1
|
Walker V. The Intricacies of Renal Phosphate Reabsorption-An Overview. Int J Mol Sci 2024; 25:4684. [PMID: 38731904 PMCID: PMC11083860 DOI: 10.3390/ijms25094684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
To maintain an optimal body content of phosphorus throughout postnatal life, variable phosphate absorption from food must be finely matched with urinary excretion. This amazing feat is accomplished through synchronised phosphate transport by myriads of ciliated cells lining the renal proximal tubules. These respond in real time to changes in phosphate and composition of the renal filtrate and to hormonal instructions. How they do this has stimulated decades of research. New analytical techniques, coupled with incredible advances in computer technology, have opened new avenues for investigation at a sub-cellular level. There has been a surge of research into different aspects of the process. These have verified long-held beliefs and are also dramatically extending our vision of the intense, integrated, intracellular activity which mediates phosphate absorption. Already, some have indicated new approaches for pharmacological intervention to regulate phosphate in common conditions, including chronic renal failure and osteoporosis, as well as rare inherited biochemical disorders. It is a rapidly evolving field. The aim here is to provide an overview of our current knowledge, to show where it is leading, and where there are uncertainties. Hopefully, this will raise questions and stimulate new ideas for further research.
Collapse
Affiliation(s)
- Valerie Walker
- Department of Clinical Biochemistry, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton S016 6YD, UK
| |
Collapse
|
2
|
Behrens JL, Schnepel N, Hansen K, Hustedt K, Burmester M, Klinger S, Breves G, Muscher-Banse AS. Modulation of Intestinal Phosphate Transport in Young Goats Fed a Low Phosphorus Diet. Int J Mol Sci 2021; 22:ijms22020866. [PMID: 33467106 PMCID: PMC7831023 DOI: 10.3390/ijms22020866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 12/03/2022] Open
Abstract
The intestinal absorption of phosphate (Pi) takes place transcellularly through the active NaPi-cotransporters type IIb (NaPiIIb) and III (PiT1 and PiT2) and paracellularly by diffusion through tight junction (TJ) proteins. The localisation along the intestines and the regulation of Pi absorption differ between species and are not fully understood. It is known that 1,25-dihydroxy-vitamin D3 (1,25-(OH)2D3) and phosphorus (P) depletion modulate intestinal Pi absorption in vertebrates in different ways. In addition to the apical uptake into the enterocytes, there are uncertainties regarding the basolateral excretion of Pi. Functional ex vivo experiments in Ussing chambers and molecular studies of small intestinal epithelia were carried out on P-deficient goats in order to elucidate the transepithelial Pi route in the intestine as well as the underlying mechanisms of its regulation and the proteins, which may be involved. The dietary P reduction had no effect on the duodenal and ileal Pi transport rate in growing goats. The ileal PiT1 and PiT2 mRNA expressions increased significantly, while the ileal PiT1 protein expression, the mid jejunal claudin-2 mRNA expression and the serum 1,25-(OH)2D3 levels were significantly reduced. These results advance the state of knowledge concerning the complex mechanisms of the Pi homeostasis in vertebrates.
Collapse
|
3
|
Abstract
Phosphorus plays a vital role in diverse biological processes including intracellular signaling, membrane integrity, and skeletal biomineralization; therefore, the regulation of phosphorus homeostasis is essential to the well-being of the organism. Cells and whole organisms respond to changes in inorganic phosphorus (Pi) concentrations in their environment by adjusting Pi uptake and altering biochemical processes in cells (local effects) and distant organs (endocrine effects). Unicellular organisms, such as bacteria and yeast, express specific Pi-binding proteins on the plasma membrane that respond to changes in ambient Pi availability and transduce intracellular signals that regulate the expression of genes involved in cellular Pi uptake. Multicellular organisms, including humans, respond at a cellular level to adapt to changes in extracellular Pi concentrations and also have endocrine pathways which integrate signals from various organs (e.g., intestine, kidneys, parathyroid glands, bone) to regulate serum Pi concentrations and whole-body phosphorus balance. In mammals, alterations in the concentrations of extracellular Pi modulate type III sodium-phosphate cotransporter activity on the plasma membrane, and trigger changes in cellular function. In addition, elevated extracellular Pi induces activation of fibroblast growth factor receptor, Raf/mitogen-activated protein kinase/ERK kinase (MEK)/extracellular signal-regulated kinase (ERK) and Akt pathways, which modulate gene expression in various mammalian cell types. Excessive Pi exposure, especially in patients with chronic kidney disease, leads to endothelial dysfunction, accelerated vascular calcification, and impaired insulin secretion.
Collapse
Affiliation(s)
- Kittrawee Kritmetapak
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Division of Nephrology and Hypertension, Departments of Medicine, Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street Southwest, Rochester, MN, 55902, USA
| | - Rajiv Kumar
- Division of Nephrology and Hypertension, Departments of Medicine, Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street Southwest, Rochester, MN, 55902, USA.
- Nephrology Research, Medical Sciences 1-120, 200 First Street Southwest, Rochester, MN, 55902, USA.
| |
Collapse
|
4
|
Abstract
Phosphate is an essential nutrient for life and is a critical component of bone formation, a major signaling molecule, and structural component of cell walls. Phosphate is also a component of high-energy compounds (i.e., AMP, ADP, and ATP) and essential for nucleic acid helical structure (i.e., RNA and DNA). Phosphate plays a central role in the process of mineralization, normal serum levels being associated with appropriate bone mineralization, while high and low serum levels are associated with soft tissue calcification. The serum concentration of phosphate and the total body content of phosphate are highly regulated, a process that is accomplished by the coordinated effort of two families of sodium-dependent transporter proteins. The three isoforms of the SLC34 family (SLC34A1-A3) show very restricted tissue expression and regulate intestinal absorption and renal excretion of phosphate. SLC34A2 also regulates the phosphate concentration in multiple lumen fluids including milk, saliva, pancreatic fluid, and surfactant. Both isoforms of the SLC20 family exhibit ubiquitous expression (with some variation as to which one or both are expressed), are regulated by ambient phosphate, and likely serve the phosphate needs of the individual cell. These proteins exhibit similarities to phosphate transporters in nonmammalian organisms. The proteins are nonredundant as mutations in each yield unique clinical presentations. Further research is essential to understand the function, regulation, and coordination of the various phosphate transporters, both the ones described in this review and the phosphate transporters involved in intracellular transport.
Collapse
Affiliation(s)
- Nati Hernando
- University of Zurich-Irchel, Institute of Physiology, Zurich, Switzerland; Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky; and Robley Rex VA Medical Center, Louisville, Kentucky
| | - Kenneth Gagnon
- University of Zurich-Irchel, Institute of Physiology, Zurich, Switzerland; Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky; and Robley Rex VA Medical Center, Louisville, Kentucky
| | - Eleanor Lederer
- University of Zurich-Irchel, Institute of Physiology, Zurich, Switzerland; Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky; and Robley Rex VA Medical Center, Louisville, Kentucky
| |
Collapse
|
5
|
Lee SM, Carlson AH, Onal M, Benkusky NA, Meyer MB, Pike JW. A Control Region Near the Fibroblast Growth Factor 23 Gene Mediates Response to Phosphate, 1,25(OH)2D3, and LPS In Vivo. Endocrinology 2019; 160:2877-2891. [PMID: 31599948 PMCID: PMC6850268 DOI: 10.1210/en.2019-00622] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/04/2019] [Indexed: 12/21/2022]
Abstract
Fibroblast growth factor 23 (FGF23) is a bone-derived hormone involved in the control of phosphate (P) homeostasis and vitamin D metabolism. Despite advances, however, molecular details of this gene's regulation remain uncertain. In this report, we created mouse strains in which four epigenetically marked FGF23 regulatory regions were individually deleted from the mouse genome using CRISPR/Cas9 gene-editing technology, and the consequences of these mutations were then assessed on Fgf23 expression and regulation in vivo. An initial analysis confirmed that bone expression of Fgf23 and circulating intact FGF23 (iFGF23) were strongly influenced by both chronic dietary P treatment and acute injection of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]. However, further analysis revealed that bone Fgf23 expression and iFGF23 could be rapidly upregulated by dietary P within 3 and 6 hours, respectively; this acute upregulation was lost in the FGF23-PKO mouse containing an Fgf23 proximal enhancer deletion but not in the additional enhancer-deleted mice. Of note, prolonged dietary P treatment over several days led to normalization of FGF23 levels in the FGF23-PKO mouse, suggesting added complexity associated with P regulation of FGF23. Treatment with 1,25(OH)2D3 also revealed a similar loss of Fgf23 induction and blood iFGF23 levels in this mouse. Finally, normal lipopolysaccharide (LPS) induction of Fgf23 expression was also compromised in the FGF23-PKO mouse, a result that, together with our previous report, indicates that the action of LPS on Fgf23 expression is mediated by both proximal and distal Fgf23 enhancers. These in vivo data provide key functional insight into the genomic enhancers through which Fgf23 expression is mediated.
Collapse
Affiliation(s)
- Seong Min Lee
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin
| | - Alex H Carlson
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin
| | - Melda Onal
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin
| | - Nancy A Benkusky
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin
| | - Mark B Meyer
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin
| | - J Wesley Pike
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin
- Correspondence: J. Wesley Pike, PhD, Department of Biochemistry, University of Wisconsin–Madison, Hector F. Deluca Laboratories, Room 543D, 433 Babcock Drive, Madison, Wisconsin 53706. E-mail:
| |
Collapse
|
6
|
Abstract
Phosphate is essential for skeletal mineralization, and its chronic deficiency leads to rickets and osteomalacia. Skeletal mineralization starts in matrix vesicles (MVs) derived from the plasma membrane of osteoblasts and chondrocytes. MVs contain high activity of tissue non-specific alkaline phosphatase (TNSALP), which hydrolyzes phosphoric esters such as pyrophosphates (PPi) to produce inorganic orthophosphates (Pi). Extracellular Pi in the skeleton is taken up by MVs through type III sodium/phosphate (Na+/Pi) cotransporters and forms hydroxyapatite. In addition to its roles in MV-mediated skeletal mineralization, accumulating evidence has revealed that extracellular Pi evokes signal transduction and regulates cellular function. Pi induces apoptosis of hypertrophic chondrocytes, which is a critical step for endochondral ossification. Extracellular Pi also regulates the expression of various genes including those related to proliferation, differentiation, and mineralization. In vitro cell studies have demonstrated that an elevation in extracellular Pi level leads to the activation of fibroblast growth factor receptor (FGFR), Raf/MEK (mitogen-activated protein kinase/ERK kinase)/ERK (extracellular signal-regulated kinase) pathway, where the type III Na+/Pi cotransporter PiT-1 may be involved. Responsiveness of skeletal cells to extracellular Pi suggests their ability to sense and adapt to an alteration in Pi availability in their environment. Involvement of FGFR in the Pi-evoked signal transduction is interesting because enhanced FGFR signaling in osteoblasts/osteocytes might be responsible for the overproduction of FGF23, a key molecule in phosphate homeostasis, in a mouse model for human X-linked hypophosphatemic rickets (XLH). Impaired Pi sensing may be a pathogenesis of XLH, which needs to be clarified in future.
