genetic assays in yeast to analyze the molecular mechanisms by which these translocations can arise. We found evidence showing that the classical nonhomologous end-joining repair pathway can be a source of chromosomal translocations, with a relevant role for yeast DNA polymerase Pol4 in such processes. The involvement of Pol4 is based on its efficient gap-filling DNA synthesis activity during the joining of overhanging DNA ends with short sequence complementarity. In addition, we discovered that DNA polymerase Pol4 can be modified during the repair of the breaks via phosphorylation by Tel1 kinase. This phosphorylation seems to have important structural and functional implications in the action of Pol4, which can finally influence the formation of translocations. This work provides a useful tool for deciphering factors and mechanisms involved in DNA double-strand break repair and identifying the molecular pathways leading to chromosomal translocations in eukaryotic cells.
Collapse
|
36
|
Chiruvella KK, Liang Z, Wilson TE. Repair of double-strand breaks by end joining. Cold Spring Harb Perspect Biol 2013; 5:a012757. [PMID: 23637284 DOI: 10.1101/cshperspect.a012757] [Citation(s) in RCA: 279] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonhomologous end joining (NHEJ) refers to a set of genome maintenance pathways in which two DNA double-strand break (DSB) ends are (re)joined by apposition, processing, and ligation without the use of extended homology to guide repair. Canonical NHEJ (c-NHEJ) is a well-defined pathway with clear roles in protecting the integrity of chromosomes when DSBs arise. Recent advances have revealed much about the identity, structure, and function of c-NHEJ proteins, but many questions exist regarding their concerted action in the context of chromatin. Alternative NHEJ (alt-NHEJ) refers to more recently described mechanism(s) that repair DSBs in less-efficient backup reactions. There is great interest in defining alt-NHEJ more precisely, including its regulation relative to c-NHEJ, in light of evidence that alt-NHEJ can execute chromosome rearrangements. Progress toward these goals is reviewed.
Collapse
|
37
|
Ma L, Kazama Y, Inoue H, Abe T, Hatakeyama S, Tanaka S. The type of mutations induced by carbon-ion-beam irradiation of the filamentous fungus Neurospora crassa. Fungal Biol 2013; 117:227-38. [DOI: 10.1016/j.funbio.2013.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 12/24/2012] [Accepted: 01/04/2013] [Indexed: 10/27/2022]
|
38
|
Abstract
The structural features that enable replicative DNA polymerases to synthesize DNA rapidly and accurately also limit their ability to copy damaged DNA. Direct replication of DNA damage is termed translesion synthesis (TLS), a mechanism conserved from bacteria to mammals and executed by an array of specialized DNA polymerases. This chapter examines how these translesion polymerases replicate damaged DNA and how they are regulated to balance their ability to replicate DNA lesions with the risk of undesirable mutagenesis. It also discusses how TLS is co-opted to increase the diversity of the immunoglobulin gene hypermutation and the contribution it makes to the mutations that sculpt the genome of cancer cells.
Collapse
Affiliation(s)
- Julian E Sale
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom.
| |
Collapse
|
39
|
Li Y, Zhao D. Basics of Molecular Biology. ADVANCED TOPICS IN SCIENCE AND TECHNOLOGY IN CHINA 2013. [PMCID: PMC7122053 DOI: 10.1007/978-3-642-34303-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Molecular biology is the study of biology on molecular level. The field overlaps with areas of biology and chemistry, particularly genetics and biochemistry. Molecular biology chiefly concerns itself with understanding the interactions between the various systems of a cell, including the interactions between DNA (deoxyribonucleic acid), RNA (Ribonucleic acid) and protein biosynthesis as well as learning how these interactions are regulated[1].
Collapse
|
40
|
Ramsden DA, Asagoshi K. DNA polymerases in nonhomologous end joining: are there any benefits to standing out from the crowd? ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:741-751. [PMID: 22987211 DOI: 10.1002/em.21725] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 07/17/2012] [Accepted: 07/17/2012] [Indexed: 06/01/2023]
Abstract
Chromosome breaks, often with damaged or missing DNA flanking the break site, are an important threat to genome stability. They are repaired in vertebrates primarily by nonhomologous end joining (NHEJ). NHEJ is unique among the major DNA repair pathways in that a continuous template cannot be used by DNA polymerases to instruct replacement of damaged or lost DNA. Nevertheless, at least 3 out of the 17 mammalian DNA polymerases are specifically employed by NHEJ. Biochemical and structural studies are further revealing how each of the polymerases employed by NHEJ possesses distinct and sophisticated means to overcome the barriers this pathway presents to polymerase activity. Still unclear, though, is how the resulting network of overlapping and nonoverlapping polymerase activities contributes to repair in cells.
