1
|
Tong H, Capuano AW, Carmichael OT, Gwizdala KL, Bennett DA, Ahima RS, Arnold SE, Arvanitakis Z. Brain Insulin Signaling is Associated with Late-Life Cognitive Decline. Aging Dis 2024; 15:2205-2215. [PMID: 38029396 PMCID: PMC11346412 DOI: 10.14336/ad.2023.1117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023] Open
Abstract
Type-2 diabetes is associated with an increased risk of dementia, and the underlying mechanism might involve abnormal insulin signaling in the brain. The objective of this study was to examine the association of postmortem brain insulin signaling with late-life cognitive decline. Among participants of Religious Orders Study, a community-based clinical-pathological cohort, 150 deceased and autopsied older individuals (75 with diabetes matched to 75 without by age at death, sex, and education) had postmortem brain insulin signaling measurements collected in the prefrontal cortex using ELISA and immunohistochemistry. By using adjusted linear mixed-effects models, we examined the association of postmortem brain insulin signaling with late-life cognitive function assessed longitudinally (mean follow-up duration = 9.4 years) using a battery of neuropsychological tests. We found that a higher level of serine/threonine-protein kinase (AKT) phosphorylation (pT308AKT1/total AKT1) was associated with a faster decline in global cognition (estimate = -0.023, p = 0.030), and three domains: episodic memory (estimate = -0.024, p = 0.032), working memory (estimate = -0.018, p = 0.012), and visuospatial abilities (estimate = -0.013, p = 0.027). The level of insulin receptor substrate-1 (IRS1) phosphorylation (pS307IRS1/total IRS1) was not associated with decline in global cognition or most cognitive domains, except for perceptual speed (estimate = 0.020, p = 0.020). The density of pS616IRS1-stained cells was not associated with decline in global cognition or any of the domains. In conclusion, these findings provide novel evidence for an association between brain insulin signaling and late-life cognitive decline. AKT phosphorylation is associated with a decline in global cognition and memory in particular, whereas IRS1 phosphorylation is associated with a decline in perceptual speed.
Collapse
Affiliation(s)
- Han Tong
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA.
| | - Ana W. Capuano
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA.
| | | | | | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA.
| | - Rexford S. Ahima
- Division of Endocrinology, Diabetes, & Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Steven E. Arnold
- Alzheimer's Clinical and Translational Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Zoe Arvanitakis
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
2
|
Bai G, Chen J, Liu Y, Chen J, Yan H, You J, Zou T. Neonatal resveratrol administration promotes skeletal muscle growth and insulin sensitivity in intrauterine growth-retarded suckling piglets associated with activation of FGF21-AMPKα pathway. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3719-3728. [PMID: 38160249 DOI: 10.1002/jsfa.13256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Skeletal muscle is a major insulin-sensitive tissue with a pivotal role in modulating glucose homeostasis. This study aimed to investigate the effect of resveratrol (RES) intervention during the suckling period on skeletal muscle growth and insulin sensitivity of neonates with intrauterine growth retardation (IUGR) in a pig model. RESULTS Twelve pairs of normal birth weight (NBW) and IUGR neonatal male piglets were selected. The NBW and IUGR piglets were fed basal formula milk diet or identical diet supplemented with 0.1% RES from 7 to 21 days of age. Myofiber growth and differentiation, inflammation and insulin sensitivity in skeletal muscle were assessed. Early RES intervention promoted myofiber growth and maturity in IUGR piglets by ameliorating the myogenesis process and increasing thyroid hormone level. Administering RES also reduced triglyceride concentration in skeletal muscle of IUGR piglets, along with decreased inflammatory response, increased plasma fibroblast growth factor 21 (FGF21) concentration and improved insulin signaling. Meanwhile, the improvement of insulin sensitivity by RES may be partly regulated by activation of the FGF21/AMP-activated protein kinase α/sirtuin 1/peroxisome proliferator activated receptor-γ coactivator-1α pathway. CONCLUSION Our results suggest that RES has beneficial effects in promoting myofiber growth and maturity and increasing skeletal muscle insulin sensitivity in IUGR piglets, which open a novel field of application of RES in IUGR infants for improving postnatal metabolic adaptation. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guangyi Bai
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Jinyong Chen
- Medical College, Huanghe Science and Technology University, Zhengzhou, China
| | - Yue Liu
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Jun Chen
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Honglin Yan
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Jinming You
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Tiande Zou
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
3
|
Ahmed M, Biswas T, Mondal S. The strategic involvement of IRS in cancer progression. Biochem Biophys Res Commun 2023; 680:141-160. [PMID: 37738904 DOI: 10.1016/j.bbrc.2023.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
Insulin Receptor Substrate (IRS), an intracellular molecule devoid of an intrinsic kinase activity, is activated upon binding to IR which thereby works as a scaffold, organizing all signaling complexes and initiating the signaling process downstream. The level of IRS proteins and their stability in the cell is mostly maintained through the phosphorylation status of their tyrosine and serine residues. IRS is positively regulated by phosphorylation of its Tyr residues whereas a Ser residue phosphorylation attenuates it, although there exist some exceptions as well. Other post-translational modifications like O-linked glycosylation, N-linked glycosylation and acetylation also play a prominent role in IRS regulation. Since the discovery of the Warburg effect, people have been curious to find out all possible signaling networks and molecules that could lead to cancer and no doubt, the insulin signaling pathway is identified as one such pathway, which is highly deregulated in cancers. Eminent studies reveal that IRS is a pertinent regulator of cancer and is highly overexpressed in the five most commonly occurring cancers namely- Prostate, Ovarian, Breast, Colon and Lung cancers. IRS1 and IRS2 family members are actively involved in the progression, invasion and metastasis of these cancers. Recently, less studied IRS4 has also emerged as a contributor in ovarian, breast, colorectal and lung cancer, but no such studies related to IRS4 are found in Prostate cancer. The involvement of other IRS family members in cancer is still undiscovered and so paves the way for further exploration. This review is a time-lapse study of IRSs in the context of cancer done over the past two decades and it highlights all the major discoveries made till date, in these cancers from the perspective of IRS.
