1
|
Molecular network-based analysis of guizhi-shaoyao-zhimu decoction, a TCM herbal formula, for treatment of diabetic peripheral neuropathy. Acta Pharmacol Sin 2015; 36:716-23. [PMID: 25948477 DOI: 10.1038/aps.2015.15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 01/27/2015] [Indexed: 12/30/2022] Open
Abstract
AIM Guizhi-shaoyao-zhimu decoction (GSZ), a traditional Chinese medicine (TCM) herbal formula, has been shown effective in the treatment of diabetic peripheral neuropathy (DPN). In this study, network analysis was performed to decipher the molecular mechanisms of GSZ in the treatment of DPN. METHODS The chemical components of the 3 herbs forming GSZ, ie, Ramulus Cinnamomi (Guizhi), Paeonia lactiflora (Shaoyao) and Rhizoma Anemarrhenae (Zhimu), were searched in Chinese medicine dictionaries, and their target proteins were identified in PubChem. DPN genes were searched in PubMed gene databases. Ingenuity Pathway Analysis (IPA) was used to build the GSZ pharmacological network and DPN molecular network. The canonical pathways between the two networks were compared to decipher the molecular mechanisms of GSZ in the treatment of DPN. RESULTS Sixty-one protein targets for Guizhi, 31 targets for Shaoyao, 47 targets for Zhimu, as well as 23 genes related to DPN were identified and uploaded to IPA. The primary functions of the DPN molecular network were inflammatory response, metabolic disease, cellular assembly and organization. As far as the pharmacological network functions were concerned, Guizhi target proteins were involved in neurological disease, inflammatory disease, cellular growth and proliferation, cell signaling, molecular transport, and nucleic acid metabolism, Shaoyao target proteins were related to neurological disease, inflammatory disease, and Zhimu target proteins focused on cell death and survival, cellular movement, immune cell trafficking, DNA replication, recombination and repair, and cell cycle. In the three-herb combination GSZ, several new network functions were revealed, including the inflammatory response, gene expression, connective tissue development and function, endocrine system disorders, and metabolic disease. The canonical pathway comparison showed that Shaoyao focused on IL-12 signaling and production in macrophages, and Zhimu focused on TNFR2 signaling, death receptor signaling, ILK signaling, IL-17A in gastric cells, IL-6 signaling, IL-8 signaling, the role of JAK1, JAK2, and TYK2 in interferon signaling, IL-9 signaling, HMGB1 signaling, NO production and ROS production in macrophages, whereas GSZ focused aryl hydrocarbon receptor signaling and apoptosis signaling in addition to those pathways induced by Guizhi, Shaoyao and Zhimu. CONCLUSION Although each single herb can affect some DPN-related functions and pathways, GSZ exerts more effects on DPN-related functions and pathways. The effects of GSZ on aryl hydrocarbon receptor signaling and apoptosis signaling pathways may be the key components of its total molecular mechanisms.
Collapse
|
2
|
Nozawa S, Oda H, Akiyama R, Ueda K, Saeki K, Shono S, Maruyama N, Murata A, Tazaki H, Mori A, Momota Y, Azakami D, Sako T, Ishioka K. Decreased gene expressions of insulin signal molecules in canine hyperadrenocorticism. J Vet Med Sci 2014; 76:1177-82. [PMID: 24829079 PMCID: PMC4155204 DOI: 10.1292/jvms.14-0033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hyperadrenocorticism (HAC) is a common endocrine disorder in dogs, in which excess glucocorticoid causes insulin resistance. Disturbance of insulin action may be caused by multiple factors, including transcriptional modulation of insulin signal molecules which lie downstream of insulin binding to insulin receptors. In this study, gene expressions of insulin signal molecules were examined using neutrophils of the HAC dogs (the untreated dogs and the dogs which had been treated with trilostane). Insulin receptor substrate (IRS)-1, IRS-2, phosphatidylinositol 3-kinase (PI3-K), protein kinase B/Akt kinase (Akt)-2 and protein kinase C (PKC)-lambda were analyzed in the HAC dogs and compared with those from normal dogs. The IRS-1 gene expressions decreased by 37% and 35% of the control dogs in the untreated and treated groups, respectively. The IRS-2 gene expressions decreased by 61% and 72%, the PI3-K gene expressions decreased by 47% and 55%, and the Akt-2 gene expressions decreased by 45% and 56% of the control dogs, similarly. Collectively, gene expressions of insulin signal molecules are suppressed in the HAC dogs, which may partially contribute to the induction of insulin resistance.
Collapse
Affiliation(s)
- Satoshi Nozawa
- Laboratory of Biomolecular Chemistry, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 180-8602, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Rensing KL, de Jager SC, Stroes ES, Vos M, Twickler MT, Dallinga-Thie GM, de Vries CJ, Kuiper J, Bot I, von der Thüsen JH. Akt2/LDLr double knockout mice display impaired glucose tolerance and develop more complex atherosclerotic plaques than LDLr knockout mice. Cardiovasc Res 2013; 101:277-87. [DOI: 10.1093/cvr/cvt252] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
4
|
Bochkis IM, Shin S, Kaestner KH. Bile acid-induced inflammatory signaling in mice lacking Foxa2 in the liver leads to activation of mTOR and age-onset obesity. Mol Metab 2013; 2:447-56. [PMID: 24327960 DOI: 10.1016/j.molmet.2013.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 08/12/2013] [Accepted: 08/15/2013] [Indexed: 12/30/2022] Open
Abstract
Cytokine signaling has been connected to regulation of metabolism and energy balance. Numerous cytokine gene expression changes are stimulated by accumulation of bile acids in livers of young Foxa2 liver-conditional null mice. We hypothesized that bile acid-induced inflammation in young Foxa2 mutants, once chronic, affects metabolic homeostasis. We found that loss of Foxa2 in the liver results in a premature aging phenotype, including significant weight gain, reduced food intake, and decreased energy expenditure. We show that Foxa2 antagonizes the mammalian target of rapamycin (mTOR) pathway, resulting in increased hepatic lipogenesis and adiposity. While much prior work has focused on adipose tissue in obesity, we discovered a novel age-onset obesity phenotype in a model where gene deletion occurs only in the liver, underscoring the importance of the role hepatic lipogenesis plays in the development of obesity.
Collapse
Affiliation(s)
- Irina Mikhailovna Bochkis
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
5
|
Fischer-Posovszky P, Tews D, Horenburg S, Debatin KM, Wabitsch M. Differential function of Akt1 and Akt2 in human adipocytes. Mol Cell Endocrinol 2012; 358:135-43. [PMID: 22480544 DOI: 10.1016/j.mce.2012.03.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 03/22/2012] [Accepted: 03/22/2012] [Indexed: 01/01/2023]
Abstract
Adipose tissue mass is determined by both cell size and cell number. Mouse models suggest that Akt isoforms are involved in the determination of fat mass by interfering with preadipocyte-to-adipocyte transition and regulating lipid storage. Here, we took advantage of a lentiviral mediated shRNA approach to study the role of Akt1 and Akt2 in differentiation and metabolism of human SGBS adipocytes. Adipogenic differentiation as measured by lipid accumulation was robustly inhibited in Akt2 deficient cells, whereas it was not affected by knockdown of Akt1. The knockdown of Akt2 caused an almost complete inhibition of preadipocyte proliferation. Furthermore, Akt2 deficient preadipocytes were significantly more sensitive to apoptosis induction by death receptor stimulation compared to Akt1 deficient cells. Both the knockdown of Akt1 or Akt2 equally affected insulin-stimulated lipogenesis as well as the anti-lipolytic effect of insulin. We conclude that Akt2 is indispensable for the regulation of preadipocyte and adipocyte number, whereas Akt1 and Akt2 are equally important for the regulation of insulin-stimulated metabolic pathways in human adipocytes. Recently proposed as an attractive target for the treatment of cancer, modulating Akt2 activity might also be a new molecular strategy to control adipose tissue mass.
Collapse
Affiliation(s)
- Pamela Fischer-Posovszky
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Eythstr. 24, 89075 Ulm, Germany
| | | | | | | | | |
Collapse
|
6
|
Insulin regulates liver metabolism in vivo in the absence of hepatic Akt and Foxo1. Nat Med 2012; 18:388-95. [PMID: 22344295 PMCID: PMC3296881 DOI: 10.1038/nm.2686] [Citation(s) in RCA: 275] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 01/23/2012] [Indexed: 01/08/2023]
Abstract
Considerable data support the idea that Foxo1 drives the liver transcriptional program during fasting and is inhibited by Akt after feeding. Mice with hepatic deletion of Akt1 and Akt2 were glucose intolerant, insulin resistant, and defective in the transcriptional response to feeding in liver. These defects were normalized upon concomitant liver–specific deletion of Foxo1. Surprisingly, in the absence of both Akt and Foxo1, mice adapted appropriately to both the fasted and fed state, and insulin suppressed hepatic glucose production normally. Gene expression analysis revealed that deletion of Akt in liver led to constitutive activation of Foxo1–dependent gene expression, but once again concomitant ablation of Foxo1 restored postprandial regulation, preventing its inhibition of the metabolic response to nutrient intake. These results are inconsistent with the canonical model of hepatic metabolism in which Akt is an obligate intermediate for insulin’s actions. Rather they demonstrate that a major role of hepatic Akt is to restrain Foxo1 activity, and in the absence of Foxo1, Akt is largely dispensable for hepatic metabolic regulation in vivo.
Collapse
|
7
|
Hay N. Akt isoforms and glucose homeostasis - the leptin connection. Trends Endocrinol Metab 2011; 22:66-73. [PMID: 20947368 PMCID: PMC3427792 DOI: 10.1016/j.tem.2010.09.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 09/10/2010] [Accepted: 09/13/2010] [Indexed: 12/31/2022]
Abstract
The serine/threonine kinase Akt, also known as protein kinase B, has been the focus of substantial attention, largely because it is frequently activated in human cancers. However, relatively little is known about the roles of Akt, particularly the individual isoforms of Akt, in glucose homeostasis in vivo. This review summarizes data on the role of Akt isoforms in glucose homeostasis and diabetes. Emphasis is given to the observation that certain combinations of whole-body Akt1 and Akt2 deficiencies reduce circulating levels of leptin and that restoration of leptin levels restores normal glucose homeostasis in diabetic Akt-deficient mice. The significance of these findings, together with recent observations suggesting that leptin emulates insulin action, is also discussed.