Collapse
Affiliation(s)
- Toshimi Michigami
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Japan
- *Correspondence: Toshimi Michigami
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
7
|
Jacquillet G, Unwin RJ. Physiological regulation of phosphate by vitamin D, parathyroid hormone (PTH) and phosphate (Pi). Pflugers Arch 2019; 471:83-98. [PMID: 30393837 PMCID: PMC6326012 DOI: 10.1007/s00424-018-2231-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/20/2018] [Accepted: 10/25/2018] [Indexed: 01/05/2023]
Abstract
Inorganic phosphate (Pi) is an abundant element in the body and is essential for a wide variety of key biological processes. It plays an essential role in cellular energy metabolism and cell signalling, e.g. adenosine and guanosine triphosphates (ATP, GTP), and in the composition of phospholipid membranes and bone, and is an integral part of DNA and RNA. It is an important buffer in blood and urine and contributes to normal acid-base balance. Given its widespread role in almost every molecular and cellular function, changes in serum Pi levels and balance can have important and untoward effects. Pi homoeostasis is maintained by a counterbalance between dietary Pi absorption by the gut, mobilisation from bone and renal excretion. Approximately 85% of total body Pi is present in bone and only 1% is present as free Pi in extracellular fluids. In humans, extracellular concentrations of inorganic Pi vary between 0.8 and 1.2 mM, and in plasma or serum Pi exists in both its monovalent and divalent forms (H2PO4- and HPO42-). In the intestine, approximately 30% of Pi absorption is vitamin D regulated and dependent. To help maintain Pi balance, reabsorption of filtered Pi along the renal proximal tubule (PT) is via the NaPi-IIa and NaPi-IIc Na+-coupled Pi cotransporters, with a smaller contribution from the PiT-2 transporters. Endocrine factors, including, vitamin D and parathyroid hormone (PTH), as well as newer factors such as fibroblast growth factor (FGF)-23 and its coreceptor α-klotho, are intimately involved in the control of Pi homeostasis. A tight regulation of Pi is critical, since hyperphosphataemia is associated with increased cardiovascular morbidity in chronic kidney disease (CKD) and hypophosphataemia with rickets and growth retardation. This short review considers the control of Pi balance by vitamin D, PTH and Pi itself, with an emphasis on the insights gained from human genetic disorders and genetically modified mouse models.
Collapse
Affiliation(s)
- Grégory Jacquillet
- Centre for Nephrology, University College London (UCL), Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK
| | - Robert J Unwin
- Centre for Nephrology, University College London (UCL), Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK.
- AstraZeneca IMED ECD CVRM R&D, Gothenburg, Sweden.
| |
Collapse
|
8
|
Michigami T, Kawai M, Yamazaki M, Ozono K. Phosphate as a Signaling Molecule and Its Sensing Mechanism. Physiol Rev 2018; 98:2317-2348. [DOI: 10.1152/physrev.00022.2017] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In mammals, phosphate balance is maintained by influx and efflux via the intestines, kidneys, bone, and soft tissue, which involves multiple sodium/phosphate (Na+/Pi) cotransporters, as well as regulation by several hormones. Alterations in the levels of extracellular phosphate exert effects on both skeletal and extra-skeletal tissues, and accumulating evidence has suggested that phosphate itself evokes signal transduction to regulate gene expression and cell behavior. Several in vitro studies have demonstrated that an elevation in extracellular Piactivates fibroblast growth factor receptor, Raf/MEK (mitogen-activated protein kinase/ERK kinase)/ERK (extracellular signal-regulated kinase) pathway and Akt pathway, which might involve the type III Na+/Picotransporter PiT-1. Excessive phosphate loading can lead to various harmful effects by accelerating ectopic calcification, enhancing oxidative stress, and dysregulating signal transduction. The responsiveness of mammalian cells to altered extracellular phosphate levels suggests that they may sense and adapt to phosphate availability, although the precise mechanism for phosphate sensing in mammals remains unclear. Unicellular organisms, such as bacteria and yeast, use some types of Pitransporters and other molecules, such as kinases, to sense the environmental Piavailability. Multicellular animals may need to integrate signals from various organs to sense the phosphate levels as a whole organism, similarly to higher plants. Clarification of the phosphate-sensing mechanism in humans may lead to the development of new therapeutic strategies to prevent and treat diseases caused by phosphate imbalance.
Collapse
Affiliation(s)
- Toshimi Michigami
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masanobu Kawai
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Miwa Yamazaki
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Keiichi Ozono
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Maintaining phosphate homeostasis is essential and any deviation can lead to several acute and chronic disease states. To maintain normal physiological levels, phosphate needs to be tightly regulated. This is achieved through a complex relationship of organ cross-talk via hormonal regulation of the type II sodium-dependent phosphate co-transporters. This editorial provides evidence of the importance of intestinal NPT2b in health and chronic kidney disease (CKD). RECENT FINDINGS The advent of the different Npt2b knockout mice has increased our understanding of how the intestinal phosphate co-transporter contributes to the regulation of systemic phosphate. In addition, these studies have suggested that Npt2b may participate in the phosphate-sensing machinery important for organ cross-talk. Studies using Drosophila have expanded our knowledge of phosphate sensing mechanisms and may provide a foundation for delineating these pathways in humans. Several preclinical studies using different agents to modulate Npt2b, and clinical studies using nicotinamide, have provided evidence that Npt2b is a viable therapeutic target for the management of hyperphosphatemia. SUMMARY Over the last couple of years, new experimental approaches have increased our understanding of the important role of Npt2b in maintaining phosphate homeostasis. In addition, several clinical studies have associated the detrimental effects of elevated phosphate with cardiovascular events, and decreased lifespan. Although several key questions about intestinal phosphate transport remain to be answered, it is clear that the intestine is an important player, with current evidence suggesting that it is a prime target for regulating phosphate uptake and improving health outcomes in CKD.
Collapse
|
10
|
Scanni R, vonRotz M, Jehle S, Hulter HN, Krapf R. The human response to acute enteral and parenteral phosphate loads. J Am Soc Nephrol 2014; 25:2730-9. [PMID: 24854273 DOI: 10.1681/asn.2013101076] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The human response to acute phosphate (PO4) loading is poorly characterized, and it is unknown whether an intestinal phosphate sensor mechanism exists. Here, we characterized the human mineral and endocrine response to parenteral and duodenal acute phosphate loads. Healthy human participants underwent 36 hours of intravenous (IV; 1.15 [low dose] and 2.30 [high dose] mmol of PO4/kg per 24 hours) or duodenal (1.53 mmol of PO4/kg per 24 hours) neutral sodium PO4 loading. Control experiments used equimolar NaCl loads. Maximum PO4 urinary excretory responses occurred between 12 and 24 hours and were similar for low-dose IV and duodenal infusion. Hyperphosphatemic responses were also temporally and quantitatively similar for low-dose IV and duodenal PO4 infusion. Fractional renal PO4 clearance increased approximately 6-fold (high-dose IV group) and 4-fold (low-dose IV and duodenal groups), and significant reductions in plasma PO4 concentrations relative to peak values occurred by 36 hours, despite persistent PO4 loading. After cessation of loading, frank hypophosphatemia occurred. The earliest phosphaturic response occurred after plasma PO4 and parathyroid hormone concentrations increased. Plasma fibroblast growth factor-23 concentration increased after the onset of phosphaturia, followed by a decrease in plasma 1,25(OH)2D levels; α-Klotho levels did not change. Contrary to results in rodents, we found no evidence for intestinal-specific phosphaturic control mechanisms in humans. Complete urinary phosphate recovery in the IV loading groups provides evidence against any important extrarenal response to acute PO4 loads.
Collapse
Affiliation(s)
- Roberto Scanni
- Medizinische Universitätsklinik, Kantonsspital Bruderholz, University of Basel, Basel, Switzerland; and
| | - Matthias vonRotz
- Medizinische Universitätsklinik, Kantonsspital Bruderholz, University of Basel, Basel, Switzerland; and
| | - Sigrid Jehle
- Medizinische Universitätsklinik, Kantonsspital Bruderholz, University of Basel, Basel, Switzerland; and
| | - Henry N Hulter
- Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Reto Krapf
- Medizinische Universitätsklinik, Kantonsspital Bruderholz, University of Basel, Basel, Switzerland; and
| |
Collapse
|
11
|
Camalier CE, Yi M, Yu LR, Hood BL, Conrads KA, Lee YJ, Lin Y, Garneys LM, Bouloux GF, Young MR, Veenstra TD, Stephens RM, Colburn NH, Conrads TP, Beck GR. An integrated understanding of the physiological response to elevated extracellular phosphate. J Cell Physiol 2013; 228:1536-50. [PMID: 23280476 DOI: 10.1002/jcp.24312] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 12/11/2012] [Indexed: 12/14/2022]
Abstract
Recent studies have suggested that changes in serum phosphate levels influence pathological states associated with aging such as cancer, bone metabolism, and cardiovascular function, even in individuals with normal renal function. The causes are only beginning to be elucidated but are likely a combination of endocrine, paracrine, autocrine, and cell autonomous effects. We have used an integrated quantitative biology approach, combining transcriptomics and proteomics to define a multi-phase, extracellular phosphate-induced, signaling network in pre-osteoblasts as well as primary human and mouse mesenchymal stromal cells. We identified a rapid mitogenic response stimulated by elevated phosphate that results in the induction of immediate early genes including c-fos. The mechanism of activation requires FGF receptor signaling followed by stimulation of N-Ras and activation of AP-1 and serum response elements. A distinct long-term response also requires FGF receptor signaling and results in N-Ras activation and expression of genes and secretion of proteins involved in matrix regulation, calcification, and angiogenesis. The late response is synergistically enhanced by addition of FGF23 peptide. The intermediate phase results in increased oxidative phosphorylation and ATP production and is necessary for the late response providing a functional link between the phases. Collectively, the results define elevated phosphate, as a mitogen and define specific mechanisms by which phosphate stimulates proliferation and matrix regulation. Our approach provides a comprehensive understanding of the cellular response to elevated extracellular phosphate, functionally connecting temporally coordinated signaling, transcriptional, and metabolic events with changes in long-term cell behavior.
