1
|
Tang X, Chen C, Yan S, Yang A, Deng Y, Chen B, Gu J. Single-Nucleus RNA-Seq Reveals Spermatogonial Stem Cell Developmental Pattern in Shaziling Pigs. Biomolecules 2024; 14:607. [PMID: 38927011 PMCID: PMC11202124 DOI: 10.3390/biom14060607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Normal testicular development ensures the process of spermatogenesis, which is a complex biological process. The sustained high productivity of spermatogenesis throughout life is predominantly attributable to the constant proliferation and differentiation of spermatogonial stem cells (SSCs). The self-renewal and differentiation processes of SSCs are strictly regulated by the SSC niche. Therefore, understanding the developmental pattern of SSCs is crucial for spermatogenesis. The Shaziling pig is a medium-sized indigenous pig breed originating from central China. It is renowned for its superior meat quality and early male sexual maturity. The spermatogenic ability of the boars is of great economic importance to the pig industry. To investigate testicular development, particularly the pattern of SSC development in Shaziling pigs, we used single-cell transcriptomics to identify gene expression patterns in 82,027 individual cells from nine Shaziling pig testes at three key postnatal developmental stages. We generated an unbiased cell developmental atlas of Shaziling pig testicular tissues. We elucidated the complex processes involved in the development of SSCs within their niche in the Shaziling pig. Specifically, we identified potential marker genes and cellular signaling pathways that regulate SSC self-renewal and maintenance. Additionally, we proposed potential novel marker genes for SSCs that could be used for SSC isolation and sorting in Shaziling pigs. Furthermore, by immunofluorescence staining of testicular tissues of different developmental ages using marker proteins (UCHL1 and KIT), the developmental pattern of the spermatogonia of Shaziling pigs was intensively studied. Our research enhances the comprehension of the development of SSCs and provides a valuable reference for breeding Shaziling pigs.
Collapse
Affiliation(s)
- Xiangwei Tang
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.T.); (C.C.); (A.Y.); (Y.D.)
| | - Chujie Chen
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.T.); (C.C.); (A.Y.); (Y.D.)
| | - Saina Yan
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Anqi Yang
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.T.); (C.C.); (A.Y.); (Y.D.)
- School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yanhong Deng
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.T.); (C.C.); (A.Y.); (Y.D.)
| | - Bin Chen
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.T.); (C.C.); (A.Y.); (Y.D.)
| | - Jingjing Gu
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.T.); (C.C.); (A.Y.); (Y.D.)
| |
Collapse
|
2
|
Jiménez-Jiménez C, Grobe K, Guerrero I. Hedgehog on the Move: Glypican-Regulated Transport and Gradient Formation in Drosophila. Cells 2024; 13:418. [PMID: 38474382 DOI: 10.3390/cells13050418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Glypicans (Glps) are a family of heparan sulphate proteoglycans that are attached to the outer plasma membrane leaflet of the producing cell by a glycosylphosphatidylinositol anchor. Glps are involved in the regulation of many signalling pathways, including those that regulate the activities of Wnts, Hedgehog (Hh), Fibroblast Growth Factors (FGFs), and Bone Morphogenetic Proteins (BMPs), among others. In the Hh-signalling pathway, Glps have been shown to be essential for ligand transport and the formation of Hh gradients over long distances, for the maintenance of Hh levels in the extracellular matrix, and for unimpaired ligand reception in distant recipient cells. Recently, two mechanistic models have been proposed to explain how Hh can form the signalling gradient and how Glps may contribute to it. In this review, we describe the structure, biochemistry, and metabolism of Glps and their interactions with different components of the Hh-signalling pathway that are important for the release, transport, and reception of Hh.
Collapse
Affiliation(s)
- Carlos Jiménez-Jiménez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Nicolás Cabrera 1, E-28049 Madrid, Spain
| | - Kay Grobe
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstrasse 15, 48149 Münster, Germany
| | - Isabel Guerrero
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Nicolás Cabrera 1, E-28049 Madrid, Spain
| |
Collapse
|
3
|
Tegtmeyer M, Arora J, Asgari S, Cimini BA, Nadig A, Peirent E, Liyanage D, Way GP, Weisbart E, Nathan A, Amariuta T, Eggan K, Haghighi M, McCarroll SA, O'Connor L, Carpenter AE, Singh S, Nehme R, Raychaudhuri S. High-dimensional phenotyping to define the genetic basis of cellular morphology. Nat Commun 2024; 15:347. [PMID: 38184653 PMCID: PMC10771466 DOI: 10.1038/s41467-023-44045-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 11/28/2023] [Indexed: 01/08/2024] Open
Abstract
The morphology of cells is dynamic and mediated by genetic and environmental factors. Characterizing how genetic variation impacts cell morphology can provide an important link between disease association and cellular function. Here, we combine genomic sequencing and high-content imaging approaches on iPSCs from 297 unique donors to investigate the relationship between genetic variants and cellular morphology to map what we term cell morphological quantitative trait loci (cmQTLs). We identify novel associations between rare protein altering variants in WASF2, TSPAN15, and PRLR with several morphological traits related to cell shape, nucleic granularity, and mitochondrial distribution. Knockdown of these genes by CRISPRi confirms their role in cell morphology. Analysis of common variants yields one significant association and nominate over 300 variants with suggestive evidence (P < 10-6) of association with one or more morphology traits. We then use these data to make predictions about sample size requirements for increasing discovery in cellular genetic studies. We conclude that, similar to molecular phenotypes, morphological profiling can yield insight about the function of genes and variants.
Collapse
Affiliation(s)
- Matthew Tegtmeyer
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Centre for Gene Therapy and Regenerative Medicine, King's College, London, UK
| | - Jatin Arora
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Samira Asgari
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Beth A Cimini
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ajay Nadig
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Emily Peirent
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dhara Liyanage
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Gregory P Way
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Erin Weisbart
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Aparna Nathan
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Tiffany Amariuta
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Halıcıoğlu Data Science Institute, University of California, La Jolla, CA, USA
- Department of Medicine, University of California, La Jolla, CA, USA
| | - Kevin Eggan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Marzieh Haghighi
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Steven A McCarroll
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Luke O'Connor
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Anne E Carpenter
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Shantanu Singh
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Ralda Nehme
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- Centre for Genetics and Genomics Versus Arthritis, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.
| |
Collapse
|
4
|
Cui M, Bezprozvannaya S, Hao T, Elnwasany A, Szweda LI, Liu N, Bassel-Duby R, Olson EN. Transcription factor NFYa controls cardiomyocyte metabolism and proliferation during mouse fetal heart development. Dev Cell 2023; 58:2867-2880.e7. [PMID: 37972593 PMCID: PMC11000264 DOI: 10.1016/j.devcel.2023.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/22/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
Cardiomyocytes are highly metabolic cells responsible for generating the contractile force in the heart. During fetal development and regeneration, these cells actively divide but lose their proliferative activity in adulthood. The mechanisms that coordinate their metabolism and proliferation are not fully understood. Here, we study the role of the transcription factor NFYa in developing mouse hearts. Loss of NFYa alters cardiomyocyte composition, causing a decrease in immature regenerative cells and an increase in trabecular and mature cardiomyocytes, as identified by spatial and single-cell transcriptome analyses. NFYa-deleted cardiomyocytes exhibited reduced proliferation and impaired mitochondrial metabolism, leading to cardiac growth defects and embryonic death. NFYa, interacting with cofactor SP2, activates genes linking metabolism and proliferation at the transcription level. Our study identifies a nodal role of NFYa in regulating prenatal cardiac growth and a previously unrecognized transcriptional control mechanism of heart metabolism, highlighting the importance of mitochondrial metabolism during heart development and regeneration.
Collapse
Affiliation(s)
- Miao Cui
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| | - Svetlana Bezprozvannaya
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine and Sen. Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Tian Hao
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Abdallah Elnwasany
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Luke I Szweda
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Ning Liu
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine and Sen. Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine and Sen. Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Eric N Olson
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine and Sen. Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
5
|
Crenshaw MM, Meyers ML, Brown K, Slegesky V, Duis J, Elias ER, Saenz M, Shi W, Filmus J, Meeks NJL. Five siblings expand the spectrum of GPC6-related skeletal dysplasia. Am J Med Genet A 2023; 191:2571-2577. [PMID: 37353964 DOI: 10.1002/ajmg.a.63337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 06/25/2023]
Abstract
Skeletal dysplasias broadly include disorders of cartilage or bone. Omodysplasia-1 is a type of skeletal dysplasia caused by biallelic loss of function variants in the GPC6 gene. GPC6 codes for the protein glypican 6 (GPC6) (OMIM *604404), which stimulates bone growth. We report a family in which five out of nine children were presented with a skeletal dysplasia characterized phenotypically by mild short stature and rhizomelia. All affected individuals were found to have homozygous missense variants in GPC6: c.511 C>T (p.Arg171Trp). Radiograph findings included rhizomelic foreshortening of all four extremities, coxa breva, and ulna minus deformity. Using a Hedgehog (Hh) reporter assay, we demonstrate that the variant found in this family results in significantly reduced stimulation of Hh activity when compared to the wild-type GPC6 protein, however protein function is still present. Thus, the milder phenotype seen in the family presented is hypothesized due to decreased GPC6 protein activity versus complete loss of function as seen in omodysplasia-1. Given the unique phenotype and molecular mechanism, we propose that this family's findings widen the phenotypic spectrum of GPC6-related skeletal dysplasias.
Collapse
Affiliation(s)
- Molly M Crenshaw
- Department of Pediatrics, Section of Genetics and Metabolism, University of Colorado School of Medicine (CU-SOM), Aurora, Colorado, USA
| | | | - Kathleen Brown
- Department of Pediatrics, Section of Genetics and Metabolism, University of Colorado School of Medicine (CU-SOM), Aurora, Colorado, USA
| | - Valerie Slegesky
- Department of Pediatrics, Section of Genetics and Metabolism, University of Colorado School of Medicine (CU-SOM), Aurora, Colorado, USA
| | - Jessica Duis
- Department of Pediatrics, Section of Genetics and Metabolism, University of Colorado School of Medicine (CU-SOM), Aurora, Colorado, USA
| | - Ellen R Elias
- Department of Pediatrics, Section of Genetics and Metabolism, University of Colorado School of Medicine (CU-SOM), Aurora, Colorado, USA
| | - Margarita Saenz
- Department of Pediatrics, Section of Genetics and Metabolism, University of Colorado School of Medicine (CU-SOM), Aurora, Colorado, USA
| | - Wen Shi
- Department of Medical Biophysics, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Jorge Filmus
- Department of Medical Biophysics, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Naomi J L Meeks
- Department of Pediatrics, Section of Genetics and Metabolism, University of Colorado School of Medicine (CU-SOM), Aurora, Colorado, USA
| |
Collapse
|
6
|
Colin-Pierre C, El Baraka O, Danoux L, Bardey V, André V, Ramont L, Brézillon S. Regulation of stem cell fate by HSPGs: implication in hair follicle cycling. NPJ Regen Med 2022; 7:77. [PMID: 36577752 PMCID: PMC9797564 DOI: 10.1038/s41536-022-00267-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 11/30/2022] [Indexed: 12/29/2022] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) are part of proteoglycan family. They are composed of heparan sulfate (HS)-type glycosaminoglycan (GAG) chains covalently linked to a core protein. By interacting with growth factors and/or receptors, they regulate numerous pathways including Wnt, hedgehog (Hh), bone morphogenic protein (BMP) and fibroblast growth factor (FGF) pathways. They act as inhibitor or activator of these pathways to modulate embryonic and adult stem cell fate during organ morphogenesis, regeneration and homeostasis. This review summarizes the knowledge on HSPG structure and classification and explores several signaling pathways regulated by HSPGs in stem cell fate. A specific focus on hair follicle stem cell fate and the possibility to target HSPGs in order to tackle hair loss are discussed in more dermatological and cosmeceutical perspectives.
