1
|
Solís KH, Romero-Ávila MT, Rincón-Heredia R, García-Sáinz JA. Lysophosphatidic Acid Receptor 3 (LPA3): Signaling and Phosphorylation Sites. Int J Mol Sci 2024; 25:6491. [PMID: 38928196 PMCID: PMC11203643 DOI: 10.3390/ijms25126491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/03/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
LPA3 receptors were expressed in TREx HEK 293 cells, and their signaling and phosphorylation were studied. The agonist, lysophosphatidic acid (LPA), increased intracellular calcium and ERK phosphorylation through pertussis toxin-insensitive processes. Phorbol myristate acetate, but not LPA, desensitizes LPA3-mediated calcium signaling, the agonists, and the phorbol ester-induced LPA3 internalization. Pitstop 2 (clathrin heavy chain inhibitor) markedly reduced LPA-induced receptor internalization; in contrast, phorbol ester-induced internalization was only delayed. LPA induced rapid β-arrestin-LPA3 receptor association. The agonist and the phorbol ester-induced marked LPA3 receptor phosphorylation, and phosphorylation sites were detected using mass spectrometry. Phosphorylated residues were detected in the intracellular loop 3 (S221, T224, S225, and S229) and in the carboxyl terminus (S321, S325, S331, T333, S335, Y337, and S343). Interestingly, phosphorylation sites are within sequences predicted to constitute β-arrestin binding sites. These data provide insight into LPA3 receptor signaling and regulation.
Collapse
Affiliation(s)
- K. Helivier Solís
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ap. Postal 70-600, Ciudad de México 04510, Mexico; (K.H.S.); (M.T.R.-Á.)
| | - M. Teresa Romero-Ávila
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ap. Postal 70-600, Ciudad de México 04510, Mexico; (K.H.S.); (M.T.R.-Á.)
| | - Ruth Rincón-Heredia
- Unidad de Imagenología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ap. Postal 70-600, Ciudad de México 04510, Mexico;
| | - J. Adolfo García-Sáinz
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ap. Postal 70-600, Ciudad de México 04510, Mexico; (K.H.S.); (M.T.R.-Á.)
| |
Collapse
|
2
|
Xue J, Deng J, Qin H, Yan S, Zhao Z, Qin L, Liu J, Wang H. The interaction of platelet-related factors with tumor cells promotes tumor metastasis. J Transl Med 2024; 22:371. [PMID: 38637802 PMCID: PMC11025228 DOI: 10.1186/s12967-024-05126-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024] Open
Abstract
Platelets not only participate in thrombosis and hemostasis but also interact with tumor cells and protect them from mechanical damage caused by hemodynamic shear stress and natural killer cell lysis, thereby promoting their colonization and metastasis to distant organs. Platelets can affect the tumor microenvironment via interactions between platelet-related factors and tumor cells. Metastasis is a key event in cancer-related death and is associated with platelet-related factors in lung, breast, and colorectal cancers. Although the factors that promote platelet expression vary slightly in terms of their type and mode of action, they all contribute to the overall process. Recognizing the correlation and mechanisms between these factors is crucial for studying the colonization of distant target organs and developing targeted therapies for these three types of tumors. This paper reviews studies on major platelet-related factors closely associated with metastasis in lung, breast, and colorectal cancers.
Collapse
Affiliation(s)
- Jie Xue
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, China
- Department of Blood Transfusion, The Central Hospital of Qingdao Jiaozhou, 99 Yunxi River South Road, Qingdao, 266300, Shandong, China
| | - Jianzhao Deng
- Clinical Laboratory, The Central Hospital of Qingdao Jiaozhou, 99 Yunxi River South Road, Qingdao, 266300, Shandong, China
| | - Hongwei Qin
- Department of Blood Transfusion, The Central Hospital of Qingdao Jiaozhou, 99 Yunxi River South Road, Qingdao, 266300, Shandong, China
| | - Songxia Yan
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, China
| | - Zhen Zhao
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, China
| | - Lifeng Qin
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, China
| | - Jiao Liu
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, China
| | - Haiyan Wang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, China.
| |
Collapse
|
3
|
Izume T, Kawahara R, Uwamizu A, Chen L, Yaginuma S, Omi J, Kawana H, Hou F, Sano FK, Tanaka T, Kobayashi K, Okamoto HH, Kise Y, Ohwada T, Aoki J, Shihoya W, Nureki O. Structural basis for lysophosphatidylserine recognition by GPR34. Nat Commun 2024; 15:902. [PMID: 38326347 PMCID: PMC10850092 DOI: 10.1038/s41467-024-45046-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 01/12/2024] [Indexed: 02/09/2024] Open
Abstract
GPR34 is a recently identified G-protein coupled receptor, which has an immunomodulatory role and recognizes lysophosphatidylserine (LysoPS) as a putative ligand. Here, we report cryo-electron microscopy structures of human GPR34-Gi complex bound with one of two ligands bound: either the LysoPS analogue S3E-LysoPS, or M1, a derivative of S3E-LysoPS in which oleic acid is substituted with a metabolically stable aromatic fatty acid surrogate. The ligand-binding pocket is laterally open toward the membrane, allowing lateral entry of lipidic agonists into the cavity. The amine and carboxylate groups of the serine moiety are recognized by the charged residue cluster. The acyl chain of S3E-LysoPS is bent and fits into the L-shaped hydrophobic pocket in TM4-5 gap, and the aromatic fatty acid surrogate of M1 fits more appropriately. Molecular dynamics simulations further account for the LysoPS-regioselectivity of GPR34. Thus, using a series of structural and physiological experiments, we provide evidence that chemically unstable 2-acyl LysoPS is the physiological ligand for GPR34. Overall, we anticipate the present structures will pave the way for development of novel anticancer drugs that specifically target GPR34.
Collapse
Affiliation(s)
- Tamaki Izume
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ryo Kawahara
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Akiharu Uwamizu
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Luying Chen
- Department of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shun Yaginuma
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Jumpei Omi
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroki Kawana
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Fengjue Hou
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Fumiya K Sano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tatsuki Tanaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kazuhiro Kobayashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroyuki H Okamoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yoshiaki Kise
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tomohiko Ohwada
- Department of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Wataru Shihoya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
4
|
Abdelwahid MS, Ohsawa K, Uwamizu A, Kano K, Aoki J, Doi T. Synthesis and Biological Evaluation of Lysophosphatidic Acid Analogues Using Conformational Restriction and Bioisosteric Replacement Strategies. ACS OMEGA 2023; 8:49278-49288. [PMID: 38162765 PMCID: PMC10753746 DOI: 10.1021/acsomega.3c07668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 01/03/2024]
Abstract
Lysophosphatidic acid (LPA) is a key player in many physiological and pathophysiological processes. The biological activities of LPA are mediated through interactions with-at least-six subtypes of G-protein-coupled receptors (GPCRs) named LPA1-6. Developing a pharmacological tool molecule that activates LPA subtype receptors selectively will allow a better understanding of their specific physiological roles. Here, we designed and synthesized conformationally restricted 25 1-oleoyl LPA analogues MZN-001 to MZN-025 by incorporating its glycerol linker into dihydropyran, tetrahydropyran, and pyrrolidine rings and variating the lipophilic chain. The agonistic activities of these compounds were evaluated using the TGFα shedding assay. Overall, the synthesized analogues exhibited significantly reduced agonistic activities toward LPA1, LPA2, and LPA6, while demonstrating potent activities toward LPA3, LPA4, and LPA5 compared to the parent LPA. Specifically, MZN-010 showed more than 10 times greater potency (EC50 = 4.9 nM) than the standard 1-oleoyl LPA (EC50 = 78 nM) toward LPA5 while exhibiting significantly lower activity on LPA1, LPA2, and LPA6 and comparable potency toward LPA3 and LPA4. Based on the MZN-010 scaffold, we synthesized additional analogues with improved selectivity and potency toward LPA5. Compound MZN-021, which contains a saturated lipophilic chain, exhibited 50 times more potent activity (EC50 = 1.2 nM) than the natural LPA against LPA5 with over a 45-fold higher selectivity when compared to those of other LPA receptors. Thus, MZN-021 was found to be a potent and selective LPA5 agonist. The findings of this study could contribute to broadening the current knowledge about the stereochemical and three-dimensional arrangement of LPA pharmacophore components inside LPA receptors and paving the way toward synthesizing other subtype-selective pharmacological probes.
Collapse
Affiliation(s)
- Mazin
A. S. Abdelwahid
- Graduate
School of Pharmaceutical Sciences, Tohoku
University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Kosuke Ohsawa
- Graduate
School of Pharmaceutical Sciences, Tohoku
University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Akiharu Uwamizu
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kuniyuki Kano
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Junken Aoki
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayuki Doi
- Graduate
School of Pharmaceutical Sciences, Tohoku
University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
5
|
Jiang S, Yang H, Li M. Emerging Roles of Lysophosphatidic Acid in Macrophages and Inflammatory Diseases. Int J Mol Sci 2023; 24:12524. [PMID: 37569902 PMCID: PMC10419859 DOI: 10.3390/ijms241512524] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Lysophosphatidic acid (LPA) is a bioactive phospholipid that regulates physiological and pathological processes in numerous cell biological functions, including cell migration, apoptosis, and proliferation. Macrophages are found in most human tissues and have multiple physiological and pathological functions. There is growing evidence that LPA signaling plays a significant role in the physiological function of macrophages and accelerates the development of diseases caused by macrophage dysfunction and inflammation, such as inflammation-related diseases, cancer, atherosclerosis, and fibrosis. In this review, we summarize the roles of LPA in macrophages, analyze numerous macrophage- and inflammation-associated diseases triggered by LPA, and discuss LPA-targeting therapeutic strategies.
Collapse
Affiliation(s)
- Shufan Jiang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China;
- Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Huili Yang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China;
| | - Mingqing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China;
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China
| |
Collapse
|
6
|
Yanagida K, Shimizu T. Lysophosphatidic acid, a simple phospholipid with myriad functions. Pharmacol Ther 2023; 246:108421. [PMID: 37080433 DOI: 10.1016/j.pharmthera.2023.108421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
Lysophosphatidic acid (LPA) is a simple phospholipid consisting of a phosphate group, glycerol moiety, and only one hydrocarbon chain. Despite its simple chemical structure, LPA plays an important role as an essential bioactive signaling molecule via its specific six G protein-coupled receptors, LPA1-6. Recent studies, especially those using genetic tools, have revealed diverse physiological and pathological roles of LPA and LPA receptors in almost every organ system. Furthermore, many studies are illuminating detailed mechanisms to orchestrate multiple LPA receptor signaling pathways and to facilitate their coordinated function. Importantly, these extensive "bench" works are now translated into the "bedside" as exemplified by approaches targeting LPA1 signaling to combat fibrotic diseases. In this review, we discuss the physiological and pathological roles of LPA signaling and their implications for clinical application by focusing on findings revealed by in vivo studies utilizing genetic tools targeting LPA receptors.