Collapse
Affiliation(s)
- Mehnaz Ahmed
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - Tannishtha Biswas
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - Susmita Mondal
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India.
| |
Collapse
|
4
|
Acun AD, Kantar D, Er H, Erkan O, Derin N, Yargıcoglu P. Investigation of Cyclo-Z Therapeutic Effect on Insulin Pathway in Alzheimer's Rat Model: Biochemical and Electrophysiological Parameters. Mol Neurobiol 2023; 60:4030-4048. [PMID: 37020122 DOI: 10.1007/s12035-023-03334-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 03/30/2023] [Indexed: 04/07/2023]
Abstract
Cyclo (his-pro-CHP) plus zinc (Zn+2) (Cyclo-Z) is the only known chemical that increases the production of insulin-degrading enzyme (IDE) and decreases the number of inactive insulin fragments in cells. The aim of the present study was to systematically characterize the effects of Cyclo-Z on the insulin pathway, memory functions, and brain oscillations in the Alzheimer's disease (AD) rat model. The rat model of AD was established by bilateral injection of Aβ42 oligomer (2,5nmol/10μl) into the lateral ventricles. Cyclo-Z (10mg Zn+2/kg and 0.2mg CHP/kg) gavage treatment started seven days after Aβ injection and lasted for 21 days. At the end of the experimental period, memory tests and electrophysiological recordings were performed, which were followed by the biochemical analysis. Aβ42 oligomers led to a significant increase in fasting blood glucose, serum insulin, Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) and phospho-tau-Ser356 levels. Moreover, Aβ42 oligomers caused a significant decrement in body weight, hippocampal insulin, brain insulin receptor substrate (IRS-Ser612), and glycogen synthase kinase-3 beta (GSK-3β) levels. Also, Aβ42 oligomers resulted in a significant reduction in memory. The Cyclo-Z treatment prevented the observed alterations in the ADZ group except for phospho-tau levels and attenuated the increased Aβ42 oligomer levels in the ADZ group. We also found that the Aβ42 oligomer decreased the left temporal spindle and delta power during ketamine anesthesia. Cyclo-Z treatment reversed the Aβ42 oligomer-related alterations in the left temporal spindle power. Cyclo-Z prevents Aβ oligomer-induced changes in the insulin pathway and amyloid toxicity, and may contribute to the improvement of memory deficits and neural network dynamics in this rat model.
Collapse
Affiliation(s)
- Alev Duygu Acun
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Arapsuyu, 07070, Antalya, Turkey.
| | - Deniz Kantar
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Arapsuyu, 07070, Antalya, Turkey
| | - Hakan Er
- Department of Medical Imaging Techniques, Vocational School of Health Services, Akdeniz University, Arapsuyu, 07070, Antalya, Turkey
| | - Orhan Erkan
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Arapsuyu, 07070, Antalya, Turkey
| | - Narin Derin
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Arapsuyu, 07070, Antalya, Turkey
| | - Piraye Yargıcoglu
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Arapsuyu, 07070, Antalya, Turkey
| |
Collapse
|
5
|
Petito G, Giacco A, Cioffi F, Mazzoli A, Magnacca N, Iossa S, Goglia F, Senese R, Lanni A. Short-term fructose feeding alters tissue metabolic pathways by modulating microRNAs expression both in young and adult rats. Front Cell Dev Biol 2023; 11:1101844. [PMID: 36875756 PMCID: PMC9977821 DOI: 10.3389/fcell.2023.1101844] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Dietary high fructose (HFrD) is known as a metabolic disruptor contributing to the development of obesity, diabetes, and dyslipidemia. Children are more sensitive to sugar than adults due to the distinct metabolic profile, therefore it is especially relevant to study the metabolic alterations induced by HFrD and the mechanisms underlying such changes in animal models of different ages. Emerging research suggests the fundamental role of epigenetic factors such as microRNAs (miRNAs) in metabolic tissue injury. In this perspective, the aim of the present study was to investigate the involvement of miR-122-5p, miR-34a-5p, and miR-125b-5p examining the effects induced by fructose overconsumption and to evaluate whether a differential miRNA regulation exists between young and adult animals. We used young rats (30 days) and adult rats (90 days) fed on HFrD for a short period (2 weeks) as animal models. The results indicate that both young and adult rats fed on HFrD exhibit an increase in systemic oxidative stress, the establishment of an inflammatory state, and metabolic perturbations involving the relevant miRNAs and their axes. In the skeletal muscle of adult rats, HFrD impair insulin sensitivity and triglyceride accumulation affecting the miR-122-5p/PTP1B/P-IRS-1(Tyr612) axis. In liver and skeletal muscle, HFrD acts on miR-34a-5p/SIRT-1: AMPK pathway resulting in a decrease of fat oxidation and an increase in fat synthesis. In addition, liver and skeletal muscle of young and adult rats exhibit an imbalance in antioxidant enzyme. Finally, HFrD modulates miR-125b-5p expression levels in liver and white adipose tissue determining modifications in de novo lipogenesis. Therefore, miRNA modulation displays a specific tissue trend indicative of a regulatory network that contributes in targeting genes of various pathways, subsequently yielding extensive effects on cell metabolism.