Collapse
Affiliation(s)
- Nissim Hay
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
8
|
Leibiger B, Moede T, Uhles S, Barker CJ, Creveaux M, Domin J, Berggren PO, Leibiger IB. Insulin-feedback via PI3K-C2alpha activated PKBalpha/Akt1 is required for glucose-stimulated insulin secretion. FASEB J 2010; 24:1824-37. [PMID: 20061534 DOI: 10.1096/fj.09-148072] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Phosphatidylinositide 3-kinases (PI3Ks) play central roles in insulin signal transduction. While the contribution of class Ia PI3K members has been extensively studied, the role of class II members remains poorly understood. The diverse actions of class II PI3K-C2alpha have been attributed to its lipid product PI(3)P. By applying pharmacological inhibitors, transient overexpression and small-interfering RNA-based knockdown of PI3K and PKB/Akt isoforms, together with PI-lipid profiling and live-cell confocal and total internal reflection fluorescence microscopy, we now demonstrate that in response to insulin, PI3K-C2alpha generates PI(3,4)P(2), which allows the selective activation of PKBalpha/Akt1. Knockdown of PI3K-C2alpha expression and subsequent reduction of PKBalpha/Akt1 activity in the pancreatic beta-cell impaired glucose-stimulated insulin release, at least in part, due to reduced glucokinase expression and increased AS160 activity. Hence, our results identify signal transduction via PI3K-C2alpha as a novel pathway whereby insulin activates PKB/Akt and thus discloses PI3K-C2alpha as a potential drugable target in type 2 diabetes. The high degree of codistribution of PI3K-C2alpha and PKBalpha/Akt1 with insulin receptor B type, but not A type, in the same plasma membrane microdomains lends further support to the concept that selectivity in insulin signaling is achieved by the spatial segregation of signaling events.
Collapse
Affiliation(s)
- Barbara Leibiger
- Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Calvo E, Bolós V, Grande E. Multiple roles and therapeutic implications of Akt signaling in cancer. Onco Targets Ther 2009; 2:135-50. [PMID: 20616901 PMCID: PMC2886325 DOI: 10.2147/ott.s4943] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Indexed: 12/16/2022] Open
Abstract
The prominence of the PI3K-Akt signaling pathway in several tumors indicates a relationship with tumor grade and proliferation. Critical cellular processes are driven through this pathway. More detailed knowledge of the pathogenesis of tumors would enable us to design targeted drugs to block both membrane tyrosine kinase receptors and the intracellular kinases involved in the transmission of the signal. The newly approved molecular inhibitors sunitinib (an inhibitor of vascular endothelial growth factor receptor, platelet-derived growth factor receptor, and other tyrosine kinase receptors), sorafenib (a serine-threonine kinase inhibitor that acts against B-Raf) and temsirolimus (an mTOR inhibitor) shown clinical activity in advanced kidney cancer. Chronic myeloid leukemia has changed its natural history thanks to imatinib and dasatinib, both of which inhibit the intracellular bcr/abl protein derived from the alteration in the Philadelphia chromosome. Intracellular pathways are still important in cancer development and their blockade directly affects outcome. Cross-talk has been observed but is not well understood. Vertical and horizontal pathway blockade are promising anticancer strategies. Indeed, preclinical and early clinical data suggest that combining superficial and intracellular blocking agents can synergize and leverage single-agent activity. The implication of the Akt signaling pathway in cancer is well established and has led to the development of new anticancer agents that block its activation.
Collapse
Affiliation(s)
- Emiliano Calvo
- Centro Integral Oncológico Clara Campal (CIOCC), Madrid. Spain
| | | | | |
Collapse
|
10
|
Artemenko Y, Gagnon A, Sorisky A. Catalytically inactive SHIP2 inhibits proliferation by attenuating PDGF signaling in 3T3-L1 preadipocytes. J Cell Physiol 2008; 218:228-36. [PMID: 18814181 DOI: 10.1002/jcp.21595] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Inadequate proliferation and/or differentiation of preadipocytes may lead to adipose tissue dysfunction characterized by hypertrophied, insulin-resistant adipocytes. Platelet-derived growth factor (PDGF) may alter adipose tissue function by promoting proliferation of preadipocytes. Two principal signaling pathways that regulate proliferation are PI3K/PI(3,4,5)P3/Akt and Shc/Ras/ERK1/2. SH2 domain-containing inositol 5-phosphatase 2 (SHIP2) dephosphorylates PI(3,4,5)P3, and also binds to Shc. Our goal was to determine how SHIP2 affects these PDGF signaling routes. To assess the role of the 5-phosphatase domain, we expressed wild-type or catalytically inactive dominant-negative SHIP2 (P686A-D690A-R691A; PDR/AAA) in 3T3-L1 preadipocytes. Surprisingly, SHIP2 PDR/AAA inhibited proliferation more potently than wild-type SHIP2. After three days of proliferation, phospho-Akt, phospho-ERK1/2, and PDGF receptor (PDGFR) levels were reduced in PDR/AAA-expressing preadipocytes. SHIP2 PDR/AAA interference with PDGFR signaling was demonstrated using imatinib, an inhibitor of PDGFR tyrosine kinase. The anti-proliferative effect of imatinib observed in control preadipocytes was not significant in SHIP2 PDR/AAA-expressing preadipocytes, indicating a pre-existing impairment of PDGFR-dependent mitogenesis in these cells. The inhibition of PDGF-activated mitogenic pathways by SHIP2 PDR/AAA was consistent with a decrease in PDGFR phosphorylation caused by a drop in receptor levels in SHIP2 PDR/AAA-expressing cells. SHIP2 PDR/AAA promoted ubiquitination of the PDGFR and its degradation via the lysosomal pathway independently of the association between the E3 ubiquitin ligase c-Cbl and PDGFR. Overall, our findings indicate that SHIP2 PDR/AAA reduces preadipocyte proliferation by attenuating PDGFR signaling.
Collapse
Affiliation(s)
- Yulia Artemenko
- Chronic Disease Program, Ottawa Health Research Institute and Departments of Medicine and Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
11
|
Umahara M, Okada S, Yamada E, Saito T, Ohshima K, Hashimoto K, Yamada M, Shimizu H, Pessin JE, Mori M. Tyrosine phosphorylation of Munc18c regulates platelet-derived growth factor-stimulated glucose transporter 4 translocation in 3T3L1 adipocytes. Endocrinology 2008; 149:40-9. [PMID: 17916632 DOI: 10.1210/en.2006-1549] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Platelet-derived growth factor (PDGF) stimulation of skeletal muscle, cultured myotubes, and 3T3L1 adipocytes results in glucose transporter 4 (Glut4) translocation, albeit to a reduced level compared with insulin. To address the mechanism of PDGF action, we have determined that the Syntaxin 4 negative regulatory protein, Munc18c, undergoes PDGF-stimulated phosphorylation on tyrosine residue 521. The tyrosine phosphorylation of Munc18c on Y521 occurred concomitant with the dissociation of the Munc18c protein from Syntaxin 4 in a time frame consistent with Glut4 translocation. Moreover, expression of the wild-type Munc18c protein did not inhibit PDGF-induced Glut4 translocation, whereas expression of Y521A-Munc18c mutant was inhibitory and failed to dissociate from Syntaxin 4. In contrast, expression of either wild-type Munc18c or the Y521A-Munc18c mutant both resulted in a marked inhibition of insulin-stimulated Glut4 translocation. Together, these data demonstrate that one mechanism accounting for the PDGF induction of Glut4 translocation is the suppression of the Munc18c negative regulation of Syntaxin 4 function.
Collapse
Affiliation(s)
- Mitsuhiko Umahara
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Imatinib inhibits tyrosine kinases important in osteoclast (c-Fms) and osteoblast (platelet-derived growth factor receptor [PDGF-R], c-Abl) function, suggesting that long-term therapy may alter bone homeostasis. To investigate this question, we measured the trabecular bone volume (TBV) in iliac crest bone biopsies taken from chronic myeloid leukemia (CML) patients at diagnosis and again after 2 to 4 years of imatinib therapy. Half the patients (8 of 17) showed a substantive increase in TBV (> 2-fold), after imatinib therapy, with the TBV in the posttreatment biopsy typically surpassing the normal upper limit for the patient's age group. Imatinib-treated patients exhibited reduced serum calcium and phosphate levels with hypophosphatemia evident in 53% (9 of 17) of patients. In vitro, imatinib suppressed osteoblast proliferation and stimulated osteogenic gene expression and mineralized-matrix production by inhibiting PDGF receptor function. In PDGF-stimulated cultures, imatinib dose-dependently inhibited activation of Akt and Crk-L. Using pharmacologic inhibitors, inhibition of PI3-kinase/Akt activation promoted mineral formation, suggesting a possible molecular mechanism for the imatinib-mediated increase in TBV in vivo. Further investigation is required to determine whether the increase in TBV associated with imatinib therapy may represent a novel therapeutic avenue for the treatment of diseases that are characterized by generalized bone loss.
Collapse
|
13
|
Thomas EC, Zhe Y, Molero JC, Schmitz-Peiffer C, Ramm G, James DE, Whitehead JP. The subcellular fractionation properties and function of insulin receptor substrate-1 (IRS-1) are independent of cytoskeletal integrity. Int J Biochem Cell Biol 2006; 38:1686-99. [PMID: 16702017 DOI: 10.1016/j.biocel.2006.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 03/15/2006] [Accepted: 03/20/2006] [Indexed: 10/24/2022]
Abstract
Efficient insulin action requires spatial and temporal coordination of signaling cascades. The prototypical insulin receptor substrate, IRS-1 plays a central role in insulin signaling. By subcellular fractionation IRS-1 is enriched in a particulate fraction, termed the high speed pellet (HSP), and its redistribution from this fraction is associated with signal attenuation and insulin resistance. Anecdotal evidence suggests the cytoskeleton may underpin the localization of IRS-1 to the HSP. In the present study we have taken a systematic approach to examine whether the cytoskeleton contributes to the subcellular fractionation properties and function of IRS-1. By standard microscopy or immunoprecipitation we were unable to detect evidence to support a specific interaction between IRS-1 and the major cytoskeletal components actin (microfilaments), vimentin (intermediate filaments), and tubulin (microtubules) in 3T3-L1 adipocytes or in CHO.IR.IRS-1 cells. Pharmacological disruption of microfilaments and microtubules, individually or in combination, was without effect on the subcellular distribution of IRS-1 or insulin-stimulated tyrosine phosphorylation in either cell type. Phosphorylation of Akt was modestly reduced (20-35%) in 3T3-L1 adipocytes but not in CHO.IR.IRS-1 cells. In cells lacking intermediate filaments (Vim(-/-)) IRS-1 expression, distribution and insulin-stimulated phosphorylation appeared normal. Even after depolymerisation of microfilaments and microtubules, insulin-stimulated phosphorylation of IRS-1 and Akt were maintained in Vim(-/-) cells. Taken together these data indicate that the characteristic subcellular fractionation properties and function of IRS-1 are unlikely to be mediated by cytoskeletal networks and that proximal insulin signaling does not require an intact cytoskeleton.