Collapse
Affiliation(s)
- Charlie Colin-Pierre
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France.
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, Reims, France.
- BASF Beauty Care Solutions France SAS, Pulnoy, France.
| | | | - Louis Danoux
- BASF Beauty Care Solutions France SAS, Pulnoy, France
| | | | - Valérie André
- BASF Beauty Care Solutions France SAS, Pulnoy, France
| | - Laurent Ramont
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, Reims, France
- CHU de Reims, Service Biochimie-Pharmacologie-Toxicologie, Reims, France
| | - Stéphane Brézillon
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, Reims, France
| |
Collapse
|
7
|
Busato D, Mossenta M, Dal Bo M, Macor P, Toffoli G. The Proteoglycan Glypican-1 as a Possible Candidate for Innovative Targeted Therapeutic Strategies for Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2022; 23:ijms231810279. [PMID: 36142190 PMCID: PMC9499405 DOI: 10.3390/ijms231810279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 11/19/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) accounts for 90% of all pancreatic cancers, with a 5-year survival rate of 7% and 80% of patients diagnosed with advanced or metastatic malignancies. Despite recent advances in diagnostic testing, surgical techniques, and systemic therapies, there remain limited options for the effective treatment of PDAC. There is an urgent need to develop targeted therapies that are able to differentiate between cancerous and non-cancerous cells to reduce side effects and better inhibit tumor growth. Antibody-targeted strategies are a potentially effective option for introducing innovative therapies. Antibody-based immunotherapies and antibody-conjugated nanoparticle-based targeted therapies with antibodies targeting specific tumor-associated antigens (TAA) can be proposed. In this context, glypican-1 (GPC1), which is highly expressed in PDAC and not expressed or expressed at very low levels in non-malignant lesions and healthy pancreatic tissues, is a useful TAA that can be achieved by a specific antibody-based immunotherapy and antibody-conjugated nanoparticle-based targeted therapy. In this review, we describe the main clinical features of PDAC. We propose the proteoglycan GPC1 as a useful TAA for PDAC-targeted therapies. We also provide a digression on the main developed approaches of antibody-based immunotherapy and antibody-conjugated nanoparticle-based targeted therapy, which can be used to target GPC1.
Collapse
Affiliation(s)
- Davide Busato
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
- Correspondence: ; Tel.: +39-0434-659816
| | - Monica Mossenta
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| |
Collapse
|
8
|
Mossenta M, Busato D, Dal Bo M, Macor P, Toffoli G. Novel Nanotechnology Approaches to Overcome Drug Resistance in the Treatment of Hepatocellular Carcinoma: Glypican 3 as a Useful Target for Innovative Therapies. Int J Mol Sci 2022; 23:10038. [PMID: 36077433 PMCID: PMC9456072 DOI: 10.3390/ijms231710038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the second most lethal tumor, with a 5-year survival rate of 18%. Early stage HCC is potentially treatable by therapies with curative intent, whereas chemoembolization/radioembolization and systemic therapies are the only therapeutic options for intermediate or advanced HCC. Drug resistance is a critical obstacle in the treatment of HCC that could be overcome by the use of targeted nanoparticle-based therapies directed towards specific tumor-associated antigens (TAAs) to improve drug delivery. Glypican 3 (GPC3) is a member of the glypican family, heparan sulfate proteoglycans bound to the cell surface via a glycosylphosphatidylinositol anchor. The high levels of GPC3 detected in HCC and the absence or very low levels in normal and non-malignant liver make GPC3 a promising TAA candidate for targeted nanoparticle-based therapies. The use of nanoparticles conjugated with anti-GPC3 agents may improve drug delivery, leading to a reduction in severe side effects caused by chemotherapy and increased drug release at the tumor site. In this review, we describe the main clinical features of HCC and the common treatment approaches. We propose the proteoglycan GPC3 as a useful TAA for targeted therapies. Finally, we describe nanotechnology approaches for anti-GPC3 drug delivery systems based on NPs for HCC treatment.
Collapse
Affiliation(s)
- Monica Mossenta
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Davide Busato
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| |
Collapse
|
9
|
Dharmadhikari AV, Pereira EM, Andrews CC., Macera M, Harkavy N, Wapner R, Jobanputra V, Levy B, Ganapathi M, Liao J. Case Report: Prenatal Identification of a De Novo Mosaic Neocentric Marker Resulting in 13q31.1→qter Tetrasomy in a Mildly Affected Girl. Front Genet 2022; 13:906077. [PMID: 35928455 PMCID: PMC9343796 DOI: 10.3389/fgene.2022.906077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Partial tetrasomy of distal 13q has a reported association with a variable phenotype including microphthalmia, ear abnormalities, hypotelorism, facial dysmorphisms, urogenital defects, pigmentation and skin defects, and severe learning difficulties. A wide range of mosaicism has been reported, which may, to some extent, account for the variable spectrum of observed phenotypes. We report here a pregnancy conceived using intrauterine insemination in a 32-year-old female with a history of infertility. Non-invasive prenatal screening (NIPS) was performed in the first trimester which reported an increased risk for trisomy 13. Follow-up cytogenetic workup using chorionic villus sampling (CVS) and amniotic fluid samples showed a mosaic karyotype with a small supernumerary marker chromosome (sSMC). Chromosomal microarray analysis (CMA) identified a mosaic 31.34 Mb terminal gain on chr13q31.1q34 showing the likely origin of the sSMC to distal chromosome 13q. Follow-up metaphase FISH testing suggested an inverted duplication rearrangement involving 13q31q34 in the marker chromosome and the presence of a neocentromere. At 21 months of age, the proband has a history of gross motor delay, hypotonia, left microphthalmia, strabismus, congenital anomaly of the right optic nerve, hemangiomas, and a tethered spinal cord. Postnatal chromosome analyses in buccal, peripheral blood, and spinal cord ligament tissues were consistent with the previous amniocentesis and CVS findings, and the degree of mosaicism varied from 25 to 80%. It is often challenging to pinpoint the chromosomal identity of sSMCs using banding cytogenetics. A combination of low-pass genome sequencing of cell-free DNA, chromosomal microarray, and FISH enabled the identification of the precise chromosomal rearrangement in this patient. This study adds to the growing list of clinically identified neocentric marker chromosomes and is the first described instance of partial tetrasomy 13q31q34 identified in a mosaic state prenatally. Since NIPS is now being routinely performed along with invasive testing for advanced maternal age, an increased prenatal detection rate for mosaic sSMCs in otherwise normal pregnancies is expected. Future studies investigating how neocentromeres mediate gene expression changes could help identify potential epigenetic targets as treatment options to rescue or reverse the phenotypes seen in patients with congenital neocentromeres.
Collapse
Affiliation(s)
- Avinash V. Dharmadhikari
- Department of Pathology & Cell Biology, Columbia University Vagelos College of Physicians and Surgeons and New York-Presbyterian Morgan Stanley Children’s Hospital, New York, NY, United States
| | - Elaine M. Pereira
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons and New York-Presbyterian Morgan Stanley Children’s Hospital, New York, NY, United States
| | - Carli C . Andrews
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Michael Macera
- Clinical Cytogenetics Laboratory, New York Presbyterian Morgan Stanley Children’s Hospital, New York, NY, United States
| | - Nina Harkavy
- Department of Obstetrics and Gynecology, Columbia University Vagelos College of Physicians and Surgeons and New York-Presbyterian Morgan Stanley Children’s Hospital, New York, NY, United States
| | - Ronald Wapner
- Department of Obstetrics and Gynecology, Columbia University Vagelos College of Physicians and Surgeons and New York-Presbyterian Morgan Stanley Children’s Hospital, New York, NY, United States
| | - Vaidehi Jobanputra
- Department of Pathology & Cell Biology, Columbia University Vagelos College of Physicians and Surgeons and New York-Presbyterian Morgan Stanley Children’s Hospital, New York, NY, United States
| | - Brynn Levy
- Department of Pathology & Cell Biology, Columbia University Vagelos College of Physicians and Surgeons and New York-Presbyterian Morgan Stanley Children’s Hospital, New York, NY, United States
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Mythily Ganapathi
- Department of Pathology & Cell Biology, Columbia University Vagelos College of Physicians and Surgeons and New York-Presbyterian Morgan Stanley Children’s Hospital, New York, NY, United States
| | - Jun Liao
- Department of Pathology & Cell Biology, Columbia University Vagelos College of Physicians and Surgeons and New York-Presbyterian Morgan Stanley Children’s Hospital, New York, NY, United States
- *Correspondence: Jun Liao,
| |
Collapse
|
10
|
Abstract
Glypicans are proteoglycans that are bound to the outer surface of the plasma membrane by a glycosylphosphatidylinositol anchor. The mammalian genome contains six members of the glypican family (GPC1 to GPC6). Although the degree of sequence homology within the family is rather low, the three-dimensional structure of these proteoglycans is highly conserved. Glypicans are predominantly expressed during embryonic development. Genetic and biochemical studies have shown that glypicans can stimulate or inhibit the signaling pathways triggered by Wnts, Hedgehogs, Fibroblast Growth Factors, and Bone Morphogenetic Proteins. The study of mutant mouse strains demonstrated that glypicans have important functions in the developmental morphogenesis of various organs. In addition, a role of glypicans in synapsis formation has been established. Notably, glypican loss-of-function mutations are the cause of three human inherited syndromes. Recent analysis of glypican compound mutant mice have demonstrated that members of this protein family display redundant functions during embryonic development.