Collapse
Affiliation(s)
- Giuseppe Petito
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Antonia Giacco
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Federica Cioffi
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Arianna Mazzoli
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Nunzia Magnacca
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Susanna Iossa
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Fernando Goglia
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Rosalba Senese
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Antonia Lanni
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| |
Collapse
|
6
|
Reduced Tyrosine and Serine-632 Phosphorylation of Insulin Receptor Substrate-1 in the Gastrocnemius Muscle of Obese Zucker Rat. Curr Issues Mol Biol 2022; 44:6015-6027. [PMID: 36547071 PMCID: PMC9777198 DOI: 10.3390/cimb44120410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
Obesity has become a serious health problem in the world, with increased morbidity, mortality, and financial burden on patients and health-care providers. The skeletal muscle is the most extensive tissue, severely affected by a sedentary lifestyle, which leads to obesity and type 2 diabetes. Obesity disrupts insulin signaling in the skeletal muscle, resulting in decreased glucose disposal, a condition known as insulin resistance. Although there is a large body of evidence on obesity-induced insulin resistance in various skeletal muscles, the molecular mechanism of insulin resistance due to a disruption in insulin receptor signaling, specifically in the gastrocnemius skeletal muscle of obese Zucker rats (OZRs), is not fully understood. This study subjected OZRs to a glucose tolerance test (GTT) to analyze insulin sensitivity. In addition, immunoprecipitation and immunoblotting techniques were used to determine the expression and tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) and insulin receptor-β (IRβ), and the activation of serine-632-IRS-1 phosphorylation in the gastrocnemius muscle of Zucker rats. The results show that the GTT in the OZRs was impaired. There was a significant decrease in IRS-1 levels, but no change was observed in IRβ in the gastrocnemius muscle of OZRs, compared to Zucker leans. Obese rats had a higher ratio of tyrosine phosphorylation of IRS-1 and IRβ than lean rats. In obese rats, however, insulin was unable to induce tyrosine phosphorylation. Moreover, insulin increased the phosphorylation of serine 632-IRS-1 in the gastrocnemius muscle of lean rats. However, obese rats had a low basal level of serine-632-IRS-1 and insulin only mildly increased serine phosphorylation in obese rats, compared to those without insulin. Thus, we addressed the altered steps of the insulin receptor signal transduction in the gastrocnemius muscle of OZRs. These findings may contribute to a better understanding of human obesity and type 2 diabetes.
Collapse
|
7
|
Lee JC, Kim JM, Joung KH, Kang SM, Kim HJ, Ku BJ. Serum MIG6 concentration is increased by cholesterol-lowering treatment in patients with type 2 diabetes mellitus and hypercholesterolemia. J Int Med Res 2022; 50:3000605221085079. [PMID: 35301888 PMCID: PMC8943322 DOI: 10.1177/03000605221085079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objective The protein encoded by mitogen-inducible gene 6 (MIG6) plays an essential role in the regulation of cholesterol homeostasis and bile acid synthesis in mice. However, the physiological functions of MIG6 remain poorly understood in humans. Therefore, we aimed to evaluate the relationship between the serum MIG6 concentration and low-density lipoprotein (LDL)-cholesterol in patients undergoing cholesterol-lowering treatment. Methods We performed a non-randomized, prospective controlled trial. In total, 63 patients with type 2 diabetes and hypercholesterolemia were treated using either rosuvastatin monotherapy or rosuvastatin/ezetimibe combination therapy for 12 weeks. We then compared their serum lipid and MIG6 concentrations before and after treatment. Results The serum LDL-cholesterol concentration of the participants significantly decreased and the concentration of MIG6 significantly increased during treatment. In addition, higher pre-treatment serum concentrations of MIG6 were associated with larger reductions in LDL-cholesterol, regardless of the therapeutic agent used. Conclusions Serum MIG6 concentration significantly increases alongside the reduction in LDL-cholesterol achieved using cholesterol-lowering therapies in patients with diabetes and hypercholesterolemia. This is the first study to provide evidence that MIG6 may be involved in human cholesterol metabolism. CRIS registration number: KCT0003477. https://cris.nih.go.kr.
Collapse
Affiliation(s)
- Jun Choul Lee
- Department of Internal Medicine, Eulji University School of Medicine, Daejeon 35233, Republic of Korea
| | - Ji Min Kim
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon 35015, Republic of Korea.,Department of Endocrinology, Chungnam National University Sejong Hospital, Sejong 30099, Republic of Korea
| | - Kyong Hye Joung
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon 35015, Republic of Korea.,Department of Endocrinology, Chungnam National University Sejong Hospital, Sejong 30099, Republic of Korea
| | - Seon Mee Kang
- Department of Internal Medicine, Kangwon National University Hospital, Chuncheon 24289, Republic of Korea
| | - Hyun Jin Kim
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon 35015, Republic of Korea
| | - Bon Jeong Ku
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon 35015, Republic of Korea
| |
Collapse
|
8
|
Tomar M, Somvanshi PR, Kareenhalli V. Physiological significance of bistable circuit design in metabolic homeostasis: role of integrated insulin-glucagon signalling network. Mol Biol Rep 2022; 49:5017-5028. [DOI: 10.1007/s11033-022-07175-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/19/2022] [Indexed: 10/19/2022]
|
9
|
Wang Y, Wang D, Chen Y, Fang X, Yu L, Zhang C. A Novel Synthetic Interfering Peptide Tat-3L4F Attenuates Olanzapine-Induced Weight Gain Through Disrupting Crosstalk Between Serotonin Receptor 2C and Protein Phosphatase and Tensin Homolog in Rats. Int J Neuropsychopharmacol 2020; 23:481-490. [PMID: 32710540 PMCID: PMC7689208 DOI: 10.1093/ijnp/pyaa001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/29/2019] [Accepted: 01/15/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Accompanied with profound efficacy, atypical antipsychotics (AAPs) contribute to metabolic adverse effects with few effective strategies to attenuate. Serotonin 5-HT2C receptor (HTR2C) plays a critical role in hyperphagia and weight gain induced by AAPs, and expression of phosphatase tensin homolog (PTEN) in the hypothalamus also affects feeding behavior and weight change. Moreover, PTEN has a physical crosstalk between PTEN and a region in the third intracellular loop (3L4F) of the HTR2C. Tat-3L4F has the property to disrupt crosstalk between PTEN and HTR2C. This is the first study to our knowledge to investigate the effect of Tat-3L4F on olanzapine-induced metabolic abnormalities and PTEN/ phosphatidylinositol 3-kinase/protein kinase B expression in the hypothalamus in rats. METHODS The effects of Tat-3L4F were investigated through measuring body weight, food intake, and blood glucose. In addition, PTEN/phosphatidylinositol 3-kinase/protein kinase B level in the hypothalamus was detected by immunofluorescence assay and western blot. Metabolites in the liver tissue were detected by liquid chromatography-mass spectrometry and analyzed by multivariate analyses and pairwise comparison. RESULTS Our results showed that hyperphagia and weight gain were evident in the olanzapine alone-fed rats but was attenuated after Tat-3L4F treatment. In addition, oral glucose tolerance test indicated blood glucose at 120 minutes was higher in the olanzapine alone-treated group than in groups treated with vehicle and olanzapine + Tat-3L4F (10 μmol kg-1 per day). Furthermore, compared with olanzapine alone treatment, treatment with Tat-3L4F (10 μmol kg-1 per day) significantly inhibited PTEN expression in the hypothalamus. The olanzapine alone-treated group had the highest bile acid level, followed by the olanzapine with Tat-3L4F (1 μmol kg-1) group, olanzapine with Tat-3L4F (10 μmol kg-1) group, and vehicle group. CONCLUSIONS Our present results reveal that Tat-3L4F is a potential pharmacological strategy for suppressing hyperphagia and weight gain induced by olanzapine, which acts through disrupting crosstalk between HTR2C and PTEN as a result of PTEN downregulation in the hypothalamus.