Collapse
Affiliation(s)
- Elaine C Thomas
- Centre for Diabetes and Endocrine Research, Princess Alexandra Hospital, University of Queensland, Brisbane, Qld 4102, Australia
| | | | | | | | | | | | | |
Collapse
|
14
|
Safadi-Chamberlain F, Wang LP, Payne S, Lim CU, Stratford S, Chavez J, Fox M, Spiegel S, Summers S. Effect of a membrane-targeted sphingosine kinase 1 on cell proliferation and survival. Biochem J 2005; 388:827-34. [PMID: 15693752 PMCID: PMC1183462 DOI: 10.1042/bj20041726] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Numerous extracellular stimuli activate SK1 (sphingosine kinase type 1) to catalyse the production of sphingosine 1-phosphate, a bioactive lipid that functions as both an extracellular ligand for a family of G-protein-linked receptors and as a putative intracellular messenger. Phorbol esters, calcium or immunoglobulin receptors stimulate SK1 by promoting its translocation to the plasma membrane, which brings it into proximity both to its substrate (i.e. sphingosine) and to activating acidic phospholipids (e.g. phosphatidylserine). To evaluate the consequence of SK translocation, we generated an SK1-derivative tagged with a myristoylation sequence (Myr-SK1) on its N-terminus and overexpressed the construct in 3T3-L1 fibroblasts using recombinant retrovirus. Myr-SK1 overexpression increased SK activity by more than 50-fold in crude membranes, while only stimulating cytoplasmic SK activity by 4-fold. In contrast, the overexpression of WT-SK1 (wild-type SK1), as well as that of a construct containing a false myristoylation sequence (A2-Myr-SK1), markedly increased SK activity in both membrane and cytoplasmic compartments. Immunofluorescence confirmed that Myr-SK1 preferentially localized at the plasma membrane, whereas WT-SK1 and A2-Myr-SK1 partitioned in cytoplasmic/perinuclear cellular regions. Surprisingly, Myr-SK1 overexpression significantly decreased the rates of cell proliferation by delaying exit from G0/G1 phase. Moreover, expression of Myr-SK1 but not WT-SK1 or A2-Myr-SK1 protected cells from apoptosis induced by serum withdrawal. Collectively, these findings reveal that altering the subcellular location of SK1 has marked effects on cell function, with plasma membrane-associated SK having a potent inhibitory effect on the G1-S phase transition.
Collapse
Affiliation(s)
- Farida Safadi-Chamberlain
- *Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, U.S.A
| | - Li-Ping Wang
- *Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, U.S.A
| | - Shawn G. Payne
- †Department of Biochemistry, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-0614, U.S.A
| | - Chang-Uk Lim
- ‡Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO 80523-1870, U.S.A
| | - Suzanne Stratford
- *Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, U.S.A
| | - Jose Antonio Chavez
- *Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, U.S.A
| | - Michael H. Fox
- §Department of Biochemistry and Molecular Biology, Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1870, U.S.A
| | - Sarah Spiegel
- †Department of Biochemistry, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-0614, U.S.A
| | - Scott A. Summers
- *Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
15
|
Kim IA, Bae SS, Fernandes A, Wu J, Muschel RJ, McKenna WG, Birnbaum MJ, Bernhard EJ. Selective inhibition of Ras, phosphoinositide 3 kinase, and Akt isoforms increases the radiosensitivity of human carcinoma cell lines. Cancer Res 2005; 65:7902-10. [PMID: 16140961 DOI: 10.1158/0008-5472.can-05-0513] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ras activation promotes the survival of tumor cells after DNA damage. To reverse this survival advantage, Ras signaling has been targeted for inhibition. Other contributors to Ras-mediated DNA damage survival have been identified using pharmacologic inhibition of signaling, but this approach is limited by the specificity of the inhibitors used and their toxicity. To better define components of Ras signaling that could be inhibited in a clinical setting, RNA interference was used to selectively block expression of specific isoforms of Ras, phosphoinositide 3 (PI3) kinase, and Akt. Inhibition of oncogenic Ras expression decreased both phospho-Akt and phospho-p42/44 mitogen-activated protein (MAP) kinase levels and reduced clonogenic survival. Because pharmacologic inhibition of PI3 kinases and Akt radiosensitized cell lines with active Ras signaling, whereas inhibition of the MAP/extracellular signal-regulated kinase (ERK) kinase/ERK pathway did not, we examined the contribution of PI3 kinases and Akts to radiation survival. Selective inhibition the PI3 kinase P110alpha + p85beta isoforms reduced Akt phosphorylation and radiation survival. Similarly, inhibition of Akt-1 reduced tumor cell radiation survival. Inhibition of Akt-2 or Akt-3 had less effect. Retroviral transduction and overexpression of mouse Akt-1 was shown to rescue cells from inhibition of endogenous human Akt-1 expression. This study shows that Ras signaling to the PI3 kinase-Akt pathway is an important contributor to survival, whether Ras activation results from mutation of ras or overexpression of epidermal growth factor receptor. This study further shows that selective inhibition of the PI3 kinase P110alpha + p85beta isoforms or Akt-1 could be a viable approach to sensitizing many tumor cells to cytotoxic therapies.
Collapse
Affiliation(s)
- In-Ah Kim
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia 19104-6072, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Huang J, Imamura T, Babendure JL, Lu JC, Olefsky JM. Disruption of microtubules ablates the specificity of insulin signaling to GLUT4 translocation in 3T3-L1 adipocytes. J Biol Chem 2005; 280:42300-6. [PMID: 16239226 DOI: 10.1074/jbc.m510920200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although the cytoskeletal network is important for insulin-induced glucose uptake, several studies have assessed the effects of microtubule disruption on glucose transport with divergent results. Here, we investigated the effects of microtubule-depolymerizing reagent, nocodazole and colchicine, on GLUT4 translocation in 3T3-L1 adipocytes. After nocodazole treatment to disrupt microtubules, GLUT4 vesicles were dispersed from the perinuclear region in the basal state, and insulin-induced GLUT4 translocation was partially inhibited by 20-30%, consistent with other reports. We found that platelet-derived growth factor (PDGF), which did not stimulate GLUT4 translocation in intact cells, was surprisingly able to enhance GLUT4 translocation to approximately 50% of the maximal insulin response, in nocodazole-treated cells with disrupted microtubules. This effect of PDGF was blocked by pretreatment with wortmannin and attenuated in cells pretreated with cytochalasin D. Using confocal microscopy, we found an increased co-localization of GLUT4 and F-actin in nocodazole-treated cells upon PDGF stimulation compared with control cells. Furthermore, microinjection of small interfering RNA targeting the actin-based motor Myo1c, but not the microtubule-based motor KIF3, significantly inhibited both insulin- and PDGF-stimulated GLUT4 translocation after nocodazole treatment. In summary, our data suggest that 1) proper perinuclear localization of GLUT4 vesicles is a requirement for insulin-specific stimulation of GLUT4 translocation, and 2) nocodazole treatment disperses GLUT4 vesicles from the perinuclear region allowing them to engage insulin and PDGF-sensitive actin filaments, which can participate in GLUT4 translocation in a phosphatidylinositol 3-kinase-dependent manner.
Collapse
Affiliation(s)
- Jie Huang
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California 92093-0673, USA
| | | | | | | | | |
Collapse
|
17
|
Artemenko Y, Gagnon A, Aubin D, Sorisky A. Anti-adipogenic effect of PDGF is reversed by PKC inhibition. J Cell Physiol 2005; 204:646-53. [PMID: 15754337 DOI: 10.1002/jcp.20314] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Healthy adipose tissue function depends on adipogenesis. The capacity to form new adipocytes prevents the emergence of insulin-resistant hypertrophied adipocytes, as well as the deleterious lipid deposition in muscle, liver, and pancreas. It is therefore important to understand how adipogenesis is modulated. Platelet-derived growth factor (PDGF) is anti-adipogenic, but the stage of differentiation that it targets, and the signaling pathways that it triggers, are not defined. We have studied the inhibitory effect of PDGF on murine 3T3-L1 preadipocyte and human preadipocyte differentiation. There was a significant attenuation in the protein expression of the adipogenic transcription factors, PPARgamma and C/EBPalpha, as well as in the levels of later differentiation markers, including adiponectin, aP2, and fatty acid synthase. PDGF treatment resulted in the persistence of PDGF receptor and PKCalpha expression, in contrast to the expected downregulation of both proteins that occurs during differentiation. Inactivation of conventional PKC isoforms, by bisindolylmaleimide I or PKC pseudosubstrate M20-28, partially reversed the inhibition of 3T3-L1 and human preadipocyte differentiation by PDGF, as assessed by fatty acid synthase expression and morphological appearance.
Collapse
Affiliation(s)
- Y Artemenko
- Ottawa Health Research Institute, Department of Medicine and Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
18
|
Nishi M, Werner ED, Oh BC, Frantz JD, Dhe-Paganon S, Hansen L, Lee J, Shoelson SE. Kinase activation through dimerization by human SH2-B. Mol Cell Biol 2005; 25:2607-21. [PMID: 15767667 PMCID: PMC1061652 DOI: 10.1128/mcb.25.7.2607-2621.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The isoforms of SH2-B, APS, and Lnk form a family of signaling proteins that have been described as activators, mediators, or inhibitors of cytokine and growth factor signaling. We now show that the three alternatively spliced isoforms of human SH2-B readily homodimerize in yeast two-hybrid and cellular transfections assays, and this is mediated specifically by a unique domain in its amino terminus. Consistent with previous reports, we further show that the SH2 domains of SH2-B and APS bind JAK2 at Tyr813. These findings suggested a model in which two molecules of SH2-B or APS homodimerize with their SH2 domains bound to two JAK2 molecules, creating heterotetrameric JAK2-(SH2-B)2-JAK2 or JAK2-(APS)2-JAK2 complexes. We further show that APS and SH2-B isoforms heterodimerize. At lower levels of SH2-B or APS expression, dimerization approximates two JAK2 molecules to induce transactivation. At higher relative concentrations of SH2-B or APS, kinase activation is blocked. SH2-B or APS homodimerization and SH2-B/APS heterodimerization thus provide direct mechanisms for activating and inhibiting JAK2 and other kinases from the inside of the cell and for potentiating or attenuating cytokine and growth factor receptor signaling when ligands are present.
Collapse
Affiliation(s)
- Masahiro Nishi
- Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Chavez JA, Holland WL, Bär J, Sandhoff K, Summers SA. Acid ceramidase overexpression prevents the inhibitory effects of saturated fatty acids on insulin signaling. J Biol Chem 2005; 280:20148-53. [PMID: 15774472 DOI: 10.1074/jbc.m412769200] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Recent studies indicate that insulin resistance and type 2 diabetes result from the accumulation of lipids in tissues not suited for fat storage, such as skeletal muscle and the liver. To elucidate the mechanisms linking exogenous fats to the inhibition of insulin action, we evaluated the effects of free fatty acids (FFAs) on insulin signal transduction in cultured C2C12 myotubes. As we described previously (Chavez, J. A., and Summers, S. A. (2003) Arch. Biochem. Biophys. 419, 101-109), long-chain saturated FFAs inhibited insulin stimulation of Akt/protein kinase B, a central regulator of glucose uptake and anabolic metabolism. Moreover, these FFAs stimulated the de novo synthesis of ceramide and sphingosine, two sphingolipids shown previously to inhibit insulin action. To determine the contribution of either sphingolipid in FFA-dependent inhibition of insulin action, we generated C2C12 myotubes that constitutively overexpress acid ceramidase (AC), an enzyme that catalyzes the lysosomal conversion of ceramide to sphingosine. AC overexpression negated the inhibitory effects of saturated FFAs on insulin signaling while blocking their stimulation of ceramide accumulation. By contrast, AC overexpression stimulated the accrual of sphingosine. These results support a role for aberrant accumulation of ceramide, but not sphingosine, in the inhibition of muscle insulin sensitivity by exogenous FFAs.