Collapse
Affiliation(s)
- Jorge Filmus
- Biological Sciences, Sunnybrook Research Institute, and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Wang JY, Wang XK, Zhu GZ, Zhou X, Yao J, Ma XP, Wang B, Peng T. Distinct diagnostic and prognostic values of Glypicans gene expression in patients with hepatocellular carcinoma. BMC Cancer 2021; 21:462. [PMID: 33902495 PMCID: PMC8073913 DOI: 10.1186/s12885-021-08104-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
Backgroud In our current work, we aimed to investigate the expressions of glypican (GPC) family genes at the mRNA level and assess their prognostic significances in patients with hepatocellular carcinoma (HCC). Methods The pathological roles of GPC family genes were examined using bioinformatics analysis. The diagnostic values of GPC genes were explored with the Gene Expression Profiling Interactive Analysis. Moreover, the mRNA expression and prognostic values of GPC genes were assessed via the KM plotter database. Results Our data showed that the expression of GPC-3 was dramatically increased in the liver tumor tissue. Moreover, the expressions of the other five GPC family members were not significantly different between the tumor and normal liver tissues (P > 0.05). Furthermore, the up-regulation of GPC-1 at the mRNA level was dramatically correlated to the reduced overall survival (OS) for all HCC patients (hazard ratio = 2.03, 95% confidence intervals =1.44–2.87, P = 4.1e-05) compared with its low-expression group. Besides, the prognosis of the Caucasians was related to most GPC family genes, while the prognosis of the Asian race was only related to the expression of GPC-2. Besides, for pathological factors, including stage, grade, AJCC, and vascular invasion, the higher the pathological grade and vascular invasiveness, the lower the expression levels of GPC family genes (P < 0.05). Finally, the expression levels of GPC-1, 2, and 3 in the hepatitis group were related to the poor prognosis of HCC in the risk factor (alcohol consumption and hepatitis) subgroup (P < 0.05). Conclusions Our findings indicated that GPC-3 was dysregulated in HCC compared with paracancerous tissues. The expression of GPC-1 could be used as a potent predictive index for the general prognosis of HCC. The pathology, patients, and risk factors might affect the prognostic value of GPC family genes in HCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08104-z.
Collapse
Affiliation(s)
- Jian-Yao Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Shuang Yong Road 6#, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.,Department of General Surgery, Shenzhen Children's Hospital, Yi Tian Road 7019#, Shenzhen, 518026, Guangdong Province, People's Republic of China
| | - Xiang-Kun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Shuang Yong Road 6#, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Guang-Zhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Shuang Yong Road 6#, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Shuang Yong Road 6#, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jun Yao
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People's Hospital, Dong Men Bei Road 1017#, Shenzhen, 518020, Guangdong Province, People's Republic of China.
| | - Xiao-Peng Ma
- Department of General Surgery, Shenzhen Children's Hospital, Yi Tian Road 7019#, Shenzhen, 518026, Guangdong Province, People's Republic of China.
| | - Bin Wang
- Department of General Surgery, Shenzhen Children's Hospital, Yi Tian Road 7019#, Shenzhen, 518026, Guangdong Province, People's Republic of China.
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Shuang Yong Road 6#, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
12
|
Keil S, Gupta M, Brand M, Knopf F. Heparan sulfate proteoglycan expression in the regenerating zebrafish fin. Dev Dyn 2021; 250:1368-1380. [PMID: 33638212 DOI: 10.1002/dvdy.321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/16/2021] [Accepted: 02/10/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Heparan sulfate proteoglycan (HSPG) expression is found in many animal tissues and regulates growth factor signaling such as of Fibroblast growth factors (Fgf), Wingless/Int (Wnt) and Hedgehog (HH). Glypicans, which are GPI (glycosylphosphatidylinositol)-anchored proteins, and transmembrane-anchored syndecans represent two major HSPG protein families whose involvement in development and disease has been demonstrated. Their participation in regenerative processes both of the central nervous system and of regenerating limbs is well documented. However, whether HSPG are expressed in regenerating zebrafish fins, is currently unknown. RESULTS Here, we carried out a systematic screen of glypican and syndecan mRNA expression in regenerating zebrafish fins during the outgrowth phase. We find that 8 of the 10 zebrafish glypicans and the three known zebrafish syndecans show specific expression at 3 days post amputation. Expression is found in different domains of the regenerate, including the distal and lateral basal layers of the wound epidermis, the distal most blastema and more proximal blastema regions. CONCLUSIONS HSPG expression is prevalent in regenerating zebrafish fins. Further research is needed to delineate the function of glypican and syndecan action during zebrafish fin regeneration.
Collapse
Affiliation(s)
- Sebastian Keil
- Technische Universität Dresden, CRTD - Center for Regenerative Therapies TU Dresden, Dresden, Germany.,Technische Universität Dresden, Center for Healthy Aging TU Dresden, Dresden, Germany
| | - Mansi Gupta
- Technische Universität Dresden, CRTD - Center for Regenerative Therapies TU Dresden, Dresden, Germany.,Merus N.V, Utrecht, Netherlands
| | - Michael Brand
- Technische Universität Dresden, CRTD - Center for Regenerative Therapies TU Dresden, Dresden, Germany
| | - Franziska Knopf
- Technische Universität Dresden, CRTD - Center for Regenerative Therapies TU Dresden, Dresden, Germany.,Technische Universität Dresden, Center for Healthy Aging TU Dresden, Dresden, Germany
| |
Collapse
|
13
|
Isor A, O'Dea AT, Petroff JT, Skubic KN, Grady SF, Arnatt CK, McCulla RD. Synthesis of triphenylphosphonium dibenzothiophene S-oxide derivatives and their effect on cell cycle as photodeoxygenation-based cytotoxic agents. Bioorg Chem 2020; 105:104442. [DOI: 10.1016/j.bioorg.2020.104442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/27/2020] [Indexed: 01/12/2023]
|
14
|
Heparan Sulfate Proteoglycans Biosynthesis and Post Synthesis Mechanisms Combine Few Enzymes and Few Core Proteins to Generate Extensive Structural and Functional Diversity. Molecules 2020; 25:molecules25184215. [PMID: 32937952 PMCID: PMC7570499 DOI: 10.3390/molecules25184215] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
Glycosylation is a common and widespread post-translational modification that affects a large majority of proteins. Of these, a small minority, about 20, are specifically modified by the addition of heparan sulfate, a linear polysaccharide from the glycosaminoglycan family. The resulting molecules, heparan sulfate proteoglycans, nevertheless play a fundamental role in most biological functions by interacting with a myriad of proteins. This large functional repertoire stems from the ubiquitous presence of these molecules within the tissue and a tremendous structural variety of the heparan sulfate chains, generated through both biosynthesis and post synthesis mechanisms. The present review focusses on how proteoglycans are “gagosylated” and acquire structural complexity through the concerted action of Golgi-localized biosynthesis enzymes and extracellular modifying enzymes. It examines, in particular, the possibility that these enzymes form complexes of different modes of organization, leading to the synthesis of various oligosaccharide sequences.
Collapse
|
15
|
Puri S, Coulson-Thomas YM, Gesteira TF, Coulson-Thomas VJ. Distribution and Function of Glycosaminoglycans and Proteoglycans in the Development, Homeostasis and Pathology of the Ocular Surface. Front Cell Dev Biol 2020; 8:731. [PMID: 32903857 PMCID: PMC7438910 DOI: 10.3389/fcell.2020.00731] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/15/2020] [Indexed: 12/20/2022] Open
Abstract
The ocular surface, which forms the interface between the eye and the external environment, includes the cornea, corneoscleral limbus, the conjunctiva and the accessory glands that produce the tear film. Glycosaminoglycans (GAGs) and proteoglycans (PGs) have been shown to play important roles in the development, hemostasis and pathology of the ocular surface. Herein we review the current literature related to the distribution and function of GAGs and PGs within the ocular surface, with focus on the cornea. The unique organization of ECM components within the cornea is essential for the maintenance of corneal transparency and function. Many studies have described the importance of GAGs within the epithelial and stromal compartment, while very few studies have analyzed the ECM of the endothelial layer. Importantly, GAGs have been shown to be essential for maintaining corneal homeostasis, epithelial cell differentiation and wound healing, and, more recently, a role has been suggested for the ECM in regulating limbal stem cells, corneal innervation, corneal inflammation, corneal angiogenesis and lymphangiogenesis. Reports have also associated genetic defects of the ECM to corneal pathologies. Thus, we also highlight the role of different GAGs and PGs in ocular surface homeostasis, as well as in pathology.
Collapse
Affiliation(s)
- Sudan Puri
- College of Optometry, University of Houston, Houston, TX, United States
| | - Yvette M Coulson-Thomas
- Molecular Biology Section, Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Tarsis F Gesteira
- College of Optometry, University of Houston, Houston, TX, United States.,Optimvia, LLC, Batavia, OH, United States
| | | |
Collapse
|
16
|
Abstract
Glypicans are a family of heparan sulfate proteoglycans that are attached to the cell membrane via a glycosylphosphatidylinositol anchor. Glypicans interact with multiple ligands, including morphogens, growth factors, chemokines, ligands, receptors, and components of the extracellular matrix through their heparan sulfate chains and core protein. Therefore, glypicans can function as coreceptors to regulate cell proliferation, cell motility, and morphogenesis. In addition, some glypicans are abnormally expressed in cancers, possibly involved in tumorigenesis, and have the potential to be cancer-specific biomarkers. Here, we provide a brief review focusing on the expression of glypicans in various cancers and their potential to be targets for cancer therapy.
Collapse
Affiliation(s)
- Nan Li
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Madeline R Spetz
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
17
|
Okolicsanyi RK, Bluhm J, Miller C, Griffiths LR, Haupt LM. An investigation of genetic polymorphisms in heparan sulfate proteoglycan core proteins and key modification enzymes in an Australian Caucasian multiple sclerosis population. Hum Genomics 2020; 14:18. [PMID: 32398079 PMCID: PMC7218574 DOI: 10.1186/s40246-020-00264-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/08/2020] [Indexed: 12/24/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease affecting the central nervous system in young adults. Heparan sulfate proteoglycans (HSPGs) are ubiquitous to the cell surface and the extracellular matrix. HSPG biosynthesis is a complex process involving enzymatic attachment of heparan sulfate (HS) chains to a core protein. HS side chains mediate specific ligand and growth factor interactions directing cellular processes including cell adhesion, migration and differentiation. Two main families of HSPGs exist, the syndecans (SDC1-4) and glypicans (GPC1-6). The SDCs are transmembrane proteins, while the GPC family are GPI linked to the cell surface. SDC1 has well-documented interactions with numerous signalling pathways. Genome-wide association studies (GWAS) have identified regions of the genome associated with MS including a region on chromosome 13 containing GPC5 and GPC6. International studies have revealed significant associations between this region and disease development. The exostosin-1 (EXT1) and sulfatase-1 (SULF1) are key enzymes contributing to the generation of HS chains. EXT1, with documented tumour suppressor properties, is involved in the initiation and polymerisation of the growing HS chain. SULF1 removes 6-O-sulfate groups from HS chains, affecting protein-ligand interactions and subsequent downstream signalling with HS modification potentially having significant effects on MS progression. In this study, we identified significant associations between single nucleotide polymorphisms in SDC1, GPC5 and GPC6 and MS in an Australian Caucasian case-control population. Further significant associations in these genes were identified when the population was stratified by sex and disease subtype. No association was found for EXT1 or SULF1.