Collapse
Affiliation(s)
- Yewei Wang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China,Innovative Research Team of High-level Local Universities in Shanghai
| | - Dandan Wang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China,Innovative Research Team of High-level Local Universities in Shanghai
| | - Yan Chen
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China,Innovative Research Team of High-level Local Universities in Shanghai
| | - Xinyu Fang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China,Innovative Research Team of High-level Local Universities in Shanghai
| | - Lingfang Yu
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China,Innovative Research Team of High-level Local Universities in Shanghai
| | - Chen Zhang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China,Innovative Research Team of High-level Local Universities in Shanghai,Correspondence: Chen Zhang, MD, PhD, Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China, 600 South Wan Ping Road Shanghai 20030, China ()
| |
Collapse
|
10
|
Okatan EN, Olgar Y, Tuncay E, Turan B. Azoramide improves mitochondrial dysfunction in palmitate-induced insulin resistant H9c2 cells. Mol Cell Biochem 2019; 461:65-72. [PMID: 31327095 DOI: 10.1007/s11010-019-03590-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/13/2019] [Indexed: 12/23/2022]
Abstract
Azoramide is identified as a new compound with the dual properties for the improvement of ER-folding capacity in various cells as well as for the treatment of T2DM. Although the effect of azoramide in glucose-homeostasis in mammalians is not known very well, a limited number of experimental studies showed that it could improve the insulin sensitivity in genetically obese mice. Therefore, here, we aimed to investigate the direct effect of azoramide on insulin signaling in insulin-resistant (IR) cardiomyocytes using IR-modelled ventricular cardiomyocytes. This model was established in H9c2 cells using palmitic acid incubation (50-μM for 24-h). The development of IR in cells was verified by monitoring the cellular 2-DG6P uptake assays in these treated cells. The 2-DG6P uptake was 50% less in the IR-cells compared to the control cells, while azoramide treatment (20-μM for 48-h) could prevent fully that decrease. In addition, azoramide treatment markedly preserved the IR-induced less ATP production and high-ROS production in these IR-cells. Furthermore, this treatment prevented the functional changes in mitochondria characterized by depolarized mitochondrial membrane potential and mitochondrial fusion or fusion-related protein levels as well as cellular ATP level. Moreover, this treatment provided marked protection against IR-associated changes in the insulin signaling pathway in cells, including recovery in the phosphorylation of IRS1 and Akt as well as the protein level of GLUT4 and Akt. Our present results, for the first time, demonstrated that azoramide plays an important protective role in IR-cardiomyocytes, at most, protective action on mitochondria. Therefore, one can suggest that azoramide, as a novel regulator, can provide direct cardioprotection in the IR-heart, at most, via affecting mitochondria and can be a good candidate as a new drug for the treatment of IR-associated cardiovascular disorders in mammalians with systemic IR.
Collapse
Affiliation(s)
- Esma Nur Okatan
- Department of Biophysics, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey
| | - Yusuf Olgar
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Erkan Tuncay
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Belma Turan
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey.
| |
Collapse
|
11
|
Exendin-4 reduces food intake via the PI3K/AKT signaling pathway in the hypothalamus. Sci Rep 2017; 7:6936. [PMID: 28761132 PMCID: PMC5537284 DOI: 10.1038/s41598-017-06951-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/19/2017] [Indexed: 01/04/2023] Open
Abstract
Exendin-4 (EX-4), a glucagon-like peptide-1 (GLP-1) receptor agonist, has been shown to reduce food intake and to increase proopiomelanocortin (POMC) gene expression in the hypothalamus. In this study, we examined the potential neural mechanisms by which these effects occur. Male Sprague Dawley rats were implanted with a cannula in the third ventricle of the brain through which an inhibitor of phosphatidylinositol-3 kinase (PI3K) (wortmannin) was administered, and EX-4 or vehicle was administered via intraperitoneal (IP) injection. The activity of PI3K/protein kinase B (AKT) and insulin receptor substrate-1 (IRS-1) in the hypothalamic arcuate was determined. We found that EX-4 treatment significantly decreased food intake and body weight. However, there were almost no changes in food intake and body weight when wortmannin injection (into the third ventricle) occurred prior to EX-4 IP injection. EX-4 not only increased the activity of PI3K/AKT, but it also increased IRS-1 activity. These results show that EX-4 likely suppresses food intake due to its ability to enhance insulin signaling.