Collapse
Affiliation(s)
- Corinne E Camalier
- Division of Endocrinology, Department of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Differentiated kidney epithelial cells repair injured proximal tubule. Proc Natl Acad Sci U S A 2013; 111:1527-32. [PMID: 24127583 DOI: 10.1073/pnas.1310653110] [Citation(s) in RCA: 350] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Whether kidney proximal tubule harbors a scattered population of epithelial stem cells is a major unsolved question. Lineage-tracing studies, histologic characterization, and ex vivo functional analysis results conflict. To address this controversy, we analyzed the lineage and clonal behavior of fully differentiated proximal tubule epithelial cells after injury. A CreER(T2) cassette was knocked into the sodium-dependent inorganic phosphate transporter SLC34a1 locus, which is expressed only in differentiated proximal tubule. Tamoxifen-dependent recombination was absolutely specific to proximal tubule. Clonal analysis after injury and repair showed that the bulk of labeled cells proliferate after injury with increased clone size after severe compared with mild injury. Injury to labeled proximal tubule epithelia induced expression of CD24, CD133, vimentin, and kidney-injury molecule-1, markers of putative epithelial stem cells in the human kidney. Similar results were observed in cultured proximal tubules, in which labeled clones proliferated and expressed dedifferentiation and injury markers. When mice with completely labeled kidneys were subject to injury and repair there was no dilution of fate marker despite substantial proliferation, indicating that unlabeled progenitors do not contribute to kidney repair. During nephrogenesis and early kidney growth, single proximal tubule clones expanded, suggesting that differentiated cells also contribute to tubule elongation. These findings provide no evidence for an intratubular stem-cell population, but rather indicate that terminally differentiated epithelia reexpress apparent stem-cell markers during injury-induced dedifferentiation and repair.
Collapse
|
13
|
Kobos R, Nagai M, Tsuda M, Merl MY, Saito T, Laé M, Mo Q, Olshen A, Lianoglou S, Leslie C, Ostrovnaya I, Antczak C, Djaballah H, Ladanyi M. Combining integrated genomics and functional genomics to dissect the biology of a cancer-associated, aberrant transcription factor, the ASPSCR1-TFE3 fusion oncoprotein. J Pathol 2013; 229:743-754. [PMID: 23288701 DOI: 10.1002/path.4158] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 12/07/2012] [Accepted: 12/13/2012] [Indexed: 12/30/2022]
Abstract
Oncogenic rearrangements of the TFE3 transcription factor gene are found in two distinct human cancers. These include ASPSCR1-TFE3 in all cases of alveolar soft part sarcoma (ASPS) and ASPSCR1-TFE3, PRCC-TFE3, SFPQ-TFE3 and others in a subset of paediatric and adult RCCs. Here we examined the functional properties of the ASPSCR1-TFE3 fusion oncoprotein, defined its target promoters on a genome-wide basis and performed a high-throughput RNA interference screen to identify which of its transcriptional targets contribute to cancer cell proliferation. We first confirmed that ASPSCR1-TFE3 has a predominantly nuclear localization and functions as a stronger transactivator than native TFE3. Genome-wide location analysis performed on the FU-UR-1 cell line, which expresses endogenous ASPSCR1-TFE3, identified 2193 genes bound by ASPSCR1-TFE3. Integration of these data with expression profiles of ASPS tumour samples and inducible cell lines expressing ASPSCR1-TFE3 defined a subset of 332 genes as putative up-regulated direct targets of ASPSCR1-TFE3, including MET (a previously known target gene) and 64 genes as down-regulated targets of ASPSCR1-TFE3. As validation of this approach to identify genuine ASPSCR1-TFE3 target genes, two up-regulated genes bound by ASPSCR1-TFE3, CYP17A1 and UPP1, were shown by multiple lines of evidence to be direct, endogenous targets of transactivation by ASPSCR1-TFE3. As the results indicated that ASPSCR1-TFE3 functions predominantly as a strong transcriptional activator, we hypothesized that a subset of its up-regulated direct targets mediate its oncogenic properties. We therefore chose 130 of these up-regulated direct target genes to study in high-throughput RNAi screens, using FU-UR-1 cells. In addition to MET, we provide evidence that 11 other ASPSCR1-TFE3 target genes contribute to the growth of ASPSCR1-TFE3-positive cells. Our data suggest new therapeutic possibilities for cancers driven by TFE3 fusions. More generally, this work establishes a combined integrated genomics/functional genomics strategy to dissect the biology of oncogenic, chimeric transcription factors.
Collapse
Affiliation(s)
- Rachel Kobos
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Makoto Nagai
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Masumi Tsuda
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Man Yee Merl
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Tsuyoshi Saito
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Marick Laé
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Qianxing Mo
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Adam Olshen
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Steven Lianoglou
- Computational Biology Program, Sloan-Kettering Institute, New York, USA
| | - Christina Leslie
- Computational Biology Program, Sloan-Kettering Institute, New York, USA
| | - Irina Ostrovnaya
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Christophe Antczak
- High-throughput Screening Core Facility, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Hakim Djaballah
- High-throughput Screening Core Facility, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Marc Ladanyi
- Department of Pathology and Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, USA
| |
Collapse
|
14
|
Forster I, Hernando N, Sorribas V, Werner A. Phosphate transporters in renal, gastrointestinal, and other tissues. Adv Chronic Kidney Dis 2011; 18:63-76. [PMID: 21406290 DOI: 10.1053/j.ackd.2011.01.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 01/17/2011] [Accepted: 01/18/2011] [Indexed: 11/11/2022]
Abstract
Inorganic phosphate (Pi) is essential for all living organisms. Bound to organic molecules, Pi fulfills structural, metabolic, and signaling tasks. Therefore, cell growth and maintenance depends on efficient transport of Pi across cellular membranes into the intracellular space. Uptake of Pi requires energy because the substrate is transported against its electrochemical gradient. Till recently, 2 major families of physiologically relevant Pi-specific transporters have been identified: the solute carrier families Slc34 and Slc20. Interestingly, phylogenetic links can be detected between prokaryotic and eukaryotic transporters in both families. Because less complex model organisms are often instrumental in establishing paradigms for protein function in human beings, a brief assessment of Slc34 and Slc20 phylogeny is of interest.
Collapse
|
15
|
Bergwitz C, Jüppner H. Phosphate sensing. Adv Chronic Kidney Dis 2011; 18:132-44. [PMID: 21406298 PMCID: PMC3059779 DOI: 10.1053/j.ackd.2011.01.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 01/10/2011] [Accepted: 01/17/2011] [Indexed: 02/07/2023]
Abstract
Human phosphate homeostasis is regulated at the level of intestinal absorption of phosphate from the diet, release of phosphate through bone resorption, and renal phosphate excretion, and involves the actions of parathyroid hormone, 1,25-dihydroxy-vitamin D, and fibroblast growth factor 23 to maintain circulating phosphate levels within a narrow normal range, which is essential for numerous cellular functions, for the growth of tissues and for bone mineralization. Prokaryotic and single cellular eukaryotic organisms such as bacteria and yeast "sense" ambient phosphate with a multi-protein complex located in their plasma membrane, which modulates the expression of genes important for phosphate uptake and metabolism (pho pathway). Database searches based on amino acid sequence conservation alone have been unable to identify metazoan orthologs of the bacterial and yeast phosphate sensors. Thus, little is known about how human and other metazoan cells sense inorganic phosphate to regulate the effects of phosphate on cell metabolism ("metabolic" sensing) or to regulate the levels of extracellular phosphate through feedback system(s) ("endocrine" sensing). Whether the "metabolic" and the "endocrine" sensor use the same or different signal transduction cascades is unknown. This article will review the bacterial and yeast phosphate sensors, and then discuss what is currently known about the metabolic and endocrine effects of phosphate in multicellular organisms and human beings.
Collapse
Affiliation(s)
- Clemens Bergwitz
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
16
|
Khoshniat S, Bourgine A, Julien M, Weiss P, Guicheux J, Beck L. The emergence of phosphate as a specific signaling molecule in bone and other cell types in mammals. Cell Mol Life Sci 2011; 68:205-18. [PMID: 20848155 PMCID: PMC11114507 DOI: 10.1007/s00018-010-0527-z] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 08/02/2010] [Accepted: 08/31/2010] [Indexed: 02/07/2023]
Abstract
Although considerable advances in our understanding of the mechanisms of phosphate homeostasis and skeleton mineralization have recently been made, little is known about the initial events involving the detection of changes in the phosphate serum concentrations and the subsequent downstream regulation cascade. Recent data has strengthened a long-established hypothesis that a phosphate-sensing mechanism may be present in various organs. Such a phosphate sensor would detect changes in serum or local phosphate concentration and would inform the body, the local environment, or the individual cell. This suggests that phosphate in itself could represent a signal regulating multiple factors necessary for diverse biological processes such as bone or vascular calcification. This review summarizes findings supporting the possibility that phosphate represents a signaling molecule, particularly in bone and cartilage, but also in other tissues. The involvement of various signaling pathways (ERK1/2), transcription factors (Fra-1, Runx2) and phosphate transporters (PiT1, PiT2) is discussed.
