1
|
Popoff MR. Overview of Bacterial Protein Toxins from Pathogenic Bacteria: Mode of Action and Insights into Evolution. Toxins (Basel) 2024; 16:182. [PMID: 38668607 PMCID: PMC11054074 DOI: 10.3390/toxins16040182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/29/2024] Open
Abstract
Bacterial protein toxins are secreted by certain bacteria and are responsible for mild to severe diseases in humans and animals. They are among the most potent molecules known, which are active at very low concentrations. Bacterial protein toxins exhibit a wide diversity based on size, structure, and mode of action. Upon recognition of a cell surface receptor (protein, glycoprotein, and glycolipid), they are active either at the cell surface (signal transduction, membrane damage by pore formation, or hydrolysis of membrane compound(s)) or intracellularly. Various bacterial protein toxins have the ability to enter cells, most often using an endocytosis mechanism, and to deliver the effector domain into the cytosol, where it interacts with an intracellular target(s). According to the nature of the intracellular target(s) and type of modification, various cellular effects are induced (cell death, homeostasis modification, cytoskeleton alteration, blockade of exocytosis, etc.). The various modes of action of bacterial protein toxins are illustrated with representative examples. Insights in toxin evolution are discussed.
Collapse
Affiliation(s)
- Michel R Popoff
- Unité des Toxines Bactériennes, Institut Pasteur, Université Paris Cité, CNRS UMR 2001 INSERM U1306, F-75015 Paris, France
| |
Collapse
|
2
|
Criollo V, John FA, Gaghan C, Fletcher OJ, Thachil A, Crespo R, Kulkarni RR. Characterization of immune responses and immunopathology in turkeys experimentally infected with clostridial dermatitis-producing strains of Clostridium septicum. Vet Immunol Immunopathol 2024; 269:110717. [PMID: 38340537 DOI: 10.1016/j.vetimm.2024.110717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
Clostridium septicum is one of the major causative agents of clostridial dermatitis (CD), an emerging disease of turkeys, characterized by sudden deaths and necrotic dermatitis. Despite its economic burden on the poultry industry, the immunopathological changes and pathogen-specific immune responses are poorly characterized. Here, we used three strains of C. septicum, namely Str. A1, Str. B1 and Str. C1, isolated from CD field outbreaks, to experimentally infect turkeys to evaluate local (skin and muscle) and systemic (spleen) pathological and immunological responses. Results showed that while all three strains produced an acute disease, Str. A1 and B1 caused significantly higher mortality when compared to Str. C1. Gross and histopathology evaluation showed that birds infected with Str. A1 and B1 had severe inflammatory, edematous, granulomatous and necrotic lesions in the skin, muscle and spleen, while these lesions produced by Str. C1 were relatively less severe and mostly confined to skin and/or muscle. Immune gene expression in these tissues showed that Str. B1-infected birds had significantly higher expression of interleukin (IL)-1β, IL-6 and interferon (IFN)γ genes compared to uninfected control, suggesting a robust inflammatory response both locally as well as systemically. The transcription of IL-1β and IFNγ in the muscle or spleen of Str. A1-infected birds and IL-1β in the skin of Str. C1-infected group was also significantly higher than control. Additionally, Str. A1 or B1-infected groups also had significantly higher IL-4 transcription in these tissues, while birds infected with all three strains developed C. septicum-specific serum antibodies. Furthermore, splenic cellular immunophenotyping in the infected turkeys showed a marked reduction in CD4+ cells. Collectively, it can be inferred that host responses against C. septicum involve an acute inflammatory response along with antibody production and that the disease severity seem to depend on the strain of C. septicum involved in CD in turkeys.
Collapse
Affiliation(s)
- Valeria Criollo
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Dr., Raleigh, NC 27606, United States
| | - Feba Ann John
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Dr., Raleigh, NC 27606, United States
| | - Carissa Gaghan
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Dr., Raleigh, NC 27606, United States
| | - Oscar J Fletcher
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Dr., Raleigh, NC 27606, United States
| | - Anil Thachil
- Bacteriology & Mycology Division, Rollins Animal Disease Diagnostic Laboratory, 4400 Reedy Creek Rd, Raleigh, NC 27607, United States
| | - Rocio Crespo
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Dr., Raleigh, NC 27606, United States
| | - Raveendra R Kulkarni
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Dr., Raleigh, NC 27606, United States.
| |
Collapse
|
3
|
Müller GA, Müller TD. (Patho)Physiology of Glycosylphosphatidylinositol-Anchored Proteins II: Intercellular Transfer of Matter (Inheritance?) That Matters. Biomolecules 2023; 13:994. [PMID: 37371574 DOI: 10.3390/biom13060994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (APs) are anchored at the outer leaflet of the plasma membrane (PM) bilayer by covalent linkage to a typical glycolipid and expressed in all eukaryotic organisms so far studied. Lipolytic release from PMs into extracellular compartments and intercellular transfer are regarded as the main (patho)physiological roles exerted by GPI-APs. The intercellular transfer of GPI-APs relies on the complete GPI anchor and is mediated by extracellular vesicles such as microvesicles and exosomes and lipid-free homo- or heteromeric aggregates, and lipoprotein-like particles such as prostasomes and surfactant-like particles, or lipid-containing micelle-like complexes. In mammalian organisms, non-vesicular transfer is controlled by the distance between donor and acceptor cells/tissues; intrinsic conditions such as age, metabolic state, and stress; extrinsic factors such as GPI-binding proteins; hormones such as insulin; and drugs such as anti-diabetic sulfonylureas. It proceeds either "directly" upon close neighborhood or contact of donor and acceptor cells or "indirectly" as a consequence of the induced lipolytic release of GPI-APs from PMs. Those displace from the serum GPI-binding proteins GPI-APs, which have retained the complete anchor, and become assembled in aggregates or micelle-like complexes. Importantly, intercellular transfer of GPI-APs has been shown to induce specific phenotypes such as stimulation of lipid and glycogen synthesis, in cultured human adipocytes, blood cells, and induced pluripotent stem cells. As a consequence, intercellular transfer of GPI-APs should be regarded as non-genetic inheritance of (acquired) features between somatic cells which is based on the biogenesis and transmission of matter such as GPI-APs and "membrane landscapes", rather than the replication and transmission of information such as DNA. Its operation in mammalian organisms remains to be clarified.
Collapse
Affiliation(s)
- Günter A Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) and German Center for Diabetes Research (DZD) at the Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) and German Center for Diabetes Research (DZD) at the Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| |
Collapse
|
4
|
Ulhuq FR, Mariano G. Bacterial pore-forming toxins. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001154. [PMID: 35333704 PMCID: PMC9558359 DOI: 10.1099/mic.0.001154] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/03/2022] [Indexed: 12/11/2022]
Abstract
Pore-forming toxins (PFTs) are widely distributed in both Gram-negative and Gram-positive bacteria. PFTs can act as virulence factors that bacteria utilise in dissemination and host colonisation or, alternatively, they can be employed to compete with rival microbes in polymicrobial niches. PFTs transition from a soluble form to become membrane-embedded by undergoing large conformational changes. Once inserted, they perforate the membrane, causing uncontrolled efflux of ions and/or nutrients and dissipating the protonmotive force (PMF). In some instances, target cells intoxicated by PFTs display additional effects as part of the cellular response to pore formation. Significant progress has been made in the mechanistic description of pore formation for the different PFTs families, but in several cases a complete understanding of pore structure remains lacking. PFTs have evolved recognition mechanisms to bind specific receptors that define their host tropism, although this can be remarkably diverse even within the same family. Here we summarise the salient features of PFTs and highlight where additional research is necessary to fully understand the mechanism of pore formation by members of this diverse group of protein toxins.
Collapse
Affiliation(s)
- Fatima R. Ulhuq
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Giuseppina Mariano
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
5
|
Chip-Based Sensing of the Intercellular Transfer of Cell Surface Proteins: Regulation by the Metabolic State. Biomedicines 2021; 9:biomedicines9101452. [PMID: 34680568 PMCID: PMC8533487 DOI: 10.3390/biomedicines9101452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 01/08/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) are anchored at the surface of mammalian blood and tissue cells through a carboxy-terminal GPI glycolipid. Eventually, they are released into incubation medium in vitro and blood in vivo and subsequently inserted into neighboring cells, potentially leading to inappropriate surface expression or lysis. To obtain first insight into the potential (patho)physiological relevance of intercellular GPI-AP transfer and its biochemical characterization, a cell-free chip- and microfluidic channel-based sensing system was introduced. For this, rat or human adipocyte or erythrocyte plasma membranes (PM) were covalently captured by the TiO2 chip surface operating as the acceptor PM. To measure transfer between PM, donor erythrocyte or adipocyte PM were injected into the channels of a flow chamber, incubated, and washed out, and the type and amount of proteins which had been transferred to acceptor PM evaluated with specific antibodies. Antibody binding was detected as phase shift of horizontal surface acoustic waves propagating over the chip surface. Time- and temperature-dependent transfer, which did not rely on fusion of donor and acceptor PM, was detected for GPI-APs, but not typical transmembrane proteins. Transfer of GPI-APs was found to be prevented by α-toxin, which binds to the glycan core of GPI anchors, and serum proteins in concentration-dependent fashion. Blockade of transfer, which was restored by synthetic phosphoinositolglycans mimicking the glycan core of GPI anchors, led to accumulation in the chip channels of full-length GPI-APs in association with phospholipids and cholesterol in non-membrane structures. Strikingly, efficacy of transfer between adipocytes and erythrocytes was determined by the metabolic state (genotype and feeding state) of the rats, which were used as source for the PM and sera, with upregulation in obese and diabetic rats and counterbalance by serum proteins. The novel chip-based sensing system for GPI-AP transfer may be useful for the prediction and stratification of metabolic diseases as well as elucidation of the putative role of intercellular transfer of cell surface proteins, such as GPI-APs, in (patho)physiological mechanisms.