Collapse
Affiliation(s)
- Jose Antonio Chavez
- Department of Internal Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Utah, Salt Lake City, 84132, USA
| | | | | | | | | |
Collapse
|
20
|
Ou H, Yan L, Osmanovic S, Greenberg CC, Brady MJ. Spatial reorganization of glycogen synthase upon activation in 3T3-L1 adipocytes. Endocrinology 2005; 146:494-502. [PMID: 15486231 DOI: 10.1210/en.2004-1022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The dephosphorylation of glycogen synthase is a key step in the stimulation of glycogen synthesis by insulin. To further investigate the hormonal regulation of glycogen synthase activity, enzymatic localization in 3T3-L1 adipocytes was determined by immunocytochemistry and confocal microscopy. In basal cells, glycogen synthase and the protein phosphatase-1-glycogen-targeting subunit, protein targeting to glycogen (PTG), were diffusely distributed throughout the cell. Insulin treatment had no effect on PTG distribution but resulted in a reorganization of glycogen synthase into punctate clusters. Glycogen synthase aggregation was restricted to discrete cellular sites, presumably where glycogen synthesis occurred. Omission of extracellular glucose or substitution with 2-deoxy-glucose blocked the insulin-induced redistribution of glycogen synthase. Addition of the glycogenolytic agent forskolin after insulin stimulation disrupted the clusters of glycogen synthase protein, restoring the immunostaining pattern to the basal state. Conversely, adenoviral-mediated overexpression of PTG resulted in the insulin-independent dephosphorylation of glycogen synthase and a redistribution of the enzyme from the cytosolic- to glycogen-containing fractions. The effects of PTG on glycogen synthase activity were mediated by multisite dephosphorylation, which was enhanced by insulin and 2-deoxy-glucose, and required a functional glycogen synthase-binding domain on PTG. However, PTG overexpression did not induce distinct glycogen synthase clustering in fixed cells, presumably because cellular glycogen levels were increased more than 7-fold under these conditions, resulting in a diffusion of sites where glycogen elongation occurred. Cumulatively, these data indicate that the hormonal regulation of glycogen synthesis rates in 3T3-L1 adipocytes is mediated in part through changes in the subcellular localization of glycogen synthase.
Collapse
Affiliation(s)
- Hesheng Ou
- Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
21
|
Yuasa T, Kakuhata R, Kishi K, Obata T, Shinohara Y, Bando Y, Izumi K, Kajiura F, Matsumoto M, Ebina Y. Platelet-derived growth factor stimulates glucose transport in skeletal muscles of transgenic mice specifically expressing platelet-derived growth factor receptor in the muscle, but it does not affect blood glucose levels. Diabetes 2004; 53:2776-86. [PMID: 15504957 DOI: 10.2337/diabetes.53.11.2776] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Insulin stimulates the disposal of blood glucose into skeletal muscle and adipose tissues by the translocation of GLUT4 from intracellular pools to the plasma membrane, and consequently the concentration of blood glucose levels decreases rapidly in vivo. Phosphatidylinositol (PI) 3-kinase and Akt play a pivotal role in the stimulation of glucose transport by insulin, but detailed mechanisms are unknown. We and others reported that not only insulin but also platelet-derived growth factor (PDGF) and epidermal growth factor facilitate glucose uptake through GLUT4 translocation by activation of PI 3-kinase and Akt in cultured cells. However, opposite results were also reported. We generated transgenic mice that specifically express the PDGF receptor in skeletal muscle. In these mice, PDGF stimulated glucose transport into skeletal muscle in vitro and in vivo. Thus, PDGF apparently shares with insulin some of the signaling molecules needed for the stimulation of glucose transport. The degree of glucose uptake in vivo reached approximately 60% of that by insulin injection in skeletal muscle, but blood glucose levels were not decreased by PDGF in these mice. Therefore, PDGF-induced disposal of blood glucose into skeletal muscle is insufficient for rapid decrease of blood glucose levels.
Collapse
Affiliation(s)
- Tomoyuki Yuasa
- Division of Molecular Genetics, Institute for Enzyme Research, the University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Török D, Patel N, Jebailey L, Thong FSL, Randhawa VK, Klip A, Rudich A. Insulin but not PDGF relies on actin remodeling and on VAMP2 for GLUT4 translocation in myoblasts. J Cell Sci 2004; 117:5447-55. [PMID: 15466888 DOI: 10.1242/jcs.01421] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Insulin promotes the translocation of glucose transporter 4 (GLUT4) from intracellular pools to the surface of muscle and fat cells via a mechanism dependent on phosphatidylinositol (PtdIns) 3-kinase, actin cytoskeletal remodeling and the v-SNARE VAMP2. The growth factor PDGF-BB also robustly activates PtdIns 3-kinase and induces actin remodeling, raising the question of whether it uses similar mechanisms to insulin in mobilizing GLUT4. In L6 myoblasts stably expressing Myc-tagged GLUT4, neither stimulus affected the rate of GLUT4 endocytosis, confirming that they act primarily by enhancing exocytosis to increase GLUT4 at the cell surface. Although surface GLUT4myc in response to insulin peaked at 10 minutes and remained steady for 30 minutes, PDGF action was transient, peaking at 5 minutes and disappearing by 20 minutes. These GLUT4myc translocation time courses mirrored that of phosphorylation of Akt by the two stimuli. Interestingly, insulin and PDGF caused distinct manifestations of actin remodeling. Insulin induced discrete, long (>5 μm) dorsal actin structures at the cell periphery, whereas PDGF induced multiple short (<5 μm) dorsal structures throughout the cell, including above the nucleus. Latrunculin B, cytochalasin D and jasplakinolide, which disrupt actin dynamics, prevented insulin- and PDGF-induced actin remodeling but significantly inhibited GLUT4myc translocation only in response to insulin (75-85%, P<0.05), not to PDGF (20-30% inhibition). Moreover, transfection of tetanus toxin light chain, which cleaves the v-SNAREs VAMP2 and VAMP3, reduced insulin-induced GLUT4myc translocation by >70% but did not affect the PDGF response. These results suggest that insulin and PDGF rely differently on the actin cytoskeleton and on tetanus-toxin-sensitive VAMPs for mobilizing GLUT4.
Collapse
Affiliation(s)
- Dòra Török
- Programme in Cell Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | | | | | | | | | | | | |
Collapse
|
23
|
Stratford S, Hoehn KL, Liu F, Summers SA. Regulation of insulin action by ceramide: dual mechanisms linking ceramide accumulation to the inhibition of Akt/protein kinase B. J Biol Chem 2004; 279:36608-15. [PMID: 15220355 DOI: 10.1074/jbc.m406499200] [Citation(s) in RCA: 309] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The sphingolipid ceramide negatively regulates insulin action by inhibiting Akt/protein kinase B (PKB), a serine/threonine kinase that is a central regulator of glucose uptake and anabolic metabolism. Despite considerable attention, the molecular mechanism accounting for this action of ceramide has remained both elusive and controversial. Herein we utilized deletion constructs encoding two different functional domains of Akt/PKB to identify which region of the enzyme conferred responsiveness to ceramide. Surprisingly the findings obtained with these separate domains reveal that ceramide blocks insulin stimulation of Akt/PKB by two independent mechanisms. First, using the isolated pleckstrin homology domain, we found that ceramide specifically blocks the translocation of Akt/PKB, but not its upstream activator phosphoinositide-dependent kinase-1, to the plasma membrane. Second, using a construct lacking this pleckstrin homology domain, which does not require translocation for activation, we found that ceramide stimulates the dephosphorylation of Akt/PKB by protein phosphatase 2A. Collectively these findings identify at least two independent mechanisms by which excessive ceramide accumulation in peripheral tissues could contribute to the development of insulin resistance. Moreover the results obtained provide a unifying theory to account for the numerous dissenting reports investigating the actions of ceramide toward Akt/PKB.
Collapse
Affiliation(s)
- Suzanne Stratford
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | | | | | | |
Collapse
|
24
|
Al-Khalili L, Krämer D, Wretenberg P, Krook A. Human skeletal muscle cell differentiation is associated with changes in myogenic markers and enhanced insulin-mediated MAPK and PKB phosphorylation. ACTA ACUST UNITED AC 2004; 180:395-403. [PMID: 15030381 DOI: 10.1111/j.1365-201x.2004.01259.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AIM We hypothesized that myogenic differentiation of HSMC would yield a more insulin responsive phenotype. METHODS We assessed expression of several proteins involved in insulin action or myogenesis during differentiation of primary human skeletal muscle cultures (HSMC). RESULTS Differentiation increased creatine kinase activity and expression of desmin and myocyte enhancer factor (MEF)2C. No change in expression was observed for big mitogen-activated protein kinase (BMK1/ERK5), MEF2A, insulin receptor (IR), hexokinase II, and IR substrates 1 and 2, while expression of glycogen synthase, extracellular signal-regulated kinase 1 and 2 (ERK1/2 MAP kinase) and the insulin responsive aminopeptidase increased after differentiation. In contrast to protein kinase B (PKB)a, expression of (PKB)b increased, with differentiation. Both basal and insulin-stimulated PI 3-kinase activity increased with differentiation. Insulin-mediated phosphorylation of PKB and ERK1/2 MAP kinase increased after differentiation. CONCLUSION Components of the insulin-signalling machinery are expressed in myoblast and myotube HSMC; however, insulin responsiveness to PKB and ERK MAP kinase phosphorylation increases with differentiation.
Collapse
Affiliation(s)
- L Al-Khalili
- Department of Surgical Science, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
25
|
Affiliation(s)
- Stuart A Ross
- Department of Cardiovascular and Metabolic Diseases, Mail Zone T2E, Pharmacia Corporation, 800 North Lindbergh Boulevard, St Louis, Missouri 63167, USA
| | | | | |
Collapse
|
26
|
An J, Muoio DM, Shiota M, Fujimoto Y, Cline GW, Shulman GI, Koves TR, Stevens R, Millington D, Newgard CB. Hepatic expression of malonyl-CoA decarboxylase reverses muscle, liver and whole-animal insulin resistance. Nat Med 2004; 10:268-74. [PMID: 14770177 DOI: 10.1038/nm995] [Citation(s) in RCA: 366] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Accepted: 01/16/2004] [Indexed: 12/31/2022]
Abstract
Lipid infusion or ingestion of a high-fat diet results in insulin resistance, but the mechanism underlying this phenomenon remains unclear. Here we show that, in rats fed a high-fat diet, whole-animal, muscle and liver insulin resistance is ameliorated following hepatic overexpression of malonyl-coenzyme A (CoA) decarboxylase (MCD), an enzyme that affects lipid partitioning. MCD overexpression decreased circulating free fatty acid (FFA) and liver triglyceride content. In skeletal muscle, levels of triglyceride and long-chain acyl-CoA (LC-CoA)-two candidate mediators of insulin resistance-were either increased or unchanged. Metabolic profiling of 36 acylcarnitine species by tandem mass spectrometry revealed a unique decrease in the concentration of one lipid-derived metabolite, beta-OH-butyrate, in muscle of MCD-overexpressing animals. The best explanation for our findings is that hepatic expression of MCD lowered circulating FFA levels, which led to lowering of muscle beta-OH-butyrate levels and improvement of insulin sensitivity.