Collapse
Affiliation(s)
- Keisuke Yanagida
- Department of Lipid Life Science, National Center for Global Health and Medicine, Tokyo, Japan.
| | - Takao Shimizu
- Department of Lipid Life Science, National Center for Global Health and Medicine, Tokyo, Japan; Institute of Microbial Chemistry, Tokyo, Japan
| |
Collapse
|
7
|
Doutt SW, Longo JF, Carroll SL. LPAR1 and aberrantly expressed LPAR3 differentially promote the migration and proliferation of malignant peripheral nerve sheath tumor cells. Glia 2023; 71:742-757. [PMID: 36416236 PMCID: PMC9868101 DOI: 10.1002/glia.24308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/24/2022]
Abstract
Schwann cell-derived neoplasms known as malignant peripheral nerve sheath tumors (MPNSTs) are the most common malignancy and the leading cause of death in individuals with neurofibromatosis Type 1. Using genome-scale shRNA screens, we have previously found evidence suggesting that lysophosphatidic acid receptors (LPARs) are essential for MPNST proliferation and/or survival. Here, we examine the expression and mutational status of all six LPA receptors in MPNSTs, assess the role that individual LPA receptors play in MPNST physiology and examine their ability to activate key neurofibromin-regulated signaling cascades. We found that human Schwann cells express LPAR1 and LPAR6, while MPNST cells express predominantly LPAR1 and LPAR3. Whole exome sequencing of 16 MPNST cell lines showed no evidence of mutations in any LPAR genes or ENPP2, a gene encoding a major LPA biosynthetic enzyme. Oleoyl-LPA, an LPA variant with an unsaturated side chain, promoted MPNST cell proliferation and migration. LPAR1 knockdown ablated the promigratory effect of LPA, while LPAR3 knockdown decreased proliferation. Inhibition of R-Ras signaling with a doxycycline-inducible dominant negative (DN) R-Ras mutant, which inhibits both R-Ras and R-Ras2, blocked LPA's promigratory effect. In contrast, DN R-Ras did not affect migration induced by neuregulin-1β (NRG1β), suggesting that LPA and NRG1β promote MPNST migration via distinct pathways. LPA-induced migration was also inhibited by Y27632, an inhibitor of the ROCK1/2 kinases that mediate R-Ras effects in MPNSTs. Thus, LPAR1 and aberrantly expressed LPAR3 mediate distinct effects in MPNSTs. These receptors and the signaling pathways that they regulate are potentially useful therapeutic targets in MPNSTs.
Collapse
Affiliation(s)
- Shannon Weber Doutt
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
- The Medical Scientist Training Program, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Jody Fromm Longo
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Steven L Carroll
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
8
|
Szeremeta M, Samczuk P, Pietrowska K, Kowalczyk T, Przeslaw K, Sieminska J, Kretowski A, Niemcunowicz-Janica A, Ciborowski M. In Vitro Animal Model for Estimating the Time since Death with Attention to Early Postmortem Stage. Metabolites 2022; 13:metabo13010026. [PMID: 36676951 PMCID: PMC9861157 DOI: 10.3390/metabo13010026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Estimating the postmortem interval (PMI) has remained the subject of investigations in forensic medicine for many years. Every kind of death results in changes in metabolites in body tissues and fluids due to lack of oxygen, altered circulation, enzymatic reactions, cellular degradation, and cessation of anabolic production of metabolites. Metabolic changes may provide markers determining the time since death, which is challenging in current analytical and observation-based methods. The study includes metabolomics analysis of blood with the use of an animal model to determine the biochemical changes following death. LC-MS is used to fingerprint postmortem porcine blood. Metabolites, significantly changing in blood after death, are selected and identified using univariate statistics. Fifty-one significant metabolites are found to help estimate the time since death in the early postmortem stage. Hypoxanthine, lactic acid, histidine, and lysophosphatidic acids are found as the most promising markers in estimating an early postmortem stage. Selected lysophosphatidylcholines are also found as significantly increased in blood with postmortal time, but their practical utility as PMI indicators can be limited due to a relatively low increasing rate. The findings demonstrate the great potential of LC-MS-based metabolomics in determining the PMI due to sudden death and provide an experimental basis for applying this attitude in investigating various mechanisms of death. As we assume, our study is also one of the first in which the porcine animal model is used to establish PMI metabolomics biomarkers.
Collapse
Affiliation(s)
- Michal Szeremeta
- Department of Forensic Medicine, Medical University of Bialystok, 15-269 Bialystok, Poland
- Correspondence:
| | - Paulina Samczuk
- Metabolomics Laboratory, Clinical Research Center, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Karolina Pietrowska
- Metabolomics Laboratory, Clinical Research Center, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Tomasz Kowalczyk
- Metabolomics Laboratory, Clinical Research Center, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Katarzyna Przeslaw
- Department of Physical Chemistry, Medical University of Bialystok, 15-328 Bialystok, Poland
| | - Julia Sieminska
- Metabolomics Laboratory, Clinical Research Center, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Adam Kretowski
- Metabolomics Laboratory, Clinical Research Center, Medical University of Bialystok, 15-276 Bialystok, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
| | | | - Michal Ciborowski
- Metabolomics Laboratory, Clinical Research Center, Medical University of Bialystok, 15-276 Bialystok, Poland
| |
Collapse
|
9
|
Takagi Y, Nishikado S, Omi J, Aoki J. The Many Roles of Lysophospholipid Mediators and Japanese Contributions to This Field. Biol Pharm Bull 2022; 45:1008-1021. [DOI: 10.1248/bpb.b22-00304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yugo Takagi
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Shun Nishikado
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Jumpei Omi
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| |
Collapse
|
10
|
Tarannum N, Kumar D, Agrawal R, Verma Y. Selectively Imprinted β‐cyclodextrin Polymer for Colorimetric Assay of Lysophosphatidic Acid for Point of Care Detection of Ovarian Cancer. ChemistrySelect 2022. [DOI: 10.1002/slct.202202027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nazia Tarannum
- Department of Chemistry Chaudhary Charan Singh University Meerut 250004 India
| | - Deepak Kumar
- Department of Chemistry Chaudhary Charan Singh University Meerut 250004 India
| | - Ranu Agrawal
- Department of Applied Science SCRIET Chaudhary Charan Singh University Meerut 250004 India
| | - Yeshvandra Verma
- Department of Toxicology Chaudhary Charan Singh University Meerut 250004 India
| |
Collapse
|
11
|
Wang Y, Qi Z, Li Z, Bai S, Damirin A. LPAR2-mediated action promotes human renal cell carcinoma via MAPK/NF-κB signaling to regulate cytokine network. J Cancer Res Clin Oncol 2022; 149:2041-2055. [PMID: 35857125 DOI: 10.1007/s00432-022-04197-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/07/2022] [Indexed: 10/17/2022]
Abstract
PURPOSE Lysophosphatidic acid (LPA) exerts various physiological and pathological effects by activating its distinct G-protein-coupled LPA receptors. We demonstrated that LPA can increase the migration and proliferation of renal carcinoma cells. Meanwhile, LPAR1 and LPAR2 were preferentially expressed in renal cancer (RC) cell lines. So, the study aimed to determine the LPA receptor subtypes involved in LPA-induced actions and whether they could be used as a precision therapeutic target for renal cancer. METHODS Biological approaches combined with big data analysis were used to demonstrate the role of LPAR2 in the progression of renal cancer. RESULTS We found that the proliferation, clone formation, and migration in response to LPA were enhanced in LPAR2-overexpressing renal cancer cells, whereas, the actions were suppressed by LPAR2 antagonist in the cells. LPAR2 has also shown clinical diagnostic and prognostic value in renal carcinoma based on bioinformatics analysis and clinical tissue microarray analysis. In vivo study shown that tumor growth and metastasis were significantly increased in the LPAR2-overexpressing cells-derived solid tumors. LPA stimulated MAPK and NF-κB activation, and LPA-induced actions were inhibited by MAPKs and NF-κB inhibitors, respectively. Subsequently, the transcriptomic results revealed that LPAR2 strongly affected the cytokines production, and the increased IL6, CXCL8, and TNF were confirmed again using Kit assay. CONCLUSIONS We have identified that LPAR2 is critical for LPA-promoted renal cancer progression, and the actions mainly dependent the MAPK and NF-κB activation mechanism. Then, the expression of inflammatory factors activated by NF-κB is also suspected to be involved in LPAR2-mediated carcinogenesis. Thus, LPAR2 may be a promising therapeutic target for renal cancer.
Collapse
Affiliation(s)
- Yuewu Wang
- School of Life Sciences, Inner Mongolia University, Hohhot, 010110, Inner Mongolia, China.,College of Pharmacy, Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia, China
| | - Zhimin Qi
- School of Life Sciences, Inner Mongolia University, Hohhot, 010110, Inner Mongolia, China
| | - Ze Li
- School of Life Sciences, Inner Mongolia University, Hohhot, 010110, Inner Mongolia, China
| | - Shuyu Bai
- School of Life Sciences, Inner Mongolia University, Hohhot, 010110, Inner Mongolia, China
| | - Alatangaole Damirin
- School of Life Sciences, Inner Mongolia University, Hohhot, 010110, Inner Mongolia, China.
| |
Collapse
|
12
|
Effects of lysophosphatidic acid on sling and clasp fibers of the human lower esophageal sphincter. TURKISH JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY 2022; 30:404-409. [PMID: 36303683 PMCID: PMC9580277 DOI: 10.5606/tgkdc.dergisi.2022.22084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/05/2021] [Indexed: 11/21/2022]
Abstract
Background
This study aims to explore the role of lysophosphatidic acid receptors in the regulation mechanisms of contraction and relaxation of human lower esophageal sphincter.
Methods
Between July 2015 and March 2016, muscle strips were collected from a total of 30 patients (19 males, 11 females; mean age: 62±9.9 years; range, 52 to 68 years) who underwent an esophagectomy for mid-third esophageal carcinomas. The specimens were maintained in oxygenated Krebs solution. Muscle tension measurement technique in vitro was used to examine the effects of non-selective lysophosphatidic acid receptors agonists and antagonists, as well as selective lysophosphatidic acid receptors agonists on the clasp and sling fibers of human lower esophageal sphincter.
Results
The non-selective dopamine receptor agonist lysophosphatidic acid induced the contraction of the clasp and sling fibers of the human lower esophageal sphincter. The response induced by nonselective lysophosphatidic acid receptor agonist was inhibited completely by non-selective lysophosphatidic acid receptor antagonist. The selective lysophosphatidic acid 1 and 2 receptor agonist and the selective lysophosphatidic acid 3 receptor agonist induced a concentration-dependent contractile response of the clasp and sling fibers of the human lower esophageal sphincter. There was no significant difference in contraction rates between the clasp and sling fibers (p>0.05).
Conclusion
This study indicates that lysophosphatidic acid regulates the lower esophageal sphincter is through its receptor; the lysophosphatidic acid receptors may be involved in the contractile response of the human lower esophageal sphincter.
Collapse
|
13
|
Current Knowledge on Mammalian Phospholipase A1, Brief History, Structures, Biochemical and Pathophysiological Roles. Molecules 2022; 27:molecules27082487. [PMID: 35458682 PMCID: PMC9031518 DOI: 10.3390/molecules27082487] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/29/2022] Open
Abstract
Phospholipase A1 (PLA1) is an enzyme that cleaves an ester bond at the sn-1 position of glycerophospholipids, producing a free fatty acid and a lysophospholipid. PLA1 activities have been detected both extracellularly and intracellularly, which are well conserved in higher eukaryotes, including fish and mammals. All extracellular PLA1s belong to the lipase family. In addition to PLA1 activity, most mammalian extracellular PLA1s exhibit lipase activity to hydrolyze triacylglycerol, cleaving the fatty acid and contributing to its absorption into the intestinal tract and tissues. Some extracellular PLA1s exhibit PLA1 activities specific to phosphatidic acid (PA) or phosphatidylserine (PS) and serve to produce lysophospholipid mediators such as lysophosphatidic acid (LPA) and lysophosphatidylserine (LysoPS). A high level of PLA1 activity has been detected in the cytosol fractions, where PA-PLA1/DDHD1/iPLA1 was responsible for the activity. Many homologs of PA-PLA1 and PLA2 have been shown to exhibit PLA1 activity. Although much has been learned about the pathophysiological roles of PLA1 molecules through studies of knockout mice and human genetic diseases, many questions regarding their biochemical properties, including their genuine in vivo substrate, remain elusive.