Collapse
Affiliation(s)
- Dale A Ramsden
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA.
| | | |
Collapse
|
41
|
Heacock M, Poltoratsky V, Prasad R, Wilson SH. Evidence for abasic site sugar phosphate-mediated cytotoxicity in alkylating agent treated Saccharomyces cerevisiae. PLoS One 2012; 7:e47945. [PMID: 23144716 PMCID: PMC3483300 DOI: 10.1371/journal.pone.0047945] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 09/25/2012] [Indexed: 11/18/2022] Open
Abstract
To better understand alkylating agent-induced cytotoxicity and the base lesion DNA repair process in Saccharomyces cerevisiae, we replaced the RAD27(FEN1) open reading frame (ORF) with the ORF of the bifunctional human repair enzyme DNA polymerase (Pol) β. The aim was to probe the effect of removal of the incised abasic site 5'-sugar phosphate group (i.e., 5'-deoxyribose phosphate or 5'-dRP) in protection against methyl methanesulfonate (MMS)-induced cytotoxicity. In S. cerevisiae, Rad27(Fen1) was suggested to protect against MMS-induced cytotoxicity by excising multinucleotide flaps generated during repair. However, we proposed that the repair intermediate with a blocked 5'-end, i.e., 5'-dRP group, is the actual cytotoxic lesion. In providing a 5'-dRP group removal function mediated by dRP lyase activity of Pol β, the effects of the 5'-dRP group were separated from those of the multinucleotide flap itself. Human Pol β was expressed in S. cerevisiae, and this partially rescued the MMS hypersensitivity observed with rad27(fen1)-null cells. To explore this rescue effect, altered forms of Pol β with site-directed eliminations of either the 5'-dRP lyase or polymerase activity were expressed in rad27(fen1)-null cells. The 5'-dRP lyase, but not the polymerase activity, conferred the resistance to MMS. These results suggest that after MMS exposure, the 5'-dRP group in the repair intermediate is cytotoxic and that Rad27(Fen1) protection against MMS in wild-type cells is due to elimination of the 5'-dRP group.
Collapse
Affiliation(s)
- Michelle Heacock
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | | | | | | |
Collapse
|
42
|
Martin MJ, Juarez R, Blanco L. DNA-binding determinants promoting NHEJ by human Polμ. Nucleic Acids Res 2012; 40:11389-403. [PMID: 23034807 PMCID: PMC3526283 DOI: 10.1093/nar/gks896] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Non-homologous end-joining (NHEJ), the preferred pathway to repair double-strand breaks (DSBs) in higher eukaryotes, relies on a collection of molecular tools to process the broken ends, including specific DNA polymerases. Among them, Polµ is unique as it can catalyze DNA synthesis upon connection of two non-complementary ends. Here, we demonstrate that this capacity is intrinsic to Polµ, not conferred by other NHEJ factors. To understand the molecular determinants of its specific function in NHEJ, the interaction of human Polµ with DNA has been directly visualized by electromobility shift assay and footprinting assays. Stable interaction with a DNA gap requires the presence of a recessive 5′-P, thus orienting the catalytic domain for primer and nucleotide binding. Accordingly, recognition of the 5′-P is crucial to align the two DNA substrates of the NHEJ reaction. Site-directed mutagenesis demonstrates the relevance of three specific residues (Lys249, Arg253 and Arg416) in stabilizing the primer strand during end synapsis, allowing a range of microhomology-induced distortions beneficial for NHEJ. Moreover, our results suggest that the Polµ BRCT domain, thought to be exclusively involved in interaction with NHEJ core factors, has a direct role in binding the DNA region neighbor to the 5′-P, thus boosting Polµ-mediated NHEJ reactions.