Collapse
Affiliation(s)
- Rachel K Okolicsanyi
- Genomics Research Centre, Institute for Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Musk Avenue, Kelvin Grove, Brisbane, Queensland, 4059, Australia
| | - Julia Bluhm
- Genomics Research Centre, Institute for Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Musk Avenue, Kelvin Grove, Brisbane, Queensland, 4059, Australia
| | - Cassandra Miller
- Genomics Research Centre, Institute for Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Musk Avenue, Kelvin Grove, Brisbane, Queensland, 4059, Australia
| | - Lyn R Griffiths
- Genomics Research Centre, Institute for Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Musk Avenue, Kelvin Grove, Brisbane, Queensland, 4059, Australia.
| | - Larisa M Haupt
- Genomics Research Centre, Institute for Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Musk Avenue, Kelvin Grove, Brisbane, Queensland, 4059, Australia.
| |
Collapse
|
18
|
Huybrechts Y, Mortier G, Boudin E, Van Hul W. WNT Signaling and Bone: Lessons From Skeletal Dysplasias and Disorders. Front Endocrinol (Lausanne) 2020; 11:165. [PMID: 32328030 PMCID: PMC7160326 DOI: 10.3389/fendo.2020.00165] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/09/2020] [Indexed: 12/15/2022] Open
Abstract
Skeletal dysplasias are a diverse group of heritable diseases affecting bone and cartilage growth. Throughout the years, the molecular defect underlying many of the diseases has been identified. These identifications led to novel insights in the mechanisms regulating bone and cartilage growth and homeostasis. One of the pathways that is clearly important during skeletal development and bone homeostasis is the Wingless and int-1 (WNT) signaling pathway. So far, three different WNT signaling pathways have been described, which are all activated by binding of the WNT ligands to the Frizzled (FZD) receptors. In this review, we discuss the skeletal disorders that are included in the latest nosology of skeletal disorders and that are caused by genetic defects involving the WNT signaling pathway. The number of skeletal disorders caused by defects in WNT signaling genes and the clinical phenotype associated with these disorders illustrate the importance of the WNT signaling pathway during skeletal development as well as later on in life to maintain bone mass. The knowledge gained through the identification of the genes underlying these monogenic conditions is used for the identification of novel therapeutic targets. For example, the genes underlying disorders with altered bone mass are all involved in the canonical WNT signaling pathway. Consequently, targeting this pathway is one of the major strategies to increase bone mass in patients with osteoporosis. In addition to increasing the insights in the pathways regulating skeletal development and bone homeostasis, knowledge of rare skeletal dysplasias can also be used to predict possible adverse effects of these novel drug targets. Therefore, this review gives an overview of the skeletal and extra-skeletal phenotype of the different skeletal disorders linked to the WNT signaling pathway.
Collapse
|
19
|
Role of glypicans in regulation of the tumor microenvironment and cancer progression. Biochem Pharmacol 2019; 168:108-118. [PMID: 31251939 DOI: 10.1016/j.bcp.2019.06.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/20/2019] [Indexed: 12/28/2022]
Abstract
Glypicans are evolutionary conserved, cell surface heparan sulfate (HS) proteoglycans that are attached to the cell membrane via a glycosylphosphatidylinositol (GPI) anchor. Glypicans interact with a broad class of soluble and insoluble ligands, such as morphogens, growth factors, chemokines, receptors and components of the extracellular matrix (ECM). Such versatility comes from their ability to interact through both their HS chains and core protein. Glypicans are involved in cellular and tissue development, morphogenesis and cell motility. They exhibit differential expression in several cancers, acting as both tumor promoters and inhibitors in a cancer type-specific manner. They also influence tumor stroma by facilitating angiogenesis, ECM remodeling and alteration of immune cell functions. Glypicans have emerged as a new therapeutic moiety, whose functions can be exploited in the field of targeted therapies and precision medicine in cancer. This is demonstrated by the emergence of several anti-glypican antibody-based immunologics that have been recently developed and are being evaluated in clinical trials. This review will focus on glypican structure and function with an emphasis on their expression in various cancers. Discussion will also center on the potential of glypicans to be therapeutic targets for inhibition of cancer cell growth.
Collapse
|
20
|
Li Y, Li M, Shats I, Krahn JM, Flake GP, Umbach DM, Li X, Li L. Glypican 6 is a putative biomarker for metastatic progression of cutaneous melanoma. PLoS One 2019; 14:e0218067. [PMID: 31199813 PMCID: PMC6568403 DOI: 10.1371/journal.pone.0218067] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 05/26/2019] [Indexed: 01/01/2023] Open
Abstract
Due to the poor prognosis of advanced metastatic melanoma, it is crucial to find early biomarkers that help identify which melanomas will metastasize. By comparing the gene expression data from primary and cutaneous melanoma samples from The Cancer Genome Atlas (TCGA), we identified GPC6 among a set of genes whose expression levels can distinguish between primary melanoma and regional cutaneous/subcutaneous metastases. Glypicans are thought to play a role in tumor growth by regulating the signaling pathways of Wnt, Hedgehogs, fibroblast growth factors (FGFs), and bone morphogenetic proteins (BMPs). We showed that GPC6 expression was up-regulated in a melanoma cell line compared to normal melanocytes and in metastatic melanoma compared to primary melanoma. Furthermore, GPC6 expression was positively correlated with genes largely involved in cell adhesion and migration in both melanoma samples and in RNA-seq samples from other TCGA tumors. Our results suggest that GPC6 may play a role in tumor metastatic progression. In TCGA melanoma samples, we also showed that GPC6 expression was negatively correlated with miR-509-3p, which has previously been shown to function as a tumor suppressor in various cancer cell lines. We overexpressed miR-509-3p in A375 melanoma cells and showed that GPC6 expression was significantly suppressed. This result suggested that GPC6 was a putative target of miR-509-3p in melanoma. Together, our findings identified GPC6 as an early biomarker for melanoma metastatic progression, one that can be regulated by miR-509-3p.
Collapse
Affiliation(s)
- Yuanyuan Li
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina, United States of America
| | - Melissa Li
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina, United States of America
| | - Igor Shats
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Durham, North Carolina, United States of America
| | - Juno M. Krahn
- Genome Integrity & Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, North Carolina, United States of America
| | - Gordon P. Flake
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina, United States of America
| | - David M. Umbach
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina, United States of America
| | - Xiaoling Li
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Durham, North Carolina, United States of America
| | - Leping Li
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina, United States of America
| |
Collapse
|
21
|
Hu B, Xing W, Li F, Huang Z, Zheng W, Ji D, Niu F, Zhu Y, Yang X. Association of glypican-6 polymorphisms with lumbar disk herniation risk in the Han Chinese population. Mol Genet Genomic Med 2019; 7:e00747. [PMID: 31111662 PMCID: PMC6625109 DOI: 10.1002/mgg3.747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 12/20/2022] Open
Abstract
Background Lumbar disk herniation (LDH) is a degenerative disorder, which partly results from complex genetic factors. The aim of the study was to investigate the potential associations between glypican‐6 (GPC6) variants and LDH risk in Han Chinese population. Methods A total of 508 Han Chinese LDH patients and 508 healthy controls were recruited in this study. Six single‐nucleotide polymorphisms (SNPs) in GPC6 were selected and genotyped using an Agena MassARRAY platform. We used logistic regression method to evaluate the linkage between GPC6 variants and LDH risk by calculating the odds ratio (OR) and 95% confidence intervals (CIs) in multiple genetic models. HaploReg database was used for SNP functional annotation. Results Our result revealed GPC6 rs4773724 was associated with a decreased risk of LDH in allele model (OR = 0.82, 95% CI: 0.68–0.98, p = 0.026), whereas rs1008993 increased the LDH risk (OR = 1.34, 95% CI: 1.05–1.71, p = 0.020). Besides, we also found rs4773724 and rs9523981 were associated with susceptibility of LDH among individuals whose age are less than 45. And rs1008993 was associated with increased LDH risk in males. Furthermore, Haplotype analysis showed that the TT (rs4773724, rs1008993) haplotype and GC (rs4773724, rs1008993) haplotype had the opposite effects on the susceptibility of LDH. Conclusions For the first time, we suggest that rs4773724 and rs1008993 in GPC6 were considered as a protective factor and a risk factor for LDH in Han Chinese population, respectively. These results provide new ideas for the treatment and prevention of LDH in Han Chinese population.
Collapse
Affiliation(s)
- Baoyang Hu
- Inner Mongolia Medical University, Hohhot, China.,Department of thoracolumbar spine surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Wenhua Xing
- Department of thoracolumbar spine surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Feng Li
- Department of thoracolumbar spine surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Zhi Huang
- Department of thoracolumbar spine surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Wenkai Zheng
- Department of thoracolumbar spine surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Demin Ji
- Inner Mongolia Medical University, Hohhot, China.,Department of thoracolumbar spine surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Fanglin Niu
- The College of Life Sciences Northwest University, Xi'an, China
| | - Yong Zhu
- Department of thoracolumbar spine surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xuejun Yang
- Department of thoracolumbar spine surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
22
|
Signaling network involved in the GPC3-induced inhibition of breast cancer progression: role of canonical Wnt pathway. J Cancer Res Clin Oncol 2018; 144:2399-2418. [PMID: 30267212 DOI: 10.1007/s00432-018-2751-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/11/2018] [Indexed: 12/17/2022]
Abstract
PURPOSE We have shown that GPC3 overexpression in breast cancer cells inhibits in vivo tumor progression, by acting as a metastatic suppressor. GPC3-overexpressing cells are less clonogenic, viable and motile, while their homotypic adhesion is increased. We have presented evidences indicating that GPC3 inhibits canonical Wnt and Akt pathways, while non-canonical Wnt and p38MAPK cascades are activated. In this study, we aimed to investigate whether GPC3-induced Wnt signaling inhibition modulates breast cancer cell properties as well as to describe the interactions among pathways modulated by GPC3. METHODS Fluorescence microscopy, qRT-PCR microarray, gene reporter assay and Western blotting were performed to determine gene expression levels, signaling pathway activities and molecule localization. Lithium was employed to activate canonical Wnt pathway and treated LM3-GPC3 cell viability, migration, cytoskeleton organization and homotypic adhesion were assessed using MTS, wound healing, phalloidin staining and suspension growth assays, respectively. RESULTS We provide new data demonstrating that GPC3 blocks-also at a transcriptional level-both autocrine and paracrine canonical Wnt activities, and that this inhibition is required for GPC3 to modulate migration and homotypic adhesion. Our results indicate that GPC3 is secreted into the extracellular media, suggesting that secreted GPC3 competes with Wnt factors or interacts with them and thus prevents Wnt binding to Fz receptors. We also describe the complex network of interactions among GPC3-modulated signaling pathways. CONCLUSION GPC3 is operating through an intricate molecular signaling network. From the balance of these interactions, the inhibition of breast metastatic spread induced by GPC3 emerges.