Collapse
Affiliation(s)
- Jie An
- Sarah W. Stedman Nutrition and Metabolism Center and Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Bae SS, Cho H, Mu J, Birnbaum MJ. Isoform-specific Regulation of Insulin-dependent Glucose Uptake by Akt/Protein Kinase B. J Biol Chem 2003; 278:49530-6. [PMID: 14522993 DOI: 10.1074/jbc.m306782200] [Citation(s) in RCA: 247] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent data have implicated the serine/threonine protein kinase Akt/protein kinase B (PKB) in a diverse array of physiological pathways, raising the question of how biological specificity is maintained. Partial clarification derived from the observation that mice deficient in either of the two isoforms, Akt1/PKBalpha or Akt2/PKBbeta, demonstrate distinct abnormalities, i.e. reduced organismal size or insulin resistance, respectively. However, the question still persists as to whether these divergent phenotypes are due exclusively to tissue-specific differences in isoform expression or distinct capacities for signaling intrinsic to the two proteins. Here we show that Akt2/PKBbeta-/- adipocytes derived from immortalized mouse embryo fibroblasts display significantly reduced insulin-stimulated hexose uptake, clearly establishing that the partial defect in glucose disposal in these mice derives from lack of a cell autonomous function of Akt2/PKBbeta. Moreover, in adipocytes differentiated from primary fibroblasts or immortalized mouse embryo fibroblasts, and brown preadipocytes the absence of Akt2/PKBbeta resulted in reduction of insulin-induced hexose uptake and glucose transporter 4 (GLUT4) translocation, whereas Akt1/PKBalpha was dispensable for this effect. Most importantly, hexose uptake and GLUT4 translocation were completely restored after re-expression of Akt2/PKBbeta in Akt2/PKBbeta-/- adipocytes, but overexpression of Akt1/PKBalpha at comparable levels was ineffective at rescuing insulin action to normal. These results show that the Akt1/PKBalpha and Akt2/PKBbeta isoforms are uniquely adapted to preferentially transmit distinct biological signals, and this property is likely to contribute significantly to the ability of Akt/PKB to play a role in diverse processes.
Collapse
Affiliation(s)
- Sun Sik Bae
- Howard Hughes Medical Institute, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
28
|
Gagnon A, Artemenko Y, Crapper T, Sorisky A. Regulation of endogenous SH2 domain-containing inositol 5-phosphatase (SHIP2) in 3T3-L1 and human preadipocytes. J Cell Physiol 2003; 197:243-50. [PMID: 14502564 DOI: 10.1002/jcp.10367] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The role of the inositol lipid 5-phosphatase (SHIP2) in preadipocyte signaling is not known. Although overexpression of SHIP2 inhibited proliferation and (3)H-thymidine incorporation in 3T3-L1 preadipocytes, there was no effect on insulin-induced adipogenesis. Insulin promoted SHIP2 tyrosine phosphorylation in differentiated 3T3-L1 adipocytes, but did not do so in preadipocytes. The absence of SHIP2 tyrosine phosphorylation suggests a potential explanation for the isolated rise in PI(3,4,5)P3, without any changes in PI(3,4)P2, previously observed following insulin treatment of these cells. Lack of SHIP2 tyrosine phosphorylation by insulin was also observed in primary cultures of human abdominal subcutaneous preadipocytes. These cells also produced PI(3,4,5)P3, but not PI(3,4)P2, in response to insulin. Comparison of insulin vs. PDGF treatment on SHIP2 tyrosine phosphorylation in 3T3-L1 and human preadipocytes revealed that only PDGF, which stimulates the accumulation of PI(3,4,5)P3 as well as PI(3,4)P2, was active in this regard, and only PDGF promoted the association of 52 kDa form of Shc with SHIP2. Nevertheless, both insulin and PDGF were equally effective in translocating SHIP2 to the plasma membrane in 3T3-L1 preadipocytes. Lack of SHIP2 tyrosine phosphorylation may account for the insulin-specific inositol phospholipid pattern of accumulation in preadipocytes.
Collapse
Affiliation(s)
- Annemarie Gagnon
- Department of Medicine and Biochemistry, University of Ottawa, Ottawa Health Research Institute, Ottawa, Canada
| | | | | | | |
Collapse
|
29
|
Whiteman EL, Chen JJ, Birnbaum MJ. Platelet-derived growth factor (PDGF) stimulates glucose transport in 3T3-L1 adipocytes overexpressing PDGF receptor by a pathway independent of insulin receptor substrates. Endocrinology 2003; 144:3811-20. [PMID: 12933652 DOI: 10.1210/en.2003-0480] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Insulin is unique among growth factors and hormones in its ability to control metabolic functions such as the stimulation of glucose uptake and glucose transporter (GLUT4) translocation in physiological target tissues, such as muscle and adipose cells. Nonetheless, the mechanisms underlying this specificity have remained incompletely understood, particularly in view of the ability of some growth factors to mimic insulin-dependent early signaling events. In this study, we have probed the basis of insulin specificity by overexpressing in hormone-responsive 3T3-L1 adipocytes wild-type platelet-derived growth factor (PDGF) receptor (PDGFR)-beta and selected, informative mutant receptor proteins. We show that such adipocytes overexpressing wild-type PDGFR on exposure to cognate growth factor activate glucose transport, GLUT4 translocation, and the serine-threonine protein kinase Akt/protein kinase B to a degree comparable with that produced in response to insulin. In addition, PDGF elicits the robust generation of phosphatidylinositol-3,4,5-trisphosphate in vivo in PDGFR-overexpressing 3T3-L1 adipocytes. Expression of PDGFR-beta mutant proteins demonstrates that these responses require the presence of an intact phosphatidylinositol 3-kinase (PI3K)-binding site on the overexpressed PDGF receptor. Furthermore, PDGF stimulates these effects independent of insulin receptor substrate(IRS)-1 or IRS-2 tyrosine phosphorylation or docking to activated PI3K. These data demonstrate that 1) the basis of insulin-specific glucose transport in cultured adipocytes is the low level of receptors for other growth factors and 2) in the presence of adequate receptors, PDGF is fully capable of activating glucose transport in a manner requiring PI3K and subsequent phosphatidylinositol-3,4,5-trisphosphate accumulation but independent of insulin, insulin receptor, and IRS proteins.
Collapse
Affiliation(s)
- Eileen L Whiteman
- Howard Hughes Medical Institute, Cox Institute, Cell and Molecular Biology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
30
|
Jiang ZY, Zhou QL, Coleman KA, Chouinard M, Boese Q, Czech MP. Insulin signaling through Akt/protein kinase B analyzed by small interfering RNA-mediated gene silencing. Proc Natl Acad Sci U S A 2003; 100:7569-74. [PMID: 12808134 PMCID: PMC164627 DOI: 10.1073/pnas.1332633100] [Citation(s) in RCA: 291] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Glucose homeostasis is controlled by insulin in part through the translocation of intracellular glucose transporter 4 to the plasma membrane in muscle and fat cells. Akt/protein kinase B downstream of phosphatidylinositol 3-kinase has been implicated in this insulin-signaling pathway, but results with a variety of reagents including Akt1-/- and Akt2-/- mice have been equivocal. Here we report the application of small interfering RNA-directed gene silencing to deplete both Akt1 and Akt2 in cultured 3T3-L1 adipocytes. Loss of Akt1 alone slightly impaired insulin-mediated hexose transport activity but had no detectable effect on glycogen synthase kinase (GSK)-3 phosphorylation. In contrast, depletion of Akt2 alone by 70% inhibited approximately half of the insulin responsiveness. Combined depletions of Akt1 plus Akt2 in these cells even more markedly attenuated insulin action on glucose transporter 4 movements, hexose transport activity, and GSK-3 phosphorylation. These data demonstrate a primary role of Akt2 in insulin signaling, significant functional redundancy of Akt1 and Akt2 isoforms in this pathway, and an absolute requirement of Akt protein kinases for regulation of glucose transport and GSK-3 in cultured adipocytes.
Collapse
Affiliation(s)
- Zhen Y Jiang
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | | | | | | | | | | |
Collapse
|
31
|
Murata H, Hresko RC, Mueckler M. Reconstitution of phosphoinositide 3-kinase-dependent insulin signaling in a cell-free system. J Biol Chem 2003; 278:21607-14. [PMID: 12682058 DOI: 10.1074/jbc.m302934200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Early insulin signaling events were examined in a novel cell-free assay utilizing subcellular fractions derived from 3T3-L1 adipocytes. The following cellular processes were observed in vitro in a manner dependent on insulin, time of incubation, and exogenous ATP: 1) autophosphorylation and activation of the insulin receptor; 2) tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1); 3) association of tyrosine-phosphorylated IRS-1 with phosphoinositide 3-kinase; 4) activation of the kinase Akt via its phosphorylation on Thr-308 and Ser-473; and 5) phosphorylation of glycogen synthase kinase-3 by activated Akt. The activation of Akt in vitro was abolished in the presence of the phosphoinositide 3-kinase inhibitor, wortmannin, thus recapitulating the most notable regulatory feature of Akt observed in vivo. Evidence is presented indicating that the critical spatial compartmentalization of signaling molecules necessary for efficient signal transduction is likely to be preserved in the cell-free system. Additionally, data are provided demonstrating that full Akt activation in this system is dependent on plasma membrane-associated IRS-1, cannot be mediated by robust cytosol-specific tyrosine phosphorylation of IRS-1, and occurs in the complete absence of detectable IRS-2 phosphorylation in the cytosol and plasma membrane.
Collapse
Affiliation(s)
- Haruhiko Murata
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
32
|
Brozinick JT, Roberts BR, Dohm GL. Defective signaling through Akt-2 and -3 but not Akt-1 in insulin-resistant human skeletal muscle: potential role in insulin resistance. Diabetes 2003; 52:935-41. [PMID: 12663464 DOI: 10.2337/diabetes.52.4.935] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent evidence has shown that activation of phosphatidyinositol-3-kinase (PI3K) and Akt, necessary for insulin stimulation of glucose transport, is impaired in insulin resistance. It is unknown, however, which Akt isoform shows impaired activation in insulin resistance. Additionally, related growth factors (epidermal or platelet-derived vascular) also stimulate PI3K, but it is unknown whether production of 3,4,5 phosphatidyinositol is sufficient to stimulate glucose transport in insulin-resistant muscle. Moreover, these studies were performed in rodents, and little data exists from humans. Hence, we investigated the stimulation of PI3K and Akt-1, -2, and -3 by insulin and epidermal growth factors (EGFs) in skeletal muscles from lean and obese insulin-resistant humans. Insulin activated all Akt isoforms in lean muscles, whereas only Akt-1 was activated in obese muscles. Insulin receptor substrate (IRS)-1 was associated with PI3K activity, which is necessary for Akt activation by insulin, and was reduced in obese muscles, and this was accompanied by decreased IRS-1 expression. In contrast, insulin- or EGF-stimulated phosphotyrosine-associated PI3K activity was not different between lean and obese muscles. These results show that a defect in the ability of insulin to activate Akt-2 and -3 may explain the impaired insulin-stimulated glucose transport in insulin resistance. Additionally, these data also show that different upstream or downstream signals may regulate the activity of the various Akt isoforms.