Collapse
|
12
|
Sulaimanov N, Klose M, Busch H, Boerries M. Understanding the mTOR signaling pathway via mathematical modeling. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2017; 9:e1379. [PMID: 28186392 PMCID: PMC5573916 DOI: 10.1002/wsbm.1379] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/09/2016] [Accepted: 12/07/2016] [Indexed: 12/12/2022]
Abstract
The mechanistic target of rapamycin (mTOR) is a central regulatory pathway that integrates a variety of environmental cues to control cellular growth and homeostasis by intricate molecular feedbacks. In spite of extensive knowledge about its components, the molecular understanding of how these function together in space and time remains poor and there is a need for Systems Biology approaches to perform systematic analyses. In this work, we review the recent progress how the combined efforts of mathematical models and quantitative experiments shed new light on our understanding of the mTOR signaling pathway. In particular, we discuss the modeling concepts applied in mTOR signaling, the role of multiple feedbacks and the crosstalk mechanisms of mTOR with other signaling pathways. We also discuss the contribution of principles from information and network theory that have been successfully applied in dissecting design principles of the mTOR signaling network. We finally propose to classify the mTOR models in terms of the time scale and network complexity, and outline the importance of the classification toward the development of highly comprehensive and predictive models. WIREs Syst Biol Med 2017, 9:e1379. doi: 10.1002/wsbm.1379 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Nurgazy Sulaimanov
- Department of Electrical Engineering and Information TechnologyTechnische Universität DarmstadtDarmstadtGermany
- Department of BiologyTechnische Universitat DarmstadtDarmstadtGermany
| | - Martin Klose
- Systems Biology of the Cellular Microenvironment at the DKFZ Partner Site Freiburg ‐ Member of the German Cancer Consortium, Institute of Molecular Medicine and Cell ResearchAlbert‐Ludwigs‐University FreiburgFreiburgGermany and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hauke Busch
- Systems Biology of the Cellular Microenvironment at the DKFZ Partner Site Freiburg ‐ Member of the German Cancer Consortium, Institute of Molecular Medicine and Cell ResearchAlbert‐Ludwigs‐University FreiburgFreiburgGermany and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Melanie Boerries
- Systems Biology of the Cellular Microenvironment at the DKFZ Partner Site Freiburg ‐ Member of the German Cancer Consortium, Institute of Molecular Medicine and Cell ResearchAlbert‐Ludwigs‐University FreiburgFreiburgGermany and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
13
|
Tang N, Li Z, Yang L, Wang Q. ICPMS-Based Specific Quantification of Phosphotyrosine: A Gallium-Tagging and Tyrosine-Phosphatase Mediated Strategy. Anal Chem 2016; 88:9890-9896. [DOI: 10.1021/acs.analchem.6b02979] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Nannan Tang
- Department
of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis
and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhaoxin Li
- Department
of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis
and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Limin Yang
- Department
of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis
and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Qiuquan Wang
- Department
of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis
and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- State
Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
14
|
Dynamic Modeling and Analysis of the Cross-Talk between Insulin/AKT and MAPK/ERK Signaling Pathways. PLoS One 2016; 11:e0149684. [PMID: 26930065 PMCID: PMC4773096 DOI: 10.1371/journal.pone.0149684] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/02/2016] [Indexed: 12/26/2022] Open
Abstract
Feedback loops play a key role in the regulation of the complex interactions in signal transduction networks. By studying the network of interactions among the biomolecules present in signaling pathways at the systems level, it is possible to understand how the biological functions are regulated and how the diseases emerge from their deregulations. This paper identifies the key feedback loops involved in the cross-talk among the insulin-AKT and MAPK/ERK signaling pathways. We developed a mathematical model that can be used to study the steady-state and dynamic behavior of the interactions among these two important signaling pathways. Modeling analysis and simulation case studies identify the key interaction parameters and the feedback loops that determine the normal and disease phenotypes.
Collapse
|
15
|
Xian L, Hou S, Huang Z, Tang A, Shi P, Wang Q, Song A, Jiang S, Lin Z, Guo S, Gao X. Liver-specific deletion of Ppp2cα enhances glucose metabolism and insulin sensitivity. Aging (Albany NY) 2016; 7:223-32. [PMID: 25888638 PMCID: PMC4429087 DOI: 10.18632/aging.100725] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Protein phosphatase 2A (PP2A) is a key negative regulator of phosphatidylinositol 3-kinase/Akt pathway. Previous study showed that, in the liver, the catalytic subunit of PP2A (PP2Ac) is closely associated with insulin resistance syndrome, which is characterized by glucose intolerance and dyslipidemia. Here we studied the role of liver PP2Ac in glucose metabolism and evaluated whether PP2Ac is a suitable therapeutic target for treating insulin resistance syndrome. Liver-specific Ppp2cα knockout mice (Ppp2cαloxp/loxp: Alb) exhibited improved glucose homeostasis compared with littermate controls in both normal and high-fat diet conditions, despite no significant changes in body weight and liver weight under chow diet. Ppp2cαloxp/loxp: Alb mice showed enhanced glycogen deposition, serum triglyceride, cholesterol, low density lipoprotein and high density lipoprotein, activated insulin signaling, decreased expressions of gluconeogenic genes G6P and PEPCK, and lower liver triglyceride. Liver-specific Ppp2cα knockout mice showed enhanced glucose homeostasis and increased insulin sensitivity by activation of insulin signaling through Akt. These findings suggest that inhibition of hepatic Ppp2cα may be a useful strategy for the treatment of insulin resistance syndrome.
Collapse
Affiliation(s)
- Li Xian
- Key Laboratory of Model Animal for Disease Study of Ministry of Education, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Siyuan Hou
- Key Laboratory of Model Animal for Disease Study of Ministry of Education, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Zan Huang
- Key Laboratory of Model Animal for Disease Study of Ministry of Education, Model Animal Research Center, Nanjing University, Nanjing, China
| | - An Tang
- Key Laboratory of Model Animal for Disease Study of Ministry of Education, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Peiliang Shi
- Key Laboratory of Model Animal for Disease Study of Ministry of Education, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Qinghua Wang
- Key Laboratory of Model Animal for Disease Study of Ministry of Education, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Anying Song
- Key Laboratory of Model Animal for Disease Study of Ministry of Education, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Shujun Jiang
- Key Laboratory of Model Animal for Disease Study of Ministry of Education, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Zhaoyu Lin
- Key Laboratory of Model Animal for Disease Study of Ministry of Education, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Shiying Guo
- Key Laboratory of Model Animal for Disease Study of Ministry of Education, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Xiang Gao
- Key Laboratory of Model Animal for Disease Study of Ministry of Education, Model Animal Research Center, Nanjing University, Nanjing, China
| |
Collapse
|
16
|
Ma Y, Gao J, Yin J, Gu L, Liu X, Chen S, Huang Q, Lu H, Yang Y, Zhou H, Wang Y, Peng Y. Identification of a Novel Function of Adipocyte Plasma Membrane-Associated Protein (APMAP) in Gestational Diabetes Mellitus by Proteomic Analysis of Omental Adipose Tissue. J Proteome Res 2016; 15:628-37. [PMID: 26767403 DOI: 10.1021/acs.jproteome.5b01030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Gestational diabetes mellitus (GDM) is considered as an early stage of type 2 diabetes mellitus. In this study, we compared demographic and clinical data between six GDM subjects and six normal glucose tolerance (NGT; healthy controls) subjects and found that homeostasis model of assessment for insulin resistance index (HOMA-IR) increased in GDM. Many previous studies demonstrated that omental adipose tissue dysfunction could induce insulin resistance. Thus, to investigate the cause of insulin resistance in GDM, we used label-free proteomics to identify differentially expressed proteins in omental adipose tissues from GDM and NGT subjects (data are available via ProteomeXchange with identifier PXD003095). A total of 3528 proteins were identified, including 66 significantly changed proteins. Adipocyte plasma membrane-associated protein (APMAP, a.k.a. C20orf3), one of the differentially expressed proteins, was down-regulated in GDM omental adipose tissues. Furthermore, mature 3T3-L1 adipocytes were used to simulate omental adipocytes. The inhibition of APMAP expression by RNAi impaired insulin signaling and activated NFκB signaling in these adipocytes. Our study revealed that the down-regulation of APMAP in omental adipose tissue may play an important role in insulin resistance in the pathophysiology of GDM.