Collapse
Affiliation(s)
- Solmaz Khoshniat
- Group STEP (Skeletal Tissue Engineering and Physiopathology), Centre for Osteoarticular and Dental Tissue Engineering (LIOAD), INSERM, U791, 44042 Nantes, France
- UFR Odontologie, Pres UNAM, 44042 Nantes, France
| | - Annabelle Bourgine
- Group STEP (Skeletal Tissue Engineering and Physiopathology), Centre for Osteoarticular and Dental Tissue Engineering (LIOAD), INSERM, U791, 44042 Nantes, France
- UFR Odontologie, Pres UNAM, 44042 Nantes, France
| | - Marion Julien
- Group STEP (Skeletal Tissue Engineering and Physiopathology), Centre for Osteoarticular and Dental Tissue Engineering (LIOAD), INSERM, U791, 44042 Nantes, France
- UFR Odontologie, Pres UNAM, 44042 Nantes, France
| | - Pierre Weiss
- Group STEP (Skeletal Tissue Engineering and Physiopathology), Centre for Osteoarticular and Dental Tissue Engineering (LIOAD), INSERM, U791, 44042 Nantes, France
- UFR Odontologie, Pres UNAM, 44042 Nantes, France
| | - Jérôme Guicheux
- Group STEP (Skeletal Tissue Engineering and Physiopathology), Centre for Osteoarticular and Dental Tissue Engineering (LIOAD), INSERM, U791, 44042 Nantes, France
- UFR Odontologie, Pres UNAM, 44042 Nantes, France
| | - Laurent Beck
- Growth and Signalling Research Center, INSERM, U845, 75015 Paris, France
- Faculté de Médecine, Centre de Recherche, INSERM U845, Université Paris Descartes, 156 Rue de Vaugirard, 75015 Paris, France
| |
Collapse
|
17
|
Biber J, Hernando N, Forster I, Murer H. Regulation of phosphate transport in proximal tubules. Pflugers Arch 2008; 458:39-52. [PMID: 18758808 DOI: 10.1007/s00424-008-0580-8] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 08/13/2008] [Indexed: 12/13/2022]
Abstract
Homeostasis of inorganic phosphate (P(i)) is primarily an affair of the kidneys. Reabsorption of the bulk of filtered P(i) occurs along the renal proximal tubule and is initiated by apically localized Na(+)-dependent P(i) cotransporters. Tubular P(i) reabsorption and therefore renal excretion of P(i) is controlled by a number of hormones, including phosphatonins, and metabolic factors. In most cases, regulation of P(i) reabsorption is achieved by changing the apical abundance of Na(+)/Pi cotransporters. The regulatory mechanisms involve various signaling pathways and a number of proteins that interact with Na(+)/P(i) cotransporters.
Collapse
Affiliation(s)
- J Biber
- Institute of Physiology and Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland.
| | | | | | | |
Collapse
|
18
|
Overexpression of cyclin D1, D3, and p21 in an infantile renal carcinoma with Xp11.2 TFE3-gene fusion. Pathol Res Pract 2008; 204:589-97. [DOI: 10.1016/j.prp.2008.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 11/29/2007] [Accepted: 01/22/2008] [Indexed: 11/18/2022]
|
19
|
Medendorp K, van Groningen JJM, Schepens M, Vreede L, Thijssen J, Schoenmakers EFPM, van den Hurk WH, Geurts van Kessel A, Kuiper RP. Molecular mechanisms underlying the MiT translocation subgroup of renal cell carcinomas. Cytogenet Genome Res 2007; 118:157-65. [PMID: 18000366 DOI: 10.1159/000108296] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Accepted: 01/04/2007] [Indexed: 01/28/2023] Open
Abstract
Renal cell carcinomas (RCCs) represent a heterogeneous group of neoplasms, which differ in histological, pathologic and clinical characteristics. The tumors originate from different locations within the nephron and are accompanied by different recurrent (cyto)genetic anomalies. Recently, a novel subgroup of RCCs has been defined, i.e., the MiT translocation subgroup of RCCs. These tumors originate from the proximal tubule of the nephron, exhibit pleomorphic histological features including clear cell morphologies and papillary structures, and are found predominantly in children and young adults. In addition, these tumors are characterized by the occurrence of recurrent chromosomal translocations, which result in disruption and fusion of either the TFE3 or TFEB genes, both members of the MiT family of basic helix-loop-helix/leucine-zipper transcription factor genes. Hence the name MiT translocation subgroup of RCCs. In this review several features of this RCC subgroup will be discussed, including the molecular mechanisms that may underlie their development.
Collapse
Affiliation(s)
- K Medendorp
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Rosenberg T, Shachaf C, Tzukerman M, Skorecki K. A murine transgenic model for transcriptional regulation of the Na/Pi-IIa major renal phosphate cotransporter. Am J Physiol Renal Physiol 2007; 292:F1617-25. [PMID: 17287201 DOI: 10.1152/ajprenal.00412.2006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Levels of the type IIa Na/P(i) (Na/Pi-IIa) cotransporter, which serves as the principal mediator of phosphate reabsorption in the kidney, can be modulated through posttranscriptional or posttranslational mechanisms by dietary, hormonal, and pharmacological influences. Previous studies have not demonstrated clear-cut evidence for modulation of Na/Pi-IIa cotransporter levels through transcriptional mechanisms. We have previously demonstrated that a 4.7-kb rat genomic fragment upstream of the rodent Npt2 gene encoding the Na/Pi-IIa cotransporter, is sufficient to mediate its transcriptional activity in vitro (Shachaf C, Skorecki KL, Tzukerman M. Am J Physiol Renal Physiol 278: F406-F416, 2000). Accordingly, we have established an in vivo experimental model in which this Npt2 genomic fragment fused upstream of a Lac Z reporter gene was expressed as a transgene in mice. The nine independent transgenic founder lines generated exhibited Lac Z reporter gene expression specifically in the renal cortex. This renal cortical-specific expression driven by the Npt2 promoter was confirmed at the mRNA and protein levels using RT-PCR, histochemistry, and Lac Z enzymatic activity. Furthermore, the expression of the transgene correlated with expression of the endogenous Npt2 gene during embryonic and early postnatal development. Thus we have generated a transgenic mouse model which will enable in vivo investigation of the contribution of transcriptional mechanisms to the overall regulation of Na/Pi-IIa expression under physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Tzur Rosenberg
- Rambam Medical Center, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | |
Collapse
|
21
|
Naviglio S, Spina A, Chiosi E, Fusco A, Illiano F, Pagano M, Romano M, Senatore G, Sorrentino A, Sorvillo L, Illiano G. Inorganic phosphate inhibits growth of human osteosarcoma U2OS cells via adenylate cyclase/cAMP pathway. J Cell Biochem 2006; 98:1584-96. [PMID: 16552724 DOI: 10.1002/jcb.20892] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In order to elucidate how phosphate regulates cellular functions, we investigated the effects of inorganic phosphate (Pi) on adenylate cyclase (AC)/cyclic AMP (cAMP) axis. Here we describe that Pi treatment of human osteosarcoma U2OS cells results in a decrease of both intracellular cAMP levels and AC activity, and in a cell growth inhibition. The phosphate-triggered effects observed in U2OS cells are not a widespread phenomenon regarding all cell lines, since other cell lines screened respond differently to parallel Pi treatments. In U2OS cell line, the AC activity/cAMP downregulation is accompanied by significant variations in the levels of some membrane proteins belonging to the AC system. Remarkably, the above effects are blunted by pharmacological inhibition of sodium-dependent phosphate transport. Moreover, 8-Br-cAMP and other cAMP-elevating agents, such as IBMX and forskolin, interestingly, prevent the cell growth inhibition in response to phosphate. Our results enforce the increasing evidences of phosphate as a signaling molecule, identifying in U2OS cell line the AC/cAMP axis, as a novel-signaling pathway modulated by phosphate to ultimately affect cell growth.
Collapse
Affiliation(s)
- Silvio Naviglio
- Department of Biochemistry and Biophysics, Second University of Naples, Medical School, 80138 Naples, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Takeda E, Taketani Y, Nashiki K, Nomoto M, Shuto E, Sawada N, Yamamoto H, Isshiki M. A novel function of phosphate-mediated intracellular signal transduction pathways. ACTA ACUST UNITED AC 2006; 46:154-61. [PMID: 16846635 DOI: 10.1016/j.advenzreg.2006.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Eiji Takeda
- Department of Clinical Nutrition, Institute of Health Biosciences, the University of Tokuhsima Graduate School, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Conrads KA, Yi M, Simpson KA, Lucas DA, Camalier CE, Yu LR, Veenstra TD, Stephens RM, Conrads TP, Beck GR. A Combined Proteome and Microarray Investigation of Inorganic Phosphate-induced Pre-osteoblast Cells. Mol Cell Proteomics 2005; 4:1284-96. [PMID: 15958391 DOI: 10.1074/mcp.m500082-mcp200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inorganic phosphate, which is generated during osteoblast differentiation and mineralization, has recently been identified as an important signaling molecule capable of altering signal transduction pathways and gene expression. A large scale quantitative proteomic investigation of pre-osteoblasts stimulated with inorganic phosphate for 24 h resulted in the identification of 2501 proteins, of which 410 (16%) had an altered abundance ratio of greater than or equal to 1.75-fold, either up or down, revealing both novel and previously defined osteoblast-regulated proteins. A pathway/function analysis of these proteins revealed an increase in cell cycle and proliferation that was subsequently verified by conventional biochemical means. To further analyze the mechanisms by which inorganic phosphate regulates cellular protein levels, we undertook a mRNA microarray analysis of pre-osteoblast cells at 18, 21, and 24 h after inorganic phosphate exposure. Comparison of the mRNA microarray data with the 24-hour quantitative proteomic data resulted in a generally weak overall correlation; the 21-hour RNA sample showed the highest correlation to the proteomic data. However, an analysis of osteoblast relevant proteins revealed a much higher correlation at all time points. A comparison of the microarray and proteomic datasets allowed for the identification of a number of candidate proteins that are post-transcriptionally regulated by elevated inorganic phosphate, including Fra-1, a member of the activator protein-1 family of transcription factors. The analysis of the data presented here not only sheds new light on the important roles of inorganic phosphate in osteoblast function but also begins to address the contribution of post-transcriptional and post-translational regulation to a cell's expressed proteome. The ability to accurately measure changes in both protein abundance and mRNA levels on a system-wide scale represents a novel means to extract data from previously one-dimensional datasets.