Collapse
Affiliation(s)
- Joseph T Brozinick
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana, USA.
| | | | | |
Collapse
|
33
|
Van Obberghen E, Baron V, Delahaye L, Emanuelli B, Filippa N, Giorgetti-Peraldi S, Lebrun P, Mothe-Satney I, Peraldi P, Rocchi S, Sawka-Verhelle D, Tartare-Deckert S, Giudicelli J. Surfing the insulin signaling web. Eur J Clin Invest 2001; 31:966-77. [PMID: 11737239 DOI: 10.1046/j.1365-2362.2001.00896.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The diverse biological actions of insulin and insulin-like growth factor I (IGF-I) are initiated by binding of the polypeptides to their respective cell surface tyrosine kinase receptors. These activated receptors phosphorylate a series of endogenous substrates on tyrosine, amongst which the insulin receptor substrate (IRS) proteins are the best characterized. Their phosphotyrosine-containing motifs become binding sites for Src homology 2 (SH2) domains on proteins such as SH2 domain-containing protein-tyrosine-phosphatase (SHP)-2/Syp, growth factor receptor bound-2 protein, (Grb-2), and phosphatidyl inositol 3 kinase (PI3 kinase), which participate in activation of specific signaling cascades. However, the IRS molecules are not only platforms for signaling molecules, they also orchestrate the generation of signal specificity, integration of signals induced by several extracellular stimuli, and signal termination and modulation. An extensive review is beyond the scope of the present article, which will be centered on our own contribution and reflect our biases.
Collapse
Affiliation(s)
- E Van Obberghen
- Inserm U 145, IFR 50, Faculté de Médecine, Avenue de Valombrose, Nice Cedex, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Cho H, Thorvaldsen JL, Chu Q, Feng F, Birnbaum MJ. Akt1/PKBalpha is required for normal growth but dispensable for maintenance of glucose homeostasis in mice. J Biol Chem 2001; 276:38349-52. [PMID: 11533044 DOI: 10.1074/jbc.c100462200] [Citation(s) in RCA: 750] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The serine-threonine kinase Akt, also known as protein kinase B (PKB), is an important effector for phosphatidylinositol 3-kinase signaling initiated by numerous growth factors and hormones. Akt2/PKBbeta, one of three known mammalian isoforms of Akt/PKB, has been demonstrated recently to be required for at least some of the metabolic actions of insulin (Cho, H., Mu, J., Kim, J. K., Thorvaldsen, J. L., Chu, Q., Crenshaw, E. B., Kaestner, K. H., Bartolomei, M. S., Shulman, G. I., and Birnbaum, M. J. (2001) Science 292, 1728-1731). Here we show that mice deficient in another closely related isoform of the kinase, Akt1/PKBalpha, display a conspicuous impairment in organismal growth. Akt1(-/-) mice demonstrated defects in both fetal and postnatal growth, and these persisted into adulthood. However, in striking contrast to Akt2/PKBbeta null mice, Akt1/PKBalpha-deficient mice are normal with regard to glucose tolerance and insulin-stimulated disposal of blood glucose. Thus, the characterization of the Akt1 knockout mice and its comparison to the previously reported Akt2 deficiency phenotype reveals the non-redundant functions of Akt1 and Akt2 genes with respect to organismal growth and insulin-regulated glucose metabolism.
Collapse
Affiliation(s)
- H Cho
- Department of Biology, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | | | |
Collapse
|
35
|
Burns TF, El-Deiry WS. Identification of inhibitors of TRAIL-induced death (ITIDs) in the TRAIL-sensitive colon carcinoma cell line SW480 using a genetic approach. J Biol Chem 2001; 276:37879-86. [PMID: 11486001 DOI: 10.1074/jbc.m103516200] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potent inducer of apoptosis in tumor cell lines, whereas normal cells appear to be protected from its cytotoxic effects. Therefore TRAIL holds promise as a potential therapeutic agent against cancer. To elucidate some of the critical factors that contribute to TRAIL resistance, we performed a genetic screen in the human colon carcinoma cell line SW480 by infecting this TRAIL-sensitive cell line with a human placental cDNA retroviral library and isolating TRAIL-resistant clones. Characterization of the resulting clones for inhibitors of TRAIL-induced death (ITIDs) led to the isolation of c-FLIP(S), Bax inhibitor 1, and Bcl-XL as candidate suppressors of TRAIL signaling. We have demonstrated that c-FLIP(S) and Bcl-XL are sufficient when overexpressed to convey resistance to TRAIL treatment in previously sensitive cell lines. Furthermore both c-FLIP(S) and Bcl-XL protected against overexpression of the TRAIL receptors DR4 and KILLER/DR5. When c-FLIP(S) and Bcl-XL were overexpressed together in SW480 and HCT 116, an additive inhibitory effect was observed after TRAIL treatment suggesting that these two molecules function in the same pathway in the cell lines tested. Furthermore, we have demonstrated for the first time that a proapoptotic member of the Bcl-2 family, Bax, is required for TRAIL-mediated apoptosis in HCT 116 cells. Surprisingly, we have found that the serine/threonine protein kinase Akt, which is an upstream regulator of both c-FLIP(S) and Bcl-XL, is not sufficient when overexpressed to protect against TRAIL in the cell lines tested. These results suggest a key role for c-FLIP(S), Bcl-XL, and Bax in determining tumor cell sensitivity to TRAIL.
Collapse
Affiliation(s)
- T F Burns
- Laboratory of Molecular Oncology and Cell Cycle Regulation, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
36
|
Tuttle RL, Gill NS, Pugh W, Lee JP, Koeberlein B, Furth EE, Polonsky KS, Naji A, Birnbaum MJ. Regulation of pancreatic beta-cell growth and survival by the serine/threonine protein kinase Akt1/PKBalpha. Nat Med 2001; 7:1133-7. [PMID: 11590437 DOI: 10.1038/nm1001-1133] [Citation(s) in RCA: 411] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The physiological performance of an organ depends on an interplay between changes in cellular function and organ size, determined by cell growth, proliferation and death. Nowhere is this more evident than in the endocrine pancreas, where disturbances in function or mass result in severe disease. Recently, the insulin signal-transduction pathway has been implicated in both the regulation of hormone secretion from beta cells in mammals as well as the determination of cell and organ size in Drosophila melanogaster. A prominent mediator of the actions of insulin and insulin-like growth factor 1 (IGF-1) is the 3'-phosphoinositide-dependent protein kinase Akt, also known as protein kinase B (PKB). Here we report that overexpression of active Akt1 in the mouse beta cell substantially affects compartment size and function. There was a significant increase in both beta-cell size and total islet mass, accompanied by improved glucose tolerance and complete resistance to experimental diabetes.
Collapse
Affiliation(s)
- R L Tuttle
- Howard Hughes Medical Institute, Department of Internal Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ono H, Katagiri H, Funaki M, Anai M, Inukai K, Fukushima Y, Sakoda H, Ogihara T, Onishi Y, Fujishiro M, Kikuchi M, Oka Y, Asano T. Regulation of phosphoinositide metabolism, Akt phosphorylation, and glucose transport by PTEN (phosphatase and tensin homolog deleted on chromosome 10) in 3T3-L1 adipocytes. Mol Endocrinol 2001; 15:1411-22. [PMID: 11463863 DOI: 10.1210/mend.15.8.0684] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
To investigate the roles of PTEN (phosphatase and tensin homolog deleted on chromosome 10) in the regulation of 3-position phosphorylated phosphoinositide metabolism as well as insulin-induced Akt phosphorylation and glucose metabolism, wild-type PTEN and its phosphatase-dead mutant (C124S) with or without an N-terminal myristoylation tag were overexpressed in Sf-9 cells and 3T3-L1 adipocytes using baculovirus and adenovirus systems, respectively. When expressed in Sf-9 cells together with the p110alpha catalytic subunit of phosphoinositide 3-kinase, myristoylated PTEN markedly reduced the accumulations of both phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate induced by p110alpha. In contrast, overexpression of the C124S mutants apparently increased these accumulations. In 3T3-L1 adipocytes, insulin-induced accumulations of phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate were markedly suppressed by overexpression of wild-type PTEN with the N-terminal myristoylation tag, but not by that without the tag. On the contrary, the C124S mutants of PTEN enhanced insulin-induced accumulations of phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate. Interestingly, the phosphorylation level of Akt at Thr308 (Akt2 at Thr309), but not at Ser473 (Akt2 at Ser474), was revealed to correlate well with the accumulation of phosphatidylinositol 3,4,5-trisphosphate modified by overexpression of these PTEN proteins. Finally, insulin-induced increases in glucose transport activity were significantly inhibited by the overexpression of myristoylated wild-type PTEN, but were not enhanced by expression of the C124S mutant of PTEN. Therefore, in conclusion, 1) PTEN dephosphorylates both phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate in vivo, and the C124S mutants interrupt endogenous PTEN activity in a dominant-negative manner. 2) The membrane targeting process of PTEN may be important for exerting its function. 3) Phosphorylations of Thr309 and Ser474 of Akt2 are regulated differently, and the former is regulated very sensitively by the function of PTEN. 4) The phosphorylation level of Ser474, but not that of Thr309, in Akt2 correlates well with insulin-stimulated glucose transport activity in 3T3-L1 adipocytes. 5) The activity of endogenous PTEN may not play a major role in the regulation of glucose transport activity in 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- H Ono
- Third Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Tokyo 113, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Takano A, Haruta T, Iwata M, Usui I, Uno T, Kawahara J, Ueno E, Sasaoka T, Kobayashi M. Growth hormone induces cellular insulin resistance by uncoupling phosphatidylinositol 3-kinase and its downstream signals in 3T3-L1 adipocytes. Diabetes 2001; 50:1891-900. [PMID: 11473053 DOI: 10.2337/diabetes.50.8.1891] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Growth hormone (GH) is well known to induce in vivo insulin resistance. However, the molecular mechanism of GH-induced cellular insulin resistance is largely unknown. In this study, we demonstrated that chronic GH treatment of differentiated 3T3-L1 adipocytes reduces insulin-stimulated 2-deoxyglucose (DOG) uptake and activation of Akt (also known as protein kinase B), both of which are downstream effects of phosphatidylinositol (PI) 3-kinase, despite enhanced tyrosine phosphorylation of insulin receptor substrate (IRS)-1, association of IRS-1 with the p85 subunit of PI 3-kinase, and IRS-1-associated PI 3-kinase activity. In contrast, chronic GH treatment did not affect 2-DOG uptake and Akt activation induced by overexpression of a membrane-targeted form of the p110 subunit of PI 3-kinase (p110(CAAX)) or Akt activation stimulated by platelet-derived growth factor. Fractionation studies indicated that chronic GH treatment reduces insulin-stimulated translocation of Akt from the cytosol to the plasma membrane. Interestingly, chronic GH treatment increased insulin-stimulated association of IRS-1 with p85 and IRS-1-associated PI 3-kinase activity preferentially in the cytosol. These results indicate that cellular insulin resistance induced by chronic GH treatment in 3T3-L1 adipocytes is caused by uncoupling between activation of PI 3-kinase and its downstream signals, which is specific to the insulin-stimulated PI 3-kinase pathway. This effect of GH might result from the altered subcellular distribution of IRS-1-associated PI 3-kinase.