Collapse
|
6
|
Kulma M, Anderluh G. Beyond pore formation: reorganization of the plasma membrane induced by pore-forming proteins. Cell Mol Life Sci 2021; 78:6229-6249. [PMID: 34387717 PMCID: PMC11073440 DOI: 10.1007/s00018-021-03914-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/09/2021] [Accepted: 08/03/2021] [Indexed: 12/23/2022]
Abstract
Pore-forming proteins (PFPs) are a heterogeneous group of proteins that are expressed and secreted by a wide range of organisms. PFPs are produced as soluble monomers that bind to a receptor molecule in the host cell membrane. They then assemble into oligomers that are incorporated into the lipid membrane to form transmembrane pores. Such pore formation alters the permeability of the plasma membrane and is one of the most common mechanisms used by PFPs to destroy target cells. Interestingly, PFPs can also indirectly manipulate diverse cellular functions. In recent years, increasing evidence indicates that the interaction of PFPs with lipid membranes is not only limited to pore-induced membrane permeabilization but is also strongly associated with extensive plasma membrane reorganization. This includes lateral rearrangement and deformation of the lipid membrane, which can lead to the disruption of target cell function and finally death. Conversely, these modifications also constitute an essential component of the membrane repair system that protects cells from the lethal consequences of pore formation. Here, we provide an overview of the current knowledge on the changes in lipid membrane organization caused by PFPs from different organisms.
Collapse
Affiliation(s)
- Magdalena Kulma
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia.
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia
| |
Collapse
|
7
|
Resveratrol influences the pathogenesis of Aeromonas hydrophila by inhibiting production of aerolysin and biofilm. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108083] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Alves MLF, Ferreira MRA, Donassolo RA, Rodrigues RR, Conceição FR. Clostridium septicum: A review in the light of alpha-toxin and development of vaccines. Vaccine 2021; 39:4949-4956. [PMID: 34312008 DOI: 10.1016/j.vaccine.2021.07.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/31/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
Clostridium septicum (CS) is a pathogen that can cause the death of animals in livestock worldwide through its main virulence factor, alpha-toxin (ATX). The aspects involved in diseases caused by ATX, such as economic impact, prevalence, and rapid clinical course, require that animals should be systematically immunized. This review provides an overview of CS in livestock farming and discusses current immunization methods. Currently, commercial vaccines available against CS involve the cultivation and inactivation of microorganisms and toxins using a time-consuming, expensive, and high biological risk-carrying production platform, and some have been reported to be ineffective. An alternative to this process is the recombinant DNA technology, although recombinant ATX obtained thus far is no longer efficient in stimulating protective antibody titers despite improvements in the production methods. On the other hand, immunized animals have highly favorable levels of survival when subjected to challenge tests, suggesting that high titers of circulating serum antibodies may not be representative of protection after immunization and that the non-immune cellular defenses associated with the particularities of the mechanism of action of ATX may be involved in the immune response of the host. To contribute to the future of global livestock farming through the development of more efficient recombinant vaccines, we suggest novel perspectives and strategies, such as the location of immunodominant epitopes, expression of relevant functional domains, and construction of chimeras, in the rational design of recombinant ATX.
Collapse
Affiliation(s)
- Mariliana Luiza Ferreira Alves
- Instituto Federal Sul-rio-grandense - IFSUL, Praça Vinte de Setembro, 455, Centro, CEP 96.015-360, Pelotas, RS, Brazil; Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, CP 354, CEP 96160-000, Pelotas, RS, Brazil.
| | - Marcos Roberto Alves Ferreira
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, CP 354, CEP 96160-000, Pelotas, RS, Brazil
| | - Rafael Amaral Donassolo
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, CP 354, CEP 96160-000, Pelotas, RS, Brazil
| | - Rafael Rodrigues Rodrigues
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, CP 354, CEP 96160-000, Pelotas, RS, Brazil
| | - Fabricio Rochedo Conceição
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, CP 354, CEP 96160-000, Pelotas, RS, Brazil
| |
Collapse
|
9
|
A knockout cell library of GPI biosynthetic genes for functional studies of GPI-anchored proteins. Commun Biol 2021; 4:777. [PMID: 34162996 PMCID: PMC8222316 DOI: 10.1038/s42003-021-02337-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/19/2021] [Indexed: 11/08/2022] Open
Abstract
Over 100 kinds of proteins are expressed as glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) on the cell surface in mammalian cells. GPI-APs possess unique properties in terms of their intracellular trafficking and association with lipid rafts. Although it is clear that GPI-APs play critical roles in various biological phenomena, it is poorly understood how the GPI moiety contributes to these mechanisms. More than 30 genes are involved in the correct biosynthesis of GPI-APs. We here constructed a cell library in which 32 genes involved in GPI biosynthesis were knocked out in human embryonic kidney 293 cells. Using the cell library, the surface expression and sensitivity to phosphatidylinositol-specific phospholipase C of GPI-APs were analyzed. Furthermore, we identified structural motifs of GPIs that are recognized by a GPI-binding toxin, aerolysin. The cell-based GPI-knockout library could be applied not only to basic researches, but also to applications and methodologies related to GPI-APs.
Collapse
|
10
|
Interaction of Full-Length Glycosylphosphatidylinositol-Anchored Proteins with Serum Proteins and Their Translocation to Cells In Vitro Depend on the (Pre-)Diabetic State in Rats and Humans. Biomedicines 2021; 9:biomedicines9030277. [PMID: 33802150 PMCID: PMC8000876 DOI: 10.3390/biomedicines9030277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 01/24/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs), which are anchored at the surface of mammalian cultured and tissue cells through a carboxy-terminal GPI glycolipid, are susceptible to release into incubation medium and (rat and human) blood, respectively, in response to metabolic stress and ageing. Those GPI-APs with the complete GPI still attached form micelle-like complexes together with (lyso)phospholipids and cholesterol and are prone to degradation by serum GPI-specific phospholipase D (GPLD1), as well as translocation to the surface of acceptor cells in vitro. In this study, the interaction of GPI-APs with GPLD1 or other serum proteins derived from metabolically deranged rat and humans and their translocation were measured by microfluidic chip- and surface acoustic wave-based sensing of micelle-like complexes reconstituted with model GPI-APs. The effect of GPI-AP translocation on the integrity of the acceptor cell surface was studied as lactate dehydrogenase release. For both rats and humans, the dependence of serum GPLD1 activity on the hyperglycemic/hyperinsulinemic state was found to be primarily based on upregulation of the interaction of GPLD1 with micelle-like GPI-AP complexes, rather than on its amount. In addition to GPLD1, other serum proteins were found to interact with the GPI phosphoinositolglycan of full-length GPI-APs. Upon incubation of rat adipocytes with full-length GPI-APs, their translocation from the micelle-like complexes (and also with lower efficacy from reconstituted high-density lipoproteins and liposomes) to acceptor cells was observed, accompanied by upregulation of their lysis. Both GPI-AP translocation and adipocyte lysis became reduced in the presence of serum proteins, including (inhibited) GPLD1. The reduction was higher with serum from hyperglycemic/hyperinsulinemic rats and diabetic humans compared to healthy ones. These findings suggest that the deleterious effects of full-length GPI-APs following spontaneous release into the circulation of metabolically deranged rats and humans are counterbalanced by upregulated interaction of their GPI anchor with GPLD1 and other serum proteins. Thereby, translocation of GPI-APs to blood and tissue cells and their lysis are prevented. The identification of GPI-APs and serum proteins interacting within micelle-like complexes may facilitate the prediction and stratification of diseases that are associated with impaired cell-surface anchorage of GPI-APs, such as obesity and diabetes.
Collapse
|
11
|
Rikitake M, Matsuda A, Murata D, Dejima K, Nomura KH, Abbott KL, Mitani S, Nomura K. Analysis of GPI-anchored proteins involved in germline stem cell proliferation in the Caenorhabditis elegans germline stem cell niche. J Biochem 2020; 168:589-602. [PMID: 32844210 DOI: 10.1093/jb/mvaa075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/24/2020] [Indexed: 11/14/2022] Open
Abstract
Stem cells divide and undergo self-renewal depending on the signals received from the stem cell niche. This phenomenon is indispensable to maintain tissues and organs in individuals. However, not all the molecular factors and mechanisms of self-renewal are known. In our previous study, we reported that glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) synthesized in the distal tip cells (DTCs; the stem cell niche) are essential for germline stem cell proliferation in Caenorhabditis elegans. Here, we characterized the GPI-APs required for proliferation. We selected and verified the candidate GPI-APs synthesized in DTCs by RNA interference screening and found that F57F4.3 (GFI-1), F57F4.4 and F54E2.1 are necessary for germline proliferation. These proteins are likely involved in the same pathway for proliferation and activated by the transcription factor PQM-1. We further provided evidence suggesting that these GPI-APs act through fatty acid remodelling of the GPI anchor, which is essential for association with lipid rafts. These findings demonstrated that GPI-APs, particularly F57F4.3/4 and F54E2.1, synthesized in the germline stem cell niche are located in lipid rafts and involved in promoting germline stem cell proliferation in C. elegans. The findings may thus shed light on the mechanisms by which GPI-APs regulate stem cell self-renewal.