Collapse
|
14
|
Abstract
Lysophospholipids, exemplified by lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P), are produced by the metabolism and perturbation of biological membranes. Both molecules are established extracellular lipid mediators that signal via specific G protein-coupled receptors in vertebrates. This widespread signaling axis regulates the development, physiological functions, and pathological processes of all organ systems. Indeed, recent research into LPA and S1P has revealed their important roles in cellular stress signaling, inflammation, resolution, and host defense responses. In this review, we focus on how LPA regulates fibrosis, neuropathic pain, abnormal angiogenesis, endometriosis, and disorders of neuroectodermal development such as hydrocephalus and alopecia. In addition, we discuss how S1P controls collective behavior, apoptotic cell clearance, and immunosurveillance of cancers. Advances in lysophospholipid research have led to new therapeutics in autoimmune diseases, with many more in earlier stages of development for a wide variety of diseases, such as fibrotic disorders, vascular diseases, and cancer.
Collapse
Affiliation(s)
- Kuniyuki Kano
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; , .,AMED-LEAP, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; , .,AMED-LEAP, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts 02115, USA; .,Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
15
|
Kanda Y, Okazaki T, Katakai T. Motility Dynamics of T Cells in Tumor-Draining Lymph Nodes: A Rational Indicator of Antitumor Response and Immune Checkpoint Blockade. Cancers (Basel) 2021; 13:4616. [PMID: 34572844 PMCID: PMC8465463 DOI: 10.3390/cancers13184616] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 01/22/2023] Open
Abstract
The migration status of T cells within the densely packed tissue environment of lymph nodes reflects the ongoing activation state of adaptive immune responses. Upon encountering antigen-presenting dendritic cells, actively migrating T cells that are specific to cognate antigens slow down and are eventually arrested on dendritic cells to form immunological synapses. This dynamic transition of T cell motility is a fundamental strategy for the efficient scanning of antigens, followed by obtaining the adequate activation signals. After receiving antigenic stimuli, T cells begin to proliferate, and the expression of immunoregulatory receptors (such as CTLA-4 and PD-1) is induced on their surface. Recent findings have revealed that these 'immune checkpoint' molecules control the activation as well as motility of T cells in various situations. Therefore, the outcome of tumor immunotherapy using checkpoint inhibitors is assumed to be closely related to the alteration of T cell motility, particularly in tumor-draining lymph nodes (TDLNs). In this review, we discuss the migration dynamics of T cells during their activation in TDLNs, and the roles of checkpoint molecules in T cell motility, to provide some insight into the effect of tumor immunotherapy via checkpoint blockade, in terms of T cell dynamics and the importance of TDLNs.
Collapse
Affiliation(s)
- Yasuhiro Kanda
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 950-8510, Japan;
| | - Taku Okazaki
- Laboratory of Molecular Immunology, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan;
| | - Tomoya Katakai
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 950-8510, Japan;
| |
Collapse
|
16
|
Lysophosphatidic Acid Signaling in Cancer Cells: What Makes LPA So Special? Cells 2021; 10:cells10082059. [PMID: 34440828 PMCID: PMC8394178 DOI: 10.3390/cells10082059] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/13/2022] Open
Abstract
Lysophosphatidic acid (LPA) refers to a family of simple phospholipids that act as ligands for G protein-coupled receptors. While LPA exerts effects throughout the body in normal physiological circumstances, its pathological role in cancer is of great interest from a therapeutic viewpoint. The numerous LPA receptors (LPARs) are coupled to a variety of G proteins, and more than one LPAR is typically expressed on any given cell. While the individual receptors signal through conventional GPCR pathways, LPA is particularly efficacious in stimulating cancer cell proliferation and migration. This review addresses the mechanistic aspects underlying these pro-tumorigenic effects. We provide examples of LPA signaling responses in various types of cancers, with an emphasis on those where roles have been identified for specific LPARs. While providing an overview of LPAR signaling, these examples also reveal gaps in our knowledge regarding the mechanisms of LPA action at the receptor level. The current understanding of the LPAR structure and the roles of LPAR interactions with other receptors are discussed. Overall, LPARs provide insight into the potential molecular mechanisms that underlie the ability of individual GPCRs (or combinations of GPCRs) to elicit a unique spectrum of responses from their agonist ligands. Further knowledge of these mechanisms will inform drug discovery, since GPCRs are promising therapeutic targets for cancer.
Collapse
|
17
|
Solís KH, Romero-Ávila MT, Guzmán-Silva A, García-Sáinz JA. The LPA 3 Receptor: Regulation and Activation of Signaling Pathways. Int J Mol Sci 2021; 22:ijms22136704. [PMID: 34201414 PMCID: PMC8269014 DOI: 10.3390/ijms22136704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/08/2021] [Accepted: 06/12/2021] [Indexed: 12/17/2022] Open
Abstract
The lysophosphatidic acid 3 receptor (LPA3) participates in different physiological actions and in the pathogenesis of many diseases through the activation of different signal pathways. Knowledge of the regulation of the function of the LPA3 receptor is a crucial element for defining its roles in health and disease. This review describes what is known about the signaling pathways activated in terms of its various actions. Next, we review knowledge on the structure of the LPA3 receptor, the domains found, and the roles that the latter might play in ligand recognition, signaling, and cellular localization. Currently, there is some information on the action of LPA3 in different cells and whole organisms, but very little is known about the regulation of its function. Areas in which there is a gap in our knowledge are indicated in order to further stimulate experimental work on this receptor and on other members of the LPA receptor family. We are convinced that knowledge on how this receptor is activated, the signaling pathways employed and how the receptor internalization and desensitization are controlled will help design new therapeutic interventions for treating diseases in which the LPA3 receptor is implicated.
Collapse
|
18
|
Bang G, Ghil S. BRET analysis reveals interaction between the lysophosphatidic acid receptor LPA2 and the lysophosphatidylinositol receptor GPR55 in live cells. FEBS Lett 2021; 595:1806-1818. [PMID: 33959968 DOI: 10.1002/1873-3468.14102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/12/2021] [Accepted: 04/26/2021] [Indexed: 01/04/2023]
Abstract
Lysophosphatidic acid (LPA) and lysophosphatidylinositol bind to the G protein-coupled receptors (GPCRs) LPA and GPR55, respectively. LPA2 , a type 2 LPA receptor, and GPR55 are highly expressed in colon cancer and involved in cancer progression. However, crosstalk between the two receptors and potential effects on cellular physiology are not fully understood. Here, using BRET analysis, we found that LPA2 and GPR55 interact in live cells. In the presence of both receptors, LPA2 and/or GPR55 activation facilitated co-internalization, and activation of GPR55, uncoupled with Gαi , induced reduction of intracellular cAMP. Notably, co-activation of receptors synergistically triggered further decline in the cAMP level, promoted cell proliferation, and increased the expression of cancer progression-related genes, suggesting that physical and functional crosstalk between LPA2 and GRR55 is involved in cancer progression.
Collapse
Affiliation(s)
- Gwantae Bang
- Department of Life Science, Kyonggi University, Suwon, Korea
| | - Sungho Ghil
- Department of Life Science, Kyonggi University, Suwon, Korea
| |
Collapse
|
19
|
Birgbauer E. Lysophosphatidic Acid Signalling in Nervous System Development and Function. Neuromolecular Med 2021; 23:68-85. [PMID: 33151452 PMCID: PMC11420905 DOI: 10.1007/s12017-020-08630-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023]
Abstract
One class of molecules that are now coming to be recognized as essential for our understanding of the nervous system are the lysophospholipids. One of the major signaling lysophospholipids is lysophosphatidic acid, also known as LPA. LPA activates a variety of G protein-coupled receptors (GPCRs) leading to a multitude of physiological responses. In this review, I describe our current understanding of the role of LPA and LPA receptor signaling in the development and function of the nervous system, especially the central nervous system (CNS). In addition, I highlight how aberrant LPA receptor signaling may underlie neuropathological conditions, with important clinical application.
Collapse
Affiliation(s)
- Eric Birgbauer
- Department of Biology, Winthrop University, Rock Hill, SC, USA.
| |
Collapse
|
20
|
Chen J, Li H, Xu W, Guo X. Evaluation of serum ATX and LPA as potential diagnostic biomarkers in patients with pancreatic cancer. BMC Gastroenterol 2021; 21:58. [PMID: 33568105 PMCID: PMC7877052 DOI: 10.1186/s12876-021-01635-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 02/02/2021] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Pancreatic cancer (PC) is a devastating disease that has a poor prognosis and a total 5-year survival rate of around 5%. The poor prognosis of PC is due in part to a lack of suitable biomarkers that can allow early diagnosis. The lysophospholipase autotaxin (ATX) and its product lysophosphatidic acid (LPA) play an essential role in disease progression in PC patients and are associated with increased morbidity in several types of cancer. In this study, we evaluated both the potential role of serum LPA and ATX as diagnostic markers in PC and their prognostic value for PC either alone or in combination with CA19-9. METHODS ATX, LPA and CA19-9 levels were evaluated using ELISA of serum obtained from PC patients (n = 114) healthy volunteers (HVs: n = 120) and patients with benign pancreatic diseases (BPDs: n = 94). RESULTS Serum levels of ATX, LPA and CA19-9 in PC patients were substantially higher than that for BPD patients or HVs (p < 0.001). The sensitivity of LPA in early phase PC was 91.74% and the specificity of ATX was 80%. The levels of ATX, LPA and CA19-9 were all substantially higher for early stage PC patients compared to levels in serum from BPD patients and HVs. The diagnostic efficacy of CA19-9 for PC was significantly enhanced by the addition of ATX and LPA (p = 0.0012). CONCLUSION Measurement of LPA and ATX levels together with CA19-9 levels can be used for early detection of PC and diagnosis of PC in general.
Collapse
Affiliation(s)
- Jiang Chen
- Department of Gastroenterology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110840, Liaoning Province, China
| | - Hongyu Li
- Department of Gastroenterology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110840, Liaoning Province, China
| | - Wenda Xu
- Department of Gastroenterology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110840, Liaoning Province, China
| | - Xiaozhong Guo
- Department of Gastroenterology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110840, Liaoning Province, China.
| |
Collapse
|
21
|
Geraldo LHM, Spohr TCLDS, Amaral RFD, Fonseca ACCD, Garcia C, Mendes FDA, Freitas C, dosSantos MF, Lima FRS. Role of lysophosphatidic acid and its receptors in health and disease: novel therapeutic strategies. Signal Transduct Target Ther 2021; 6:45. [PMID: 33526777 PMCID: PMC7851145 DOI: 10.1038/s41392-020-00367-5] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Lysophosphatidic acid (LPA) is an abundant bioactive phospholipid, with multiple functions both in development and in pathological conditions. Here, we review the literature about the differential signaling of LPA through its specific receptors, which makes this lipid a versatile signaling molecule. This differential signaling is important for understanding how this molecule can have such diverse effects during central nervous system development and angiogenesis; and also, how it can act as a powerful mediator of pathological conditions, such as neuropathic pain, neurodegenerative diseases, and cancer progression. Ultimately, we review the preclinical and clinical uses of Autotaxin, LPA, and its receptors as therapeutic targets, approaching the most recent data of promising molecules modulating both LPA production and signaling. This review aims to summarize the most update knowledge about the mechanisms of LPA production and signaling in order to understand its biological functions in the central nervous system both in health and disease.