Collapse
Affiliation(s)
- Kelly A Conrads
- Laboratory of Cancer Prevention, Center for Cancer Research, SAIC-Frederick, Inc., National Cancer Institute, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ito M, Sakai Y, Furumoto M, Segawa H, Haito S, Yamanaka S, Nakamura R, Kuwahata M, Miyamoto KI. Vitamin D and phosphate regulate fibroblast growth factor-23 in K-562 cells. Am J Physiol Endocrinol Metab 2005; 288:E1101-9. [PMID: 15671080 DOI: 10.1152/ajpendo.00502.2004] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fibroblast growth factor-23 (FGF-23) has been recently identified as playing an important pathophysiological role in phosphate homeostasis and vitamin D metabolism. To elucidate the precise physiological regulation of FGF-23, we characterized the mouse FGF-23 5'-flanking region and analyzed its promoter activity. The 5'-flanking region of the mouse FGF-23 gene contained a TFIID site (TATA box) and several putative transcription factor binding sites, including MZF1, GATA-1 and c-Ets-1 motifs, but it did not contain the typical sequences of the vitamin D response element. Plasmids encoding 554-bp (pGL/-0.6), 364-bp (pGL/-0.4) and 200-bp (pGL/-0.13) promoter regions containing the TFIID element and +1-bp fragments drove the downstream expression of a luciferase reporter gene in transfection assays. We also found that FGF-23 mRNA was expressed in K-562 erythroleukemia cell lines but not in MC3T3-E1, Raji, or Hep G2 human carcinoma cells. Treatment with 1,25-dihydroxyvitamin D3 in the presence of high phosphate markedly stimulated pGL/-0.6 activity, but calcium had no effect. In addition, the plasma FGF-23 levels were affected by the dietary and plasma inorganic phosphate concentrations. Finally, the levels of plasma FGF-23 in vitamin D receptor-null mice were significantly lower than in wild-type mice. The presents study demonstrated that vitamin D and the plasma phosphate level are important regulators of the transcription of the mouse FGF-23 gene.
Collapse
Affiliation(s)
- Mikiko Ito
- Department of Molecular Nutrition, Institute of Health Biosciences, The Univ. of Tokushima Graduate School, Kuramoto-cho 3-18-15, Tokushima, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Xu L, Dixit MP, Chen R, Dixit NM, Collins JF, Ghishan FK. Effects of angiotensin II on NaPi-IIa co-transporter expression and activity in rat renal cortex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1667:114-21. [PMID: 15581846 DOI: 10.1016/j.bbamem.2004.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2004] [Revised: 09/07/2004] [Accepted: 09/14/2004] [Indexed: 11/20/2022]
Abstract
The kidney plays a major role in reabsorption of phosphate with the majority occurring in the proximal tubule (PT). The type IIa sodium-phosphate co-transporter (NaPi-IIa) is the main player in PT. The purpose of current study was to determine the effect of angiotensin II (A-II) on membrane expression of NaPi-IIa in the rat renal cortex. A-II (500 ng/kg/min) was chronically infused into the Sprague-Dawley rats by miniosmotic pump for 7 days. The arterial pressure and circulating plasma A-II level along with urine output were markedly increased in A-II rats. There was diuresis but no natriuresis. The phosphate excretion increased sevenfold on day 4 and 5.7-fold on day 7. There was no change in Na-dependent Pi uptake in brush-border membrane (BBM) vesicles between A-II-treated group and control on day 4, however, there was a 43% increase on day 7. Western blot analysis of NaPi-IIa protein abundance showed a parallel pattern: no change after 4 days of treatment and a 48% increase after 7 days of treatment. However, Northern blot analysis of cortical RNA showed no change in NaPi-IIa mRNA abundance on day 7. A-II stimulation of Na/Pi co-transport activity is a result of increases in the expression of BBM NaPi-IIa protein level and that stimulation is most likely mediated by posttranscriptional mechanisms.
Collapse
Affiliation(s)
- Liping Xu
- Department of Pediatrics, Steele Memorial Children's Research Center, University of Arizona Health Sciences Center, 1501 N. Campbell Avenue, Tucson, AZ 85724, USA
| | | | | | | | | | | |
Collapse
|
26
|
Miyamoto KI, Segawa H, Ito M, Kuwahata M. Physiological regulation of renal sodium-dependent phosphate cotransporters. ACTA ACUST UNITED AC 2005; 54:93-102. [PMID: 15182416 DOI: 10.2170/jjphysiol.54.93] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The physiological regulation of renal Pi reabsorption is mediated by renal type II Na/Pi cotransporters (type IIa and type IIc). The type IIa transporter is regulated, among other factors, by dietary Pi intake and parathyroid hormone (PTH). The PTH-induced inhibition of Pi reabsorption is mediated by endocytosis of the type IIa transporter from the brush-border membrane and subsequent lysosomal degradation. Type IIa is part of the heteromeric protein complexes organized by PDZ proteins. Furthermore, during Pi depletion the type IIc Na/Pi cotransporter is induced in the apical membrane of proximal tubular cells. The type IIc transporter is also regulated by PTH via internalization, but by a vesicular transport pathway distinct from that used by the type IIc transporter. Studying the mechanisms of type IIa and type IIc transporters has increased the understanding of the control of proximal tubular Pi handling and thus of overall Pi homeostasis.
Collapse
Affiliation(s)
- Ken-ichi Miyamoto
- Nutritional Science, Department of Nutrition, School of Medicine, Tokushima University, Tokushima, 770-8503 Japan.
| | | | | | | |
Collapse
|
27
|
Segawa H, Kaneko I, Yamanaka S, Ito M, Kuwahata M, Inoue Y, Kato S, Miyamoto KI. Intestinal Na-Pi cotransporter adaptation to dietary Pi content in vitamin D receptor null mice. Am J Physiol Renal Physiol 2004; 287:F39-47. [PMID: 14996670 DOI: 10.1152/ajprenal.00375.2003] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent studies suggest that vitamin D may play a role in intestinal Na+-dependent phosphate transport adaptation to variable levels of dietary Pi. Therefore, the goal of the current study was to assess Na+-dependent Pi cotransport activity in transgenic mice to determine whether vitamin D is an essential mediator of this process. Intestinal brush-border membrane (BBM), Na+-dependent Pi cotransport activity was significantly decreased in vitamin D receptor (VDR) null [VDR (−/−)] mice compared with wild-type (VDR+/+) mice. While intestinal Na-Pi cotransporter (type IIb) mRNA levels were similar in VDR (−/−) and VDR (+/+) mice, type IIb Na-Pi cotransporter protein expression was markedly suppressed in VDR (−/−) mice compared with VDR (+/+) mice. Furthermore, Na-Pi cotransport activity in renal BBM was similar in VDR (−/−) and VDR (+/+) mice, but type IIa Na-Pi cotransporter protein expression was decreased in VDR (−/−) mice. After administration of a low-Pi diet, type IIb protein expression was significantly increased in VDR (+/+) and VDR (−/−) mice, and type IIb protein expression was present in the intestinal BBM of VDR (−/−) mice. These data demonstrate that intestinal Na-Pi cotransport adaptation to a low-Pi diet occurs independently of vitamin D.
Collapse
Affiliation(s)
- Hiroko Segawa
- Department of Nutrition, School of Medicine, Tokushima University, Kuramoto-cho 3, Tokushima City 770-8503, Japan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Sugiura SH, Ferraris RP. Dietary phosphorus-responsive genes in the intestine, pyloric ceca, and kidney of rainbow trout. Am J Physiol Regul Integr Comp Physiol 2004; 287:R541-50. [PMID: 15166007 DOI: 10.1152/ajpregu.00225.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Identification of phosphorus (P)-responsive genes is important in diagnosing the adequacy of dietary P intake well before clinical symptoms arise. The mRNA abundance of selected genes was determined in the intestine, pyloric ceca, and kidney of rainbow trout fed low-P (LP) or sufficient-P (SP) diet for 2, 5, and 20 days. The LP-to-SP ratio (LP/SP) of mRNA abundance was used to evaluate the difference in gene expression between LP and SP fish, and to compare the response with bone and serum P, which are conventional indicators of P status. The LP/SP of intestinal, cecal, and renal type II sodium-phosphate cotransporter (NaPi-II) mRNA abundance changed from approximately 1-2 (day 2) to approximately 1.4-4 (day 5) and to approximately 2-10 (day 20). The LP/SP of renal NaPi-II, vitamin D 24-hydroxylase, and vitamin D receptor mRNA abundance correlated inversely with serum P on day 5 but not on day 2 and day 20. In another study, differentially expressed genes between LP and SP fish were examined by subtractive hybridization, confirmed by Northern blot, and evaluated by t-test and correlation with serum and bone P concentrations. About 30 genes were identified as dietary P responsive at day 20, including intestinal meprin and cysteinesulfinic acid decarboxylase, renal S100 calcium-binding protein and mitochondrial P(i) carrier, and cecal apolipoprotein E, somatomedin B-related protein, and NaPi-II. The LP/SP of mRNA abundance of renal mitochondrial P(i) carrier and intestinal cysteinesulfinic acid decarboxylase changed significantly by day 2, and intestinal meprin by day 5. Hence, these genes and NaPi-II are among the earliest steady-response genes capable of predicting P deficiency well before the onset of clinical deficiency.
Collapse
Affiliation(s)
- Shozo H Sugiura
- Department of Pharmacology and Physiology, UMDNJ-New Jersey Medical School, 185 S. Orange Ave., Newark, NJ 07101-1709, USA
| | | |
Collapse
|
29
|
Madjdpour C, Bacic D, Kaissling B, Murer H, Biber J. Segment-specific expression of sodium-phosphate cotransporters NaPi-IIa and -IIc and interacting proteins in mouse renal proximal tubules. Pflugers Arch 2004; 448:402-10. [PMID: 15007650 DOI: 10.1007/s00424-004-1253-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Accepted: 02/10/2004] [Indexed: 10/26/2022]
Abstract
Sodium-dependent phosphate cotransport in renal proximal tubules (PTs) is heterogeneous with respect to proximal tubular segmentation (S1 vs. S3) and nephron generation (superficial vs. juxtamedullary). In the present study, S1 and S3 segments of superficial and juxtamedullary nephrons were laser-microdissected and mRNA and protein expression of the Na/Pi-cotransporters NaPi-IIa and NaPi-IIc and the PDZ proteins NHERF-1 and PDZK1 determined. Expression of NaPi-IIa mRNA decreased axially in juxtamedullary nephrons. There was no effect of dietary Pi content on NaPi-lla mRNA expression in any proximal tubular segment. The abundance of the NaPi-IIa cotransporter in the brush-border membrane showed inter- and intranephron heterogeneity and increased in response to a low-Pi diet (5 days), suggesting that up-regulation of NaPi-lla occurs via post-transcriptional mechanisms. In contrast, NaPi-IIc mRNA and protein was up-regulated by the low-Pi diet in all nephron generations analysed. NHERF-1 and PDZK1, at both mRNA and protein levels, were distributed evenly along the PTs and did not change after a low-Pi diet.