Collapse
Affiliation(s)
- Marika Rikitake
- Department of Systems Life Sciences, Kyushu University Graduate School, Fukuoka 819-0395, Japan
| | - Ayako Matsuda
- Department of Systems Life Sciences, Kyushu University Graduate School, Fukuoka 819-0395, Japan
| | - Daisuke Murata
- Department of Systems Life Sciences, Kyushu University Graduate School, Fukuoka 819-0395, Japan.,CREST (JST), Saitama 332-0012, Japan.,Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, 113 Hunterian, Baltimore, MD 21205, USA
| | - Katsufumi Dejima
- CREST (JST), Saitama 332-0012, Japan.,Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo 162-8666, Japan
| | - Kazuko H Nomura
- CREST (JST), Saitama 332-0012, Japan.,Department of Biology, Kyushu University, Fukuoka 819-0395, Japan
| | - Karen L Abbott
- Department of Biochemistry and Molecular Biology, The University of Oklahoma Health Sciences Center, 9 Stephenson Cancer Center, Oklahoma City, OK 73104, USA.,SL Young Biomedical Research Center, 975 NE 10th St., BRC 409 North lab/411A Office, Little Rock, AR 72205, USA
| | - Shohei Mitani
- CREST (JST), Saitama 332-0012, Japan.,Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo 162-8666, Japan
| | - Kazuya Nomura
- CREST (JST), Saitama 332-0012, Japan.,Department of Biology, Kyushu University, Fukuoka 819-0395, Japan.,Department of Medical Biochemistry, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan
| |
Collapse
|
12
|
Knapp O, Maier E, Piselli C, Benz R, Hoxha C, Popoff MR. Central residues of the amphipathic β-hairpin loop control the properties of Clostridium perfringens epsilon-toxin channel. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183364. [PMID: 32450142 DOI: 10.1016/j.bbamem.2020.183364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 05/06/2020] [Accepted: 05/19/2020] [Indexed: 11/27/2022]
Abstract
Clostridium perfringens epsilon toxin (ETX) is a heptameric pore-forming toxin of the aerolysin toxin family. ETX is the most potent toxin of this toxin family and the third most potent bacterial toxin with high cytotoxic and lethal activities in animals. In addition, ETX shows a demyelinating activity in nervous tissue leading to devastating multifocal central nervous system white matter disease in ruminant animals. Pore formation in target cell membrane is most likely the initial critical step in ETX biological activity. Eight single to quadruple ETX mutants were generated by replacement of polar residues (serine, threonine, glutamine) in middle positions of the β-strands forming the β-barrel and facing the channel lumen with charged glutamic residues. Channel activity and ion selectivity were monitored in artificial lipid monolayer membranes and cytotoxicity was investigated in MDCK cells by the viability MTT test and propidium iodide entry. All the mutants formed channels with similar conductance in artificial lipid membranes and increasing cation selectivity for increasing number of mutations. Here, we show that residues in the central position of each β-strand of the amphipathic β-hairpin loop that forms the transmembrane pore, control the size and ion selectivity of the channel. While the highest cationic ETX mutants were not cytotoxic, no strict correlation was observed between ion selectivity and cytotoxicity.
Collapse
Affiliation(s)
- Oliver Knapp
- Institut Pasteur, Bacterial Toxins, 28 rue du Dr Roux, 75724 Paris cedex 15, France
| | - Elke Maier
- Rudolf-Virchow-Center for Experimental Biomedicine, Versbacher Str. 9, 97078 Würzburg, Germany
| | - Claudio Piselli
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Roland Benz
- Rudolf-Virchow-Center for Experimental Biomedicine, Versbacher Str. 9, 97078 Würzburg, Germany; Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Cezarela Hoxha
- Institut Pasteur, Bacterial Toxins, 28 rue du Dr Roux, 75724 Paris cedex 15, France
| | - Michel R Popoff
- Institut Pasteur, Bacterial Toxins, 28 rue du Dr Roux, 75724 Paris cedex 15, France.
| |
Collapse
|
13
|
Müller GA, Ussar S, Tschöp MH, Müller TD. Age-dependent membrane release and degradation of full-length glycosylphosphatidylinositol-anchored proteins in rats. Mech Ageing Dev 2020; 190:111307. [PMID: 32628941 DOI: 10.1016/j.mad.2020.111307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/18/2020] [Accepted: 06/29/2020] [Indexed: 01/28/2023]
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) are associated with the surface of eucaryotic cells only through a covalently coupled carboxy-terminal GPI glycolipid structure which is anchored at the outer leaflet of plasma membranes. This mode of membrane association may be responsible for the recent observations that full-length GPI-APs harbouring the complete GPI anchor are (i) released from isolated rat adipocytes in vitro and (ii) expressed in rat and human serum. The upregulation of the adipocyte release in response to increased cell size and blood glucose/insulin levels of the donor rats and downregulation of the expression in serum of insulin resistant and diabetic rats have been reconciled with enhanced degradation of the full-length GPI-APs released into micelle-like complexes together with (lyso) phospholipids and cholesterol by serum GPI-specific phospholipase D (GPI-PLD). Here by using a sensitive and reliable sensing method for full-length GPI-APs, which relies on surface acoustic waves propagating over microfluidic chips, the upregulation of (i) the release of the full-length GPI-APs CD73, alkaline phosphatase and CD55 from isolated adipocyte plasma membranes monitored in a "lab-on-the-chip" configuration, (ii) their release from isolated rat adipocytes into the incubation medium and (iii) the lipolytic cleavage of their GPI anchors in serum was demonstrated to increase with age (3-16 weeks) and body weight (87-477 g) of (healthy) donor rats. In contrast, the amount of full-length GPI-APs in rat serum, as determined by chip-based sensing, turned out to decline with age/body weight. These correlations suggest that age-/weight-induced alterations (in certain biophysical/biochemical characteristics) of plasma membranes are responsible for the release of full-length GPI-APs which becomes counteracted by elevated GPI-PLD activity in serum. Thus, sensitive and specific measurement of these GPI-AP-relevant parameters may be useful for monitoring of age-related cell surface changes, in general, and diseases, in particular.
Collapse
Affiliation(s)
- Günter A Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Oberschleissheim, Germany; German Center for Diabetes Research (DZD), Oberschleissheim, Germany; Department Biology I, Genetics, Ludwig-Maximilians-Universität München, Planegg, Martinsried, Germany.
| | - Siegfried Ussar
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Oberschleissheim, Germany; German Center for Diabetes Research (DZD), Oberschleissheim, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, München, Germany
| | - Matthias H Tschöp
- German Center for Diabetes Research (DZD), Oberschleissheim, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, München, Germany; Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Oberschleissheim, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Oberschleissheim, Germany; German Center for Diabetes Research (DZD), Oberschleissheim, Germany; Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany
| |
Collapse
|
14
|
Müller GA, Tschöp MH, Müller TD. Upregulated phospholipase D activity toward glycosylphosphatidylinositol-anchored proteins in micelle-like serum complexes in metabolically deranged rats and humans. Am J Physiol Endocrinol Metab 2020; 318:E462-E479. [PMID: 31961708 DOI: 10.1152/ajpendo.00504.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Glycosylphosphatidylinositol-anchored proteins (GPI-AP) with the complete glycolipid anchor attached have previously been shown to be released from the outer plasma membrane leaflet of rat adipocytes in positive correlation to cell size and blood glucose/insulin levels of the donor rats. Furthermore, they are present in rat and human serum, however, at amounts that are lower in insulin-resistant/obese rats compared with normal ones. These findings prompted further evaluation of the potential of full-length GPI-AP for the prediction and stratification of metabolically deranged states. A comparison of the signatures of horizontal surface acoustic waves that were generated by full-length GPI-AP in the course of their specific capture by and subsequent dissociation from a chip-based sensor between those from rat serum and those reconstituted into lipidic structures strongly argues for expression of full-length GPI-AP in serum in micelle-like complexes in concert with phospholipids, lysophospholipids, and cholesterol. Both the reconstituted and the rat serum complexes were highly sensitive toward mechanical forces, such as vibration. Furthermore, full-length GPI-AP reconstituted into micelle-like complexes represented efficient substrates for cleavage by serum glycosylphosphatidylinositol-specific phospholipase D (GPI-PLD). These findings raised the possibility that the upregulated release of full-length GPI-AP into micelle-like serum complexes from metabolically deranged cells is compensated by elevated GPI-PLD activity. In fact, serum GPI-PLD activity toward full-length GPI-AP in micelle-like complexes, but not in detergent micelles, was positively correlated to early states of insulin resistance and obesity in genetic and diet-induced rat models as well as to the body weight in humans. Moreover, the differences in the degradation of GPI-AP in micelle-like complexes were found to rely in part on the interaction of serum GPI-PLD with an activating serum factor. These data suggest that serum GPI-PLD activity measured with GPI-AP in micelle-like complexes is indicative of enhanced release of full-length GPI-AP from relevant tissues into the circulation as a consequence of early metabolic derangement in rats and humans.
Collapse
Affiliation(s)
- Günter A Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Oberschleissheim, Germany
- German Center for Diabetes Research (DZD), Oberschleissheim, Germany
- Department Biology I, Genetics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Oberschleissheim, Germany
- German Center for Diabetes Research (DZD), Oberschleissheim, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, München, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Oberschleissheim, Germany
- German Center for Diabetes Research (DZD), Oberschleissheim, Germany
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany
| |
Collapse
|
15
|
Junior CAO, Silva ROS, Lobato FCF, Navarro MA, Uzal FA. Gas gangrene in mammals: a review. J Vet Diagn Invest 2020; 32:175-183. [PMID: 32081096 DOI: 10.1177/1040638720905830] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Gas gangrene is a necrotizing infection of subcutaneous tissue and muscle that affects mainly ruminants and horses, but also other domestic and wild mammals. Clostridium chauvoei, C. septicum, C. novyi type A, C. perfringens type A, and C. sordellii are the etiologic agents of this disease, acting singly or in combination. Although a presumptive diagnosis of gas gangrene can be established based on clinical history, clinical signs, and gross and microscopic changes, identification of the clostridia involved is required for confirmatory diagnosis. Gross and microscopic lesions are, however, highly suggestive of the disease. Although the disease has a worldwide distribution and can cause significant economic losses, the literature is limited mostly to case reports. Thus, we have reviewed the current knowledge of gas gangrene in mammals.