Collapse
Affiliation(s)
- Luiz Henrique Medeiros Geraldo
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Université de Paris, PARCC, INSERM, F-75015, Paris, France
| | | | | | | | - Celina Garcia
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio de Almeida Mendes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Catarina Freitas
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos Fabio dosSantos
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flavia Regina Souza Lima
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
22
|
Pathogenic mechanisms of lipid mediator lysophosphatidic acid in chronic pain. Prog Lipid Res 2020; 81:101079. [PMID: 33259854 DOI: 10.1016/j.plipres.2020.101079] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
A number of membrane lipid-derived mediators play pivotal roles in the initiation, maintenance, and regulation of various types of acute and chronic pain. Acute pain, comprising nociceptive and inflammatory pain warns us about the presence of damage or harmful stimuli. However, it can be efficiently reversed by opioid analgesics and anti-inflammatory drugs. Prostaglandin E2 and I2, the representative lipid mediators, are well-known causes of acute pain. However, some lipid mediators such as lipoxins, resolvins or endocannabinoids suppress acute pain. Various types of peripheral and central neuropathic pain (NeuP) as well as fibromyalgia (FM) are representatives of chronic pain and refractory owing to abnormal pain processing distinct from acute pain. Accumulating evidence demonstrated that lipid mediators represented by lysophosphatidic acid (LPA) are involved in the initiation and maintenance of both NeuP and FM in experimental animal models. The LPAR1-mediated peripheral mechanisms including dorsal root demyelination, Cavα2δ1 expression in dorsal root ganglion, and LPAR3-mediated amplification of central LPA production via glial cells are involved in the series of molecular mechanisms underlying NeuP. This review also discusses the involvement of lipid mediators in emerging research directives, including itch-sensing, sexual dimorphism, and the peripheral immune system.
Collapse
|
23
|
Ahmad S, Orellana A, Kohler I, Frölich L, de Rojas I, Gil S, Boada M, Hernández I, Hausner L, Bakker MHM, Cabrera-Socorro A, Amin N, Ramírez A, Ruiz A, Hankemeier T, Van Duijn CM. Association of lysophosphatidic acids with cerebrospinal fluid biomarkers and progression to Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2020; 12:124. [PMID: 33008436 PMCID: PMC7532619 DOI: 10.1186/s13195-020-00680-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/09/2020] [Indexed: 01/15/2023]
Abstract
Background Lysophosphatidic acids (LPAs) are bioactive signaling phospholipids that have been implicated in Alzheimer’s disease (AD). It is largely unknown whether LPAs are associated with AD pathology and progression from mild cognitive impairment (MCI) to AD. Methods The current study was performed on cerebrospinal fluid (CSF) and plasma samples of 182 MCI patients from two independent cohorts. We profiled LPA-derived metabolites using liquid chromatography-mass spectrometry. We evaluated the association of LPAs with CSF biomarkers of AD, Aβ-42, p-tau, and total tau levels overall and stratified by APOE genotype and with MCI to AD progression. Results Five LPAs (C16:0, C16:1, C22:4, C22:6, and isomer-LPA C22:5) showed significant positive association with CSF biomarkers of AD, Aβ-42, p-tau, and total tau, while LPA C14:0 and C20:1 associated only with Aβ-42 and alkyl-LPA C18:1, and LPA C20:1 associated with tau pathology biomarkers. Association of cyclic-LPA C16:0 and two LPAs (C20:4, C22:4) with Aβ-42 levels was found only in APOE ε4 carriers. Furthermore, LPA C16:0 and C16:1 also showed association with MCI to AD dementia progression, but results did not replicate in an independent cohort. Conclusions Our findings provide evidence that LPAs may contribute to early AD pathogenesis. Future studies are needed to determine whether LPAs play a role in upstream of AD pathology or are downstream markers of neurodegeneration.
Collapse
Affiliation(s)
- Shahzad Ahmad
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, The Netherlands.
| | - Adelina Orellana
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències, Aplicades. Universitat Internacional de Catalunya, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Isabelle Kohler
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Lutz Frölich
- Department of Geriatric Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159, Mannheim, Germany
| | - Itziar de Rojas
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències, Aplicades. Universitat Internacional de Catalunya, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Silvia Gil
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències, Aplicades. Universitat Internacional de Catalunya, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Mercè Boada
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències, Aplicades. Universitat Internacional de Catalunya, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel Hernández
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències, Aplicades. Universitat Internacional de Catalunya, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Lucrezia Hausner
- Department of Geriatric Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159, Mannheim, Germany.,Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Margot H M Bakker
- Discovery Research, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061, Ludwigshafen, Germany
| | | | - Najaf Amin
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Alfredo Ramírez
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany.,Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, Cologne, Germany
| | - Agustín Ruiz
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències, Aplicades. Universitat Internacional de Catalunya, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Thomas Hankemeier
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, The Netherlands. .,Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| | - Cornelia M Van Duijn
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, The Netherlands. .,Nuffield Department of Population Health, Oxford University, Oxford, UK.
| |
Collapse
|
24
|
Mizuno H, Kihara Y. Druggable Lipid GPCRs: Past, Present, and Prospects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1274:223-258. [PMID: 32894513 DOI: 10.1007/978-3-030-50621-6_10] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
G protein-coupled receptors (GPCRs) have seven transmembrane spanning domains and comprise the largest superfamily with ~800 receptors in humans. GPCRs are attractive targets for drug discovery because they transduce intracellular signaling in response to endogenous ligands via heterotrimeric G proteins or arrestins, resulting in a wide variety of physiological and pathophysiological responses. The endogenous ligands for GPCRs are highly chemically diverse and include ions, biogenic amines, nucleotides, peptides, and lipids. In this review, we follow the KonMari method to better understand druggable lipid GPCRs. First, we have a comprehensive tidying up of lipid GPCRs including receptors for prostanoids, leukotrienes, specialized pro-resolving mediators (SPMs), lysophospholipids, sphingosine 1-phosphate (S1P), cannabinoids, platelet-activating factor (PAF), free fatty acids (FFAs), and sterols. This tidying up consolidates 46 lipid GPCRs and declutters several perplexing lipid GPCRs. Then, we further tidy up the lipid GPCR-directed drugs from the literature and databases, which identified 24 clinical drugs targeting 16 unique lipid GPCRs available in the market and 44 drugs under evaluation in more than 100 clinical trials as of 2019. Finally, we introduce drug designs for GPCRs that spark joy, such as positive or negative allosteric modulators (PAM or NAM), biased agonism, functional antagonism like fingolimod, and monoclonal antibodies (MAbs). These strategic drug designs may increase the efficacy and specificity of drugs and reduce side effects. Technological advances will help to discover more endogenous lipid ligands from the vast number of remaining orphan GPCRs and will also lead to the development novel lipid GPCR drugs to treat various diseases.
Collapse
Affiliation(s)
| | - Yasuyuki Kihara
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
25
|
Lee D, Kim YH, Kim JH. The Role of Lysophosphatidic Acid in Adult Stem Cells. Int J Stem Cells 2020; 13:182-191. [PMID: 32587135 PMCID: PMC7378901 DOI: 10.15283/ijsc20035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/24/2020] [Accepted: 05/21/2020] [Indexed: 01/06/2023] Open
Abstract
Stem cells are undifferentiated multipotent precursor cells that are capable both of perpetuating themselves as stem cells (self-renewal) and of undergoing differentiation into one or more specialized types of cells. And these stem cells have been reported to reside within distinct anatomic locations termed “niches”. The long-term goals of stem cell biology range from an understanding of cell-lineage determination and tissue organization to cellular therapeutics for degenerative diseases. Stem cells maintain tissue function throughout an organism’s lifespan by replacing differentiated cells. To perform this function, stem cells provide a unique combination of multilineage developmental potential and the capacity to undergo self-renewing divisions. The loss of self-renewal capacity in stem cells underlies certain degenerative diseases and the aging process. This self-renewal regulation must balance the regenerative needs of tissues that persist throughout life. Recent evidence suggests lysophosphatidic acid (LPA) signaling pathway plays an important role in the regulation of a variety of stem cells. In this review, we summarize the evidence linking between LPA and stem cell regulation. The LPA-induced signaling pathway regulates the proliferation and survival of stem cells and progenitors, and thus are likely to play a role in the maintenance of stem cell population in the body. This lipid mediator regulatory system can be a novel potential therapeutics for stem cell maintenance.
Collapse
Affiliation(s)
- Dongjun Lee
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan, Korea
| | - Yun Hak Kim
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, Korea.,Department of Biomedical Informatics, Pusan National University School of Medicine, Yangsan, Korea
| | - Jae Ho Kim
- Department of Physiology, Pusan National University School of Medicine, Yangsan, Korea
| |
Collapse
|
26
|
Ray M, Nagai K, Kihara Y, Kussrow A, Kammer MN, Frantz A, Bornhop DJ, Chun J. Unlabeled lysophosphatidic acid receptor binding in free solution as determined by a compensated interferometric reader. J Lipid Res 2020; 61:1244-1251. [PMID: 32513900 PMCID: PMC7397748 DOI: 10.1194/jlr.d120000880] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/01/2020] [Indexed: 12/11/2022] Open
Abstract
Native interactions between lysophospholipids (LPs) and their cognate LP receptors are difficult to measure because of lipophilicity and/or the adhesive properties of lipids, which contribute to high levels of nonspecific binding in cell membrane preparations. Here, we report development of a free-solution assay (FSA) where label-free LPs bind to their cognate G protein-coupled receptors (GPCRs), combined with a recently reported compensated interferometric reader (CIR) to quantify native binding interactions between receptors and ligands. As a test case, the binding parameters between lysophosphatidic acid (LPA) receptor 1 (LPA1; one of six cognate LPA GPCRs) and LPA were determined. FSA-CIR detected specific binding through the simultaneous real-time comparison of bound versus unbound species by measuring the change in the solution dipole moment produced by binding-induced conformational and/or hydration changes. FSA-CIR identified KD values for chemically distinct LPA species binding to human LPA1 and required only a few nanograms of protein: 1-oleoyl (18:1; KD = 2.08 ± 1.32 nM), 1-linoleoyl (18:2; KD = 2.83 ± 1.64 nM), 1-arachidonoyl (20:4; KD = 2.59 ± 0.481 nM), and 1-palmitoyl (16:0; KD = 1.69 ± 0.1 nM) LPA. These KD values compared favorably to those obtained using the previous generation back-scattering interferometry system, a chip-based technique with low-throughput and temperature sensitivity. In conclusion, FSA-CIR offers a new increased-throughput approach to assess quantitatively label-free lipid ligand-receptor binding, including nonactivating antagonist binding, under near-native conditions.
Collapse
Affiliation(s)
- Manisha Ray
- Degenerative Disease Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Kazufumi Nagai
- Degenerative Disease Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Yasuyuki Kihara
- Degenerative Disease Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Amanda Kussrow
- Department of Chemistry and Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, TN 37235
| | - Michael N Kammer
- Department of Chemistry and Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, TN 37235
| | - Aaron Frantz
- Degenerative Disease Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037.,Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA 92037
| | - Darryl J Bornhop
- Department of Chemistry and Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, TN 37235
| | - Jerold Chun
- Degenerative Disease Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| |
Collapse
|
27
|
Chun J, Kihara Y, Jonnalagadda D, Blaho VA. Fingolimod: Lessons Learned and New Opportunities for Treating Multiple Sclerosis and Other Disorders. Annu Rev Pharmacol Toxicol 2020; 59:149-170. [PMID: 30625282 DOI: 10.1146/annurev-pharmtox-010818-021358] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fingolimod (FTY720, Gilenya) was the first US Food and Drug Administration-approved oral therapy for relapsing forms of multiple sclerosis (MS). Research on modified fungal metabolites converged with basic science studies that had identified lysophospholipid (LP) sphingosine 1-phosphate (S1P) receptors, providing mechanistic insights on fingolimod while validating LP receptors as drug targets. Mechanism of action (MOA) studies identified receptor-mediated processes involving the immune system and the central nervous system (CNS). These dual actions represent a more general theme for S1P and likely other LP receptor modulators. Fingolimod's direct CNS activities likely contribute to its efficacy in MS, with particular relevance to treating progressive disease stages and forms that involve neurodegeneration. The evolving understanding of fingolimod's MOA has provided strategies for developing next-generation compounds with superior attributes, suggesting new ways to target S1P as well as other LP receptor modulators for novel therapeutics in the CNS and other organ systems.