Collapse
Affiliation(s)
- Maria Jose Martin
- Department of Genome Dynamics and Function, Centro de Biologia Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain
| | | | | |
Collapse
|
43
|
Li P, Li J, Li M, Dou K, Zhang MJ, Suo F, Du LL. Multiple end joining mechanisms repair a chromosomal DNA break in fission yeast. DNA Repair (Amst) 2011; 11:120-30. [PMID: 22093869 DOI: 10.1016/j.dnarep.2011.10.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Non-homologous end joining (NHEJ) is an important mechanism for repairing DNA double-strand breaks (DSBs). The fission yeast Schizosaccharomyces pombe has a conserved set of NHEJ factors including Ku, DNA ligase IV, Xlf1, and Pol4. Their roles in chromosomal DSB repair have not been directly characterized before. Here we used HO endonuclease to create a specific chromosomal DSB in fission yeast and examined the imprecise end joining events allowing cells to survive the continuous expression of HO. Our analysis showed that cell survival was significantly reduced in mutants defective for Ku, ligase IV, or Xlf1. Using Sanger sequencing and Illumina sequencing, we have characterized in depth the repair junction sequences in HO survivors. In wild type cells the majority of repair events were one-nucleotide insertions dependent on Ku, ligase IV, and Pol4. Our data suggest that fission yeast Pol4 is important for gap filling during NHEJ repair and can extend primers in the absence of terminal base pairing with the templates. In Ku and ligase IV mutants, the survivors mainly resulted from two types of alternative end joining events: one used microhomology flanking the HO site to delete sequences of hundreds to thousands of base pairs, the other rejoined the break using the HO-generated overhangs but also introduced one- or two-nucleotide base substitutions. The chromosomal repair assay we describe here should provide a useful tool for further exploration of the end joining repair mechanisms in fission yeast.
Collapse
Affiliation(s)
- Peng Li
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
44
|
Huefner ND, Mizuno Y, Weil CF, Korf I, Britt AB. Breadth by depth: expanding our understanding of the repair of transposon-induced DNA double strand breaks via deep-sequencing. DNA Repair (Amst) 2011; 10:1023-33. [PMID: 21889425 DOI: 10.1016/j.dnarep.2011.07.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 07/26/2011] [Indexed: 01/20/2023]
Abstract
The transposases of DNA transposable elements catalyze the excision of the element from the host genome, but are not involved in the repair of the resulting double-strand break. To elucidate the role of various host DNA repair and damage response proteins in the repair of the hairpin-ended double strand breaks (DSBs) generated during excision of the maize Ac element in Arabidopsis thaliana, we deep-sequenced hundreds of thousands of somatic excision products from a variety of repair- or response-defective mutants. We find that each of these repair/response defects negatively affects the preservation of the ends, resulting in an enhanced frequency of deletions, insertions, and inversions at the excision site. The spectra of the resulting repair products demonstrate, not unexpectedly, that the canonical nonhomologous end joining (NHEJ) proteins DNA ligase IV and KU70 play an important role in the repair of the lesion generated by Ac excision. Our data also indicate that auxiliary NHEJ repair proteins such as DNA ligase VI and DNA polymerase lambda are routinely involved in the repair of these lesions. Roles for the damage response kinases ATM and ATR in the repair of transposition-induced DSBs are also discussed.
Collapse
Affiliation(s)
- Neil D Huefner
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
45
|
DNA binding proteins: outline of functional classification. Biomol Concepts 2011; 2:293-303. [DOI: 10.1515/bmc.2011.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 05/23/2011] [Indexed: 01/12/2023] Open
Abstract
AbstractDNA-binding proteins composed of DNA-binding domains directly affect genomic functions, mainly by performing transcription, DNA replication or DNA repair. Here, we briefly describe the DNA-binding proteins according to these three major functions. Transcription factors that usually bind to specific sequences of DNA could be classified based on their sequence similarity and the structure of the DNA-binding domains, such as basic, zinc-coordinating, helix-turn-helix domains, etc. Most DNA replication factors do not need a specific sequence of DNA, but instead mainly depend on a DNA structure, with the exception of the origin recognition complex in yeast or Escherichia coli that recognizes the DNA sequences at particular origins. DNA replication includes initiation and elongation. The major DNA-binding proteins involved in these two steps are briefly described. DNA repair proteins bound to DNA depend on the damaged DNA structure. They are classified to base excision repair, DNA mismatch repair, nucleotide excision repair, homologous recombination repair and non-homologous end joining. The major DNA-binding proteins involved in these pathways are briefly described. Histone and high mobility group are two examples of DNA-binding proteins that do not belong to the three categories above and are briefly described. Finally, we warn that the non-specific binding proteins might have an affinity to some non-specific medium materials such as protein A or G beads that are commonly used for immune precipitation, which can easily generate false positive signals while detecting protein-protein interaction; therefore, the results need to be carefully analyzed using positive/negative controls.