Collapse
Affiliation(s)
- Carlos A Oliveira Junior
- Veterinary School, Federal University of Minas Gerais, Brazil (Oliveira Junior, Silva, Lobato).,California Animal Health and Food Safety Laboratory, University of California, Davis, CA (Navarro, Uzal)
| | - Rodrigo O S Silva
- Veterinary School, Federal University of Minas Gerais, Brazil (Oliveira Junior, Silva, Lobato).,California Animal Health and Food Safety Laboratory, University of California, Davis, CA (Navarro, Uzal)
| | - Francisco C F Lobato
- Veterinary School, Federal University of Minas Gerais, Brazil (Oliveira Junior, Silva, Lobato).,California Animal Health and Food Safety Laboratory, University of California, Davis, CA (Navarro, Uzal)
| | - Mauricio A Navarro
- Veterinary School, Federal University of Minas Gerais, Brazil (Oliveira Junior, Silva, Lobato).,California Animal Health and Food Safety Laboratory, University of California, Davis, CA (Navarro, Uzal)
| | - Francisco A Uzal
- Veterinary School, Federal University of Minas Gerais, Brazil (Oliveira Junior, Silva, Lobato).,California Animal Health and Food Safety Laboratory, University of California, Davis, CA (Navarro, Uzal)
| |
Collapse
|
16
|
Müller GA, Herling AW, Stemmer K, Lechner A, Tschöp MH. Chip-based sensing for release of unprocessed cell surface proteins in vitro and in serum and its (patho)physiological relevance. Am J Physiol Endocrinol Metab 2019; 317:E212-E233. [PMID: 31039006 DOI: 10.1152/ajpendo.00079.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To study the possibility that certain components of eukaryotic plasma membranes are released under certain (patho)physiological conditions, a chip-based sensor was developed for the detection of cell surface proteins, which are anchored at the outer leaflet of eukaryotic plasma membranes by a covalently attached glycolipid, exclusively, and might be prone to spontaneous or regulated release on the basis of their amphiphilic character. For this, unprocessed, full-length glycosylphosphatidylinositol-anchored proteins (GPI-AP), together with associated phospholipids, were specifically captured and detected by a chip- and microfluidic channel-based sensor, leading to changes in phase and amplitude of surface acoustic waves (SAW) propagating over the chip surface. Unprocessed GPI-AP in complex with lipids were found to be released from rat adipocyte plasma membranes immobilized on the chip, which was dependent on the flow rate and composition of the buffer stream. The complexes were identified in the incubation medium of primary rat adipocytes, in correlation to the cell size, and in rat as well as human serum. With rats, the measured changes in SAW phase shift, reflecting specific mass/size or amount of the unprocessed GPI-AP in complex with lipids, and SAW amplitude, reflecting their viscoelasticity, enabled the differentiation between the lean and obese (high-fat diet) state, and the normal (Wistar) and hyperinsulinemic (Zucker fatty) as well as hyperinsulinemic hyperglycemic (Zucker diabetic fatty) state. Thus chip-based sensing for complexes of unprocessed GPI-AP and lipids reveals the inherently labile anchorage of GPI-AP at plasma membranes and their susceptibility for release in response to (intrinsic/extrinsic) cues of metabolic relevance and may, therefore, be useful for monitoring of (pre-)diabetic disease states.
Collapse
Affiliation(s)
- Günter A Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München , Neuherberg , Germany
| | - Andreas W Herling
- Sanofi Deutschland GmbH, Diabetes Research Division , Frankfurt am Main , Germany
| | - Kerstin Stemmer
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München , Neuherberg , Germany
| | - Andreas Lechner
- Diabetes Research Group, Medizinische Klinik IV, Medical Center, Ludwig-Maximilians-Universität München (Klinikum der Universität München) , München , Germany
- Clinical Cooperation Group Type 2 Diabetes, Helmholtz Zentrum München, Oberschleissheim/Neuherberg, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München , Neuherberg , Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München , München , Germany
- German Center for Diabetes Research, Oberschleissheim/Neuherberg, Germany
| |
Collapse
|
17
|
Nagahama M, Takehara M, Rood JI. Histotoxic Clostridial Infections. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0024-2018. [PMID: 31350831 PMCID: PMC10957196 DOI: 10.1128/microbiolspec.gpp3-0024-2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Indexed: 01/01/2023] Open
Abstract
The pathogenesis of clostridial myonecrosis or gas gangrene involves an interruption to the blood supply to the infected tissues, often via a traumatic wound, anaerobic growth of the infecting clostridial cells, the production of extracellular toxins, and toxin-mediated cell and tissue damage. This review focuses on host-pathogen interactions in Clostridium perfringens-mediated and Clostridium septicum-mediated myonecrosis. The major toxins involved are C. perfringens α-toxin, which has phospholipase C and sphingomyelinase activity, and C. septicum α-toxin, a β-pore-forming toxin that belongs to the aerolysin family. Although these toxins are cytotoxic, their effects on host cells are quite complex, with a range of intracellular cell signaling pathways induced by their action on host cell membranes.
Collapse
Affiliation(s)
- Masahiro Nagahama
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Masaya Takehara
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Julian I Rood
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
18
|
Morrin ST, Owens RA, Le Berre M, Gerlach JQ, Joshi L, Bode L, Irwin JA, Hickey RM. Interrogation of Milk-Driven Changes to the Proteome of Intestinal Epithelial Cells by Integrated Proteomics and Glycomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1902-1917. [PMID: 30663306 DOI: 10.1021/acs.jafc.8b06484] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bovine colostrum is a rich source of bioactive components which are important in the development of the intestine, in stimulating gut structure and function and in preparing the gut surface for subsequent colonization of microbes. What is not clear, however, is how colostrum may affect the repertoire of receptors and membrane proteins of the intestinal surface and the post-translational modifications associated with them. In the present work, we aimed to characterize the surface receptor and glycan profile of human HT-29 intestinal cells after exposure to a bovine colostrum fraction (BCF) by means of proteomic and glycomic analyses. Integration of label-free quantitative proteomic analysis and lectin array profiles confirmed that BCF exposure results in changes in the levels of glycoproteins present at the cell surface and also changes to their glycosylation pattern. This study contributes to our understanding of how milk components may regulate intestinal cells and prime them for bacterial interaction.
Collapse
Affiliation(s)
- Sinead T Morrin
- Teagasc Food Research Centre , Moorepark , Fermoy, P61C996 , County Cork , Ireland
- Veterinary Sciences Centre, School of Veterinary Medicine , University College Dublin , Belfield, Dublin 4, D04 V1W8 , Ireland
| | - Rebecca A Owens
- Department of Biology , Maynooth University , Maynooth , W23 F2H6 , County Kildare , Ireland
| | - Marie Le Berre
- Glycoscience Group, Advanced Glycoscience Research Cluster, National Centre for Biomedical Engineering Science , National University of Ireland Galway , H91TK33 , Galway , Ireland
| | - Jared Q Gerlach
- Glycoscience Group, Advanced Glycoscience Research Cluster, National Centre for Biomedical Engineering Science , National University of Ireland Galway , H91TK33 , Galway , Ireland
| | - Lokesh Joshi
- Glycoscience Group, Advanced Glycoscience Research Cluster, National Centre for Biomedical Engineering Science , National University of Ireland Galway , H91TK33 , Galway , Ireland
| | - Lars Bode
- Department of Pediatrics and Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence , University of California, San Diego , La Jolla , California 92093 , United States
| | - Jane A Irwin
- Veterinary Sciences Centre, School of Veterinary Medicine , University College Dublin , Belfield, Dublin 4, D04 V1W8 , Ireland
| | - Rita M Hickey
- Teagasc Food Research Centre , Moorepark , Fermoy, P61C996 , County Cork , Ireland
| |
Collapse
|
19
|
Yap WY, Hwang JS. Response of Cellular Innate Immunity to Cnidarian Pore-Forming Toxins. Molecules 2018; 23:E2537. [PMID: 30287801 PMCID: PMC6222686 DOI: 10.3390/molecules23102537] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/24/2018] [Accepted: 09/28/2018] [Indexed: 12/11/2022] Open
Abstract
A group of stable, water-soluble and membrane-bound proteins constitute the pore forming toxins (PFTs) in cnidarians. They interact with membranes to physically alter the membrane structure and permeability, resulting in the formation of pores. These lesions on the plasma membrane causes an imbalance of cellular ionic gradients, resulting in swelling of the cell and eventually its rupture. Of all cnidarian PFTs, actinoporins are by far the best studied subgroup with established knowledge of their molecular structure and their mode of pore-forming action. However, the current view of necrotic action by actinoporins may not be the only mechanism that induces cell death since there is increasing evidence showing that pore-forming toxins can induce either necrosis or apoptosis in a cell-type, receptor and dose-dependent manner. In this review, we focus on the response of the cellular immune system to the cnidarian pore-forming toxins and the signaling pathways that might be involved in these cellular responses. Since PFTs represent potential candidates for targeted toxin therapy for the treatment of numerous cancers, we also address the challenge to overcoming the immunogenicity of these toxins when used as therapeutics.
Collapse
Affiliation(s)
- Wei Yuen Yap
- Department of Biological Sciences, School of Science and Technology, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia.
| | - Jung Shan Hwang
- Department of Medical Sciences, School of Healthcare and Medical Sciences, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia.
| |
Collapse
|
20
|
Gao J, Zhou Z, Guo J, Guo Z. Synthesis of biotin-labelled core glycans of GPI anchors and their application in the study of GPI interaction with pore-forming bacterial toxins. Chem Commun (Camb) 2018; 53:6227-6230. [PMID: 28537279 DOI: 10.1039/c7cc03056h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A convergent strategy was developed for the first-time synthesis of biotin-labeled GPI core glycans. These GPI conjugates are useful for various biological studies showcased by their application in the scrutiny of pore-forming bacterial toxin-GPI interaction, revealing that the phosphate group at the GPI inositol 1-O-position had a significant impact on GPI-toxin binding.
Collapse
Affiliation(s)
- Jian Gao
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, USA
| | | | | | | |
Collapse
|
21
|
Srivastava I, Aldape MJ, Bryant AE, Stevens DL. Spontaneous C. septicum gas gangrene: A literature review. Anaerobe 2017; 48:165-171. [PMID: 28780428 DOI: 10.1016/j.anaerobe.2017.07.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 10/19/2022]
Abstract
As the infectious disease paradigm undergoes a subtle shift, unusual infections associated with malignancy and immunosuppression are being increasingly reported. Spontaneous or non-traumatic Clostridium septicum infection is one such unusual infection which has gained prominence. This article aims to understand the pathophysiology, clinical manifestations and current trends in diagnosing and treating this rare but deadly infection. To understand the multifactorial causation of this infection a review of published cases of spontaneous C. septicum gas gangrene was performed and a total of 94 such cases were identified. Several factors were analyzed for each case: age, infection location and underlying illness, presenting signs and symptoms, neutropenia, gross pathology of the colon, antibiotic use, surgical intervention, and survival. A known or occult malignancy was present in 71% patients and an overall mortality of 67% was observed.