Collapse
Affiliation(s)
- Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, USA;
| | - Yasuyuki Kihara
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, USA;
| | - Deepa Jonnalagadda
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, USA;
| | - Victoria A Blaho
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, USA;
| |
Collapse
|
28
|
A Novel Function of the Lysophosphatidic Acid Receptor 3 (LPAR3) Gene in Zebrafish on Modulating Anxiety, Circadian Rhythm Locomotor Activity, and Short-Term Memory. Int J Mol Sci 2020; 21:ijms21082837. [PMID: 32325720 PMCID: PMC7215700 DOI: 10.3390/ijms21082837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/26/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a small lysophospholipid molecule that activates multiple cellular functions through pathways with G-protein-coupled receptors. So far, six LPA receptors (LPAR1 to LPAR6) have been discovered and each one of them can connect to the downstream cell message-transmitting network. A previous study demonstrated that LPA receptors found in blood-producing stem cells can enhance erythropoietic processes through the activation of LPAR3. In the current study, newly discovered functions of LPAR3 were identified through extensive behavioral tests in lpar3 knockout (KO) zebrafish. It was found that the adult lpar3 KO zebrafish display an abnormal movement orientation and altered exploratory behavior compared to that of the control group in the three-dimensional locomotor and novel tank tests, respectively. Furthermore, consistent with those results, in the circadian rhythm locomotor activity test, the lpar3 KO zebrafish showed a lower level of angular velocity and average speed during the light cycles, indicating an hyperactivity-like behavior. In addition, the mutant fish also exhibited considerably higher locomotor activity during the dark cycle. Supporting those findings, this phenomenon was also displayed in the lpar3 KO zebrafish larvae. Furthermore, several important behavior alterations were also observed in the adult lpar3 KO fish, including a lower degree of aggression, less interest in conspecific social interaction, and looser shoal formation. However, there was no significant difference regarding the predator avoidance behavior between the mutant and the control fish. In addition, lpar3 KO zebrafish displayed memory deficiency in the passive avoidance test. These in vivo results support for the first time that the lpar3 gene plays a novel role in modulating behaviors of anxiety, aggression, social interaction, circadian rhythm locomotor activity, and memory retention in zebrafish.
Collapse
|
29
|
Xiang H, Lu Y, Shao M, Wu T. Lysophosphatidic Acid Receptors: Biochemical and Clinical Implications in Different Diseases. J Cancer 2020; 11:3519-3535. [PMID: 32284748 PMCID: PMC7150451 DOI: 10.7150/jca.41841] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/25/2020] [Indexed: 12/21/2022] Open
Abstract
Lysophosphatidic acid (LPA, 1-acyl-2-hemolytic-sn-glycerol-3-phosphate) extracted from membrane phospholipid is a kind of simple bioactive glycophospholipid, which has many biological functions such as stimulating cell multiplication, cytoskeleton recombination, cell survival, drug-fast, synthesis of DNA and ion transport. Current studies have shown that six G-coupled protein receptors (LPAR1-6) can be activated by LPA. They stimulate a variety of signal transduction pathways through heterotrimeric G-proteins (such as Gα12/13, Gαq/11, Gαi/o and GαS). LPA and its receptors play vital roles in cancers, nervous system diseases, cardiovascular diseases, liver diseases, metabolic diseases, etc. In this article, we discussed the structure of LPA receptors and elucidated their functions in various diseases, in order to better understand them and point out new therapeutic schemes for them.
Collapse
Affiliation(s)
- Hongjiao Xiang
- Center of Chinese Medical Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yifei Lu
- Center of Chinese Medical Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mingmei Shao
- Center of Chinese Medical Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tao Wu
- Center of Chinese Medical Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
30
|
Yanagida K, Valentine WJ. Druggable Lysophospholipid Signaling Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1274:137-176. [DOI: 10.1007/978-3-030-50621-6_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Zhou Y, Little PJ, Ta HT, Xu S, Kamato D. Lysophosphatidic acid and its receptors: pharmacology and therapeutic potential in atherosclerosis and vascular disease. Pharmacol Ther 2019; 204:107404. [DOI: 10.1016/j.pharmthera.2019.107404] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023]
|
32
|
Xu Y. Targeting Lysophosphatidic Acid in Cancer: The Issues in Moving from Bench to Bedside. Cancers (Basel) 2019; 11:E1523. [PMID: 31658655 PMCID: PMC6826372 DOI: 10.3390/cancers11101523] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/02/2019] [Accepted: 10/08/2019] [Indexed: 12/16/2022] Open
Abstract
Since the clear demonstration of lysophosphatidic acid (LPA)'s pathological roles in cancer in the mid-1990s, more than 1000 papers relating LPA to various types of cancer were published. Through these studies, LPA was established as a target for cancer. Although LPA-related inhibitors entered clinical trials for fibrosis, the concept of targeting LPA is yet to be moved to clinical cancer treatment. The major challenges that we are facing in moving LPA application from bench to bedside include the intrinsic and complicated metabolic, functional, and signaling properties of LPA, as well as technical issues, which are discussed in this review. Potential strategies and perspectives to improve the translational progress are suggested. Despite these challenges, we are optimistic that LPA blockage, particularly in combination with other agents, is on the horizon to be incorporated into clinical applications.
Collapse
Affiliation(s)
- Yan Xu
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, 950 W. Walnut Street R2-E380, Indianapolis, IN 46202, USA.
| |
Collapse
|
33
|
MicroRNA Regulation of the Autotaxin-Lysophosphatidic Acid Signaling Axis. Cancers (Basel) 2019; 11:cancers11091369. [PMID: 31540086 PMCID: PMC6770380 DOI: 10.3390/cancers11091369] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/18/2022] Open
Abstract
The revelation that microRNAs (miRNAs) exist within the human genome uncovered an underappreciated mechanism of gene expression. For cells to regulate expression of their genes, miRNA molecules and argonaute proteins bind to mRNAs and interfere with efficient translation of the RNA transcript. Although miRNAs have important roles in normal tissues, miRNAs may adopt aberrant functions in malignant cells depending on their classification as either a tumor suppressor or oncogenic miRNA. Within this review, the current status of miRNA regulation is described in the context of signaling through the lysophosphatidic acid receptors, including the lysophosphatidic acid-producing enzyme, autotaxin. Thus far, research has revealed miRNAs that increase in response to lysophosphatidic acid stimulation, such as miR-21, miR-30c-2-3p, and miR-122. Other miRNAs inhibit the translation of lysophosphatidic acid receptors, such as miR-15b, miR-23a, and miR200c, or proteins that are downstream of lysophosphatidic acid signaling, such as miR-146 and miR-21. With thousands of miRNAs still uncharacterized, it is anticipated that the complex regulation of lysophosphatidic acid signaling by miRNAs will continue to be elucidated. RNA-based therapeutics have entered the clinic with enormous potential in precision medicine. This exciting field is rapidly emerging and it will be fascinating to witness its expansion in scope.
Collapse
|
34
|
Zuo C, Li X, Huang J, Chen D, Ji K, Yang Y, Xu T, Zhu D, Yan C, Gao P. Osteoglycin attenuates cardiac fibrosis by suppressing cardiac myofibroblast proliferation and migration through antagonizing lysophosphatidic acid 3/matrix metalloproteinase 2/epidermal growth factor receptor signalling. Cardiovasc Res 2019; 114:703-712. [PMID: 29415171 DOI: 10.1093/cvr/cvy035] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 02/03/2018] [Indexed: 01/02/2023] Open
Abstract
Aims Cardiac myofibroblasts (CMFs) play a crucial role in the progression of pathological fibrotic cardiac remodelling. The expression of osteoglycin (OGN) is increased in diseased hearts; however, the role of OGN in pathological cardiac remodelling is not understood. Here, we sought to determine the effect of OGN on cardiac interstitial fibrosis and investigate the molecular mechanisms of OGN in CMF activation and matrix production. Methods and results We found that OGN expression was significantly upregulated in mouse hearts in response to chronic 14-day angiotensin II (Ang II) infusion. Mice lacking OGN (OGN-/-) exhibited enhanced cardiac interstitial fibrosis and significantly more severe cardiac dysfunction following Ang II infusion compared to wild-type mice. OGN deficiency did not alter blood pressure, nor had effect on transforming growth factor-beta signalling activation, but presented with increased proliferative activity in hearts. In vitro studies with isolated CMFs revealed that OGN deficiency significantly increased proliferation and migration and enhanced the transactivation of epidermal growth factor receptor (EGFR) signalling by Ang II. On the other hand, OGN overexpression in CMFs decreased their proliferation and migration via reducing EGFR activation. Overexpression of OGN also suppressed the shedding of membrane anchored EGFR ligand. Moreover, OGN was found to interact with a lysophosphatidic acid (LPA) receptor isoform 3 and thus to attenuate EGFR transactivation through blocking cell surface translocation of membrane type 1 matrix metalloproteinase (MT1-MMP) and subsequent pro-MMP-2 activation in a Ras homolog gene family, member A (RhoA)/Rho-associated, coiled-coil containing protein kinase (ROCK)-dependent manner. Conclusion These findings suggest that OGN negatively regulates cardiac fibrotic remodelling by attenuating CMF proliferation and migration through LPA3-mediated and Rho/ROCK-dependent inhibition of MT1-MMP translocation, MMP2 activation and EGFR transactivation.
Collapse
Affiliation(s)
- Caojian Zuo
- Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Xiaodong Li
- Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Jun Huang
- Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Dongrui Chen
- Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Kaida Ji
- Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Yan Yang
- Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Tingyan Xu
- Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Dingliang Zhu
- Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Chen Yan
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, NY 710065, USA
| | - Pingjin Gao
- Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
35
|
Ciesielska A, Hromada-Judycka A, Ziemlińska E, Kwiatkowska K. Lysophosphatidic acid up-regulates IL-10 production to inhibit TNF-α synthesis in Mϕs stimulated with LPS. J Leukoc Biol 2019; 106:1285-1301. [PMID: 31335985 DOI: 10.1002/jlb.2a0918-368rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 06/19/2019] [Accepted: 06/28/2019] [Indexed: 12/15/2022] Open
Abstract
Bacterial LPS strongly induces pro-inflammatory responses of Mϕs after binding to CD14 protein and the TLR4/MD-2 receptor complex. The LPS-triggered signaling can be modulated by extracellular lysophosphatidic acid (LPA), which is of substantial importance for Mϕ functioning under specific pathophysiological conditions, such as atherosclerosis. The molecular mechanisms of the crosstalk between the LPS- and LPA-induced signaling, and the LPA receptors involved, are poorly known. In this report, we show that LPA strongly inhibits the LPS-induced TNF-α production at the mRNA and protein levels in primary Mϕs and Mϕ-like J774 cells. The decreased TNF-α production in LPA/LPS-stimulated cells is to high extent independent of NF-κB but is preceded by enhanced expression and secretion of the anti-inflammatory cytokine IL-10. The IL-10 elevation and TNF-α reduction are both abrogated upon depletion of the LPA5 and LPA6 receptors in J774 cells and can be linked with LPA-mediated activation of p38. We propose that the binding of LPA to LPA5 and LPA6 fine-tunes the LPS-induced inflammatory response by activating p38, and up-regulating IL-10 and down-regulating TNF-α production.