Collapse
|
23
|
Role of Glypican-3 in the growth, migration and invasion of primary hepatocytes isolated from patients with hepatocellular carcinoma. Cell Oncol (Dordr) 2017; 41:169-184. [PMID: 29204978 DOI: 10.1007/s13402-017-0364-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Recently, Glypican-3 (GPC3) has been identified as a potential hepatocellular carcinoma (HCC) diagnostic and/or therapeutic target. GPC3 has been found to be up-regulated in HCC and to be absent in normal and cirrhotic liver. As yet, however, the molecular characteristics of GPC3 and its role in HCC cell physiology and development are still undefined. METHODS Human hepatocyte cultures were established from 10 HCC patients. Additional liver samples were obtained from 5 patients without cirrhosis and/or HCC. Soft agar colony formation, (co-)immunofluorescence and Western blot assays were used to characterize the hapatocyte cultures. The expression of GPC3 in the hepatocytes was silenced using siRNA, after which, apoptosis, scratch wound migration and transwell invasion assays were performed. RESULTS We found that in HCC precursor hepatocytes GPC3 is increasingly expressed in different forms and at different locations, i.e., a non-cleaved form (70 kDa) was found to be localized in the cytoplasm while a N-terminal cleaved form (N-GPC3: 40 kDa) was fond to be localized in the cytoplasm and at the extracellular side of hepatocyte membranes. In addition, we found that the non-cleaved form of GPC3 co-localizes with Furin-Convertase in the Golgi apparatus. We also found that, similar to GPC3, Furin-Convertase is expressed in HCC precursor cells, suggesting a role in GPC3 processing. Subsequent siRNA-mediated GPC3 silencing resulted in a temporary inhibition of cell proliferation, migration and ivasion, while inducing apoptosis in transformed hepatocytes. CONCLUSION Our data reveal new aspects of the role of GPC3 in early hepatocyte transformation. In addition we conclude that GPC3 may serve as a new HCC immune-therapeutic target.
Collapse
|
24
|
Relatively frequent switching of transcription start sites during cerebellar development. BMC Genomics 2017; 18:461. [PMID: 28610618 PMCID: PMC5470264 DOI: 10.1186/s12864-017-3834-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/31/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alternative transcription start site (TSS) usage plays important roles in transcriptional control of mammalian gene expression. The growing interest in alternative TSSs and their role in genome diversification spawned many single-gene studies on differential usages of tissue-specific or temporal-specific alternative TSSs. However, exploration of the switching usage of alternative TSS usage on a genomic level, especially in the central nervous system, is largely lacking. RESULTS In this study, We have prepared a unique set of time-course data for the developing cerebellum, as part of the FANTOM5 consortium ( http://fantom.gsc.riken.jp/5/ ) that uses their innovative capturing of 5' ends of all transcripts followed by Helicos next generation sequencing. We analyzed the usage of all transcription start sites (TSSs) at each time point during cerebellar development that provided information on multiple RNA isoforms that emerged from the same gene. We developed a mathematical method that systematically compares the expression of different TSSs of a gene to identify temporal crossover and non-crossover switching events. We identified 48,489 novel TSS switching events in 5433 genes during cerebellar development. This includes 9767 crossover TSS switching events in 1511 genes, where the dominant TSS shifts over time. CONCLUSIONS We observed a relatively high prevalence of TSS switching in cerebellar development where the resulting temporally-specific gene transcripts and protein products can play important regulatory and functional roles.
Collapse
|
25
|
Saad K, Theis S, Otto A, Luke G, Patel K. Detailed expression profile of the six Glypicans and their modifying enzyme, Notum during chick limb and feather development. Gene 2017; 610:71-79. [PMID: 28192166 DOI: 10.1016/j.gene.2017.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/30/2017] [Accepted: 02/06/2017] [Indexed: 11/29/2022]
Abstract
The development of vertebrate appendages, especially the limb and feather buds are orchestrated by numerous secreted signalling molecules including Sonic Hedgehog, Bone Morphogenetic Proteins, Fibroblast Growth Factors and Wnts. These proteins coordinate the growth and patterning of ectodermal and mesenchymal cells. The influence of signalling molecules is affected over large distances by their concentration (morphogen activity) but also at local levels by the presence of proteins that either attenuate or promote their activity. Glypicans are cell surface molecules that regulate the activity of the major secreted signalling molecules expressed in the limb and feather bud. Here we investigated the expression of all Glypicans during chick limb and feather development. In addition we profiled the expression of Notum, an enzyme that regulates Glypican activity. We show that five of the six Glypicans and Notum are expressed in a dynamic manner during the development of limbs and feathers. We also investigated the expression of key Glypicans and show that they are controlled by signalling molecules highlighting the presence of feedback loops. Lastly we show that Glypicans and Notum are expressed in a tissue specific manner in adult chicken tissues. Our results strongly suggest that the Glypicans and Notum have many as yet undiscovered roles to play during the development of vertebrate appendages.
Collapse
Affiliation(s)
- Kawakeb Saad
- School of Biological Sciences, University of Reading, Reading, UK
| | - Susanne Theis
- School of Biological Sciences, University of Reading, Reading, UK
| | - Anthony Otto
- School of Biological Sciences, University of Reading, Reading, UK
| | - Graham Luke
- School of Biological Sciences, University of Reading, Reading, UK
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading, UK; Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany.
| |
Collapse
|
26
|
Saad K, Otto A, Theis S, Kennerley N, Munsterberg A, Luke G, Patel K. Detailed expression profile of all six Glypicans and their modifying enzyme Notum during chick embryogenesis and their role in dorsal-ventral patterning of the neural tube. Gene 2017; 609:38-51. [PMID: 28161389 DOI: 10.1016/j.gene.2017.01.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/13/2017] [Accepted: 01/26/2017] [Indexed: 11/28/2022]
Abstract
Vertebrate development is orchestrated by secreted signalling molecules that regulate cell behaviour and cell fate decisions during early embryogenesis. The activity of key signalling molecules including members of Hedgehog, Bone Morphogenetic Proteins and Wnt families are regulated by Glypicans, a family of GPI linked polypeptides. Glypicans either promote or inhibit the action of signalling molecules and add a layer of complexity that needs to be understood in order to fully decipher the processes that regulate early vertebrate development. Here we present a detailed expression profile of all six Glypicans and their modifying enzyme Notum during chick embryogenesis. Our results strongly suggest that these proteins have many as yet undiscovered roles to play during early embryogenesis. Finally, we have taken an experimental approach to investigate their role during the patterning of a key embryonic structure - the neural tube. In particular, we show that over-expression of Notum leads to the dorsalisation of this structure.
Collapse
Affiliation(s)
- Kawakeb Saad
- School of Biological Sciences, University of Reading, Reading, UK
| | - Anthony Otto
- School of Biological Sciences, University of Reading, Reading, UK
| | - Susanne Theis
- School of Biological Sciences, University of Reading, Reading, UK
| | - Niki Kennerley
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, NR4 7TJ
| | - Andrea Munsterberg
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, NR4 7TJ
| | - Graham Luke
- School of Biological Sciences, University of Reading, Reading, UK
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading, UK; Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany.
| |
Collapse
|
27
|
Sato K, Takahashi K, Shigemoto-Mogami Y, Chujo K, Sekino Y. Glypican 6 Enhances N-Methyl-D-Aspartate Receptor Function in Human-Induced Pluripotent Stem Cell-Derived Neurons. Front Cell Neurosci 2016; 10:259. [PMID: 27895553 PMCID: PMC5108764 DOI: 10.3389/fncel.2016.00259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/25/2016] [Indexed: 11/22/2022] Open
Abstract
The in vitro use of neurons that are differentiated from human induced pluripotent stem cells (hiPSC-neurons) is expected to improve the prediction accuracy of preclinical tests for both screening and safety assessments in drug development. To achieve this goal, hiPSC neurons are required to differentiate into functional neurons that form excitatory networks and stably express N-methyl-D-aspartate receptors (NMDARs). Recent studies have identified some astrocyte-derived factors that are important for the functional maturation of neurons. We therefore examined the effects of the astrocyte-derived factor glypican 6 (GPC6) on hiPSC-neurons. When we pharmacologically examined which receptor subtypes mediate L-glutamate (L-Glu)-induced changes in the intracellular Ca2+ concentrations in hiPSC neurons using fura-2 Ca2+ imaging, NMDAR-mediated responses were not detected through 7 days in vitro (DIV). These cells were also not vulnerable to excitotoxicity at 7 DIV. However, a 5-days treatment with GPC6 from 3 DIV induced an NMDAR-mediated Ca2+ increase in hiPSC-neurons and increased the level of NMDARs on the cell surface. We also found that GPC6-treated hiPSC-neurons became responsive to excitotoxicity. These results suggest that GPC6 increases the level of functional NMDARs in hiPSC-neurons. Glial factors may play a key role in accelerating the functional maturation of hiPSC neurons for drug-development applications.
Collapse
Affiliation(s)
- Kaoru Sato
- Division of Pharmacology, Laboratory of Neuropharmacology, National Institute of Health Sciences Tokyo, Japan
| | - Kanako Takahashi
- Division of Pharmacology, Laboratory of Neuropharmacology, National Institute of Health Sciences Tokyo, Japan
| | - Yukari Shigemoto-Mogami
- Division of Pharmacology, Laboratory of Neuropharmacology, National Institute of Health Sciences Tokyo, Japan
| | - Kaori Chujo
- Division of Pharmacology, Laboratory of Neuropharmacology, National Institute of Health Sciences Tokyo, Japan
| | - Yuko Sekino
- Division of Pharmacology, Laboratory of Neuropharmacology, National Institute of Health Sciences Tokyo, Japan
| |
Collapse
|
28
|
Melleby AO, Strand ME, Romaine A, Herum KM, Skrbic B, Dahl CP, Sjaastad I, Fiane AE, Filmus J, Christensen G, Lunde IG. The Heparan Sulfate Proteoglycan Glypican-6 Is Upregulated in the Failing Heart, and Regulates Cardiomyocyte Growth through ERK1/2 Signaling. PLoS One 2016; 11:e0165079. [PMID: 27768722 PMCID: PMC5074531 DOI: 10.1371/journal.pone.0165079] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/05/2016] [Indexed: 11/18/2022] Open
Abstract
Pressure overload is a frequent cause of heart failure. Heart failure affects millions of patients worldwide and is a major cause of morbidity and mortality. Cell surface proteoglycans are emerging as molecular players in cardiac remodeling, and increased knowledge about their regulation and function is needed for improved understanding of cardiac pathogenesis. Here we investigated glypicans (GPC1-6), a family of evolutionary conserved heparan sulfate proteoglycans anchored to the extracellular leaflet of the cell membrane, in experimental and clinical heart failure, and explored the function of glypican-6 in cardiac cells in vitro. In mice subjected to pressure overload by aortic banding (AB), we observed elevated glypican-6 levels during hypertrophic remodeling and dilated, end-stage heart failure. Consistently, glypican-6 mRNA was elevated in left ventricular myocardium from explanted hearts of patients with end-stage, dilated heart failure with reduced ejection fraction. Glypican-6 levels correlated negatively with left ventricular ejection fraction in patients, and positively with lung weight after AB in mice. Glypican-6 mRNA was expressed in both cardiac fibroblasts and cardiomyocytes, and the corresponding protein displayed different sizes in the two cell types due to tissue-specific glycanation. Importantly, adenoviral overexpression of glypican-6 in cultured cardiomyocytes increased protein synthesis and induced mRNA levels of the pro-hypertrophic signature gene ACTA1 and the hypertrophy and heart failure signature genes encoding natriuretic peptides, NPPA and NPPB. Overexpression of GPC6 induced ERK1/2 phosphorylation, and co-treatment with the ERK inhibitor U0126 attenuated the GPC6-induced increase in NPPA, NPPB and protein synthesis. In conclusion, our data suggests that glypican-6 plays a role in clinical and experimental heart failure progression by regulating cardiomyocyte growth through ERK signaling.