Collapse
|
22
|
Sarnataro D, Pepe A, Zurzolo C. Cell Biology of Prion Protein. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:57-82. [PMID: 28838675 DOI: 10.1016/bs.pmbts.2017.06.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cellular prion protein (PrPC) is a mammalian glycoprotein which is usually found anchored to the plasma membrane via a glycosylphosphatidylinositol (GPI) anchor. The precise function of PrPC remains elusive but may depend upon its cellular localization. PrPC misfolds to a pathogenic isoform PrPSc, the causative agent of neurodegenerative prion diseases. Nonetheless some forms of prion disease develop in the apparent absence of infectious PrPSc, suggesting that molecular species of PrP distinct from PrPSc may represent the primary neurotoxic culprits. Indeed, in some inherited cases of human prion disease, the predominant form of PrP detectable in the brain is not PrPSc but rather CtmPrP, a transmembrane form of the protein. The relationship between the neurodegeneration occurring in prion diseases involving PrPSc and that associated with CtmPrP remains unclear. However, the different membrane topology of the PrP mutants, as well as the presence of the GPI anchor, could influence both the function and the intracellular localization and trafficking of the protein, all being potentially very important in the pathophysiological mechanism that ultimately causes the disease. Here, we review the latest findings on the fundamental aspects of prions biology, from the PrPC biosynthesis, function, and structure up to its intracellular traffic and analyze the possible roles of the different topological isoforms of the protein, as well as the GPI anchor, in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Daniela Sarnataro
- University of Naples "Federico II", Naples, Italy; Ceinge-Biotecnologie avanzate, s.c.a r.l., Naples, Italy.
| | - Anna Pepe
- University of Naples "Federico II", Naples, Italy; Unité de Trafic Membranaire et Pathogenese, Institut Pasteur, Paris, France
| | - Chiara Zurzolo
- University of Naples "Federico II", Naples, Italy; Unité de Trafic Membranaire et Pathogenese, Institut Pasteur, Paris, France
| |
Collapse
|
23
|
Matabaro E, He Z, Liu YS, Zhang HJ, Gao XD, Fujita M. Molecular switching system using glycosylphosphatidylinositol to select cells highly expressing recombinant proteins. Sci Rep 2017. [PMID: 28642584 PMCID: PMC5481379 DOI: 10.1038/s41598-017-04330-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Although many pharmaceutical proteins are produced in mammalian cells, there remains a challenge to select cell lines that express recombinant proteins with high productivity. Since most biopharmaceutical proteins are secreted by cells into the medium, it is difficult to select cell lines that produce large amounts of the target protein. To address this issue, a new protein expression system using the glycosylphosphatidylinositol (GPI)-anchor was developed. PGAP2 is involved in processing GPI-anchored proteins (GPI-APs) during transport. In PGAP2 mutant cells, most GPI-APs are secreted into the medium. Here, we established a HEK293 cell line where endogenous PGAP2 was knocked out and exogenous PGAP2 was inserted with a piggyBac transposon in the genome. Using these cells, human lysosomal acid lipase (LIPA) and α-galactosidase A (GLA) were expressed as GPI-anchored forms (LIPA-GPI and GLA-GPI) and cells expressing high levels of LIPA-GPI or GLA-GPI on the cell surface were enriched. Removal of the PGAP2 gene by piggyBac transposase or FLP recombinase converted LIPA-GPI and GLA-GPI from membrane-bound to the secreted forms. Thus, cells expressing LIPA or GLA in large amounts could be enriched using this approach. The GPI-based molecular switching system is an efficient approach to isolate cells expressing recombinant proteins with high productivity.
Collapse
Affiliation(s)
- Emmanuel Matabaro
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Zeng'an He
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Yi-Shi Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Hui-Jie Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Morihisa Fujita
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
24
|
Sha HX, Hwang JS. Identification of a target protein of Hydra actinoporin-like toxin-1 (HALT-1) using GST affinity purification and SILAC-based quantitative proteomics. Toxicon 2017; 133:153-161. [PMID: 28478056 DOI: 10.1016/j.toxicon.2017.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 04/29/2017] [Accepted: 05/02/2017] [Indexed: 11/20/2022]
Abstract
Hydra actinoporin-like toxin-1 (HALT-1) is a 20.8 kDa pore-forming toxin isolated from Hydra magnipapillata. HALT-1 shares structural similarity with actinoporins, a family that is well known for its haemolytic and cytolytic activity. However, the precise pore-forming mechanism of HALT-1 remains an open question since little is known about the specific target binding for HALT-1. For this reason, a comprehensive proteomic analysis was performed using affinity purification and SILAC-based mass spectrometry to identify potential protein-protein interactions between mammalian HeLa cell surface proteins and HALT-1. A total of 4 mammalian proteins was identified, of which only folate receptor alpha was further verified by ELISA. Our preliminary results highlight an alternative-binding mode of HALT-1 to the human plasma membrane. This is the first evidence showing that HALT-1, an actinoporin-like protein, binds to a membrane protein, the folate receptor alpha. This study would advance our understanding of the molecular basis of toxicity of pore-forming toxins and provide new insights in the production of more potent inhibitors for the toxin-membrane receptor interactions.
Collapse
Affiliation(s)
- Hong Xi Sha
- Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights Cheras, 56000, Kuala Lumpur, Malaysia.
| | - Jung Shan Hwang
- Sunway Institute for Healthcare Development, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
25
|
Ruiz-Arroyo VM, García-Robles I, Ochoa-Campuzano C, Goig GA, Zaitseva E, Baaken G, Martínez-Ramírez AC, Rausell C, Real MD. Validation of ADAM10 metalloprotease as a Bacillus thuringiensis Cry3Aa toxin functional receptor in Colorado potato beetle (Leptinotarsa decemlineata). INSECT MOLECULAR BIOLOGY 2017; 26:204-214. [PMID: 27918112 DOI: 10.1111/imb.12285] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Bacillus thuringiensis parasporal crystal proteins (Cry proteins) are insecticidal pore-forming toxins that bind to specific receptor molecules on the brush border membrane of susceptible insect midgut cells to exert their toxic action. In the Colorado potato beetle (CPB), a coleopteran pest, we previously proposed that interaction of Cry3Aa toxin with a CPB ADAM10 metalloprotease is an essential part of the mode of action of this toxin. Here, we annotated the gene sequence encoding an ADAM10 metalloprotease protein (CPB-ADAM10) in the CPB genome sequencing project, and using RNA interference gene silencing we demonstrated that CPB-ADAM10 is a Cry3Aa toxin functional receptor in CPB. Cry3Aa toxicity was significantly lower in CPB-ADAM10 silenced larvae and in vitro toxin pore-forming ability was greatly diminished in lipid planar bilayers fused with CPB brush border membrane vesicles (BBMVs) prepared from CPB-ADAM10 silenced larvae. In accordance with our previous data that indicated this toxin was a substrate of ADAM10 in CPB, Cry3Aa toxin membrane-associated proteolysis was altered when CPB BBMVs lacked ADAM10. The functional validation of CPB-ADAM10 as a Cry3Aa toxin receptor in CPB expands the already recognized role of ADAM10 as a pathogenicity determinant of pore-forming toxins in humans to an invertebrate species.
Collapse
Affiliation(s)
- V M Ruiz-Arroyo
- Department of Genetics, University of Valencia, Burjassot, Valencia, Spain
| | - I García-Robles
- Department of Genetics, University of Valencia, Burjassot, Valencia, Spain
| | - C Ochoa-Campuzano
- Department of Genetics, University of Valencia, Burjassot, Valencia, Spain
| | - G A Goig
- Department of Genetics, University of Valencia, Burjassot, Valencia, Spain
| | - E Zaitseva
- Department of Physiology, University of Freiburg, Freiburg, Germany
- Ionera Technologies GmbH, Freiburg, Germany
| | - G Baaken
- Ionera Technologies GmbH, Freiburg, Germany
| | - A C Martínez-Ramírez
- Servicios Centrales de Soporte a la Investigación Experimental (SCSIE), University of Valencia, Burjassot, Valencia, Spain
| | - C Rausell
- Department of Genetics, University of Valencia, Burjassot, Valencia, Spain
| | - M D Real
- Department of Genetics, University of Valencia, Burjassot, Valencia, Spain
| |
Collapse
|
26
|
Goleij Z, Mahmoodzadeh Hosseini H, Amin M, Halabian R, Imani Fooladi AA. Prokaryotic toxins provoke different types of cell deaths in the eukaryotic cells. TOXIN REV 2017. [DOI: 10.1080/15569543.2017.1294180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Zoleikha Goleij
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran and
| | | | - Mohsen Amin
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran and
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran and
| |
Collapse
|
27
|
Gabor KA, Fessler MB. Roles of the Mevalonate Pathway and Cholesterol Trafficking in Pulmonary Host Defense. Curr Mol Pharmacol 2017; 10:27-45. [PMID: 26758950 PMCID: PMC6026538 DOI: 10.2174/1874467209666160112123603] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 08/01/2015] [Accepted: 12/23/2015] [Indexed: 01/17/2023]
Abstract
The mevalonic acid synthesis pathway, cholesterol, and lipoproteins play fundamental roles in lung physiology and the innate immune response. Recent literature investigating roles for cholesterol synthesis and trafficking in host defense against respiratory infection was critically reviewed. The innate immune response and the cholesterol biosynthesis/trafficking network regulate one another, with important implications for pathogen invasion and host defense in the lung. The activation of pathogen recognition receptors and downstream cellular host defense functions are critically sensitive to cellular cholesterol. Conversely, microorganisms can co-opt the sterol/lipoprotein network in order to facilitate replication and evade immunity. Emerging literature suggests the potential for harnessing these insights towards therapeutic development. Given that >50% of adults in the U.S. have serum cholesterol abnormalities and pneumonia remains a leading cause of death, the potential impact of cholesterol on pulmonary host defense is of tremendous public health significance and warrants further mechanistic and translational investigation.
Collapse
Affiliation(s)
| | - Michael B Fessler
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, P.O. Box 12233, Maildrop D2-01, Research Triangle Park, NC 27709, United States
| |
Collapse
|
28
|
Ros U, García-Sáez AJ. More Than a Pore: The Interplay of Pore-Forming Proteins and Lipid Membranes. J Membr Biol 2015; 248:545-61. [PMID: 26087906 DOI: 10.1007/s00232-015-9820-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/12/2015] [Indexed: 01/09/2023]
Abstract
Pore-forming proteins (PFPs) punch holes in their target cell membrane to alter their permeability. Permeabilization of lipid membranes by PFPs has received special attention to study the basic molecular mechanisms of protein insertion into membranes and the development of biotechnological tools. PFPs act through a general multi-step mechanism that involves (i) membrane partitioning, (ii) insertion into the hydrophobic core of the bilayer, (iii) oligomerization, and (iv) pore formation. Interestingly, PFPs and membranes show a dynamic interplay. As PFPs are usually produced as soluble proteins, they require a large conformational change for membrane insertion. Moreover, membrane structure is modified upon PFPs insertion. In this context, the toroidal pore model has been proposed to describe a pore architecture in which not only protein molecules but also lipids are directly involved in the structure. Here, we discuss how PFPs and lipids cooperate and remodel each other to achieve pore formation, and explore new evidences of protein-lipid pore structures.