Collapse
Affiliation(s)
| | - Jing Gao
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
| | | | | | - Xing Liu
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
| | | | | | | | | | - Hu Zhou
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
| | | | | |
Collapse
|
17
|
Yoo JY, Kim TH, Kong S, Lee JH, Choi W, Kim KS, Kim HJ, Jeong JW, Ku BJ. Role of Mig-6 in hepatic glucose metabolism. J Diabetes 2016; 8:86-97. [PMID: 25594850 DOI: 10.1111/1753-0407.12261] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 12/03/2014] [Accepted: 12/19/2014] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Mitogen-inducible gene 6 (Mig-6) has an important role in the regulation of cholesterol homeostasis and bile acid synthesis. However, the physiological functions of Mig-6 in the liver remain poorly understood. METHODS To investigate Mig-6 functioning in the liver, we used conditionally ablated Mig-6 using the Albumin-Cre mouse model (Alb(cre/+) Mig-6(f/f) ; Mig-6(d/d) ). Male mice were killed after a 24-h fast and refed after 24 h fasting. Fasting glucose and insulin levels were measured and western blot analyses were performed to determine epidermal growth factor receptor (EGFR), extracellular signal-regulated kinase (ERK) 1/2, AKT, mammalian target of rapamycin (mTOR), c-Jun N-terminal kinase (JNK), and Insulin receptor substrate-1 (IRS-1) in liver tissue samples. In addition, human hepatocellular carcinoma HepG2 cells were transfected with Mig-6 short interference (si) RNA before western blot analysis. RESULTS Serum fasting glucose levels were significantly higher in Mig-6(d/d) versus Mig-6(f/f) mice. On an insulin tolerance test, insulin sensitivity was decreased in Mig-6(d/d) versus Mig-6(f/f) mice. Furthermore, hepatic expression of the glucokinase (Gck), glucose-6-phosphatase (G6pc), and phosphoenolpyruvate carboxykinase 1 (Pck1) genes was decreased significantly in Mig-6(d/d) mice. Phosphorylation of EGFR, ERK1/2, AKT, mTOR, JNK, and IRS-1 was increased in Mig-6(d/d) compared with Mig-6(f/f) mice. CONCLUSION Liver-specific ablation of Mig-6 caused hyperglycemia by hepatic insulin resistance. Increased EGFR signaling following Mig-6 ablation activated JNK and eventually induced insulin resistance by increasing phosphorylation of IRS-1 at serine 307. This is the first report of Mig-6 involvement in hepatic insulin resistance and a new mechanism that explains hepatic insulin resistance.
Collapse
Affiliation(s)
- Jung-Yoon Yoo
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, Michigan, USA
| | - Tae Hoon Kim
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, Michigan, USA
| | - Sieun Kong
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Ju Hee Lee
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Wonseok Choi
- Department of Food Science and Technology, Korea National University of Transportation, Chungju, Korea
| | - Koon Soon Kim
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Hyun Jin Kim
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, Michigan, USA
| | - Bon Jeong Ku
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| |
Collapse
|
18
|
The Interplay of Akt and ERK in Aβ Toxicity and Insulin-Mediated Protection in Primary Hippocampal Cell Culture. J Mol Neurosci 2015; 57:325-34. [PMID: 26266487 DOI: 10.1007/s12031-015-0622-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 07/14/2015] [Indexed: 01/11/2023]
Abstract
It is not known if insulin prevents Aβ-induced cell death, MAPK, and Akt activity in isolated hippocampal cell culture. This study was aimed to explore the effect of insulin on Aβ-induced cell death and ERK and Akt signaling alteration in isolated hippocampal cell culture. Additionally, it was desirable to assess if there is any interaction between these two pathways. The hippocampal cells were derived from fetuses at the embryonic day 18-19. The cells were treated with different drugs, and MTT assay, morphological assessments, and Western blot were done. Insulin prevented Aβ-induced cell death and caspase-3 cleavage. Aβ-induced toxicity was aligned with decrement of the phosphorylated Akt (pAkt) which was prevented by insulin. The PI3 kinase inhibitor, LY294002, decreased pAkt and abolished the protective effect of insulin. Aβ exposure increased phosphorylated ERK (pERK) in parallel with cell death and apoptosis. Insulin-inhibited ERK activation (phosphorylation) induced by Aβ and PD98059 (as ERK inhibitor) did not affect the protective effect of insulin. One of the interesting finding of this study was the interplay of Akt and ERK in Aβ toxicity and insulin-mediated protection; meaning that there is an inverse relation between pERK and pAkt, in a way that PI3-Akt pathway inhibition leads to pERK increment while ERK inhibition causes Akt phosphorylation (activation). This study showed, for the first time, that insulin protects against Aβ toxicity in isolated hippocampal cell culture via modulating Akt and ERK phosphorylation and also revealed an interaction between those signals in Aβ toxicity and insulin-mediated protection.