Collapse
Affiliation(s)
- Arne O. Melleby
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
- * E-mail:
| | - Mari E. Strand
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Andreas Romaine
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Kate M. Herum
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Biljana Skrbic
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
- Department of Cardiothoracic Surgery, Oslo University Hospital, Oslo, Norway
| | - Christen P. Dahl
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
- Division of Molecular and Cellular Biology, Sunnybrook Research Institute and Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Arnt E. Fiane
- Department of Cardiothoracic Surgery, Oslo University Hospital, Oslo, Norway
| | - Jorge Filmus
- Division of Molecular and Cellular Biology, Sunnybrook Research Institute and Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Geir Christensen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Ida G. Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
| |
Collapse
|
29
|
Matas-Rico E, van Veen M, Leyton-Puig D, van den Berg J, Koster J, Kedziora KM, Molenaar B, Weerts MJA, de Rink I, Medema RH, Giepmans BNG, Perrakis A, Jalink K, Versteeg R, Moolenaar WH. Glycerophosphodiesterase GDE2 Promotes Neuroblastoma Differentiation through Glypican Release and Is a Marker of Clinical Outcome. Cancer Cell 2016; 30:548-562. [PMID: 27693046 DOI: 10.1016/j.ccell.2016.08.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 06/06/2016] [Accepted: 08/26/2016] [Indexed: 02/06/2023]
Abstract
Neuroblastoma is a pediatric embryonal malignancy characterized by impaired neuronal differentiation. A better understanding of neuroblastoma differentiation is essential for developing new therapeutic approaches. GDE2 (encoded by GDPD5) is a six-transmembrane-domain glycerophosphodiesterase that promotes embryonic neurogenesis. We find that high GDPD5 expression is strongly associated with favorable outcome in neuroblastoma. GDE2 induces differentiation of neuroblastoma cells, suppresses cell motility, and opposes RhoA-driven neurite retraction. GDE2 alters the Rac-RhoA activity balance and the expression of multiple differentiation-associated genes. Mechanistically, GDE2 acts by cleaving (in cis) and releasing glycosylphosphatidylinositol-anchored glypican-6, a putative co-receptor. A single point mutation in the ectodomain abolishes GDE2 function. Our results reveal GDE2 as a cell-autonomous inducer of neuroblastoma differentiation with prognostic significance and potential therapeutic value.
Collapse
Affiliation(s)
- Elisa Matas-Rico
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Michiel van Veen
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Daniela Leyton-Puig
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Jeroen van den Berg
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Jan Koster
- Department of Oncogenomics, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Katarzyna M Kedziora
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Bas Molenaar
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Marjolein J A Weerts
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Iris de Rink
- Deep Sequencing Core Facility, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - René H Medema
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Ben N G Giepmans
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Anastassis Perrakis
- Division of Biochemistry, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Kees Jalink
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Rogier Versteeg
- Department of Oncogenomics, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Wouter H Moolenaar
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands.
| |
Collapse
|
30
|
Glypican1/2/4/6 and sulfated glycosaminoglycans regulate the patterning of the primary body axis in the cnidarian Nematostella vectensis. Dev Biol 2016; 414:108-20. [PMID: 27090806 DOI: 10.1016/j.ydbio.2016.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 03/22/2016] [Accepted: 04/13/2016] [Indexed: 12/13/2022]
Abstract
Glypicans are members of the heparan sulfate (HS) subfamily of proteoglycans that can function in cell adhesion, cell crosstalk and as modulators of the major developmental signalling pathways in bilaterians. The evolutionary origin of these multiple functions is not well understood. In this study we investigate the role of glypicans in the embryonic and larval development of the sea anemone Nematostella vectensis, a member of the non-bilaterian clade Cnidaria. Nematostella has two glypican (gpc) genes that are expressed in mutually exclusive ectodermal domains, NvGpc1/2/4/6 in a broad aboral domain, and NvGpc3/5 in narrow oral territory. The endosulfatase NvSulf (an extracellular modifier of HS chains) is expressed in a broad oral domain, partially overlapping with both glypicans. Morpholino-mediated knockdown of NvGpc1/2/4/6 leads to an expansion of the expression domains of aboral marker genes and a reduction of oral markers at gastrula stage, strikingly similar to knockdown of the Wnt receptor NvFrizzled5/8. We further show that treatment with sodium chlorate, an inhibitor of glycosaminoglycan (GAG) sulfation, phenocopies knockdown of NvGpc1/2/4/6 at gastrula stage. At planula stage, knockdown of NvGpc1/2/4/6 and sodium chlorate treatment result in alterations in aboral marker gene expression that suggest additional roles in the fine-tuning of patterning within the aboral domain. These results reveal a role for NvGpc1/2/4/6 and sulfated GAGs in the patterning of the primary body axis in Nematostella and suggest an ancient function in regulating Frizzled-mediated Wnt signalling.
Collapse
|
31
|
Overexpression of GPC6 and TMEM132D in Early Stage Ovarian Cancer Correlates with CD8+ T-Lymphocyte Infiltration and Increased Patient Survival. BIOMED RESEARCH INTERNATIONAL 2015; 2015:712438. [PMID: 26448945 PMCID: PMC4584051 DOI: 10.1155/2015/712438] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 12/02/2022]
Abstract
Infiltration of cytotoxic T-lymphocytes in ovarian cancer is a favorable prognostic factor. Employing a differential expression approach, we have recently identified a number of genes associated with CD8+ T-cell infiltration in early stage ovarian tumors. In the present study, we validated by qPCR the expression of two genes encoding the transmembrane proteins GPC6 and TMEM132D in a cohort of early stage ovarian cancer patients. The expression of both genes correlated positively with the mRNA levels of CD8A, a marker of T-lymphocyte infiltration [Pearson coefficient: 0.427 (p = 0.0067) and 0.861 (p < 0.0001), resp.]. GPC6 and TMEM132D expression was also documented in a variety of ovarian cancer cell lines. Importantly, Kaplan-Meier survival analysis revealed that high mRNA levels of GPC6 and/or TMEM132D correlated significantly with increased overall survival of early stage ovarian cancer patients (p = 0.032). Thus, GPC6 and TMEM132D may serve as predictors of CD8+ T-lymphocyte infiltration and as favorable prognostic markers in early stage ovarian cancer with important consequences for diagnosis, prognosis, and tumor immunobattling.
Collapse
|
32
|
Farnedi A, Rossi S, Bertani N, Gulli M, Silini EM, Mucignat MT, Poli T, Sesenna E, Lanfranco D, Montebugnoli L, Leonardi E, Marchetti C, Cocchi R, Ambrosini-Spaltro A, Foschini MP, Perris R. Proteoglycan-based diversification of disease outcome in head and neck cancer patients identifies NG2/CSPG4 and syndecan-2 as unique relapse and overall survival predicting factors. BMC Cancer 2015; 15:352. [PMID: 25935541 PMCID: PMC4429505 DOI: 10.1186/s12885-015-1336-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 04/22/2015] [Indexed: 01/07/2023] Open
Abstract
Background Tumour relapse is recognized to be the prime fatal burden in patients affected by head and neck squamous cell carcinoma (HNSCC), but no discrete molecular trait has yet been identified to make reliable early predictions of tumour recurrence. Expression of cell surface proteoglycans (PGs) is frequently altered in carcinomas and several of them are gradually emerging as key prognostic factors. Methods A PG expression analysis at both mRNA and protein level, was pursued on primary lesions derived from 173 HNSCC patients from whom full clinical history and 2 years post-surgical follow-up was accessible. Gene and protein expression data were correlated with clinical traits and previously proposed tumour relapse markers to stratify high-risk patient subgroups. Results HNSCC lesions were indeed found to exhibit a widely aberrant PG expression pattern characterized by a variable expression of all PGs and a characteristic de novo transcription/translation of GPC2, GPC5 and NG2/CSPG4 respectively in 36%, 72% and 71% on 119 cases. Importantly, expression of NG2/CSPG4, on neoplastic cells and in the intralesional stroma (Hazard Ratio [HR], 6.76, p = 0.017) was strongly associated with loco-regional relapse, whereas stromal enrichment of SDC2 (HR, 7.652, p = 0.007) was independently tied to lymphnodal infiltration and disease-related death. Conversely, down-regulated SDC1 transcript (HR, 0.232, p = 0.013) uniquely correlated with formation of distant metastases. Altered expression of PGs significantly correlated with the above disease outcomes when either considered alone or in association with well-established predictors of poor prognosis (i.e. T classification, previous occurrence of precancerous lesions and lymphnodal metastasis). Combined alteration of all three PGs was found to be a reliable predictor of shorter survival. Conclusions An unprecedented PG-based prognostic portrait is unveiled that incisively diversifies disease course in HNSCC patients beyond the currently known clinical and molecular biomarkers. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1336-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Farnedi
- Department of Biomedical and Neuromotor Sciences, Section of Anatomic Pathology, University of Bologna, Bellaria Hospital, Bologna, Italy.
| | - Silvia Rossi
- COMT - Centre for Molecular Translational Oncology & Department of Life Sciences, University of Parma, Parma, Italy.
| | - Nicoletta Bertani
- COMT - Centre for Molecular Translational Oncology & Department of Life Sciences, University of Parma, Parma, Italy.
| | - Mariolina Gulli
- Department of Life Sciences, Division of Genetics and Environmental Biotechnology, University of Parma, Parma, Italy.
| | - Enrico Maria Silini
- COMT - Centre for Molecular Translational Oncology & Department of Life Sciences, University of Parma, Parma, Italy. .,Department of Pathology and Laboratory Medicine, University of Parma, Parma, Italy.