Collapse
Affiliation(s)
- A Takano
- First Department of Medicine, Toyama Medical and Pharmaceutical University, Toyama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Cho H, Mu J, Kim JK, Thorvaldsen JL, Chu Q, Crenshaw EB, Kaestner KH, Bartolomei MS, Shulman GI, Birnbaum MJ. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science 2001; 292:1728-31. [PMID: 11387480 DOI: 10.1126/science.292.5522.1728] [Citation(s) in RCA: 1426] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Glucose homeostasis depends on insulin responsiveness in target tissues, most importantly, muscle and liver. The critical initial steps in insulin action include phosphorylation of scaffolding proteins and activation of phosphatidylinositol 3-kinase. These early events lead to activation of the serine-threonine protein kinase Akt, also known as protein kinase B. We show that mice deficient in Akt2 are impaired in the ability of insulin to lower blood glucose because of defects in the action of the hormone on liver and skeletal muscle. These data establish Akt2 as an essential gene in the maintenance of normal glucose homeostasis.
Collapse
Affiliation(s)
- H Cho
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Tirosh A, Rudich A, Potashnik R, Bashan N. Oxidative stress impairs insulin but not platelet-derived growth factor signalling in 3T3-L1 adipocytes. Biochem J 2001; 355:757-63. [PMID: 11311139 PMCID: PMC1221792 DOI: 10.1042/bj3550757] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Activation of phosphatidylinositol 3-kinase (PI 3-kinase) is a common event in both insulin and platelet-derived growth factor (PDGF) signalling, but only insulin activates this enzyme in the high-speed pellet (HSP), and induces GLUT4 translocation. Recently, we have demonstrated that exposure of 3T3-L1 adipocytes to oxidative stress impairs insulin-stimulated GLUT4 translocation and glucose transport, associated with impaired PI 3-kinase translocation and activation in the HSP [Tirosh, Potashnik, Bashan and Rudich (1999) J. Biol. Chem. 274, 10595-10602]. In this study the effect of a 2 h exposure to approximately 30 microM H(2)O(2) on insulin versus PDGF-BB signalling and metabolic effects was compared. PDGF-stimulated p85-associated PI 3-kinase activity in total cell lysates, as well as co-precipitation of the PDGF receptor, were unaffected by oxidative stress. Additionally, the increase in p85 association with the plasma-membrane lawns by PDGF remained intact following oxidation, whereas the insulin effect was decreased. PDGF significantly increased protein kinase B (PKB) activity in early differentiated cells, and that of p70 S6-kinase in both early and fully differentiated 3T3-L1 adipocytes. Following oxidation the effect of PDGF on PKB and p70 S6-kinase activation remained intact, whereas significant inhibition of insulin-stimulated activation of those enzymes was observed. In accordance, in both early and fully differentiated cells, oxidative stress completely blunted insulin- but not PDGF-stimulated protein synthesis. In conclusion, oxidative stress impairs insulin, but not PDGF, signalling and metabolic actions in both early and fully differentiated 3T3-L1 adipocytes. This emphasizes compartment-specific activation of PI 3-kinase as an oxidation-sensitive step specifically leading to insulin resistance.
Collapse
Affiliation(s)
- A Tirosh
- Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | |
Collapse
|
41
|
Olson AL, Trumbly AR, Gibson GV. Insulin-mediated GLUT4 translocation is dependent on the microtubule network. J Biol Chem 2001; 276:10706-14. [PMID: 11278355 DOI: 10.1074/jbc.m007610200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The GLUT4 facilitative glucose transporter is recruited to the plasma membrane by insulin. This process depends primarily on the exocytosis of a specialized pool of vesicles containing GLUT4 in their membranes. The mechanism of GLUT4 vesicle exocytosis in response to insulin is not understood. To determine whether GLUT4 exocytosis is dependent on intact microtubule network, we measured insulin-mediated GLUT4 exocytosis in 3T3-L1 adipocytes in which the microtubule network was depolymerized by pretreatment with nocodazole. Insulin-mediated GLUT4 translocation was inhibited by more than 80% in nocodazole-treated cells. Phosphorylation of insulin receptor substrate 1 (IRS-1), activation of IRS-1 associated phosphatidylinositide 3-kinase, and phosphorylation of protein kinase B/Akt-1 were not inhibited by nocodazole treatment indicating that the microtubule network was not required for proximal insulin signaling. An intact microtubule network is specifically required for insulin-mediated GLUT4 translocation since nocodazole treatment did not affect insulin-mediated GLUT1 translocation or adipsin secretion. By using in vitro microtubule binding, we demonstrated that both GLUT4 vesicles and IRS-1 bind specifically to microtubules, implicating microtubules in both insulin signaling and GLUT4 translocation. Vesicle binding to microtubules was not mediated through direct binding of GLUT4 or insulin-responsive aminopeptidase to microtubules. A model microtubule-dependent translocation of GLUT4 is proposed.
Collapse
Affiliation(s)
- A L Olson
- Department of Biochemistry and Molecular Biology, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73190, USA.
| | | | | |
Collapse
|
42
|
Vandromme M, Rochat A, Meier R, Carnac G, Besser D, Hemmings BA, Fernandez A, Lamb NJ. Protein kinase B beta/Akt2 plays a specific role in muscle differentiation. J Biol Chem 2001; 276:8173-9. [PMID: 11087731 DOI: 10.1074/jbc.m005587200] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Insulin-like growth factors positively regulate muscle differentiation through activation of the phosphatidylinositol 3-kinase/protein kinase B (PKB/Akt) signaling pathway. Here, we compare the role of the two closely related alpha (Akt1) and beta (Akt2) isoforms of PKB in muscle differentiation. During differentiation of C2.7 or L6D2 myoblasts, PKBbeta was up-regulated whereas expression of PKBalpha was unaltered. Although the two isoforms were found active in both myoblasts and myotubes, cell fractionation experiments indicated that they displayed distinct subcellular localizations in differentiated cells with only PKBbeta localized in the nuclei. In a transactivation assay, PKBbeta (either wild-type or constitutively active) was more efficient than PKBalpha in activating muscle-specific gene expression. Moreover, microinjection of specific antibodies to PKBbeta inhibited differentiation of muscle cells, whereas control or anti-PKBalpha antibodies did not. On the other hand, microinjection of the anti-PKBalpha antibodies caused a block in cell cycle progression in both non muscle and muscle cells, whereas anti-PKBbeta antibodies had no effect. Taken together, these results show that PKBbeta plays a crucial role in the commitment of myoblasts to differentiation that cannot be substituted by PKBalpha.
Collapse
Affiliation(s)
- M Vandromme
- Institut de Genetique Humaine, CNRS, UPR 1142, 141 Rue de la Cardonille, 34396 Montpellier Cedex 4, France
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Stratford S, DeWald DB, Summers SA. Ceramide dissociates 3'-phosphoinositide production from pleckstrin homology domain translocation. Biochem J 2001; 354:359-68. [PMID: 11171115 PMCID: PMC1221664 DOI: 10.1042/0264-6021:3540359] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Numerous hormones, cytokines and transforming oncogenes activate phosphoinositide 3-kinase (PI-3K), a lipid kinase that initiates signal transduction cascades regulating cellular proliferation, survival, protein synthesis and glucose metabolism. PI-3K catalyses the production of the 3'-phosphoinositides PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3), which recruit downstream effector enzymes to the membrane via their pleckstrin homology (PH) domains. Recent studies have indicated that another signalling lipid, the sphingolipid ceramide, inhibits several PI-3K-dependent events, including insulin-stimulated glucose uptake and growth-factor-stimulated cell survival. Here we show that ceramide analogues specifically prevent the recruitment of the PtdIns(3,4,5)P(3)-binding proteins Akt/protein kinase B (PKB) or the general receptor for phosphoinositides-1 (GRP1). Specifically, the short-chain ceramide derivative C2-ceramide inhibited the platelet-derived growth factor (PDGF)-stimulated translocation of full-length Akt/PKB, as well as truncated proteins encoding only the PH domains of Akt/PKB or GRP1. C2-ceramide did not alter the membrane localization of the PH domain for phospholipase Cdelta, which preferentially binds PtdIns(4,5)P(2), nor did it affect the PDGF-stimulated production of PtdIns(3,4)P(2) or PtdIns(3,4,5)P(3). Interestingly, a glucosylceramide synthase inhibitor, 1-phenyl-2-decanoylamino-3-morpholinopropan-1-ol (PDMP), shown previously to increase intracellular ceramide concentrations without affecting PI-3K [Rani, Abe, Chang, Rosenzweig, Saltiel, Radin and Shayman (1995) J. Biol. Chem. 270, 2859-2867], recapitulated the inhibitory effects of C2-ceramide on PDGF-stimulated Akt/PKB phosphorylation. These studies indicate that ceramide prevents the translocation of certain PtdIns(3,4,5)P(3)-binding proteins, despite the presence of a full complement of PtdIns(3,4)P(2) or PtdIns(3,4,5)P(3). Furthermore, these findings suggest a mechanism by which stimuli that induce ceramide synthesis could negate the fundamental signalling pathways initiated by PI-3K.
Collapse
Affiliation(s)
- S Stratford
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, U.S.A
| | | | | |
Collapse
|
44
|
Jensen TC, Crosson SM, Kartha PM, Brady MJ. Specific desensitization of glycogen synthase activation by insulin in 3T3-L1 adipocytes. Connection between enzymatic activation and subcellular localization. J Biol Chem 2000; 275:40148-54. [PMID: 11013239 DOI: 10.1074/jbc.m004902200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A protocol was developed in 3T3-L1 adipocytes that resulted in the specific desensitization of glycogen synthase activation by insulin. Cells were pretreated for 15 min with 100 nm insulin, and then recovered for 1.5 h in the absence of hormone. Subsequent basal and insulin-induced phosphorylation of the insulin receptor, IRS-1, MAPK, Akt kinase, and GSK-3 were similar in control and pretreated cells. Additionally, enhanced glucose transport and incorporation into lipid in response to insulin were unaffected. However, pretreatment reduced insulin-stimulated glycogen synthesis by over 50%, due to a nearly complete inhibition of glycogen synthase activation. Removal of extracellular glucose during the recovery period blocked the increase in glycogen levels, and restored insulin-induced glycogen synthase activation. Furthermore, incubation of pretreated 3T3-L1 adipocytes with glycogenolytic agents reversed the desensitization event. Separation of cellular lysates on sucrose gradients revealed that glycogen synthase was primarily located in the dense pellet fraction, with lesser amounts in the lighter fractions. Insulin induced glycogen synthase translocation from the lighter to the denser glycogen-containing fractions. Interestingly, insulin preferentially activated translocated enzyme while having little effect on the majority of glycogen synthase activity in the pellet fraction. In insulin-pretreated cells, glycogen synthase did not return to the lighter fractions during recovery, and thus did not move in response to the second insulin exposure. These results suggest that, in 3T3-L1 adipocytes, the translocation of glycogen synthase may be an important step in the regulation of glycogen synthesis by insulin. Furthermore, intracellular glycogen levels can regulate glycogen synthase activation, potentially through modulation of enzymatic localization.