Collapse
|
19
|
Lasram MM, Dhouib IB, Annabi A, El Fazaa S, Gharbi N. A review on the molecular mechanisms involved in insulin resistance induced by organophosphorus pesticides. Toxicology 2014; 322:1-13. [DOI: 10.1016/j.tox.2014.04.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 04/23/2014] [Accepted: 04/24/2014] [Indexed: 02/06/2023]
|
20
|
Hançer NJ, Qiu W, Cherella C, Li Y, Copps KD, White MF. Insulin and metabolic stress stimulate multisite serine/threonine phosphorylation of insulin receptor substrate 1 and inhibit tyrosine phosphorylation. J Biol Chem 2014; 289:12467-84. [PMID: 24652289 PMCID: PMC4007441 DOI: 10.1074/jbc.m114.554162] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 03/18/2014] [Indexed: 12/27/2022] Open
Abstract
IRS1 and IRS2 are key substrates of the insulin receptor tyrosine kinase. Mass spectrometry reveals more than 50 phosphorylated IRS1 serine and threonine residues (Ser(P)/Thr(P) residues) in IRS1 from insulin-stimulated cells or human tissues. We investigated a subset of IRS1 Ser(P)/Thr(P) residues using a newly developed panel of 25 phospho-specific monoclonal antibodies (αpS/TmAb(Irs1)). CHO cells overexpressing the human insulin receptor and rat IRS1 were stimulated with insulin in the absence or presence of inhibitors of the PI3K → Akt → mechanistic target of rapamycin (mTOR) → S6 kinase or MEK pathways. Nearly all IRS1 Ser(P)/Thr(P) residues were stimulated by insulin and significantly suppressed by PI3K inhibition; fewer were suppressed by Akt or mTOR inhibition, and none were suppressed by MEK inhibition. Insulin-stimulated Irs1 tyrosine phosphorylation (Tyr(P)(Irs1)) was enhanced by inhibition of the PI3K → Akt → mTOR pathway and correlated with decreased Ser(P)-302(Irs1), Ser(P)-307(Irs1), Ser(P)-318(Irs1), Ser(P)-325(Irs1), and Ser(P)-346(Irs1). Metabolic stress modeled by anisomycin, thapsigargin, or tunicamycin increased many of the same Ser(P)/Thr(P) residues as insulin, some of which (Ser(P)-302(Irs1), Ser(P)-307(Irs1), and four others) correlated significantly with impaired insulin-stimulated Tyr(P)(Irs1). Thus, IRS1 Ser(P)/Thr(P) is an integrated response to insulin stimulation and metabolic stress, which associates with reduced Tyr(P)(Irs1) in CHO(IR)/IRS1 cells.
Collapse
Affiliation(s)
- Nancy J. Hançer
- From the Division of Endocrinology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Wei Qiu
- From the Division of Endocrinology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Christine Cherella
- From the Division of Endocrinology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Yedan Li
- From the Division of Endocrinology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Kyle D. Copps
- From the Division of Endocrinology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Morris F. White
- From the Division of Endocrinology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
21
|
Xu E, Schwab M, Marette A. Role of protein tyrosine phosphatases in the modulation of insulin signaling and their implication in the pathogenesis of obesity-linked insulin resistance. Rev Endocr Metab Disord 2014; 15:79-97. [PMID: 24264858 DOI: 10.1007/s11154-013-9282-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Insulin resistance is a major disorder that links obesity to type 2 diabetes mellitus (T2D). It involves defects in the insulin actions owing to a reduced ability of insulin to trigger key signaling pathways in major metabolic tissues. The pathogenesis of insulin resistance involves several inhibitory molecules that interfere with the tyrosine phosphorylation of the insulin receptor and its downstream effectors. Among those, growing interest has been developed toward the protein tyrosine phosphatases (PTPs), a large family of enzymes that can inactivate crucial signaling effectors in the insulin signaling cascade by dephosphorylating their tyrosine residues. Herein we briefly review the role of several PTPs that have been shown to be implicated in the regulation of insulin action, and then focus on the Src homology 2 (SH2) domain-containing SHP1 and SHP2 enzymes, since recent reports have indicated major roles for these PTPs in the control of insulin action and glucose metabolism. Finally, the therapeutic potential of targeting PTPs for combating insulin resistance and alleviating T2D will be discussed.
Collapse
Affiliation(s)
- Elaine Xu
- Department of Medicine, Cardiology Axis of the Institut Universitaire de Cardiologie et de Pneumologie de Québec (Hôpital Laval), Ste-Foy, Québec, Canada, G1V 4G2
| | | | | |
Collapse
|
22
|
Cizmeci D, Arkun Y. Regulatory networks and complex interactions between the insulin and angiotensin II signalling systems: models and implications for hypertension and diabetes. PLoS One 2013; 8:e83640. [PMID: 24400038 PMCID: PMC3882141 DOI: 10.1371/journal.pone.0083640] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/05/2013] [Indexed: 12/30/2022] Open
Abstract
The cross-talk between insulin and angiotensin II signalling pathways plays a significant role in the co-occurrence of diabetes and hypertension. We developed a mathematical model of the system of interactions among the biomolecules that are involved in the cross-talk between the insulin and angiotensin II signalling pathways. We have identified several feedback structures that regulate the dynamic behavior of the individual signalling pathways and their interactions. Different scenarios are simulated and dominant steady-state, dynamic and stability characteristics are revealed. The proposed mechanistic model describes how angiotensin II inhibits the actions of insulin and impairs the insulin-mediated vasodilation. The model also predicts that poor glycaemic control induced by diabetes contributes to hypertension by activating the renin angiotensin aystem.
Collapse
Affiliation(s)
- Deniz Cizmeci
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | - Yaman Arkun
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
- * E-mail:
| |
Collapse
|
23
|
Jia X, Kim J, Veuthey T, Lee CH, Wessling-Resnick M. Glucose metabolism in the Belgrade rat, a model of iron-loading anemia. Am J Physiol Gastrointest Liver Physiol 2013; 304:G1095-102. [PMID: 23599042 PMCID: PMC3680718 DOI: 10.1152/ajpgi.00453.2012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The iron-diabetes hypothesis proposes an association between iron overload and glucose metabolism that is supported by a number of epidemiological studies. The prevalence of type 2 diabetes in patients with hereditary hemochromatosis and iron-loading thalassemia supports this hypothesis. The Belgrade rat carries a mutation in the iron transporter divalent metal transporter 1 (DMT1) resulting in iron-loading anemia. In this study, we characterized the glycometabolic status of the Belgrade rat. Belgrade rats displayed normal glycemic control. Insulin signaling and secretion were not impaired, and pancreatic tissue did not incur damage despite high levels of nonheme iron. These findings suggest that loss of DMT1 protects against oxidative damage to the pancreas and helps to maintain insulin sensitivity despite iron overload. Belgrade rats had lower body weight but increased food consumption compared with heterozygous littermates. The unexpected energy balance was associated with increased urinary glucose output. Increased urinary excretion of electrolytes, including iron, was also observed. Histopathological evidence suggests that altered renal function is secondary to changes in kidney morphology, including glomerulosclerosis. Thus, loss of DMT1 appears to protect the pancreas from injury but damages the integrity of kidney structure and function.