Collapse
|
46
|
Li T, Huang S, Zhao X, Wright DA, Carpenter S, Spalding MH, Weeks DP, Yang B. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res 2011; 39:6315-25. [PMID: 21459844 PMCID: PMC3152341 DOI: 10.1093/nar/gkr188] [Citation(s) in RCA: 314] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Revised: 03/16/2011] [Accepted: 03/16/2011] [Indexed: 12/29/2022] Open
Abstract
Recent studies indicate that the DNA recognition domain of transcription activator-like (TAL) effectors can be combined with the nuclease domain of FokI restriction enzyme to produce TAL effector nucleases (TALENs) that, in pairs, bind adjacent DNA target sites and produce double-strand breaks between the target sequences, stimulating non-homologous end-joining and homologous recombination. Here, we exploit the four prevalent TAL repeats and their DNA recognition cipher to develop a 'modular assembly' method for rapid production of designer TALENs (dTALENs) that recognize unique DNA sequence up to 23 bases in any gene. We have used this approach to engineer 10 dTALENs to target specific loci in native yeast chromosomal genes. All dTALENs produced high rates of site-specific gene disruptions and created strains with expected mutant phenotypes. Moreover, dTALENs stimulated high rates (up to 34%) of gene replacement by homologous recombination. Finally, dTALENs caused no detectable cytotoxicity and minimal levels of undesired genetic mutations in the treated yeast strains. These studies expand the realm of verified TALEN activity from cultured human cells to an intact eukaryotic organism and suggest that low-cost, highly dependable dTALENs can assume a significant role for gene modifications of value in human and animal health, agriculture and industry.
Collapse
Affiliation(s)
- Ting Li
- Department of Genetics, Development and Cell Biology, Laurence H. Baker Center for Bioinformatics and Biological Statistics, Department of Animal Science, Iowa State University, Ames, IA 50011 and Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Sheng Huang
- Department of Genetics, Development and Cell Biology, Laurence H. Baker Center for Bioinformatics and Biological Statistics, Department of Animal Science, Iowa State University, Ames, IA 50011 and Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Xuefeng Zhao
- Department of Genetics, Development and Cell Biology, Laurence H. Baker Center for Bioinformatics and Biological Statistics, Department of Animal Science, Iowa State University, Ames, IA 50011 and Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - David A. Wright
- Department of Genetics, Development and Cell Biology, Laurence H. Baker Center for Bioinformatics and Biological Statistics, Department of Animal Science, Iowa State University, Ames, IA 50011 and Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Susan Carpenter
- Department of Genetics, Development and Cell Biology, Laurence H. Baker Center for Bioinformatics and Biological Statistics, Department of Animal Science, Iowa State University, Ames, IA 50011 and Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Martin H. Spalding
- Department of Genetics, Development and Cell Biology, Laurence H. Baker Center for Bioinformatics and Biological Statistics, Department of Animal Science, Iowa State University, Ames, IA 50011 and Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Donald P. Weeks
- Department of Genetics, Development and Cell Biology, Laurence H. Baker Center for Bioinformatics and Biological Statistics, Department of Animal Science, Iowa State University, Ames, IA 50011 and Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Bing Yang
- Department of Genetics, Development and Cell Biology, Laurence H. Baker Center for Bioinformatics and Biological Statistics, Department of Animal Science, Iowa State University, Ames, IA 50011 and Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA
| |
Collapse
|
47
|
Gordon JL, Byrne KP, Wolfe KH. Mechanisms of chromosome number evolution in yeast. PLoS Genet 2011; 7:e1002190. [PMID: 21811419 PMCID: PMC3141009 DOI: 10.1371/journal.pgen.1002190] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 06/03/2011] [Indexed: 12/25/2022] Open
Abstract
The whole-genome duplication (WGD) that occurred during yeast evolution changed the basal number of chromosomes from 8 to 16. However, the number of chromosomes in post-WGD species now ranges between 10 and 16, and the number in non-WGD species (Zygosaccharomyces, Kluyveromyces, Lachancea, and Ashbya) ranges between 6 and 8. To study the mechanism by which chromosome number changes, we traced the ancestry of centromeres and telomeres in each species. We observe only two mechanisms by which the number of chromosomes has decreased, as indicated by the loss of a centromere. The most frequent mechanism, seen 8 times, is telomere-to-telomere fusion between two chromosomes with the concomitant death of one centromere. The other mechanism, seen once, involves the breakage of a chromosome at its centromere, followed by the fusion of the two arms to the telomeres of two other chromosomes. The only mechanism by which chromosome number has increased in these species is WGD. Translocations and inversions have cycled telomere locations, internalizing some previously telomeric genes and creating novel telomeric locations. Comparison of centromere structures shows that the length of the CDEII region is variable between species but uniform within species. We trace the complete rearrangement history of the Lachancea kluyveri genome since its common ancestor with Saccharomyces and propose that its exceptionally low level of rearrangement is a consequence of the loss of the non-homologous end joining (NHEJ) DNA repair pathway in this species. The number of chromosomes in organisms often changes over evolutionary time. To study how the number changes, we compare several related species of yeast that share a common ancestor roughly 150 million years ago and have varying numbers of chromosomes. By inferring ancestral genome structures, we examine the changes in location of centromeres and telomeres, key elements that biologically define chromosomes. Their locations change over time by rearrangements of chromosome segments. By following these rearrangements, we trace an evolutionary path between existing centromeres and telomeres to those in the ancestral genomes, allowing us to identify the specific evolutionary events that caused changes in chromosome number. We show that, in these yeasts, chromosome number has generally decreased over time except for one notable exception: an event in an ancestor of several species where the whole genome was duplicated. Chromosome number reduction occurs by the simultaneous removal of a centromere from a chromosome and fusion of the rest of the chromosome to another that contains a working centromere. This process also results in telomere removal and the movement of genes from the ends of chromosomes to new locations in the middle of chromosomes.