Collapse
Affiliation(s)
- C Madjdpour
- Institute of Anatomy, University of Zurich, 8057, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
30
|
Argani P, Lal P, Hutchinson B, Lui MY, Reuter VE, Ladanyi M. Aberrant nuclear immunoreactivity for TFE3 in neoplasms with TFE3 gene fusions: a sensitive and specific immunohistochemical assay. Am J Surg Pathol 2003; 27:750-61. [PMID: 12766578 DOI: 10.1097/00000478-200306000-00005] [Citation(s) in RCA: 417] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We report the aberrantly strong nuclear immunoreactivity for the C-terminal portion of TFE3 protein in tumors characterized by chromosome translocations involving the TFE3 gene at Xp11.2. This group of tumors includes alveolar soft part sarcoma and a specific subset of renal carcinomas that tend to affect young patients. They contain fusion genes that encode chimeric proteins consisting of the N-terminal portion of different translocation partners fused to the C-terminal portion of TFE3. We postulated that expression of these fusion proteins may be dysregulated in these specific tumors and detectable by immunohistochemistry. We performed immunohistochemistry using a polyclonal antibody to the C-terminal portion of TFE3 in 40 formalin-fixed, paraffin-embedded tumors characterized by TFE3 gene fusions, including 19 alveolar soft part sarcoma (of which nine were molecularly confirmed) and 21 renal carcinomas with cytogenetically confirmed characteristic Xp11.2 translocations and/or fusion transcripts involving TFE3 (11 PRCC-TFE3, 7 ASPL-TFE3, 3 PSF-TFE3). We also screened 1476 other tumors of 64 histologic types from 16 sites for TFE3 immunoreactivity using tissue microarrays and evaluated a broad range of normal tissues. Thirty-nine of 40 neoplasms characterized by TFE3 gene fusions (19 of 19 alveolar soft part sarcoma, 20 of 21 renal carcinomas) demonstrated moderate or strong nuclear TFE3 immunoreactivity. In contrast, only 6 of 1476 other neoplasms labeled for TFE3 (sensitivity 97.5%, specificity 99.6%). Nuclear immunoreactivity in normal tissues was extremely rare. We then applied this assay to a set of 11 pediatric renal carcinomas for which only paraffin-embedded tissue was available, to assess if morphologic features could predict TFE3 immunoreactivity. Of the eight cases in which we suspected that a TFE3 gene rearrangement might be present based on morphology, seven scored positive for nuclear TFE3 labeling. Of the three tumors whose morphology did not suggest the presence of a TFE3 gene fusion, none showed nuclear TFE3 labeling. In summary, we find that nuclear immunoreactivity for TFE3 protein by routine immunohistochemistry is a highly sensitive and specific assay for neoplasms bearing TFE3 gene fusions. Furthermore, the finding in our set of test cases (i.e., that morphologic features can be used to predict TFE3 immunoreactivity) further supports the notion that renal carcinomas with TFE3 gene fusions have a distinctive morphology that corresponds to their genetic distinctiveness. Carcinomas associated with TFE3 gene fusions may account for a significant proportion of pediatric renal carcinomas, and this immunohistochemistry assay may help to clarify their true prevalence.
Collapse
Affiliation(s)
- Pedram Argani
- Department of Pathology, John Hopkins Medical Institutions, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
31
|
Ohkido I, Segawa H, Yanagida R, Nakamura M, Miyamoto K. Cloning, gene structure and dietary regulation of the type-IIc Na/Pi cotransporter in the mouse kidney. Pflugers Arch 2003; 446:106-15. [PMID: 12690469 DOI: 10.1007/s00424-003-1010-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2002] [Accepted: 12/20/2002] [Indexed: 10/22/2022]
Abstract
We have demonstrated previously that the type-IIc Na/Pi cotransporter is a growth-related renal Na/Pi cotransporter that is highly expressed in kidney of the weaning rat. In the present study, we investigated type-IIc Na/Pi cotransporter function further by cloning the mouse gene and characterizing the corresponding protein. The mouse type-IIc transporter amino acid sequence shows a high degree of similarity to the human (86%) and rat (95%) type-IIc Na/Pi-cotransporters. The mouse gene contained 14 exons and mapped to chromosome 2. The DNA sequence upstream from exon 1 is GC rich. The upstream region does not contain an apparent TATA box, but does contain two dietary Pi-responsive elements, which are potential binding sites for the transcription factor micro E3 (TFE3). Microinjection of mouse type-IIc cRNA into Xenopus oocytes demonstrated sodium-dependent Pi cotransport activity. The affinity for Pi was about 200 microM in 100 mM Na. Feeding adult mice fed a low-Pi diet increased the expression of type-IIc protein in the apical membrane of renal proximal tubular cells. Hybrid depletion studies suggested that the type-IIc transporter contributes to about 30% of Na/Pi cotransport in the kidney of adult mice fed a low-Pi diet. The present study suggests that the type-IIc Na/Pi cotransporter is a functional of renal Pi transporter in adult mice fed a low-Pi diet.
Collapse
Affiliation(s)
- I Ohkido
- Department of Nutrition, School of Medicine, Tokushima University, Kuramoto-cho 3, 770-850, Tokushima City, Japan
| | | | | | | | | |
Collapse
|
32
|
Moz Y, Silver J, Naveh-Many T. Characterization of cis-acting element in renal NaPi-2 cotransporter mRNA that determines mRNA stability. Am J Physiol Renal Physiol 2003; 284:F663-70. [PMID: 12475748 DOI: 10.1152/ajprenal.00332.2002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypophosphatemia leads to an increase in Na(+)-P(i) cotransporter (NaPi-2) mRNA levels. This increase is posttranscriptional and correlates with a more stable transcript mediated by the terminal 698 nt of the NaPi-2 mRNA. A 71-nt binding element was identified with renal proteins from rats fed control and low-P(i) (-P(i)) diet. The binding of -P(i) renal proteins to this transcript was increased compared with control proteins. The functionality of the cis element was demonstrated by an in vitro degradation assay. -P(i) renal proteins stabilized transcripts that included the cis element compared with control renal extracts. The full-length NaPi-2 transcript, but not control transcripts, was stabilized by -P(i) extracts. Insertion of the binding element into green fluorescent protein (GFP) as a reporter gene decreased chimeric GFP mRNA levels in transfection experiments. Our results suggest that the protein-binding region of the NaPi-2 mRNA functions as a cis-acting instability element. In hypophosphatemia there is increased binding to the cis-acting element and subsequent stabilization of NaPi-2 mRNA.
Collapse
Affiliation(s)
- Yulia Moz
- Minerva Center for Calcium and Bone Metabolism, Nephrology Services, Hadassah University Hospital, Jerusalem, Israel 91120
| | | | | |
Collapse
|
33
|
Wada K, Mizuno M, Komori T, Tamura M. Extracellular inorganic phosphate regulates Gibbon ape leukemia virus receptor-2/phosphate transporter mRNA expression in rat bone marrow stromal cells. J Cell Physiol 2003; 198:40-7. [PMID: 14584042 DOI: 10.1002/jcp.10383] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In mammalian cells, several observations indicate not only that phosphate transport probably regulates local inorganic phosphate (Pi) concentration, but also that Pi affects normal cellular metabolism, which in turn regulates apoptosis and the process of mineralization. To elucidate how extracellular Pi regulates cellular functions of pre-osteoblastic cells, we investigated the expression of type III sodium (Na)-dependent Pi transporters in rat bone marrow stromal cells and ROB-C26 pre-osteoblastic cells. The mRNA expression level of gibbon ape leukemia virus receptor (Glvr)-2 was increased by the addition of Pi in rat bone marrow stromal cells, but not in ROB-C26 or normal rat kidney (NRK) cells. In contrast, the level of Glvr-1 mRNA was not altered by the addition of extracellular Pi in these cells. The induction of Glvr-2 mRNA by Pi was inhibited in the presence of cycloheximide (CHX). Moreover, mitogen-activated protein kinase (MEK) /extracellular-signal-regulated kinase (ERK) pathway inhibitors; U0126 (1.4-diamino-2, 3-dicyano-1, 4-bis [2-amino-phenylthio] butadiene) and PD98059 (2'-Amino-3'-methoxyflavone) inhibited inducible Glvr-2 mRNA expression, but p38 MEK inhibitor SB203580 [4-(4'-fluorophenyl)-2-(4'-methyl-sulfinylphenyl)-5-(4'pyridyl) imidazole] did not inhibit the induction of Glvr-2 mRNA expression, suggesting that extracellular Pi regulates de novo protein synthesis and MEK/ERK activity in rat bone marrow stromal cells, and through these, induction of Glvr-2 mRNA. Although Pi also induced osteopontin mRNA expression in rat bone marrow stromal cells but not in ROB-C26 and NRK cells, changes in cell viability with the addition of Pi were similar in both cell types. These data indicate that extracellular Pi regulates Glvr-2 mRNA expression, provide insights into possible mechanisms whereby Pi may regulate protein phosphorylation, and suggest a potential role for the Pi transporter in rat bone marrow stromal cells.
Collapse
Affiliation(s)
- Keinoshin Wada
- Division of Oral and Maxillofacial Surgery, Department of Organ Therapeutics, Graduate School of Medicine, Kobe University, Kobe, Japan
| | | | | | | |
Collapse
|
34
|
Argani P, Antonescu CR, Couturier J, Fournet JC, Sciot R, Debiec-Rychter M, Hutchinson B, Reuter VE, Boccon-Gibod L, Timmons C, Hafez N, Ladanyi M. PRCC-TFE3 renal carcinomas: morphologic, immunohistochemical, ultrastructural, and molecular analysis of an entity associated with the t(X;1)(p11.2;q21). Am J Surg Pathol 2002; 26:1553-66. [PMID: 12459622 DOI: 10.1097/00000478-200212000-00003] [Citation(s) in RCA: 241] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The reappraisal of genetically defined subsets of renal tumors can help to highlight the key pathologic features of specific neoplastic entities. We report the morphologic, immunophenotypic, ultrastructural, and molecular features of 11 renal carcinomas bearing a t(X;1)(p11.2;q21) and/or the resulting PRCC-TFE3 gene fusion. The male/female ratio was 4:7. Ten patients were in the age range of 9-29 years and one was 64 years old (mean 21.3 years, median 15 years). The predominant histologic pattern was nested, with islands of tumor cells compartmentalized by thin-walled capillary vasculature. Minor variations on this pattern yielded solid, acinar, alveolar, and tubular architecture. Papillary architecture was seen in nine cases, usually as a minor component. Neoplastic cells were typically characterized by irregularly shaped nuclei with vesicular chromatin and small nucleoli not visible with a 10x objective, and cytoplasm that ranged from clear to densely granular and eosinophilic. Mitoses were extremely rare; 5 were found in 900 high power fields examined from the 11 neoplasms. The most distinctive immunohistochemical feature of these neoplasms was moderate to intense nuclear labeling for TFE3 protein. These tumors were also consistently immunoreactive for the RCC antigen (10 of 11) and CD10 (9 of 9), whereas cytokeratin and epithelial membrane antigen were negative in four cases and were positive focally in the others. Ultrastructurally, all of the six neoplasms examined showed features consistent with conventional-type (clear cell) renal carcinoma, although two demonstrated distinctive intracisternal microtubules. Both tumors tested contained PRCC-TFE3 fusion transcripts. The differential diagnosis includes conventional-type papillary renal cell carcinoma, conventional-type (clear cell) renal carcinoma, and the ASPL-TFE3 renal carcinomas associated with the t(X;17)(p11.2;q25), with the latter two being morphologically the most similar to the t(X;1) renal carcinomas. Aside from their distinctive clinicopathologic features described here, there is experimental evidence suggesting that these tumors may show differential sensitivity to certain chemotherapeutic agents.