Collapse
Affiliation(s)
- Anna Ciesielska
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Aneta Hromada-Judycka
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Ewelina Ziemlińska
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Kwiatkowska
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
36
|
Suckau O, Gross I, Schrötter S, Yang F, Luo J, Wree A, Chun J, Baska D, Baumgart J, Kano K, Aoki J, Bräuer AU. LPA 1 , LPA 2 , LPA 4 , and LPA 6 receptor expression during mouse brain development. Dev Dyn 2019; 248:375-395. [PMID: 30847983 PMCID: PMC6593976 DOI: 10.1002/dvdy.23] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 02/27/2019] [Accepted: 03/02/2019] [Indexed: 12/17/2022] Open
Abstract
Background LPA is a small bioactive phospholipid that acts as an extracellular signaling molecule and is involved in cellular processes, including cell proliferation, migration, and differentiation. LPA acts by binding and activating at least six known G protein–coupled receptors: LPA1–6. In recent years, LPA has been suggested to play an important role both in normal neuronal development and under pathological conditions in the nervous system. Results We show the expression pattern of LPA receptors during mouse brain development by using qRT‐PCR, in situ hybridization, and immunocytochemistry. Only LPA1, LPA2,LPA4, and LPA6 mRNA transcripts were detected throughout development stages from embryonic day 16 until postnatal day 30 of hippocampus, neocortex, cerebellum, and bulbus olfactorius in our experiments, while expression of LPA3 and LPA5 genes was below detection level. In addition to our qRT‐PCR results, we also analyzed the cellular protein expression of endogenous LPA receptors, with focus on LPA1 and LPA2 within postnatal brain slices and primary neuron differentiation with and without cytoskeleton stabilization and destabilization. Conclusions The expression of LPA receptors changes depends on the developmental stage in mouse brain and in cultured hippocampal primary neurons. Interestingly, we found that commercially available antibodies for LPA receptors are largely unspecific. LPA1, ‐2, ‐4, and ‐6 genes are dynamically expressed during postnatal brain development. LPA1, ‐2, ‐4, and ‐6 genes are differently expressed in the hippocampus, neocortex, cerebellum, and bulbus olfactorius. LPA1 and ‐2 gene expression alters during neuronal differentiation. LPA1, ‐2, ‐3, ‐4, and ‐6 genes are expressed in glia cells, but differed in gene expression levels.
Collapse
Affiliation(s)
- Olga Suckau
- Institute of Cell Biology and Neurobiology, Center for Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Isabel Gross
- Institute of Anatomy, Universitätsmedizin Rostock, Rostock, Germany.,Research Group Anatomy, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Sandra Schrötter
- Institute of Cell Biology and Neurobiology, Center for Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Fan Yang
- Albrecht Kossel Institute for Neuroregeneration, Rostock University Medical Center, Rostock, Germany
| | - Jiankai Luo
- Albrecht Kossel Institute for Neuroregeneration, Rostock University Medical Center, Rostock, Germany
| | - Andreas Wree
- Institute of Anatomy, Universitätsmedizin Rostock, Rostock, Germany
| | - Jerold Chun
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, California
| | - David Baska
- Translational Animal Research Center, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jan Baumgart
- Translational Animal Research Center, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Kuniyuki Kano
- Graduate School of Pharmaceutical Science, University of Tokyo, Tokyo, Japan
| | - Junken Aoki
- Graduate School of Pharmaceutical Science, University of Tokyo, Tokyo, Japan
| | - Anja U Bräuer
- Institute of Cell Biology and Neurobiology, Center for Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Institute of Anatomy, Universitätsmedizin Rostock, Rostock, Germany.,Research Group Anatomy, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.,Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
37
|
Zhao Y, Hasse S, Zhao C, Bourgoin SG. Targeting the autotaxin - Lysophosphatidic acid receptor axis in cardiovascular diseases. Biochem Pharmacol 2019; 164:74-81. [PMID: 30928673 DOI: 10.1016/j.bcp.2019.03.035] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/26/2019] [Indexed: 02/06/2023]
Abstract
Lysophosphatidic acid (LPA) is a well-characterized bioactive lipid mediator, which is involved in development, physiology, and pathological processes of the cardiovascular system. LPA can be produced both inside cells and in biological fluids. The majority of extracellularLPAis produced locally by the secreted lysophospholipase D, autotaxin (ATX), through its binding to various β integrins or heparin sulfate on cell surface and hydrolyzing various lysophospholipids. LPA initiates cellular signalling pathways upon binding to and activation of its G protein-coupled receptors (LPA1-6). LPA has potent effects on various blood cells and vascular cells involved in the development of cardiovascular diseases such as atherosclerosis and aortic valve sclerosis. LPA signalling drives cell migration and proliferation, cytokine production, thrombosis, fibrosis, as well as angiogenesis. For instance, LPA promotes activation and aggregation of platelets through LPA5, increases expression of adhesion molecules in endothelial cells, and enhances expression of tissue factor in vascular smooth muscle cells. Furthermore, LPA induces differentiation of monocytes into macrophages and stimulates oxidized low-density lipoproteins (oxLDLs) uptake by macrophages to form foam cells during formation of atherosclerotic lesions through LPA1-3. This review summarizes recent findings of the roles played by ATX, LPA and LPA receptors (LPARs) in atherosclerosis and calcific aortic valve disease. Targeting the ATX-LPAR axis may have potential applications for treatment of patients suffering from various cardiovascular diseases.
Collapse
Affiliation(s)
- Yang Zhao
- Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Canada; Département de microbiologie, infectiologie et immunologie, Faculté de Médecine, Université Laval, Québec, QC G1V4G2, Canada
| | - Stephan Hasse
- Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Canada; Département de microbiologie, infectiologie et immunologie, Faculté de Médecine, Université Laval, Québec, QC G1V4G2, Canada
| | - Chenqi Zhao
- Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Canada
| | - Sylvain G Bourgoin
- Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Canada; Département de microbiologie, infectiologie et immunologie, Faculté de Médecine, Université Laval, Québec, QC G1V4G2, Canada.
| |
Collapse
|
38
|
|
39
|
Schmid R, Wolf K, Robering JW, Strauß S, Strissel PL, Strick R, Rübner M, Fasching PA, Horch RE, Kremer AE, Boos AM, Weigand A. ADSCs and adipocytes are the main producers in the autotaxin-lysophosphatidic acid axis of breast cancer and healthy mammary tissue in vitro. BMC Cancer 2018; 18:1273. [PMID: 30567518 PMCID: PMC6300006 DOI: 10.1186/s12885-018-5166-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/30/2018] [Indexed: 12/21/2022] Open
Abstract
Background Breast cancer is the most common malignancy in women affecting one out of eight females throughout their lives. Autotaxin (ATX) is upregulated in breast cancer which results in increased lysophosphatidic acid (LPA) formation within the tumor. This study’s aim was to identify the role of different mammary cell populations within the ATX–LPA axis. Methods Epithelial-cell-adhesion-molecule-positive (EpCAM) and -negative cells from breast tumors, adipose-derived stem cells (ADSCs) of tumor-adjacent and tumor-distant mammary fat were isolated and compared to healthy ADSCs, mammary epithelial cells (HMECs), and mesenchymal cells (MES) of healthy mammary tissue (n = 4 each) and further to well-established breast (cancer) cell lines. Results mRNA expression analyses revealed that ADSCs and MES largely expressed LPA receptor 1 (LPAR1) while epithelial cells mainly expressed LPAR6. LPA 18:1 activated all the cell populations and cell lines by rise in cytosolic free calcium concentrations. MES and ADSCs expressed ATX whereas epithelial cells did not. ADSCs revealed the highest expression in ATX with a significant decline after adipogenic differentiation in healthy ADSCs, whereas ATX expression increased in ADSCs from tumor patients. Breast (cancer) cell lines did not express ATX. Transmigration of MES was stimulated by LPA whereas an inhibitory effect was observed in epithelial cells with no differences between tumors and healthy cells. Triple-negative breast cancer (TNBC) cell lines were also stimulated and the transmigration partly inhibited using the LPA receptor antagonist Ki16425. Conclusions We here show that each mammary cell population plays a different role in the ATX–LPA axis with ADSCs and adipocytes being the main source of ATX in tumor patients in our experimental setting. Inhibitors of this axis may therefore present a valuable target for pharmacological therapies.
Collapse
Affiliation(s)
- Rafael Schmid
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Krankenhausstr. 12, 91054, Erlangen, Germany
| | - Katharina Wolf
- Department of Medicine I, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jan W Robering
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Krankenhausstr. 12, 91054, Erlangen, Germany
| | - Selina Strauß
- Department of Medicine I, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Pamela L Strissel
- Laboratory for Molecular Medicine, Department of Gynecology and Obstetrics, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Reiner Strick
- Laboratory for Molecular Medicine, Department of Gynecology and Obstetrics, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Matthias Rübner
- Laboratory for Molecular Medicine, Department of Gynecology and Obstetrics, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen ER-EMN, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Raymund E Horch
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Krankenhausstr. 12, 91054, Erlangen, Germany
| | - Andreas E Kremer
- Department of Medicine I, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Anja M Boos
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Krankenhausstr. 12, 91054, Erlangen, Germany
| | - Annika Weigand
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Krankenhausstr. 12, 91054, Erlangen, Germany.
| |
Collapse
|
40
|
Arginine 313 of the putative 8th helix mediates Gα q/14 coupling of human CC chemokine receptors CCR2a and CCR2b. Cell Signal 2018; 53:170-183. [PMID: 30321592 DOI: 10.1016/j.cellsig.2018.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 01/29/2023]
Abstract
In man, two CC chemokine receptor isoforms, CCR2a and CCR2b, are present that belong to the rhodopsin-like G protein-coupled receptor family, and couple to Gi and Gq family members. The CCR2 receptors are known to regulate canonical functions of chemokines such as directed migration of leukocytes, and to potentially control non-canonical functions such as differentiation, proliferation, and gene transcription of immune and non-immune cells. We recently reported on the activation of phospholipase C isoenzymes and RhoA GTPases by coupling of the two CCR2 receptors to members of the Gq family, in particular Gαq and Gα14. So far little is known about the structural requirements for the CCR2/Gq/14 interaction. Interestingly, the CCR2 receptor isoforms are identical up to arginine 313 (R313) that is part of the putative 8th helix in CCR2 receptors, and the 8th helix has been implicated in the interaction of rhodopsin-like G protein-coupled receptors with Gαq. In the present work we describe that the 8th helix of both CCR2a and CCR2b is critically involved in selectively activating Gαq/14-regulated signaling. Refined analysis using various CCR2a and CCR2b mutants and analyzing their cellular signaling, e.g. ligand-dependent (i) activation of phospholipase C isoenzymes, (ii) stimulation of serum response factor-mediated gene transcription, (iii) activation of mitogen-activated protein kinases, (iv) internalization, and (v) changes in intracellular calcium concentrations, identified arginine 313 within the amino terminal portion of helix 8 to play a role for the agonist-mediated conformational changes and the formation of a Gαq/14 binding surface. We show that R313 determines Gαq/14 protein-dependent but not Gi protein-dependent cellular signaling, and plays no role in Gq/Gi-independent receptor internalization, indicating a role of R313 in biased signaling of CCR2 receptors.