| | - Maria Teresa Mucignat
- S.O.C. of Experimental Oncology 2, The National Tumour Institute Aviano - CRO-IRCCS, Aviano, Pordenone, Italy.
| | - Tito Poli
- Maxillofacial Surgery Section, Head and Neck Department, University of Parma, Parma, Italy.
| | - Enrico Sesenna
- Maxillofacial Surgery Section, Head and Neck Department, University of Parma, Parma, Italy.
| | - Davide Lanfranco
- Maxillofacial Surgery Section, Head and Neck Department, University of Parma, Parma, Italy.
| | - Lucio Montebugnoli
- Unit of Maxillo-Facial Surgery, Department of Oral Sciences, University of Bologna, Bellaria Hospital, Bologna, Italy.
| | - Elisa Leonardi
- Department of Biomedical and Neuromotor Sciences, Section of Anatomic Pathology, University of Bologna, Bellaria Hospital, Bologna, Italy.
| | - Claudio Marchetti
- Department of Biomedical and Neuromotor Sciences, Unit of Maxillo-Facial Surgery, University of Bologna, S. Orsola Hospital, Bologna, Italy.
| | - Renato Cocchi
- Unit of Maxillo-facial Surgery at Bellaria Hospital, Bologna, Italy. .,Unit of Maxillo-facial Surgery, "Casa Sollievo della Sofferenza", San Giovanni in Rotondo, Italy.
| | - Andrea Ambrosini-Spaltro
- Department of Biomedical and Neuromotor Sciences, Section of Anatomic Pathology, University of Bologna, Bellaria Hospital, Bologna, Italy.
| | - Maria Pia Foschini
- Department of Biomedical and Neuromotor Sciences, Section of Anatomic Pathology, University of Bologna, Bellaria Hospital, Bologna, Italy.
| | - Roberto Perris
- COMT - Centre for Molecular Translational Oncology & Department of Life Sciences, University of Parma, Parma, Italy. .,S.O.C. of Experimental Oncology 2, The National Tumour Institute Aviano - CRO-IRCCS, Aviano, Pordenone, Italy.
| |
Collapse
|
33
|
Atack E, Fairtlough H, Smith K, Balasubramanian M. A novel (paternally inherited) duplication 13q31.3q32.3 in a 12-year-old patient with facial dysmorphism and developmental delay. Mol Syndromol 2014; 5:245-50. [PMID: 25337073 PMCID: PMC4188164 DOI: 10.1159/000358538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2013] [Indexed: 11/29/2022] Open
Abstract
We report a 12-year-old boy referred to the Clinical Genetics service in view of facial dysmorphism, learning difficulties and autistic spectrum disorder. 60K arrayCGH revealed an 8.2-Mb duplication on chromosome 13q31.3q32.3, which was paternally inherited. This specific duplication on chromosome 13 has not been previously reported in the medical literature, and there are no familial or de novo patients with the same duplication breakpoints. This region contains 24 OMIM genes, including the glypicans GPC5 and GPC6, and the ZIC2 gene. We discuss the relevance of this chromosome imbalance and discuss the impact of this duplication on our patient's phenotype. Given that the duplication on 13q was paternally inherited, and although initially thought to be of uncertain significance, on exploring the family history further, it became apparent that the father had learning difficulties as a child and previous surgery for congenital diaphragmatic hernia. Here we explore the phenotype in association with this novel duplication on chromosome 13q and add to the existing literature on array findings within this region.
Collapse
Affiliation(s)
- E Atack
- Sheffield Diagnostic Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - H Fairtlough
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - K Smith
- Sheffield Diagnostic Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - M Balasubramanian
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK
| |
Collapse
|
34
|
Mesenchymal stem cells, neural lineage potential, heparan sulfate proteoglycans and the matrix. Dev Biol 2014; 388:1-10. [DOI: 10.1016/j.ydbio.2014.01.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 01/08/2014] [Accepted: 01/30/2014] [Indexed: 12/23/2022]
|
35
|
ZHAO ZHENGYUAN, HAN CHENGGUANG, LIU JUNTAO, WANG CHANGLEI, WANG YI, CHENG LIYA. GPC5, a tumor suppressor, is regulated by miR-620 in lung adenocarcinoma. Mol Med Rep 2014; 9:2540-6. [DOI: 10.3892/mmr.2014.2092] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 02/27/2014] [Indexed: 11/05/2022] Open
|
36
|
Filmus J, Capurro M. The role of glypicans in Hedgehog signaling. Matrix Biol 2014; 35:248-52. [PMID: 24412155 DOI: 10.1016/j.matbio.2013.12.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 12/18/2013] [Accepted: 12/18/2013] [Indexed: 01/13/2023]
Abstract
Glypicans (GPCs) are a family of proteoglycans that are bound to the cell surface by a glycosylphosphatidylinositol anchor. Six glypicans have been found in the mammalian genome (GPC1 to GPC6). GPCs regulate several signaling pathways, including the pathway triggered by Hedgehogs (Hhs). This regulation, which could be stimulatory or inhibitory, occurs at the signal reception level. In addition, GPCs have been shown to be involved in the formation of Hh gradients in the imaginal wing disks in Drosophila. In this review we will discuss the role of various glypicans in specific developmental events in the embryo that are regulated by Hh signaling. In addition, we will discuss the mechanism by which loss-of-function GPC3 mutations alter Hh signaling in the Simpson-Golabi-Behmel overgrowth syndrome, and the molecular basis of the GPC5-induced stimulation of Hh signaling and tumor progression in rhabdomyosarcomas.
Collapse
Affiliation(s)
- Jorge Filmus
- Platform of Biological Sciences, Sunnybrook Research Institute, ON, Canada; Dept. of Medical Biophysics, University of Toronto, ON, Canada.
| | - Mariana Capurro
- Platform of Biological Sciences, Sunnybrook Research Institute, ON, Canada; Dept. of Medical Biophysics, University of Toronto, ON, Canada
| |
Collapse
|
37
|
Capurro M, Martin T, Shi W, Filmus J. Glypican-3 binds to frizzled and plays a direct role in the stimulation of canonical Wnt signaling. J Cell Sci 2014; 127:1565-75. [DOI: 10.1242/jcs.140871] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Glypican-3 (GPC3) is a proteoglycan that is bound to the cell surface. It is expressed by most hepatocellular carcinomas (HCCs), but not by normal hepatocytes. GPC3 stimulates HCC growth by promoting canonical Wnt signaling. Because glypicans interact with Wnts, it has been proposed that these proteoglycans stimulate signaling by increasing the amount of Wnt at the cell membrane, facilitating in this way the interaction of this growth factor with its signaling receptor Frizzled. However, in this study we demonstrate that GPC3 plays a more direct role in the stimulation of Wnt signaling. Specifically, we show that, in addition to interacting with Wnt, GPC3 directly binds to Frizzled through its glycosaminoglycan chains, indicating that this glypican stimulates the formation of signaling complexes between these two proteins. Consistent with this, we show that Wnt binding at the cell membrane triggers the endocytosis of a complex that includes Wnt, Frizzled and GPC3. Additional support to our model is provided by the finding that Glypican-6 (GPC6) inhibits canonical Wnt signaling despite the fact that it binds to Wnt at the cell membrane.
Collapse
|
38
|
Dwivedi PP, Lam N, Powell BC. Boning up on glypicans-opportunities for new insights into bone biology. Cell Biochem Funct 2013; 31:91-114. [DOI: 10.1002/cbf.2939] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/09/2012] [Accepted: 11/16/2012] [Indexed: 01/01/2023]
Affiliation(s)
| | - N. Lam
- Craniofacial Research Group; Women's and Children's Health Research Institute; North Adelaide; South Australia; Australia
| | | |
Collapse
|
39
|
Jønch AE, Larsen LG, Pouplier S, Nielsen K, Brøndum-Nielsen K, Tümer Z. Partial duplication of 13q31.3-q34 and deletion of 13q34 associated with diaphragmatic hernia as a sole malformation in a fetus. Am J Med Genet A 2012; 158A:2302-8. [DOI: 10.1002/ajmg.a.35505] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Accepted: 05/06/2012] [Indexed: 01/13/2023]
|
40
|
PKNOX2 is Associated with Formal Thought Disorder in Schizophrenia: a Meta-Analysis of Two Genome-wide Association Studies. J Mol Neurosci 2012; 48:265-72. [DOI: 10.1007/s12031-012-9787-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 04/24/2012] [Indexed: 10/28/2022]
|
41
|
Chondroitin sulphate and heparan sulphate sulphation motifs and their proteoglycans are involved in articular cartilage formation during human foetal knee joint development. Histochem Cell Biol 2012; 138:461-75. [DOI: 10.1007/s00418-012-0968-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2012] [Indexed: 10/28/2022]
|
42
|
Haddad V, Aboura A, Tosca L, Guediche N, Mas AE, L'Herminé AC, Druart L, Picone O, Brisset S, Tachdjian G. Tetrasomy 13q31.1qter due to an inverted duplicated neocentric marker chromosome in a fetus with multiple malformations. Am J Med Genet A 2012; 158A:894-900. [DOI: 10.1002/ajmg.a.35258] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Accepted: 12/23/2011] [Indexed: 12/29/2022]
|
43
|
Abstract
Proteoglycans (PGs) impact many aspects of kidney health and disease. Models that permit genetic dissection of PG core protein and glycosaminoglycan (GAG) function have been instrumental to understanding their roles in the kidney. Matrix-associated PGs do not serve critical structural roles in the organ, nor do they contribute significantly to the glomerular barrier under normal conditions, but their abnormal expression influences fibrosis, inflammation, and progression of kidney disease. Most core proteins are dispensable for nephrogenesis (glypican-3 being an exception) and for maintenance of function in adult life, but their loss alters susceptibility to experimental kidney injury. In contrast, kidney development is exquisitely sensitive to GAG expression and fine structure as evidenced by the severe phenotypes of mutants for genes involved in GAG biosynthesis. This article reviews PG expression in normal kidney and the abnormalities caused by their disruption in mice and man.