Collapse
Affiliation(s)
- Uris Ros
- Center for Protein Studies, Faculty of Biology, Calle 25 # 455, Plaza de la Revolución, Havana, Cuba
| | | |
Collapse
|
29
|
Clostridial pore-forming toxins: Powerful virulence factors. Anaerobe 2014; 30:220-38. [DOI: 10.1016/j.anaerobe.2014.05.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/16/2014] [Accepted: 05/25/2014] [Indexed: 01/05/2023]
|
30
|
Alves GG, Machado de Ávila RA, Chávez-Olórtegui CD, Lobato FCF. Clostridium perfringens epsilon toxin: the third most potent bacterial toxin known. Anaerobe 2014; 30:102-7. [PMID: 25234332 DOI: 10.1016/j.anaerobe.2014.08.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/18/2014] [Accepted: 08/19/2014] [Indexed: 01/24/2023]
Abstract
Epsilon toxin (ETX) is produced by Clostridium perfringens type B and D strains and causes enterotoxemia, a highly lethal disease with major impacts on the farming of domestic ruminants, particularly sheep. ETX belongs to the aerolysin-like pore-forming toxin family. Although ETX has striking similarities to other toxins in this family, ETX is often more potent, with an LD50 of 100 ng/kg in mice. Due to this high potency, ETX is considered as a potential bioterrorism agent and has been classified as a category B biological agent by the Centers for Disease Control and Prevention (CDC) of the United States. The protoxin is converted to an active toxin through proteolytic cleavage performed by specific proteases. ETX is absorbed and acts locally in the intestines then subsequently binds to and causes lesions in other organs, including the kidneys, lungs and brain. The importance of this toxin for veterinary medicine and its possible use as a biological weapon have drawn the attention of researchers and have led to a large number of studies investigating ETX. The aim of the present work is to review the existing knowledge on ETX from C. perfringens type B and D.
Collapse
Affiliation(s)
- Guilherme Guerra Alves
- Veterinary School, Universidade Federal de Minas Gerais (UFMG), Antônio Carlos Avenue, 6627, Belo Horizonte, MG CEP 31.270-901, Brazil.
| | | | - Carlos Delfin Chávez-Olórtegui
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Antônio Carlos Avenue, 6627, Belo Horizonte, MG CEP 31.270-901, Brazil
| | - Francisco Carlos Faria Lobato
- Veterinary School, Universidade Federal de Minas Gerais (UFMG), Antônio Carlos Avenue, 6627, Belo Horizonte, MG CEP 31.270-901, Brazil.
| |
Collapse
|
31
|
Garcia JP, Moore J, Loukopoulos P, Diab SS, Uzal FA. Necrotizing gastritis associated with Clostridium septicum in a rabbit. J Vet Diagn Invest 2014; 26:669-73. [DOI: 10.1177/1040638714547255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Clostridium septicum is the causative agent of histotoxic infections, including malignant edema and braxy (necrotizing abomasitis) in several animal species. The carcass of a 2-year–old, female New Zealand white rabbit with a history of acute depression and obtundation followed by death was received at the California Animal Health and Food Safety Laboratory System (San Bernardino, California) for necropsy and diagnostic workup. No gross lesions were detected at necropsy. Microscopically, there was moderate to severe, multifocal fibrinonecrotizing, transmural gastritis with numerous intralesional Gram-positive, sporulated rods, and disseminated thrombosis of the brain, lungs, heart, and liver, with occasional intravascular rods. The rods observed within the gastric wall and thrombi in the stomach and lung were positive for C. septicum by immunohistochemical staining. However, this microorganism was not isolated from stomach content. Clostridium septicum should be included in the list of possible etiologies of gastritis in rabbits.
Collapse
Affiliation(s)
- Jorge P. Garcia
- California Animal Health and Food Safety Laboratory System, School of Veterinary Medicine, University of California Davis, San Bernardino, CA
| | - Janet Moore
- California Animal Health and Food Safety Laboratory System, School of Veterinary Medicine, University of California Davis, San Bernardino, CA
| | - Panayiotis Loukopoulos
- California Animal Health and Food Safety Laboratory System, School of Veterinary Medicine, University of California Davis, San Bernardino, CA
| | - Santiago S. Diab
- California Animal Health and Food Safety Laboratory System, School of Veterinary Medicine, University of California Davis, San Bernardino, CA
| | - Francisco A. Uzal
- California Animal Health and Food Safety Laboratory System, School of Veterinary Medicine, University of California Davis, San Bernardino, CA
| |
Collapse
|
32
|
Koike-Yusa H, Li Y, Tan EP, Velasco-Herrera MDC, Yusa K. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol 2014; 32:267-73. [PMID: 24535568 DOI: 10.1038/nbt.2800] [Citation(s) in RCA: 761] [Impact Index Per Article: 76.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 12/17/2013] [Indexed: 12/23/2022]
Abstract
Identification of genes influencing a phenotype of interest is frequently achieved through genetic screening by RNA interference (RNAi) or knockouts. However, RNAi may only achieve partial depletion of gene activity, and knockout-based screens are difficult in diploid mammalian cells. Here we took advantage of the efficiency and high throughput of genome editing based on type II, clustered, regularly interspaced, short palindromic repeats (CRISPR)-CRISPR-associated (Cas) systems to introduce genome-wide targeted mutations in mouse embryonic stem cells (ESCs). We designed 87,897 guide RNAs (gRNAs) targeting 19,150 mouse protein-coding genes and used a lentiviral vector to express these gRNAs in ESCs that constitutively express Cas9. Screening the resulting ESC mutant libraries for resistance to either Clostridium septicum alpha-toxin or 6-thioguanine identified 27 known and 4 previously unknown genes implicated in these phenotypes. Our results demonstrate the potential for efficient loss-of-function screening using the CRISPR-Cas9 system.
Collapse
Affiliation(s)
| | - Yilong Li
- 1] Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK. [2]
| | - E-Pien Tan
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | | | - Kosuke Yusa
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| |
Collapse
|
33
|
Mukamoto M, Kimura R, Hang'ombe MB, Kohda T, Kozaki S. Analysis of tryptophan-rich region in Clostridium septicum alpha-toxin involved with binding to glycosylphosphatidylinositol-anchored proteins. Microbiol Immunol 2013; 57:163-9. [PMID: 23278518 DOI: 10.1111/1348-0421.12017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/18/2012] [Accepted: 12/06/2012] [Indexed: 11/27/2022]
Abstract
Clostridium septicum alpha-toxin has a unique tryptophan-rich region ((302)NGYSEWDWKWV(312)) that consists of 11 amino acid residues near the C-terminus. Using mutant toxins, the contribution of individual amino acids in the tryptophan-rich region to cytotoxicity and binding to glycosylphosphatidylinositol (GPI)-anchored proteins was examined. For retention of maximum cytotoxic activity, W307 and W311 are essential residues and residue 309 has to be hydrophobic and possess an aromatic side chain, such as tryptophan or phenylalanine. When residue 308, which lies between tryptophans (W307 and W309) is changed from an acidic to a basic amino acid, the cytotoxic activity of the mutant is reduced to less than that of the wild type. It was shown by a toxin overlay assay that the cytotoxic activity of each mutant toxin correlates closely with affinity to GPI-anchored proteins. These findings indicate that the WDW_W sequence in the tryptophan-rich region plays an important role in the cytotoxic mechanism of alpha-toxin, especially in the binding to GPI-anchored proteins as cell receptors.
Collapse
Affiliation(s)
- Masafumi Mukamoto
- Laboratory of Veterinary Epidemiology, Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Orai-kita, Izumisano, Osaka, 598-8531, Japan. ‐u.ac.jp
| | | | | | | | | |
Collapse
|
34
|
Tsai YH, Liu X, Seeberger PH. Chemical biology of glycosylphosphatidylinositol anchors. Angew Chem Int Ed Engl 2012; 51:11438-56. [PMID: 23086912 DOI: 10.1002/anie.201203912] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Indexed: 01/21/2023]
Abstract
Glycosylphosphatidylinositols (GPIs) are complex glycolipids that are covalently linked to the C-terminus of proteins as a posttranslational modification. They anchor the attached protein to the cell membrane and are essential for normal functioning of eukaryotic cells. GPI-anchored proteins are structurally and functionally diverse. Many GPIs have been structurally characterized but comprehension of their biological functions, beyond the simple physical anchoring, remains largely speculative. Work on functional elucidation at a molecular level is still limited. This Review focuses on the roles of GPI unraveled by using synthetic molecules and summarizes the structural diversity of GPIs, as well as their biological and chemical syntheses.