Collapse
Affiliation(s)
- Jonathan L Gordon
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland.
| | | | | |
Collapse
|
48
|
Ramsden DA. Polymerases in nonhomologous end joining: building a bridge over broken chromosomes. Antioxid Redox Signal 2011; 14:2509-19. [PMID: 20649463 PMCID: PMC3113452 DOI: 10.1089/ars.2010.3429] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Repair of double-strand breaks in chromosomal DNA is essential. Unfortunately, a paradigm central to most DNA repair pathways--damaged DNA is replaced by polymerases, by using an intact, undamaged complementary strand as a template--no longer works. The nonhomologous end joining (NHEJ) pathway nevertheless still uses DNA polymerases to help repair double-strand breaks. Bacteria use a member of the archaeo-eukaryal primase superfamily, whereas eukaryotes use multiple members of the polymerase X family. These polymerases can, depending on the biologic context, accurately replace break-associated damage, mitigate loss of flanking DNA, or diversify products of repair. Polymerases specifically implicated in NHEJ are uniquely effective in these roles: relative to canonic polymerases, NHEJ polymerases have been engineered to do more with less.
Collapse
Affiliation(s)
- Dale A Ramsden
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, and Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, NC 27599, USA.
| |
Collapse
|
49
|
An CL, Chen D, Makridakis NM. Systematic biochemical analysis of somatic missense mutations in DNA polymerase β found in prostate cancer reveal alteration of enzymatic function. Hum Mutat 2011; 32:415-23. [PMID: 21305655 DOI: 10.1002/humu.21465] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 01/03/2011] [Indexed: 11/11/2022]
Abstract
DNA polymerase β is essential for short-patch base excision repair. We have previously identified 20 somatic pol β mutations in prostate tumors, many of them missense. In the current article we describe the effect of all of these somatic missense pol β mutations (p.K27N, p.E123K, p.E232K, p.P242R, p.E216K, p.M236L, and the triple mutant p.P261L/T292A/I298T) on the biochemical properties of the polymerase in vitro, following bacterial expression and purification of the respective enzymatic variants. We report that all missense somatic pol β mutations significantly affect enzyme function. Two of the pol β variants reduce catalytic efficiency, while the remaining five missense mutations alter the fidelity of DNA synthesis. Thus, we conclude that a significant proportion (9 out of 26; 35%) of prostate cancer patients have functionally important somatic mutations of pol β. Many of these missense mutations are clonal in the tumors, and/or are associated with loss of heterozygosity and microsatellite instability. These results suggest that interfering with normal polymerase β function may be a frequent mechanism of prostate tumor progression. Furthermore, the availability of detailed structural information for pol β allows understanding of the potential mechanistic effects of these mutants on polymerase function.
Collapse
Affiliation(s)
- Chang Long An
- Department of Epidemiology and Tulane Cancer Center, Tulane University, New Orleans, Louisiana 70112, USA
| | | | | |
Collapse
|
50
|
Ting L, Jun H, Junjie C. RAD18 lives a double life: Its implication in DNA double-strand break repair. DNA Repair (Amst) 2010; 9:1241-8. [DOI: 10.1016/j.dnarep.2010.09.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2010] [Indexed: 11/26/2022]
|