Collapse
|
41
|
Tigyi GJ, Yue J, Norman DD, Szabo E, Balogh A, Balazs L, Zhao G, Lee SC. Regulation of tumor cell - Microenvironment interaction by the autotaxin-lysophosphatidic acid receptor axis. Adv Biol Regul 2018; 71:183-193. [PMID: 30243984 DOI: 10.1016/j.jbior.2018.09.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 12/12/2022]
Abstract
The lipid mediator lysophosphatidic acid (LPA) in biological fluids is primarily produced by cleavage of lysophospholipids by the lysophospholipase D enzyme Autotaxin (ATX). LPA has been identified and abundantly detected in the culture medium of various cancer cell types, tumor effusates, and ascites fluid of cancer patients. Our current understanding of the physiological role of LPA established its role in fundamental biological responses that include cell proliferation, metabolism, neuronal differentiation, angiogenesis, cell migration, hematopoiesis, inflammation, immunity, wound healing, regulation of cell excitability, and the promotion of cell survival by protecting against apoptotic death. These essential biological responses elicited by LPA are seemingly hijacked by cancer cells in many ways; transcriptional upregulation of ATX leading to increased LPA levels, enhanced expression of multiple LPA GPCR subtypes, and the downregulation of its metabolic breakdown. Recent studies have shown that overexpression of ATX and LPA GPCR can lead to malignant transformation, enhanced proliferation of cancer stem cells, increased invasion and metastasis, reprogramming of the tumor microenvironment and the metastatic niche, and development of resistance to chemo-, immuno-, and radiation-therapy of cancer. The fundamental role of LPA in cancer progression and the therapeutic inhibition of the ATX-LPA axis, although highly appealing, remains unexploited as drug development to these targets has not reached into the clinic yet. The purpose of this brief review is to highlight some unique signaling mechanisms engaged by the ATX-LPA axis and emphasize the therapeutic potential that lies in blocking the molecular targets of the LPA system.
Collapse
Affiliation(s)
- Gabor J Tigyi
- Department of Physiology, University of Tennessee Health Science Center Memphis, Memphis, TN, 38163, USA; Institute of Clinical Experimental Research, Semmelweis University, POB 2, H-1428, Budapest, Hungary.
| | - Junming Yue
- Department of Pathology, University of Tennessee Health Science Center Memphis, Memphis, TN, 38163, USA
| | - Derek D Norman
- Department of Physiology, University of Tennessee Health Science Center Memphis, Memphis, TN, 38163, USA
| | - Erzsebet Szabo
- Department of Physiology, University of Tennessee Health Science Center Memphis, Memphis, TN, 38163, USA
| | - Andrea Balogh
- Department of Physiology, University of Tennessee Health Science Center Memphis, Memphis, TN, 38163, USA; Institute of Clinical Experimental Research, Semmelweis University, POB 2, H-1428, Budapest, Hungary
| | - Louisa Balazs
- Department of Pathology, University of Tennessee Health Science Center Memphis, Memphis, TN, 38163, USA
| | - Guannan Zhao
- Department of Pathology, University of Tennessee Health Science Center Memphis, Memphis, TN, 38163, USA
| | - Sue Chin Lee
- Department of Physiology, University of Tennessee Health Science Center Memphis, Memphis, TN, 38163, USA
| |
Collapse
|
42
|
Li N, Yan YL, Fu S, Li RJ, Zhao PF, Xu XY, Yang JP, Damirin A. Lysophosphatidic acid enhances human umbilical cord mesenchymal stem cell viability without differentiation via LPA receptor mediating manner. Apoptosis 2018; 22:1296-1309. [PMID: 28766061 PMCID: PMC5630659 DOI: 10.1007/s10495-017-1399-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Human umbilical cord mesenchymal stem cells (hUC-MSCs) are potential stromal cells which are regarded as the most feasible stem cell group in cell therapy. The maintenance of cell survival without differentiation is important in cell transplantation and stem cell therapy. However, negative factors exist in cell transplantation. Lysophosphatidic acid (LPA) is a non-antigenic small molecule phospholipid which induced several fundamental cellular responses, such as cell proliferation, apoptosis and migration. In this study we aimed to explore the effects of LPA on the survival and differentiation of MSCs and its availability in cell therapy. We found that LPA stimulated hUC-MSC proliferation and protected hUC-MSCs from lipopolysaccharide (LPS) induced apoptosis. We also observed that CD29, CD44, CD73, CD90 and CD105 were expressed, whereas CD34 and CD45 were not expressed in hUC-MSCs, and these makers have no change in LPA containing medium, which indicated that LPA accelerated the survival of hUC-MSCs in an undifferentiating status. We also demonstrated that higher expressed LPAR1 involved in LPA stimulated cell survival action. LPA stimulated cell proliferation was associated with LPAR1 mediated Gi/o-proteins/ERK1/2 pathway. On the other hand, LPA protected hUC-MSCs from LPS-induced apoptosis through suppressing caspase-3 activation by LPAR1 coupled with a G protein, but not Gi/o or Gq/11 in hUC-MSC. Collectively, this study demonstrated that LPA increased the proliferation and survival of hUC-MSCs without differentiation through LPAR1 mediated manner. Our findings provide that LPA as a anti-apoptotic agent having potential application prospect in cell transplantation and stem cell therapy.
Collapse
Affiliation(s)
- Narengerile Li
- Department of Biology, College of Life Sciences, Inner Mongolia University, Hohhot, 010021, Inner Mongolia, China
- Department of Respiratory and Critical Medicine, The Third Affiliated Hospital, Inner Mongolia Medical University, Baotou, 014010, Inner Mongolia, China
| | - Ya-Li Yan
- Department of Biology, College of Life Sciences, Inner Mongolia University, Hohhot, 010021, Inner Mongolia, China
| | - Sachaofu Fu
- Department of Biology, College of Life Sciences, Inner Mongolia University, Hohhot, 010021, Inner Mongolia, China
| | - Rui-Juan Li
- Department of Biology, College of Life Sciences, Inner Mongolia University, Hohhot, 010021, Inner Mongolia, China
| | - Peng-Fei Zhao
- Department of Biology, College of Life Sciences, Inner Mongolia University, Hohhot, 010021, Inner Mongolia, China
| | - Xi-Yuan Xu
- Department of Respiratory and Critical Medicine, The Third Affiliated Hospital, Inner Mongolia Medical University, Baotou, 014010, Inner Mongolia, China
| | - Jing-Ping Yang
- Department of Respiratory and Critical Medicine, The Third Affiliated Hospital, Inner Mongolia Medical University, Baotou, 014010, Inner Mongolia, China.
| | - Alatangaole Damirin
- Department of Biology, College of Life Sciences, Inner Mongolia University, Hohhot, 010021, Inner Mongolia, China.
| |
Collapse
|
43
|
Kowalczyk-Zieba I, Woclawek-Potocka I, Wasniewski T, Boruszewska D, Grycmacher K, Sinderewicz E, Staszkiewicz J, Wolczynski S. LPAR2 and LPAR4 are the Main Receptors Responsible for LPA Actions in Ovarian Endometriotic Cysts. Reprod Sci 2018; 26:139-150. [PMID: 29621954 DOI: 10.1177/1933719118766263] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Endometriosis has been considered as an estrogen (E2)-dependent and progesterone (P4)-resistant disease. On the other hand, lysophosphatidic acid (LPA) has been suggested as a significant modulator of ovarian pathology, acting via both LPA levels and LPA receptor (LPAR) upregulation. Therefore, the objective of the present study was to evaluate LPA concentration as well as LPARs, autotaxin (ATX), and phospholipase A2 (PLA2) expression in ovarian endometriotic cysts and normal endometrium with correlation of the expression of E2 and P4 receptors in endometriotic cysts. The analyses were carried out using the tissues derived from 37 patients with ovarian endometriosis and 20 endometrial samples collected from women without endometriosis were used as a control. We found that ovarian endometriotic cysts are a site of LPA synthesis due to the presence of enzymes involved in LPA synthesis in the tissue. Additionally, when we compared endometriotic cysts versus normal endometrium, we were able to show overexpression of 3 from 6 examined LPARs and both enzymes responsible for LPA synthesis in endometriotic cysts. Finally, we found the correlations between LPARs, ATX, and PLA2 and the expression of E2 and P4 receptors in endometriotic cysts. Owing to the high LPAR2 and LPAR4 transcript and protein expression in endometriotic ovarian cysts and positive correlations of both these receptors with the PR-B and ERβ, respectively, those receptors seem to be the most promising predictors of the endometriotic cysts as well as the main receptors responsible for LPA action in the ovarian endometriosis.
Collapse
Affiliation(s)
- Ilona Kowalczyk-Zieba
- 1 Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Izabela Woclawek-Potocka
- 1 Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Tomasz Wasniewski
- 2 Department of Gynecology and Obstetrics, Faculty of Medical Sciences, University of Warmia and Masuria, Olsztyn, Poland
| | - Dorota Boruszewska
- 1 Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Katarzyna Grycmacher
- 1 Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Emilia Sinderewicz
- 1 Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Joanna Staszkiewicz
- 1 Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Slawomir Wolczynski
- 3 Department of Reproduction and Gynecological Endocrinology, Faculty of Medicine, Medical University of Bialystok, Bialystok, Poland.,4 Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Bialystok, Poland
| |
Collapse
|
44
|
D'Souza K, Paramel GV, Kienesberger PC. Lysophosphatidic Acid Signaling in Obesity and Insulin Resistance. Nutrients 2018; 10:nu10040399. [PMID: 29570618 PMCID: PMC5946184 DOI: 10.3390/nu10040399] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/13/2018] [Accepted: 03/20/2018] [Indexed: 12/21/2022] Open
Abstract
Although simple in structure, lysophosphatidic acid (LPA) is a potent bioactive lipid that profoundly influences cellular signaling and function upon binding to G protein-coupled receptors (LPA1-6). The majority of circulating LPA is produced by the secreted enzyme autotaxin (ATX). Alterations in LPA signaling, in conjunction with changes in autotaxin (ATX) expression and activity, have been implicated in metabolic and inflammatory disorders including obesity, insulin resistance, and cardiovascular disease. This review summarizes our current understanding of the sources and metabolism of LPA with focus on the influence of diet on circulating LPA. Furthermore, we explore how the ATX-LPA pathway impacts obesity and obesity-associated disorders, including impaired glucose homeostasis, insulin resistance, and cardiovascular disease.
Collapse
Affiliation(s)
- Kenneth D'Souza
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Dalhousie Medicine New Brunswick, Saint John, NB, E2L 4L5 Canada.
| | - Geena V Paramel
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Dalhousie Medicine New Brunswick, Saint John, NB, E2L 4L5 Canada.
| | - Petra C Kienesberger
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Dalhousie Medicine New Brunswick, Saint John, NB, E2L 4L5 Canada.
| |
Collapse
|
45
|
Wang X, Hou H, Song K, Zhang Z, Zhang S, Cao Y, Chen L, Sang Q, Lin F, Xu H. Lpar2b Controls Lateral Line Tissue Size by Regulating Yap1 Activity in Zebrafish. Front Mol Neurosci 2018; 11:34. [PMID: 29479307 PMCID: PMC5812253 DOI: 10.3389/fnmol.2018.00034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 01/25/2018] [Indexed: 12/16/2022] Open
Abstract
LPA signaling plays important roles during cell migration and proliferation in normal and pathological conditions. However, its role during sensory organ development remains unknown. Here we show a LPA receptor Lpar2b is expressed in the posterior lateral line primordium (pLLP) and mechanosensory organs called neuromasts (NMs) in zebrafish embryos. Lpar2b loss-of-function significantly reduces the number of NMs and hair cells in the posterior lateral line (pLL). Further analysis reveals that Lpar2b regulates the patterning and tissue size of the pLLP. Interestingly, we show that knocking down a Hippo effector Yap1 phenocopies the result of Lpar2b depletion, and Lpar2b regulates the phosphorylation and activity of Yap1 in the pLLP. Importantly, a phosphorylation-resistant Yap1 rescues pLLP size and NM number in Lpar2b-depleted embryos. Our results indicate Lpar2b controls primordium size and NM number by regulating Yap1 activity in the lateral line system.