Collapse
Affiliation(s)
- Yu-Hsuan Tsai
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
| | | | | |
Collapse
|
35
|
Tsai YH, Liu X, Seeberger PH. Chemische Biologie der Glycosylphosphatidylinosit-Anker. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201203912] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
36
|
Zhao P, Nairn AV, Hester S, Moremen KW, O'Regan RM, Oprea G, Wells L, Pierce M, Abbott KL. Proteomic identification of glycosylphosphatidylinositol anchor-dependent membrane proteins elevated in breast carcinoma. J Biol Chem 2012; 287:25230-40. [PMID: 22654114 DOI: 10.1074/jbc.m112.339465] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The glycosylphosphatidylinositol (GPI) anchor is a lipid and glycan modification added to the C terminus of certain proteins in the endoplasmic reticulum by the activity of a multiple subunit enzyme complex known as the GPI transamidase (GPIT). Several subunits of GPIT have increased expression levels in breast carcinoma. In an effort to identify GPI-anchored proteins and understand the possible role of these proteins in breast cancer progression, we employed a combination of strategies. First, alpha toxin from Clostridium septicum was used to capture GPI-anchored proteins from human breast cancer tissues, cells, and serum for proteomic analysis. We also expressed short interfering RNAs targeting the expression of the GPAA1 and PIGT subunits of GPIT in breast cancer cell lines to identify proteins in which membrane localization is dependent on GPI anchor addition. Comparative membrane proteomics using nano-ESI-RPLC-MS/MS led to the discovery of several new potential diagnostic and therapeutic targets for breast cancer. Furthermore, we provide evidence that increased levels of GPI anchor addition in malignant breast epithelial cells promotes the dedifferentiation of malignant breast epithelial cells in part by increasing the levels of cell surface markers associated with mesenchymal stem cells.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Chemistry, University of Georgia, Athens, Georgia 30605, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Türkcan S, Alexandrou A, Masson JB. A Bayesian inference scheme to extract diffusivity and potential fields from confined single-molecule trajectories. Biophys J 2012; 102:2288-98. [PMID: 22677382 DOI: 10.1016/j.bpj.2012.01.063] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 11/16/2011] [Accepted: 01/03/2012] [Indexed: 11/19/2022] Open
Abstract
Currently used techniques for the analysis of single-molecule trajectories only exploit a small part of the available information stored in the data. Here, we apply a Bayesian inference scheme to trajectories of confined receptors that are targeted by pore-forming toxins to extract the two-dimensional confining potential that restricts the motion of the receptor. The receptor motion is modeled by the overdamped Langevin equation of motion. The method uses most of the information stored in the trajectory and converges quickly onto inferred values, while providing the uncertainty on the determined values. The inference is performed on the polynomial development of the potential and on the diffusivities that have been discretized on a mesh. Numerical simulations are used to test the scheme and quantify the convergence toward the input values for forces, potential, and diffusivity. Furthermore, we show that the technique outperforms the classical mean-square-displacement technique when forces act on confined molecules because the typical mean-square-displacement analysis does not account for them. We also show that the inferred potential better represents input potentials than the potential extracted from the position distribution based on Boltzmann statistics that assumes statistical equilibrium.
Collapse
Affiliation(s)
- Silvan Türkcan
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale U696, Palaiseau, France
| | | | | |
Collapse
|
38
|
Türkcan S, Masson JB, Casanova D, Mialon G, Gacoin T, Boilot JP, Popoff MR, Alexandrou A. Observing the confinement potential of bacterial pore-forming toxin receptors inside rafts with nonblinking Eu(3+)-doped oxide nanoparticles. Biophys J 2012; 102:2299-308. [PMID: 22677383 DOI: 10.1016/j.bpj.2012.03.072] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 03/20/2012] [Accepted: 03/23/2012] [Indexed: 12/26/2022] Open
Abstract
We track single toxin receptors on the apical cell membrane of MDCK cells with Eu-doped oxide nanoparticles coupled to two toxins of the pore-forming toxin family: α-toxin of Clostridium septicum and ε-toxin of Clostridium perfringens. These nonblinking and photostable labels do not perturb the motion of the toxin receptors and yield long uninterrupted trajectories with mean localization precision of 30 nm for acquisition times of 51.3 ms. We were thus able to study the toxin-cell interaction at the single-molecule level. Toxins bind to receptors that are confined within zones of mean area 0.40 ± 0.05 μm(2). Assuming that the receptors move according to the Langevin equation of motion and using Bayesian inference, we determined mean diffusion coefficients of 0.16 ± 0.01 μm(2)/s for both toxin receptors. Moreover, application of this approach revealed a force field within the domain generated by a springlike confining potential. Both toxin receptors were found to experience forces characterized by a mean spring constant of 0.30 ± 0.03 pN/μm at 37°C. Furthermore, both toxin receptors showed similar distributions of diffusion coefficient, domain area, and spring constant. Control experiments before and after incubation with cholesterol oxidase and sphingomyelinase show that these two enzymes disrupt the confinement domains and lead to quasi-free motion of the toxin receptors. Our control data showing cholesterol and sphingomyelin dependence as well as independence of actin depolymerization and microtubule disruption lead us to attribute the confinement of both receptors to lipid rafts. These toxins require oligomerization to develop their toxic activity. The confined nature of the toxin receptors leads to a local enhancement of the toxin monomer concentration and may thus explain the virulence of this toxin family.
Collapse
Affiliation(s)
- Silvan Türkcan
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale U696, Palaiseau, France.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Geny B, Popoff MR. Bacterial protein toxins and lipids: pore formation or toxin entry into cells. Biol Cell 2012; 98:667-78. [PMID: 17042742 DOI: 10.1042/bc20050082] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lipids are hydrophobic molecules which play critical functions in cells, in particular, they are essential constituents of membranes, whereas bacterial toxins are mainly hydrophilic proteins. All bacterial toxins interact first with their target cells by recognizing a surface receptor, which is either a lipid or a lipid derivative, or another compound but in a lipid environment. Most bacterial toxins are PFTs (pore-forming toxins) which oligomerize and insert into the lipid bilayer. A common mechanism of action involves the formation of a beta-barrel structure, resulting from the assembly of individual beta-hairpin(s) from individual monomers. An essential step for intracellular active toxins is to translocate their enzymatic part into the cytosol. Some toxins use a translocation mechanism based on pore formation similar to that of PFTs, others undergo a yet unclear 'chaperone' process.
Collapse
Affiliation(s)
- Blandine Geny
- Unité des Bactéries Anaérobies et Toxines, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris cedex 15, France
| | | |
Collapse
|
40
|
Dangaj D, Abbott KL, Mookerjee A, Zhao A, Kirby PS, Sandaltzopoulos R, Powell DJ, Lamazière A, Siegel DL, Wolf C, Scholler N. Mannose receptor (MR) engagement by mesothelin GPI anchor polarizes tumor-associated macrophages and is blocked by anti-MR human recombinant antibody. PLoS One 2011; 6:e28386. [PMID: 22163010 PMCID: PMC3232216 DOI: 10.1371/journal.pone.0028386] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 11/07/2011] [Indexed: 12/18/2022] Open
Abstract
Tumor-infiltrating macrophages respond to microenvironmental signals by developing a tumor-associated phenotype characterized by high expression of mannose receptor (MR, CD206). Antibody cross-linking of CD206 triggers anergy in dendritic cells and CD206 engagement by tumoral mucins activates an immune suppressive phenotype in tumor-associated macrophages (TAMs). Many tumor antigens are heavily glycosylated, such as tumoral mucins, and/or attached to tumor cells by mannose residue-containing glycolipids (GPI anchors), as for example mesothelin and the family of carcinoembryonic antigen (CEA). However, the binding to mannose receptor of soluble tumor antigen GPI anchors via mannose residues has not been systematically studied. To address this question, we analyzed the binding of tumor-released mesothelin to ascites-infiltrating macrophages from ovarian cancer patients. We also modeled functional interactions between macrophages and soluble mesothelin using an in vitro system of co-culture in transwells of healthy donor macrophages with human ovarian cancer cell lines. We found that soluble mesothelin bound to human macrophages and that the binding depended on the presence of GPI anchor and of mannose receptor. We next challenged the system with antibodies directed against the mannose receptor domain 4 (CDR4-MR). We isolated three novel anti-CDR4-MR human recombinant antibodies (scFv) using a yeast-display library of human scFv. Anti-CDR4-MR scFv #G11 could block mesothelin binding to macrophages and prevent tumor-induced phenotype polarization of CD206(low) macrophages towards TAMs. Our findings indicate that tumor-released mesothelin is linked to GPI anchor, engages macrophage mannose receptor, and contributes to macrophage polarization towards TAMs. We propose that compounds able to block tumor antigen GPI anchor/CD206 interactions, such as our novel anti-CRD4-MR scFv, could prevent tumor-induced TAM polarization and have therapeutic potential against ovarian cancer, through polarization control of tumor-infiltrating innate immune cells.
Collapse
Affiliation(s)
- Denarda Dangaj
- Department of Obstetrics and Gynecology, Penn Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Karen L. Abbott
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Ananda Mookerjee
- Department of Obstetrics and Gynecology, Penn Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Aizhi Zhao
- Department of Obstetrics and Gynecology, Penn Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Pamela S. Kirby
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Raphael Sandaltzopoulos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Daniel J. Powell
- Department of Obstetrics and Gynecology, Penn Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Antonin Lamazière
- Department of Biochemistry, School of Medicine Saint Antoine, Université Pierre et Marie Curie, Paris, France
| | - Don L. Siegel
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Claude Wolf
- Department of Biochemistry, School of Medicine Saint Antoine, Université Pierre et Marie Curie, Paris, France
| | - Nathalie Scholler
- Department of Obstetrics and Gynecology, Penn Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
41
|
Popoff MR. Multifaceted interactions of bacterial toxins with the gastrointestinal mucosa. Future Microbiol 2011; 6:763-97. [PMID: 21797691 DOI: 10.2217/fmb.11.58] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The digestive tract is one of the ecosystems that harbors the largest number and greatest variety of bacteria. Among them, certain bacteria have developed various strategies, including the synthesis of virulence factors such as toxins, to interact with the intestinal mucosa, and are responsible for various pathologies. A large variety of bacterial toxins of different sizes, structures and modes of action are able to interact with the gastrointestinal mucosa. Some toxins, termed enterotoxins, directly stimulate fluid secretion in enterocytes or cause their death, whereas other toxins pass through the intestinal barrier and disseminate by the general circulation to remote organs or tissues, where they are active. After recognition of a membrane receptor on target cells, toxins can act at the cell membrane by transducing a signal across the membrane in a hormone-like manner, by pore formation or by damaging membrane compounds. Other toxins can enter the cells and modify an intracellular target leading to a disregulation of certain physiological processes or disorganization of some structural architectures and cell death. Toxins are fascinating molecules, which mimic or interfere with eukaryotic physiological processes. Thereby, they have permitted the identification and characterization of new natural hormones or regulatory pathways. Besides use as protective antigens in vaccines, toxins offer multiple possibilities in pharmacology, such as immune modulation or specific delivery of a protein of interest into target cells.