Collapse
MESH Headings
- Adolescent
- Adult
- Basic Helix-Loop-Helix Leucine Zipper Transcription Factors
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/genetics
- Carcinoma, Renal Cell/chemistry
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/pathology
- Carcinoma, Renal Cell/ultrastructure
- Cell Cycle Proteins
- Child
- Chromosomes, Human, Pair 1
- DNA Primers
- DNA, Neoplasm/analysis
- DNA-Binding Proteins/analysis
- DNA-Binding Proteins/genetics
- Diagnosis, Differential
- Female
- Humans
- Immunohistochemistry
- Karyotyping
- Kidney Neoplasms/chemistry
- Kidney Neoplasms/genetics
- Kidney Neoplasms/pathology
- Kidney Neoplasms/ultrastructure
- Male
- Middle Aged
- Neoplasm Proteins
- Oncogene Proteins, Fusion/analysis
- Oncogene Proteins, Fusion/genetics
- Proteins/analysis
- Proteins/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription Factors/analysis
- Transcription Factors/genetics
Collapse
Affiliation(s)
- Pedram Argani
- Department of Pathology, Surgical Pathology, Johns Hopkins Hospital, Weinberg Building, Room 2242, 401 N Broadway, Baltimore, MD 21231-2410, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Arima K, Hines ER, Kiela PR, Drees JB, Collins JF, Ghishan FK. Glucocorticoid regulation and glycosylation of mouse intestinal type IIb Na-P(i) cotransporter during ontogeny. Am J Physiol Gastrointest Liver Physiol 2002; 283:G426-34. [PMID: 12121891 DOI: 10.1152/ajpgi.00319.2001] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We sought to characterize expression of an apically expressed intestinal Na-P(i) cotransporter (Na-P(i)-IIb) during mouse ontogeny and to assess the effects of methylprednisolone (MP) treatment. In control mice, Na-P(i) uptake by intestinal brush-border membrane vesicles was highest at 14 days of age, lower at 21 days, and further reduced at 8 wk and 8-9 mo of age. Na-P(i)-IIb mRNA and immunoreactive protein levels in 14-day-old animals were markedly higher than in older groups. MP treatment significantly decreased Na-P(i) uptake and Na-P(i)-IIb mRNA and protein expression in 14-day-old mice. Additionally, the size of the protein was smaller in 14-day-old mice. Deglycosylation of protein from 14-day-old and 8-wk-old animals with peptide N-glycosidase reduced the molecular weight to the predicted size. We conclude that intestinal Na-P(i) uptake and Na-P(i)-IIb expression are highest at 14 days and decrease with age. Furthermore, MP treatment reduced intestinal Na-P(i) uptake approximately threefold in 14-day-old mice and this reduction correlates with reduced Na-P(i)-IIb mRNA and protein expression. We also demonstrate that Na-P(i)-IIb is an N-linked glycoprotein and that glycosylation is age dependent.
Collapse
Affiliation(s)
- Kayo Arima
- Department of Pediatrics, Steele Memorial Children's Research Center, University of Arizona Health Sciences Center, Tucson 85724, USA
| | | | | | | | | | | |
Collapse
|
36
|
Zhang MYH, Wang X, Wang JT, Compagnone NA, Mellon SH, Olson JL, Tenenhouse HS, Miller WL, Portale AA. Dietary phosphorus transcriptionally regulates 25-hydroxyvitamin D-1alpha-hydroxylase gene expression in the proximal renal tubule. Endocrinology 2002; 143:587-95. [PMID: 11796514 DOI: 10.1210/endo.143.2.8627] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Synthesis of the hormone 1,25-dihydroxyvitamin D, the biologically active form of vitamin D, occurs in the kidney and is catalyzed by the mitochondrial cytochrome P450 enzyme, 25-hydroxyvitamin D-1alpha-hydroxylase (1alpha-hydroxylase). We sought to characterize the effects of changes in dietary phosphorus on the kinetics of renal mitochondrial 1alpha-hydroxylase activity and the renal expression of P450c1alpha and P450c24 mRNA, to localize the nephron segments involved in such regulation, and to determine whether transcriptional mechanisms are involved. In intact mice, restriction of dietary phosphorus induced rapid, sustained, approximately 6- to 8-fold increases in renal mitochondrial 1alpha-hydroxylase activity and renal P450c1alpha mRNA abundance. Immunohistochemical analysis of renal sections from mice fed the control diet revealed the expression of 1alpha-hydroxylase protein in the proximal convoluted and straight tubules, epithelial cells of Bowman's capsule, thick ascending limb of Henle's loop, distal tubule, and collecting duct. In mice fed a phosphorus-restricted diet, immunoreactivity was significantly increased in the proximal convoluted and proximal straight tubules and epithelial cells of Bowman's capsule, but not in the distal nephron. Dietary phosphorus restriction induced a 2-fold increase in P450c1alpha gene transcription, as shown by nuclear run-on assays. Thus, the increase in renal synthesis of 1,25-dihydroxyvitamin D induced in normal mice by restricting dietary phosphorus can be attributed to an increase in the renal abundance of P450c1alpha mRNA and protein. The increase in P450c1alpha gene expression, which occurs exclusively in the proximal renal tubule, is due at least in part to increased transcription of the P450c1alpha gene.
Collapse
Affiliation(s)
- Martin Y H Zhang
- Department of Pediatrics, University of California, San Francisco, California 94143, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Morishita K, Shirai A, Kubota M, Katakura Y, Nabeshima Y, Takeshige K, Kamiya T. The progression of aging in klotho mutant mice can be modified by dietary phosphorus and zinc. J Nutr 2001; 131:3182-8. [PMID: 11739863 DOI: 10.1093/jn/131.12.3182] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Reduction in klotho gene expression causes accelerated senescence in klotho mutant mice. We have now found two key substances, phosphorus and zinc, which affect the appearance of klotho phenotypes. Klotho mutant homozygotes fed nonpurified diet with a phosphorus concentration of 1.03 g/100 g showed typical klotho phenotypes. However, most of the klotho phenotypes no longer appeared in male homozygotes fed a 0.4 g/100 g phosphorus diet. These homozygotes were capable of spermatogenesis. In the kidneys of the rescued male homozygotes, klotho protein expression was clearly detected. On the other hand, female klotho mice required supplementation of 0.25 g/100 g zinc orotate to the 0.4 g/100 g phosphorus diet to be rescued. Unlike in the rescued male mice, klotho protein levels in the kidneys of the rescued females were quite low. Wild-type (C3H/He) mice fed 1.5 or 1.0 g/100 g phosphorus diets had lower klotho protein expression in the kidneys than those fed a 0.4 g/100 g phosphorus diet (Kruskal-Wallis test, P < 0.05). These results indicate that dietary phosphorus and zinc modulate the phenotypes of klotho mice, and that klotho expression in the kidneys is regulated not only in klotho mutant mice, but also in wild-type mice.
Collapse
Affiliation(s)
- K Morishita
- Tsukuba Research Laboratories, Kyowa Hakko Kogyo Company Limited, Tsukuba-shi, Ibaraki 305-0841, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Soumounou Y, Gauthier C, Tenenhouse HS. Murine and human type I Na-phosphate cotransporter genes: structure and promoter activity. Am J Physiol Renal Physiol 2001; 281:F1082-91. [PMID: 11704559 DOI: 10.1152/ajprenal.0092.2001] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Na-phosphate (P(i)) cotransporters in the apical membrane of renal proximal tubular cells play a major role in the maintenance of P(i) homeostasis. Although two such cotransporters, Npt1 and Npt2, have been identified, little is known about the function and regulation of Npt1. We cloned and characterized the murine (Npt1) and human (NPT1) genes, isolated the 5'-flanking region of Npt1, and analyzed its promoter activity. Npt1 is approximately 29 kb with 12 exons, whereas NPT1 is approximately 49 kb with one additional exon. The Npt1 promoter has a TATA-like box but no CAAT box, and the transcription start site was identified by primer extension and 5'-rapid amplification of cDNA ends. Transfection of opossum kidney cells with Npt1 promoter-reporter gene constructs demonstrated significant activity in a 570-bp fragment that was completely inhibited by cotransfection with the transcription factor, hepatocyte nuclear factor (HNF)-3 beta. Deletion of 200 bp from the 3'-end of the 570-bp fragment abrogated its promoter activity. In addition, promoter activity of a 4.5-kb fragment, but not the 570-bp fragment, was stimulated fourfold by cotransfection with HNF-1 alpha. Other well-characterized cis-acting elements were identified in the Npt1 promoter. We suggest that Npt1 expression is transcriptionally regulated and provide a basis for the investigation of Npt1 function by targeted mutagenesis.
Collapse
Affiliation(s)
- Y Soumounou
- McGill University-Montreal Children's Hospital Research Institute, McGill University, Montreal, Quebec, Canada H3Z 2Z3
| | | | | |
Collapse
|
39
|
Abstract
Dietary phosphate (Pi) is an important regulator for renal Pi reabsorption. The type II sodium-dependent phosphate (Na/Pi) cotransporters (NPT2) are located at the apical membranes of renal proximal tubular cells and major functional transporters associated with renal Pi reabsorption. The yeast one-hybrid system was used to clone a transcription factor that binds to a specific sequence (Pi response element) in the promoter of the NPT2 gene. Two cDNA clones that encoded protein of the mouse transcription factor mu E3 (TFE3) were isolated. TFE3 may participate in the transcriptional regulation of the NPT2 gene by dietary Pi.