Collapse
Affiliation(s)
- Scott J Harvey
- INSERM Avenir U983, Hôpital Necker-Enfants Malades, Paris, France
| |
Collapse
|
44
|
Mammalian Notum induces the release of glypicans and other GPI-anchored proteins from the cell surface. Biochem J 2011; 410:503-11. [PMID: 17967162 DOI: 10.1042/bj20070511] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 08/23/2007] [Accepted: 10/30/2007] [Indexed: 01/03/2023]
Abstract
Glypicans are heparan sulfate proteoglycans that are attached to the cell surface by a GPI (glycosylphosphatidylinositol)anchor. Glypicans regulate the activity of Wnts, Hedgehogs,bone morphogenetic proteins and fibroblast growth factors. In the particular case of Wnts, it has been proposed that GPI-anchored glypicans stimulate Wnt signalling by facilitating and/or stabilizing the interaction between Wnts and their cell surface receptors. On the other hand, when glypicans are secreted to the extracellular environment, they can act as competitive inhibitors of Wnt. Genetic screens in Drosophila have recently identified a novel inhibitor of Wnt signalling named Notum. The Wnt inhibiting activity of Notum was associated with its ability to release Dlp [Dally (Division abnormally delayed)-like protein; a Drosophila glypican] from the cell surface by cleaving the GPI anchor. Because these studies showed that the other Drosophila glypican Dally was not released from the cell surface by Notum,it remains unclear whether this enzyme is able to cleave glypicans from mammalian cells. Furthermore, it is also not known whether Notum cleaves GPI-anchored proteins that are not members of the glypican family. Here, we show that mammalian Notum can cleave several mammalian glypicans. Moreover, we demonstrate that Notum is able to release GPI-anchored proteins other than glypicans. Another important finding of the present study is that,unlike GPI-phospholipase D, the other mammalian enzyme that cleaves GPI-anchored proteins, Notum is active in the extracellular environment. Finally, by using a cellular system in which GPC3 (glypican-3) stimulates Wnt signalling, we show that Notum can act as a negative regulator of this growth factor.
Collapse
|
45
|
Abstract
Invasive migration of carcinoma cells is a prerequisite for the metastatic dissemination of solid tumours. Numerous mechanisms control the ability of cancer cells to acquire a motile and invasive phenotype, and subsequently degrade and invade the basement membrane. Several genes that are up-regulated in breast carcinoma are responsible for mediating the metastatic cascade. Recent studies have revealed that the NFAT (nuclear factor of activated T-cells) is a transcription factor that is highly expressed in aggressive breast cancer cells and tissues, and mediates invasion through transcriptional induction of pro-invasion and migration genes. In the present paper we demonstrate that NFAT promotes breast carcinoma invasion through induction of GPC (glypican) 6, a cell-surface glycoprotein. NFAT transcriptionally regulates GPC6 induction in breast cancer cells and binds to three regulatory elements in the GPC6 proximal promoter. Expression of GPC6 in response to NFAT signalling promotes invasive migration, whereas GPC6 silencing with shRNA (small-hairpin RNA) potently blocks this phenotype. The mechanism by which GPC6 promotes invasive migration involves inhibition of canonical β-catenin and Wnt signalling, and up-regulation of non-canonical Wnt5A signalling leading to the activation of JNK (c-Jun N-terminal kinase) and p38 MAPK (mitogen-activated protein kinase). Thus GPC6 is a novel NFAT target gene in breast cancer cells that promotes invasive migration through Wnt5A signalling.
Collapse
|
46
|
Glycomic analyses of ovarian follicles during development and atresia. Matrix Biol 2011; 31:45-56. [PMID: 22057033 PMCID: PMC3657699 DOI: 10.1016/j.matbio.2011.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 09/14/2011] [Accepted: 10/05/2011] [Indexed: 11/21/2022]
Abstract
To examine the detailed composition of glycosaminoglycans during bovine ovarian follicular development and atresia, the specialized stromal theca layers were separated from the stratified epithelial granulosa cells of healthy (n = 6) and atretic (n = 6) follicles in each of three size ranges: small (3–5 mm), medium (6-9 mm) and large (10 mm or more) (n = 29 animals). Fluorophore-assisted carbohydrate electrophoresis analyses (on a per cell basis) and immunohistochemistry (n = 14) were undertaken. We identified the major disaccharides in thecal layers and the membrana granulosa as chondroitin sulfate-derived ∆uronic acid with 4-sulfated N-acetylgalactosamine and ∆uronic acid with 6-sulfated N-acetylgalactosamine and the heparan sulfate-derived Δuronic acid with N-acetlyglucosamine, with elevated levels in the thecal layers. Increasing follicle size and atresia was associated with increased levels of some disaccharides. We concluded that versican contains 4-sulfated N-acetylgalactosamine and it is the predominant 4-sulfated N-acetylgalactosamine proteoglycan in antral follicles. At least one other non- or 6-sulfated N-acetylgalactosamine proteoglycan(s), which is not decorin or an inter-α-trypsin inhibitor family member, is present in bovine antral follicles and associated with hitherto unknown groups of cells around some larger blood vessels. These areas stained positively for chondroitin/dermatan sulfate epitopes [antibodies 7D4, 3C5, and 4C3], similar to stem cell niches observed in other tissues. The sulfation pattern of heparan sulfate glycosaminoglycans appears uniform across follicles of different sizes and in healthy and atretic follicles. The heparan sulfate products detected in the follicles are likely to be associated with perlecan, collagen XVIII or betaglycan.
Collapse
|
47
|
Li F, Shi W, Capurro M, Filmus J. Glypican-5 stimulates rhabdomyosarcoma cell proliferation by activating Hedgehog signaling. ACTA ACUST UNITED AC 2011; 192:691-704. [PMID: 21339334 PMCID: PMC3044117 DOI: 10.1083/jcb.201008087] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Binding between the Hedgehog ligand and its receptor Patched 1 is stabilized by Glypican-5. Glypican-5 (GPC5) is one of the six members of the glypican family. It has been previously reported that GPC5 stimulates the proliferation of rhabdomyosarcoma cells. In this study, we show that this stimulatory activity of GPC5 is a result of its ability to promote Hedgehog (Hh) signaling. We have previously shown that GPC3, another member of the glypican family, inhibits Hh signaling by competing with Patched 1 (Ptc1) for Hh binding. Furthermore, we showed that GPC3 binds to Hh through its core protein but not to Ptc1. In this paper, we demonstrate that GPC5 increases the binding of Sonic Hh to Ptc1. We also show that GPC5 binds to both Hh and Ptc1 through its glycosaminoglycan chains and that, unlike GPC3, GPC5 localizes to the primary cilia. Interestingly, we found that the heparan sulfate chains of GPC5 display a significantly higher degree of sulfation than those of GPC3. Based on these results, we propose that GPC5 stimulates Hh signaling by facilitating/stabilizing the interaction between Hh and Ptc1.
Collapse
Affiliation(s)
- Fuchuan Li
- Division of Molecular and Cell Biology, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
48
|
Strunz CMC, Matsuda M, Salemi VMC, Nogueira A, Mansur AP, Cestari IN, Marquezini MV. Changes in cardiac heparan sulfate proteoglycan expression and streptozotocin-induced diastolic dysfunction in rats. Cardiovasc Diabetol 2011; 10:35. [PMID: 21518435 PMCID: PMC3100243 DOI: 10.1186/1475-2840-10-35] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 04/25/2011] [Indexed: 02/02/2023] Open
Abstract
Background Changes in the proteoglycans glypican and syndecan-4 have been reported in several pathological conditions, but little is known about their expression in the heart during diabetes. The aim of this study was to investigate in vivo heart function changes and alterations in mRNA expression and protein levels of glypican-1 and syndecan-4 in cardiac and skeletal muscles during streptozotocin (STZ)-induced diabetes. Methods Diabetes was induced in male Wistar rats by STZ administration. The rats were assigned to one of the following groups: control (sham injection), after 24 hours, 10 days, or 30 days of STZ administration. Echocardiography was performed in the control and STZ 10-day groups. Western and Northern blots were used to quantify protein and mRNA levels in all groups. Immunohistochemistry was performed in the control and 30-day groups to correlate the observed mRNA changes to the protein expression. Results In vivo cardiac functional analysis performed using echocardiography in the 10-day group showed diastolic dysfunction with alterations in the peak velocity of early (E) diastolic filling and isovolumic relaxation time (IVRT) indices. These functional alterations observed in the STZ 10-day group correlated with the concomitant increase in syndecan-4 and glypican-1 protein expression. Cardiac glypican-1 mRNA and skeletal syndecan-4 mRNA and protein levels increased in the STZ 30-day group. On the other hand, the amount of glypican in skeletal muscle was lower than that in the control group. The same results were obtained from immunohistochemistry analysis. Conclusion Our data suggest that membrane proteoglycans participate in the sequence of events triggered by diabetes and inflicted on cardiac and skeletal muscles.
Collapse
Affiliation(s)
- Célia M C Strunz
- Heart Institute, University of São Paulo Medical School, São Paulo 05403-000, Brazil.
| | | | | | | | | | | | | |
Collapse
|
49
|
Dally-like core protein and its mammalian homologues mediate stimulatory and inhibitory effects on Hedgehog signal response. Proc Natl Acad Sci U S A 2010; 107:5869-74. [PMID: 20231458 DOI: 10.1073/pnas.1001777107] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The distribution and activities of morphogenic signaling proteins such as Hedgehog (Hh) and Wingless (Wg) depend on heparan sulfate proteoglycans (HSPGs). HSPGs consist of a core protein with covalently attached heparan sulfate glycosaminoglycan (GAG) chains. We report that the unmodified core protein of Dally-like (Dlp), an HSPG required for cell-autonomous Hh response in Drosophila embryos, alone suffices to rescue embryonic Hh signaling defects. Membrane tethering but not specifically the glycosylphosphatidylinositol linkage characteristic of glypicans is critical for this cell-autonomous activity. Our studies further suggest divergence of the two Drosophila and six mammalian glypicans into two functional families, an activating family that rescues cell-autonomous Dlp function in Hh response and a family that inhibits Hh response. Thus, in addition to the previously established requirement for HSPG GAG chains in Hh movement, these findings demonstrate a positive cell-autonomous role for a core protein in morphogen response in vivo and suggest the conservation of a network of antagonistic glypican activities in the regulation of Hh response.
Collapse
|
50
|
Dreyfuss JL, Regatieri CV, Jarrouge TR, Cavalheiro RP, Sampaio LO, Nader HB. Heparan sulfate proteoglycans: structure, protein interactions and cell signaling. AN ACAD BRAS CIENC 2010; 81:409-29. [PMID: 19722012 DOI: 10.1590/s0001-37652009000300007] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 10/08/2008] [Indexed: 01/18/2023] Open
Abstract
Heparan sulfate proteoglycans are ubiquitously found at the cell surface and extracellular matrix in all the animal species. This review will focus on the structural characteristics of the heparan sulfate proteoglycans related to protein interactions leading to cell signaling. The heparan sulfate chains due to their vast structural diversity are able to bind and interact with a wide variety of proteins, such as growth factors, chemokines, morphogens, extracellular matrix components, enzymes, among others. There is a specificity directing the interactions of heparan sulfates and target proteins, regarding both the fine structure of the polysaccharide chain as well precise protein motifs. Heparan sulfates play a role in cellular signaling either as receptor or co-receptor for different ligands, and the activation of downstream pathways is related to phosphorylation of different cytosolic proteins either directly or involving cytoskeleton interactions leading to gene regulation. The role of the heparan sulfate proteoglycans in cellular signaling and endocytic uptake pathways is also discussed.
Collapse
Affiliation(s)
- Juliana L Dreyfuss
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | | | | | | | | | | |
Collapse
|