Collapse
Affiliation(s)
- M R Popoff
- Institut Pasteur, Unité des Bactéries anaérobies et Toxines, 25 rue du Dr Roux, 757245 Paris cedex 15, France.
| |
Collapse
|
42
|
Szczesny P, Iacovache I, Muszewska A, Ginalski K, van der Goot FG, Grynberg M. Extending the aerolysin family: from bacteria to vertebrates. PLoS One 2011; 6:e20349. [PMID: 21687664 PMCID: PMC3110756 DOI: 10.1371/journal.pone.0020349] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 04/29/2011] [Indexed: 11/18/2022] Open
Abstract
A number of bacterial virulence factors have been observed to adopt structures similar to that of aerolysin, the principal toxin of Aeromonas species. However, a comprehensive description of architecture and structure of the aerolysin-like superfamily has not been determined. In this study, we define a more compact aerolysin-like domain--or aerolysin fold--and show that this domain is far more widely spread than anticipated since it can be found throughout kingdoms. The aerolysin-fold could be found in very diverse domain and functional contexts, although a toxic function could often be assigned. Due to this diversity, the borders of the superfamily could not be set on a sequence level. As a border-defining member, we therefore chose pXO2-60--a protein from the pathogenic pXO2 plasmid of Bacillus anthracis. This fascinating protein, which harbors a unique ubiquitin-like fold domain at the C-terminus of the aerolysin-domain, nicely illustrates the diversity of the superfamily. Its putative role in the virulence of B. anthracis and its three dimensional model are discussed.
Collapse
Affiliation(s)
- Pawel Szczesny
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Institute of Experimental Plant Biology, University of Warsaw, Warsaw, Poland
| | - Ioan Iacovache
- Faculty of Life Sciences, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Krzysztof Ginalski
- Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Warsaw, Poland
| | - F. Gisou van der Goot
- Faculty of Life Sciences, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Marcin Grynberg
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
43
|
Didodecyldimethylammonium bromide (DDAB) induces caspase-mediated apoptosis in human leukemia HL-60 cells. J Control Release 2010; 147:246-52. [DOI: 10.1016/j.jconrel.2010.07.114] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 07/19/2010] [Accepted: 07/21/2010] [Indexed: 11/21/2022]
|
44
|
Eby JC, Ciesla WP, Hamman W, Donato GM, Pickles RJ, Hewlett EL, Lencer WI. Selective translocation of the Bordetella pertussis adenylate cyclase toxin across the basolateral membranes of polarized epithelial cells. J Biol Chem 2010; 285:10662-70. [PMID: 20139088 DOI: 10.1074/jbc.m109.089219] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The catalytic domain of Bordetella pertussis adenylate cyclase toxin (ACT) translocates directly across the plasma membrane of mammalian cells to induce toxicity by the production of cAMP. Here, we use electrophysiology to examine the translocation of toxin into polarized epithelial cells that model the mucosal surfaces of the host. We find that both polarized T84 cell monolayers and human airway epithelial cultures respond to nanomolar concentrations of ACT when applied to basolateral membranes, with little or no response to toxin applied apically. The induction of toxicity is rapid and fully explained by increases in intracellular cAMP, consistent with toxin translocation directly across the basolateral membrane. Intoxication of T84 cells occurs in the absence of CD11b/CD18 or evidence of another specific membrane receptor, and it is not dependent on post-translational acylation of the toxin or on host cell membrane potential, both previously reported to be required for toxin action. Thus, elements of the basolateral membrane render epithelial cells highly sensitive to the entry of ACT in the absence of a specific receptor for toxin binding.
Collapse
Affiliation(s)
- Joshua C Eby
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Clostridia produce the highest number of toxins of any type of bacteria and are involved in severe diseases in humans and other animals. Most of the clostridial toxins are pore-forming toxins responsible for gangrenes and gastrointestinal diseases. Among them, perfringolysin has been extensively studied and it is the paradigm of the cholesterol-dependent cytolysins, whereas Clostridium perfringens epsilon-toxin and Clostridium septicum alpha-toxin, which are related to aerolysin, are the prototypes of clostridial toxins that form small pores. Other toxins active on the cell surface possess an enzymatic activity, such as phospholipase C and collagenase, and are involved in the degradation of specific cell-membrane or extracellular-matrix components. Three groups of clostridial toxins have the ability to enter cells: large clostridial glucosylating toxins, binary toxins and neurotoxins. The binary and large clostridial glucosylating toxins alter the actin cytoskeleton by enzymatically modifying the actin monomers and the regulatory proteins from the Rho family, respectively. Clostridial neurotoxins proteolyse key components of neuroexocytosis. Botulinum neurotoxins inhibit neurotransmission at neuromuscular junctions, whereas tetanus toxin targets the inhibitory interneurons of the CNS. The high potency of clostridial toxins results from their specific targets, which have an essential cellular function, and from the type of modification that they induce. In addition, clostridial toxins are useful pharmacological and biological tools.
Collapse
Affiliation(s)
- Michel R Popoff
- Institut Pasteur, Bactéries Anaérobies et Toxines, 75724 Paris cedex 15, France.
| | | |
Collapse
|
46
|
Odani JS, Blanchard PC, Adaska JM, Moeller RB, Uzal FA. Malignant Edema in Postpartum Dairy Cattle. J Vet Diagn Invest 2009; 21:920-4. [DOI: 10.1177/104063870902100631] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Five cases of postparturient vulvovaginitis and metritis in cattle caused by Clostridium septicum (malignant edema) are described in the current report. The diagnosis was established based on detection of C. septicum by culture and fluorescent antibody test. All animals were Holsteins, and 4 were primiparous (the parity of 1 animal was not reported). All animals developed clinical signs 1–3 days after calving, consisting of swelling of perineal and perivulvar areas, fever, and depression. Perineal, perivulvar, and perivaginal gelatinous and often hemorrhagic edema was consistently observed on gross examination. Longitudinal vulvar, vaginal, cervical, and uterine body tears, covered by fibrinous exudates, were also present. Microscopically, vulvar, vaginal, and uterine mucosae were multifocally necrotic and ulcerated. Large Gram-positive rods, some with subterminal spores, were present within the edematous subcutaneous and submucosal tissues. Clostridium septicum was demonstrated by culture and/or fluorescent antibody test in tissues of most animals. These cases of malignant edema were considered to be produced by C. septicum and predisposed by the trauma occurring during parturition.
Collapse
Affiliation(s)
- Jenee S. Odani
- California Animal Health and Food Safety Laboratory System, University of California, San Bernardino, CA
| | | | | | | | - Francisco A. Uzal
- California Animal Health and Food Safety Laboratory System, University of California, San Bernardino, CA
| |
Collapse
|
47
|
Lakhan SE, Sabharanjak S, De A. Endocytosis of glycosylphosphatidylinositol-anchored proteins. J Biomed Sci 2009; 16:93. [PMID: 19832981 PMCID: PMC2764642 DOI: 10.1186/1423-0127-16-93] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 10/15/2009] [Indexed: 12/12/2022] Open
Abstract
Glycosylphosphatidylinositol-anchored proteins (GPI-APs) represent an interesting amalgamation of the three basic kinds of cellular macromolecules viz. proteins, carbohydrates and lipids. An unusually hybrid moiety, the GPI-anchor is expressed in a diverse range of organisms from parasites to mammalian cells and serves to anchor a large number of functionally diverse proteins and has been the center of attention in scientific debate for some time now. Membrane organization of GPI-APs into laterally-organized cholesterol-sphingolipid ordered membrane domains or "rafts" and endocytosis of GPI-APs has been intensely debated. Inclusion into or exclusion from these membrane domains seems to be the critical factor in determining the endocytic mechanisms and intracellular destinations of GPI-APs. The intracellular signaling as well as endocytic trafficking of GPI-APs is critically dependent upon the cell surface organization of GPI-APs, and the associations with these lipid rafts play a vital role during these processes. The mechanism of endocytosis for GPI-APs may differ from other cellular endocytic pathways, such as those mediated by clathrin-coated pits (caveolae), and is necessary for unique biological functions. Numerous intracellular factors are involved in and regulate the endocytosis of GPI-APs, and these may be variably dependent on cell-type. The central focus of this article is to describe the significance of the endocytosis of GPI-APs on a multitude of biological processes, ranging from nutrient-uptake to more complex immune responses. Ultimately, a thorough elucidation of GPI-AP mediated signaling pathways and their regulatory elements will enhance our understanding of essential biological processes and benefit as components of disease intervention strategies.
Collapse
Affiliation(s)
- Shaheen E Lakhan
- Global Neuroscience Initiative Foundation, Los Angeles, CA, USA.
| | | | | |
Collapse
|
48
|
Knapp O, Maier E, Benz R, Geny B, Popoff MR. Identification of the channel-forming domain of Clostridium perfringens Epsilon-toxin (ETX). BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2584-93. [PMID: 19835840 DOI: 10.1016/j.bbamem.2009.09.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 09/17/2009] [Accepted: 09/29/2009] [Indexed: 10/20/2022]
Abstract
Epsilon-toxin (ETX) is a potent toxin produced by Clostridium perfringens strains B and D. The bacteria are important pathogens in domestic animals and cause edema mediated by ETX. This toxin acts most likely by heptamer formation and rapid permeabilization of target cell membranes for monovalent anions and cations followed by a later entry of calcium. In this study, we compared the primary structure of ETX with that of the channel-forming stretches of a variety of binding components of A-B-types of toxins such as Anthrax protective antigen (PA), C2II of C2-toxin and Ib of Iota-toxin and found a remarkable homology to amino acids 151-180 of ETX. Site-directed mutagenesis of amino acids within the putative channel-forming domain resulted in changes of cytotoxicity and effects on channel characteristics in lipid bilayer experiments including changes of selectivity and partial channel block by methanethiosulfonate (MTS) reagents and antibodies against His(6)-tags from the trans-side of the lipid bilayer membranes.
Collapse
Affiliation(s)
- Oliver Knapp
- Department of Biotechnology, Biocenter, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | | | | | | | | |
Collapse
|
49
|
Kitada S, Abe Y, Maeda T, Shimada H. Parasporin-2 requires GPI-anchored proteins for the efficient cytocidal action to human hepatoma cells. Toxicology 2009; 264:80-8. [DOI: 10.1016/j.tox.2009.07.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2009] [Accepted: 07/21/2009] [Indexed: 10/20/2022]
|
50
|
Castro-Gomes T, Almeida-Campos FR, Calzavara-Silva CE, da Silva RA, Frézard F, Horta MF. Membrane binding requirements for the cytolytic activity ofLeishmania amazonensisleishporin. FEBS Lett 2009; 583:3209-14. [DOI: 10.1016/j.febslet.2009.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 09/02/2009] [Accepted: 09/03/2009] [Indexed: 12/11/2022]
|