Collapse
Affiliation(s)
- K I Miyamoto
- Department of Nutritional Science, School of Medicine, Tokushima University, Tokushima City,
| | | |
Collapse
|
40
|
Tenenhouse HS, Martel J, Gauthier C, Zhang MY, Portale AA. Renal expression of the sodium/phosphate cotransporter gene, Npt2, is not required for regulation of renal 1 alpha-hydroxylase by phosphate. Endocrinology 2001; 142:1124-9. [PMID: 11181527 DOI: 10.1210/endo.142.3.8029] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Several reports have suggested that the regulation of renal 1,25-dihydroxyvitamin D [1,25-(OH)(2)D] synthesis by extracellular phosphate (Pi) is dependent on normal transepithelial Pi transport by the renal tubule. Mice homozygous for the disrupted Na/Pi cotransporter gene Npt2 (Npt2(-/-)) exhibit renal Pi wasting, an approximately 85% decrease in renal brush border membrane Na/Pi cotransport, hypophosphatemia, and an increase in serum 1,25-(OH)(2)D concentration. We undertook 1) to determine the mechanism for the increased circulating levels of 1,25-(OH)(2)D in Npt2(-/-) mice and 2) to establish whether renal 1alpha-hydroxylase was appropriately regulated by dietary Pi in the absence of Npt2 gene expression. On a control diet, the 2.5-fold increase in the serum 1,25-(OH)(2)D concentration in Npt2(-/-) mice, relative to that in Npt2(+/+) littermates, is associated with a corresponding increase in renal mitochondrial 25-hydroxyvitamin D-1 alpha-hydroxylase (1 alpha-hydroxylase) activity and messenger RNA (mRNA) abundance. A low Pi diet elicits an increase in serum 1,25-(OH)(2)D concentration, renal 1alpha-hydroxylase activity, and mRNA abundance in Npt2(+/+) and Npt2(-/-) mice to similar levels in both mouse strains. A high Pi diet has no effect on serum 1,25-(OH)(2)D concentration, renal 1 alpha-hydroxylase activity, or mRNA abundance in Npt2(+/+) mice, but normalizes these parameters in Npt2(-/-) mice. In addition, renal 24-hydroxylase mRNA abundance is significantly reduced in Npt2(-/-) mice compared with that in Npt2(+/+) mice under all dietary conditions. In summary, we demonstrate that 1) increased renal synthesis of 1,25-(OH)(2)D is responsible for the increased serum 1,25-(OH)(2)D concentration in Npt2(-/-) mice; and 2) renal 1alpha-hydroxylase gene expression is appropriately regulated by dietary manipulation of serum Pi in both Npt2(+/+) and Npt2(-/-) mice. Thus, intact renal Na/Pi cotransport is not required for the regulation of renal 1alpha-hydroxylase by Pi.
Collapse
Affiliation(s)
- H S Tenenhouse
- Department of Pediatrics, McGill University-Montreal Children's Hospital Research Institute, Montréal, Québec, Canada H3H 1P3.
| | | | | | | | | |
Collapse
|
41
|
Abstract
Membrane transport systems for P(i) transport are key elements in maintaining homeostasis of P(i) in organisms as diverse as bacteria and human. Two Na-P(i) cotransporter families with well-described functional properties in vertebrates, namely NaPi-II and NaPi-III, show conserved structural features with prokaryotic origin. A clear vertical relationship can be established among the mammalian protein family NaPi-III, a homologous system in C. elegans, the yeast system Pho89, and the bacterial P(i) transporter Pit. An alternative lineage connects the mammalian NaPi-II-related transporters with homologous proteins from Caenorhabditis elegans and Vibrio cholerae. The present review focuses on the molecular evolution of the NaPi-II protein family. Preliminary results indicate that the NaPi-II homologue cloned from V. cholerae is indeed a functional P(i) transporter when expressed in Xenopus oocytes. The closely related NaPi-II isoforms NaPi-IIa and NaPi-IIb are responsible for regulated epithelial Na-dependent P(i) transport in all vertebrates. Most species express two different NaPi-II proteins with the exception of the flounder and Xenopus laevis, which rely on only a single isoform. Using an RT-PCR-based approach with degenerate primers, we were able to identify NaPi-II-related mRNAs in a variety of vertebrates from different families. We hypothesize that the original NaPi-IIb-related gene was duplicated early in vertebrate development. The appearance of NaPi-IIa correlates with the development of the mammalian nephron.
Collapse
Affiliation(s)
- A Werner
- Department of Physiological Sciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, United Kingdom.
| | | |
Collapse
|
42
|
Ogawa N, DeRisi J, Brown PO. New components of a system for phosphate accumulation and polyphosphate metabolism in Saccharomyces cerevisiae revealed by genomic expression analysis. Mol Biol Cell 2000; 11:4309-21. [PMID: 11102525 PMCID: PMC15074 DOI: 10.1091/mbc.11.12.4309] [Citation(s) in RCA: 368] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The PHO regulatory pathway is involved in the acquisition of phosphate (P(i)) in the yeast Saccharomyces cerevisiae. When extracellular P(i) concentrations are low, several genes are transcriptionally induced by this pathway, which includes the Pho4 transcriptional activator, the Pho80-Pho85 cyclin-CDK pair, and the Pho81 CDK inhibitor. In an attempt to identify all the components regulated by this system, a whole-genome DNA microarray analysis was employed, and 22 PHO-regulated genes were identified. The promoter regions of 21 of these genes contained at least one copy of a sequence that matched the Pho4 recognition site. Eight of these genes, PHM1-PHM8, had no previously defined function in phosphate metabolism. The amino acid sequences of PHM1 (YFL004w), PHM2 (YPL019c), PHM3 (YJL012c), and PHM4 (YER072w) are 32-56% identical. The phm3 and phm4 single mutants and the phm1 phm2 double mutant were each severely deficient in accumulation of inorganic polyphosphate (polyP) and P(i). The phenotype of the phm5 mutant suggests that PHM5 (YDR452w) is essential for normal catabolism of polyP in the yeast vacuole. Taken together, the results reveal important new features of a genetic system that plays a critical role in P(i) acquisition and polyP metabolism in yeast.
Collapse
Affiliation(s)
- N Ogawa
- Department of Biochemistry, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305-5307, USA
| | | | | |
Collapse
|
43
|
Murer H, Hernando N, Forster I, Biber J. Proximal tubular phosphate reabsorption: molecular mechanisms. Physiol Rev 2000; 80:1373-409. [PMID: 11015617 DOI: 10.1152/physrev.2000.80.4.1373] [Citation(s) in RCA: 390] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Renal proximal tubular reabsorption of P(i) is a key element in overall P(i) homeostasis, and it involves a secondary active P(i) transport mechanism. Among the molecularly identified sodium-phosphate (Na/P(i)) cotransport systems a brush-border membrane type IIa Na-P(i) cotransporter is the key player in proximal tubular P(i) reabsorption. Physiological and pathophysiological alterations in renal P(i) reabsorption are related to altered brush-border membrane expression/content of the type IIa Na-P(i) cotransporter. Complex membrane retrieval/insertion mechanisms are involved in modulating transporter content in the brush-border membrane. In a tissue culture model (OK cells) expressing intrinsically the type IIa Na-P(i) cotransporter, the cellular cascades involved in "physiological/pathophysiological" control of P(i) reabsorption have been explored. As this cell model offers a "proximal tubular" environment, it is useful for characterization (in heterologous expression studies) of the cellular/molecular requirements for transport regulation. Finally, the oocyte expression system has permitted a thorough characterization of the transport characteristics and of structure/function relationships. Thus the cloning of the type IIa Na-P(i )cotransporter (in 1993) provided the tools to study renal brush-border membrane Na-P(i) cotransport function/regulation at the cellular/molecular level as well as at the organ level and led to an understanding of cellular mechanisms involved in control of proximal tubular P(i) handling and, thus, of overall P(i) homeostasis.
Collapse
Affiliation(s)
- H Murer
- Institute of Physiology, University of Zürich, Zürich, Switzerland.
| | | | | | | |
Collapse
|
44
|
Takeda E, Taketani Y, Morita K, Tatsumi S, Katai K, Nii T, Yamamoto H, Miyamoto K. Molecular mechanisms of mammalian inorganic phosphate homeostasis. ADVANCES IN ENZYME REGULATION 2000; 40:285-302. [PMID: 10828356 DOI: 10.1016/s0065-2571(99)00036-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- E Takeda
- Department of Clinical Nutrition, School of Medicine, The University of Tokushima, Kuramoto-cho 3, 770-8503, Tokushima, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Zhao N, Tenenhouse HS. Npt2 gene disruption confers resistance to the inhibitory action of parathyroid hormone on renal sodium-phosphate cotransport. Endocrinology 2000; 141:2159-65. [PMID: 10830304 DOI: 10.1210/endo.141.6.7484] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PTH inhibition of renal sodium-phosphate (Na-Pi) cotransport is associated with the endocytic retrieval of the type II Na-Pi cotransporter, Npt2, from the renal brush border membrane into the late endosomal/lysosomal compartment. The aim of the present study was to determine whether mice homozygous for the disrupted Npt2 gene (Npt2-/-) exhibit decreased renal Pi reabsorption in response to PTH. We demonstrate that PTH has no effect on the serum Pi concentration, fractional excretion of Pi, or Na-dependent Pi transport in renal brush border membrane vesicles in Npt2-/- mice. In contrast, PTH elicits a fall in the serum Pi concentration, an increase in urinary Pi excretion, a decrease in brush border membrane Na-Pi cotransport, and a corresponding reduction in the relative abundance of Npt2 protein in wild-type mice (Npt2+/+). Both Npt2-/- and Npt2+/+ mice exhibit a significant rise in the urinary cAMP/creatinine ratio in response to PTH, indicating that generalized resistance to PTH cannot account for the absence of the PTH response in Npt2-/- mice. In addition, we demonstrate that Pi-depleted normal mice respond to PTH with a decrease in renal brush border membrane Na-Pi cotransport and Npt2 protein, indicating that Pi deficiency per se does not account for PTH resistance in Npt2-/- mice. Taken together, our data provide compelling evidence that Npt2 gene expression is crucial for PTH effects on renal Pi handling.
Collapse
Affiliation(s)
- N Zhao
- Department of Pediatrics, McGill University-Montréal Children's Hospital Research Institute, Québec, Canada
| | | |
Collapse
|