Collapse
Affiliation(s)
- Xueqian Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Haitao Hou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Kaida Song
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Zhiqiang Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Shuqiang Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ying Cao
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Liming Chen
- Biochemistry and Biological Product Institute, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Qing Sang
- MOE Key Laboratory of Contemporary Anthropology and School of Life Sciences, Fudan University, Shanghai, China
| | - Fang Lin
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Hui Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
46
|
Autotaxin-Lysophosphatidic Acid: From Inflammation to Cancer Development. Mediators Inflamm 2017; 2017:9173090. [PMID: 29430083 PMCID: PMC5753009 DOI: 10.1155/2017/9173090] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/22/2017] [Indexed: 12/13/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a ubiquitous lysophospholipid and one of the main membrane-derived lipid signaling molecules. LPA acts as an autocrine/paracrine messenger through at least six G protein-coupled receptors (GPCRs), known as LPA1–6, to induce various cellular processes including wound healing, differentiation, proliferation, migration, and survival. LPA receptors and autotaxin (ATX), a secreted phosphodiesterase that produces this phospholipid, are overexpressed in many cancers and impact several features of the disease, including cancer-related inflammation, development, and progression. Many ongoing studies aim to understand ATX-LPA axis signaling in cancer and its potential as a therapeutic target. In this review, we discuss the evidence linking LPA signaling to cancer-related inflammation and its impact on cancer progression.
Collapse
|
47
|
Bovine ovarian follicular growth and development correlate with lysophosphatidic acid expression. Theriogenology 2017; 106:1-14. [PMID: 29028570 DOI: 10.1016/j.theriogenology.2017.09.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/11/2017] [Accepted: 09/19/2017] [Indexed: 01/19/2023]
Abstract
The basis of successful reproduction is proper ovarian follicular growth and development. In addition to prostaglandins and vascular endothelial growth factor, a number of novel factors are suggested as important regulators of follicular growth and development: PGES, TFG, CD36, RABGAP1, DBI and BTC. This study focuses on examining the expression of these factors in granulosa and thecal cells that originate from different ovarian follicle types and their link with the expression of lysophosphatidic acid (LPA), known local regulator of reproductive functions in the cow. Ovarian follicles were divided into healthy, transitional, and atretic categories. The mRNA expression levels for PGES, TFG, CD36, RABGAP1, DBI and BTC in granulosa and thecal cells in different follicle types were measured by real-time PCR. The correlations among expression of enzymes synthesizing LPA (autotaxin, phospholipase A2), receptors for LPA and examined factors were measured. Immunolocalization of PGES, TFG, CD36, RABGAP1, DBI and BTC was examined by immunohistochemistry. We investigated follicle-type dependent mRNA expression of factors potentially involved in ovarian follicular growth and development, both in granulosa and thecal cells of bovine ovarian follicles. Strong correlations among receptors for LPA, enzymes synthesizing LPA, and the examined factors in healthy and transitional follicles were observed, with its strongest interconnection with TFG, DBI and RABGAP1 in granulosa cells, and TFG in thecal cells; whereas no correlations in atretic follicles were detected. A greater number of correlations were found in thecal cells than in granulosa cells as well as in healthy follicles than in transitional follicles. These data indicate the role of LPA in the growth, development and physiology of the bovine ovarian follicle.
Collapse
|
48
|
Sinderewicz E, Grycmacher K, Boruszewska D, Kowalczyk-Zięba I, Staszkiewicz J, Ślężak T, Woclawek-Potocka I. Expression of factors involved in apoptosis and cell survival is correlated with enzymes synthesizing lysophosphatidic acid and its receptors in granulosa cells originating from different types of bovine ovarian follicles. Reprod Biol Endocrinol 2017; 15:72. [PMID: 28874163 PMCID: PMC5586021 DOI: 10.1186/s12958-017-0287-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/14/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Lysophosphatidic acid (LPA) regulates reproductive processes in the cow. Ovarian granulosa cells play a pivotal role in follicle growth and development. Nevertheless, the role of LPA in the local regulation of granulosa cell function in different follicle categories in the bovine ovary has not been investigated. METHODS Ovarian follicles were divided into healthy, transitional and atretic categories. The expression levels of AX, PLA2, LPARs and factors involved in apoptosis and cell survival processes in granulosa cells in different types of follicles were measured by real-time PCR. The correlations between the expression levels of AX, PLA2, LPARs and the examined factors were measured. The immunolocalization of AX, PLA2 and LPARs in different ovarian follicles was examined by immunohistochemistry. Statistical analyses were conducted in GraphPad using a one-way ANOVA followed by the Kruskal-Wallis multiple comparison test or a correlation analysis followed by Pearson's test. RESULTS The expression levels of AX, PLA2 and LPARs, with the major role of LPAR2 and PLA2, were found in the granulosa cells originating from different follicle types. The expression levels of the factors involved in cell apoptosis (TNFα and its receptors, FAS, FASL, CASP3, CASP8, β-glycan, and DRAK2) were significantly higher in the granulosa cells of the atretic follicles compared to the healthy follicles. A number of correlations between LPARs, AX, PLA2 and factors associated with apoptosis were observed in the atretic but not in the healthy follicles. A greater expression of the factors involved in differentiation and proliferation in the granulosa cells (DICE1 and SOX2) was found in the healthy follicles in comparison with the atretic. A number of correlations between LPARs, AX, PLA2 and the factors associated with cell survival were observed in the healthy but not in the atretic follicles. CONCLUSIONS Granulosa cells are the target of LPA action and the source of LPA synthesis in the bovine ovarian follicle. We suggest that the participation of LPA in apoptosis in the atretic follicles mainly occurs through the regulation of TNF-α-dependent and caspase-induced pathways. In the transitional follicles, LPA might influence the inhibins to shift the balance between the number of healthy and atretic follicles. In the healthy follicle type, LPA, acting via LPAR1, might regulate MCL1 and estradiol-stimulating ERβ mRNA expression, leading to the stimulation of anti-apoptotic processes in the granulosa cells and their differentiation and proliferation.
Collapse
Affiliation(s)
- Emilia Sinderewicz
- 0000 0001 1091 0698grid.433017.2Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747 Olsztyn, Poland
| | - Katarzyna Grycmacher
- 0000 0001 1091 0698grid.433017.2Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747 Olsztyn, Poland
| | - Dorota Boruszewska
- 0000 0001 1091 0698grid.433017.2Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747 Olsztyn, Poland
| | - Ilona Kowalczyk-Zięba
- 0000 0001 1091 0698grid.433017.2Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747 Olsztyn, Poland
| | - Joanna Staszkiewicz
- 0000 0001 1091 0698grid.433017.2Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747 Olsztyn, Poland
| | - Tomasz Ślężak
- 0000 0001 1091 0698grid.433017.2Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747 Olsztyn, Poland
| | - Izabela Woclawek-Potocka
- 0000 0001 1091 0698grid.433017.2Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747 Olsztyn, Poland
| |
Collapse
|
49
|
Aikawa S, Kano K, Inoue A, Wang J, Saigusa D, Nagamatsu T, Hirota Y, Fujii T, Tsuchiya S, Taketomi Y, Sugimoto Y, Murakami M, Arita M, Kurano M, Ikeda H, Yatomi Y, Chun J, Aoki J. Autotaxin-lysophosphatidic acid-LPA 3 signaling at the embryo-epithelial boundary controls decidualization pathways. EMBO J 2017; 36:2146-2160. [PMID: 28588064 PMCID: PMC5509998 DOI: 10.15252/embj.201696290] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 04/12/2017] [Accepted: 05/02/2017] [Indexed: 12/21/2022] Open
Abstract
During pregnancy, up-regulation of heparin-binding (HB-) EGF and cyclooxygenase-2 (COX-2) in the uterine epithelium contributes to decidualization, a series of uterine morphological changes required for placental formation and fetal development. Here, we report a key role for the lipid mediator lysophosphatidic acid (LPA) in decidualization, acting through its G-protein-coupled receptor LPA3 in the uterine epithelium. Knockout of Lpar3 or inhibition of the LPA-producing enzyme autotaxin (ATX) in pregnant mice leads to HB-EGF and COX-2 down-regulation near embryos and attenuates decidual reactions. Conversely, selective pharmacological activation of LPA3 induces decidualization via up-regulation of HB-EGF and COX-2. ATX and its substrate lysophosphatidylcholine can be detected in the uterine epithelium and in pre-implantation-stage embryos, respectively. Our results indicate that ATX-LPA-LPA3 signaling at the embryo-epithelial boundary induces decidualization via the canonical HB-EGF and COX-2 pathways.
Collapse
Affiliation(s)
- Shizu Aikawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Kuniyuki Kano
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan.,Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Chiyoda-ku, Tokyo, Japan
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan.,Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology (PRESTO), Kawaguchi, Saitama, Japan
| | - Jiao Wang
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Daisuke Saigusa
- Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Chiyoda-ku, Tokyo, Japan.,Department of Integrative Genomics, Tohoku Medical Megabank, Tohoku University, Sendai, Miyagi, Japan
| | - Takeshi Nagamatsu
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yasushi Hirota
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Soken Tsuchiya
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshitaka Taketomi
- Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan.,Center for Disease Biology and Integrative Medicine Graduate School of Medicine The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yukihiko Sugimoto
- Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Chiyoda-ku, Tokyo, Japan.,Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Makoto Murakami
- Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Chiyoda-ku, Tokyo, Japan.,Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan.,Center for Disease Biology and Integrative Medicine Graduate School of Medicine The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Makoto Arita
- RIKEN, Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan.,Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo, Japan
| | - Makoto Kurano
- Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Chiyoda-ku, Tokyo, Japan.,Department of Clinical Laboratory, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Hitoshi Ikeda
- Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Chiyoda-ku, Tokyo, Japan.,Department of Clinical Laboratory, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Yutaka Yatomi
- Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Chiyoda-ku, Tokyo, Japan.,Department of Clinical Laboratory, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Junken Aoki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan .,Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
50
|
Lopane C, Agosti P, Gigante I, Sabbà C, Mazzocca A. Implications of the lysophosphatidic acid signaling axis in liver cancer. Biochim Biophys Acta Rev Cancer 2017; 1868:277-282. [PMID: 28591560 DOI: 10.1016/j.bbcan.2017.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 05/30/2017] [Accepted: 06/01/2017] [Indexed: 01/25/2023]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death in western countries. The major risk factors for HCC are hepatitis C or B viruses, alcohol and metabolic disorders. The increasing risk of HCC in patients with metabolic disorders (i.e. obesity, diabetes and non-alcoholic steatohepatitis/NASH) regardless of the presence of liver cirrhosis is becoming relevant. Nevertheless, molecular mechanisms linking these risk factors to liver oncogenesis are unclear. This review focuses on the pathogenic role of the lysophosphatidic acid (LPA) pathway in HCC, highlighting the implications of this bioactive phospholipid in liver cancer biology and metabolism and as potential therapeutic target.
Collapse
Affiliation(s)
- Chiara Lopane
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Pasquale Agosti
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Isabella Gigante
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Carlo Sabbà
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Antonio Mazzocca
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124 Bari, Italy.
| |
Collapse
|