Collapse
Affiliation(s)
- T C Jensen
- Department of Cell Biology, Pfizer Global Research and Development, Ann Arbor, Michigan 48105, USA
| | | | | | | |
Collapse
|
45
|
Okano J, Gaslightwala I, Birnbaum MJ, Rustgi AK, Nakagawa H. Akt/protein kinase B isoforms are differentially regulated by epidermal growth factor stimulation. J Biol Chem 2000; 275:30934-42. [PMID: 10908564 DOI: 10.1074/jbc.m004112200] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Overexpression of epidermal growth factor receptor (EGFR) in certain cancers is well established. There is growing evidence that epidermal growth factor (EGF) activates Akt/protein kinase B (PKB) in a phosphoinositide 3-OH kinase (PI3K)-dependent manner, but it is not yet clear which Akt isoforms are involved in this signal transduction pathway. We investigated the functional regulation of three Akt isoforms, Akt1/PKBalpha, Akt2/PKBbeta, and Akt3/PKBgamma, in esophageal cancer cells where EGFR is frequently overexpressed. Upon EGF simulation, phosphorylation of Akt1 at the Ser-473 residue was remarkably induced. This result was corroborated by in vitro Akt kinase assays using glycogen synthase kinase 3beta as the substrate. PI3K inhibitors, wortmannin or LY294002, significantly blocked the Akt kinase activity induced by EGF. Akt2 activity was evaluated by electrophoretic mobility shift assays. Robust activation of Akt2 by EGF was observed in some cell lines in a PI3K-dependent manner. EGF-induced Akt3 activation was demonstrated by Ser-472 phosphorylation of Akt3 but in a restrictive fashion. In aggregate, EGF-mediated activation of Akt isoforms is overlapping and distinctive. The mechanism by which EGFR recruits the PI3K/Akt pathway was in part differentially regulated at the level of Ras but independent of heterodimerization of EGFR with either ErbB2 or ErbB3 based upon functional dissection of pathways in esophageal cancer cell lines.
Collapse
Affiliation(s)
- J Okano
- Division of Gastroenterology, Howard Hughes Medical Institute, Cancer Center, and Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
46
|
Ross SA, Chen X, Hope HR, Sun S, McMahon EG, Broschat K, Gulve EA. Development and comparison of two 3T3-L1 adipocyte models of insulin resistance: increased glucose flux vs glucosamine treatment. Biochem Biophys Res Commun 2000; 273:1033-41. [PMID: 10891367 DOI: 10.1006/bbrc.2000.3082] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulin resistance can be induced in vivo by intravenous infusion of glucosamine or in cells by incubation with glucosamine. However, a publication (Hresko, R. C., et al. (1998) J. Biol. Chem. 273, 20658-20668) suggests a trivial explanation of glucosamine-induced insulin resistance whereby intracellular ATP pools are depleted presumably due to the phosphorylation of glucosamine to glucosamine 6-phosphate, a hexosamine pathway intermediate. The reduced ATP level impaired insulin receptor (IR) autophosphorylation and tyrosine kinase activity toward substrates. The present work describes the development and comparison of two methods for inducing insulin resistance, by treating 3T3-L1 adipocytes overnight using either 25 mM glucose/5 nM insulin or 2 mM glucosamine. Under these conditions basal glucose transport rates were comparable with controls. Insulin-stimulated 2-deoxyglucose uptake, however, was reduced by approximately 45% in response to both high glucose/insulin and glucosamine treatment, relative to control cells. The total relative amounts of the insulin-responsive glucose transporter, Glut4, remained constant under both treatment conditions. The relative phosphotyrosine (Tyr(P)) contents of the insulin receptor and its substrate 1 (IRS-1) were assessed in whole cell homogenates. With both methods to induce insulin resistance, IR/IRS-1 Tyr(P) levels were virtually indistinguishable from those in control cells. Insulin-stimulated phosphorylation of Akt on Ser(473) was not impaired in insulin-resistant cells. Furthermore, the relative Tyr(P) content of the PDGF receptor was comparable in high glucose/insulin- or glucosamine-treated 3T3-L1 adipocytes upon subsequent challenge with PDGF. Finally, the relative amounts of glutamine:fructose-6-phosphate amidotransferase and O-linked N-acetylglucosamine transferase, two important hexosamine pathway enzymes, were similar in both treatments when compared with controls. Thus, 3T3-L1 adipocytes can be used as a model system for studying insulin resistance induced by increased influx of glucose. Under appropriate experimental conditions, glucosamine treatment can mimic the effects of increased glucose flux without impairment of tyrosine phosphorylation-based signaling.
Collapse
Affiliation(s)
- S A Ross
- Cardiovascular and Metabolic Diseases Research, Biochemistry and Molecular Biology, G. D. Searle and Company, 800 N. Lindbergh Boulevard, St. Louis, Missouri 63167, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The insulin receptor substrates function at the heart of the insulin signalling network. It has recently become apparent that the intracellular localisation of these molecules is regulated in a precise manner that is critical for both the generation and the termination of the insulin signal. Some insulin receptor substrate isoforms appear to be associated with an insoluble matrix that resembles the cytoskeleton. When inappropriately dissociated from this matrix the signalling network collapses concomitant with loss of insulin sensitivity.
Collapse
Affiliation(s)
- J P Whitehead
- The Centre for Molecular and Cellular Biology, University of Queensland, Brisbane, 4072, Australia.
| | | | | | | |
Collapse
|
48
|
Summers SA, Yin VP, Whiteman EL, Garza LA, Cho H, Tuttle RL, Birnbaum MJ. Signaling pathways mediating insulin-stimulated glucose transport. Ann N Y Acad Sci 1999; 892:169-86. [PMID: 10842662 DOI: 10.1111/j.1749-6632.1999.tb07795.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A major action of insulin is to accelerate the rate of uptake of sugar into muscle and adipose cells following a meal. The biochemical mechanism by which this is accomplished has been a subject of intense experimentation, although elucidation of the pathways has remained elusive. In recent years, numerous signaling molecules and cascades modulated by insulin have been identified, although few have been definitively established as important to the metabolic actions of the hormone. An exception to this is the lipid kinase phosphatidylinositide 3'-kinase, which, under many conditions, appears absolutely required for insulin to stimulate hexose uptake into adipocytes. Akt/PKB, a serine/threonine protein kinase activated by insulin in a phosphatidylinositide 3'-kinase-dependent manner, has been implicated as a critical mediator of insulin's actions on metabolism and cell survival. Nonetheless, Akt/PKB's role in many insulin effects, particularly accelerated glucose transport, remains controversial. Interestingly, soluble analogues of ceramide antagonize both insulin's activation of Akt/PKB as well as its stimulation of glucose transport, consistent with a causal relationship between the two.
Collapse
Affiliation(s)
- S A Summers
- Howard Hughes Medical Institute, Cox Institute, University of Pennsylvania Medical School, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Hill MM, Clark SF, Tucker DF, Birnbaum MJ, James DE, Macaulay SL. A role for protein kinase Bbeta/Akt2 in insulin-stimulated GLUT4 translocation in adipocytes. Mol Cell Biol 1999; 19:7771-81. [PMID: 10523666 PMCID: PMC84835 DOI: 10.1128/mcb.19.11.7771] [Citation(s) in RCA: 248] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Insulin stimulates glucose uptake into muscle and fat cells by promoting the translocation of glucose transporter 4 (GLUT4) to the cell surface. Phosphatidylinositide 3-kinase (PI3K) has been implicated in this process. However, the involvement of protein kinase B (PKB)/Akt, a downstream target of PI3K in regulation of GLUT4 translocation, has been controversial. Here we report that microinjection of a PKB substrate peptide or an antibody to PKB inhibited insulin-stimulated GLUT4 translocation to the plasma membrane by 66 or 56%, respectively. We further examined the activation of PKB isoforms following treatment of cells with insulin or platelet-derived growth factor (PDGF) and found that PKBbeta is preferentially expressed in both rat and 3T3-L1 adipocytes, whereas PKBalpha expression is down-regulated in 3T3-L1 adipocytes. A switch in growth factor response was also observed when 3T3-L1 fibroblasts were differentiated into adipocytes. While PDGF was more efficacious than insulin in stimulating PKB phosphorylation in fibroblasts, PDGF did not stimulate PKBbeta phosphorylation to any significant extent in adipocytes, as assessed by several methods. Moreover, insulin, but not PDGF, stimulated the translocation of PKBbeta to the plasma membrane and high-density microsome fractions of 3T3-L1 adipocytes. These results support a role for PKBbeta in insulin-stimulated glucose transport in adipocytes.
Collapse
Affiliation(s)
- M M Hill
- Centre for Molecular Biology, Department of Physiology, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | |
Collapse
|
50
|
Cass LA, Summers SA, Prendergast GV, Backer JM, Birnbaum MJ, Meinkoth JL. Protein kinase A-dependent and -independent signaling pathways contribute to cyclic AMP-stimulated proliferation. Mol Cell Biol 1999; 19:5882-91. [PMID: 10454535 PMCID: PMC84437 DOI: 10.1128/mcb.19.9.5882] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effects of cyclic AMP (cAMP) on cell proliferation are cell type specific. Although the growth-inhibitory effects of cAMP have been well studied, much less is known regarding how cAMP stimulates proliferation. We report that cAMP stimulates proliferation through both protein kinase A (PKA)-dependent and PKA-independent signaling pathways and that phosphatidylinositol 3-kinase (PI3K) is required for cAMP-stimulated mitogenesis. In cells where cAMP is a mitogen, cAMP-elevating agents stimulate membrane ruffling, Akt phosphorylation, and p70 ribosomal S6 protein kinase (p70s6k) activity. cAMP effects on ruffle formation and Akt were PKA independent but sensitive to wortmannin. In contrast, cAMP-stimulated p70s6k activity was repressed by PKA inhibitors but not by wortmannin or microinjection of the N-terminal SH2 domain of the p85 regulatory subunit of PI3K, indicating that p70s6k and Akt can be regulated independently. Microinjection of highly specific inhibitors of PI3K or Rac1, or treatment with the p70s6k inhibitor rapamycin, impaired cAMP-stimulated DNA synthesis, demonstrating that PKA-dependent and -independent pathways contribute to cAMP-mediated mitogenesis. Direct elevation of PI3K activity through microinjection of an antibody that stimulates PI3K activity or stable expression of membrane-localized p110 was sufficient to confer hormone-independent DNA synthesis when accompanied by elevations in p70s6k activity. These findings indicate that multiple pathways contribute to cAMP-stimulated mitogenesis, only some of which are PKA dependent. Furthermore, they demonstrate that the ability of cAMP to stimulate both p70s6k- and PI3K-dependent pathways is an important facet of cAMP-regulated cell cycle progression.
Collapse
Affiliation(s)
- L A Cass
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6084, USA
| | | | | | | | | | | |
Collapse
|