Collapse
Affiliation(s)
- Xuming Jia
- Department of Genetics & Complex Diseases, Harvard School of Public Health, Boston, Massachusetts
| | - Jonghan Kim
- Department of Genetics & Complex Diseases, Harvard School of Public Health, Boston, Massachusetts
| | - Tania Veuthey
- Department of Genetics & Complex Diseases, Harvard School of Public Health, Boston, Massachusetts
| | - Chih-Hao Lee
- Department of Genetics & Complex Diseases, Harvard School of Public Health, Boston, Massachusetts
| | | |
Collapse
|
24
|
Rajan MR, Fagerholm S, Jönsson C, Kjølhede P, Turkina MV, Strålfors P. Phosphorylation of IRS1 at serine 307 in response to insulin in human adipocytes is not likely to be catalyzed by p70 ribosomal S6 kinase. PLoS One 2013; 8:e59725. [PMID: 23565163 PMCID: PMC3614923 DOI: 10.1371/journal.pone.0059725] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 02/17/2013] [Indexed: 01/05/2023] Open
Abstract
The insulin receptor substrate-1 (IRS1) is phosphorylated on serine 307 (human sequence, corresponding to murine serine 302) in response to insulin as part of a feedback loop that controls IRS1 phosphorylation on tyrosine residues by the insulin receptor. This in turn directly affects downstream signaling and is in human adipocytes implicated in the pathogenesis of insulin resistance and type 2 diabetes. The phosphorylation is inhibited by rapamycin, a specific inhibitor of mammalian target of rapamycin (mTOR) in complex with raptor (mTORC1). The mTORC1-downstream p70 ribosomal protein S6 kinase (S6K1), which is activated by insulin, can phosphorylate IRS1 at serine 307 in vitro and is considered the physiological protein kinase. Because the IRS1 serine 307-kinase catalyzes a critical step in the control of insulin signaling and constitutes a potential target for treatment of insulin resistance, it is important to know whether S6K1 is the physiological serine 307-kinase or not. We report that, by several criteria, S6K1 does not phosphorylate IRS1 at serine 307 in response to insulin in intact human primary adipocytes: (i) The time-courses for phosphorylation of S6K1 and its phosphorylation of S6 are not compatible with the phosphorylation of IRS1 at serine 307; (ii) A dominant-negative construct of S6K1 inhibits the phosphorylation of S6, without effect on the phosphorylation of IRS1 at serine 307; (iii) The specific inhibitor of S6K1 PF-4708671 inhibits the phosphorylation of S6, without effect on phosphorylation of IRS1 at serine 307. mTOR-immunoprecipitates from insulin-stimulated adipocytes contains an unidentified protein kinase specific for phosphorylation of IRS1 at serine 307, but it is not mTOR or S6K1.
Collapse
Affiliation(s)
- Meenu Rohini Rajan
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | | | | | | | | | | |
Collapse
|
25
|
Li Q, Hosaka T, Harada N, Nakaya Y, Funaki M. Activation of Akt through 5-HT2A receptor ameliorates serotonin-induced degradation of insulin receptor substrate-1 in adipocytes. Mol Cell Endocrinol 2013; 365:25-35. [PMID: 22975078 DOI: 10.1016/j.mce.2012.08.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/27/2012] [Accepted: 08/31/2012] [Indexed: 11/26/2022]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) was found to be elevated in the serum of diabetic patients. In this study, we investigate the mechanism of insulin desensitization caused by 5-HT. In 3T3-L1 adipocytes, 5-HT treatment induced the translocation of insulin receptor substrate-1 (IRS-1) from low density microsome (LDM), the important intracellular compartment for its functions, to cytosol, inducing IRS-1 ubiquitination and degradation. Moreover, inhibition of 5-HT-stimulated Akt activation by either ketanserin (a specific 5-HT2A receptor antagonist) or knocking-down the expression of 5-HT2A receptor promoted 5-HT-stimulated IRS-1 dissociation from 14-3-3β in LDM, leading to drastic ubiquitination. Interestingly, sarpogrelate, another antagonist of 5-HT2A receptor, protected IRS-1 from degradation through activation of Akt. This implicates the importance of Akt activation in extending IRS-1 life span through maintaining their optimal sub-location into adipocytes. Taken together, this study suggest that activation of Akt may be able to compensate the adverse effects of 5-HT by stabilizing IRS-1 in LDM.
Collapse
MESH Headings
- 14-3-3 Proteins/metabolism
- 3T3-L1 Cells
- Adipocytes, White/drug effects
- Adipocytes, White/metabolism
- Animals
- Cytosol/drug effects
- Cytosol/metabolism
- Insulin Receptor Substrate Proteins/metabolism
- Insulin Resistance
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Obese
- Microsomes/drug effects
- Microsomes/metabolism
- Protein Stability/drug effects
- Protein Transport/drug effects
- Proteolysis/drug effects
- Proto-Oncogene Proteins c-akt/agonists
- Proto-Oncogene Proteins c-akt/metabolism
- RNA Interference
- Receptor, Serotonin, 5-HT2A/chemistry
- Receptor, Serotonin, 5-HT2A/genetics
- Receptor, Serotonin, 5-HT2A/metabolism
- Serotonin/adverse effects
- Serotonin/chemistry
- Serotonin/metabolism
- Serotonin 5-HT2 Receptor Agonists/chemistry
- Serotonin 5-HT2 Receptor Agonists/metabolism
- Serotonin 5-HT2 Receptor Agonists/pharmacology
- Serotonin 5-HT2 Receptor Antagonists/pharmacology
- Ubiquitination/drug effects
Collapse
Affiliation(s)
- Qinkai Li
- Clinical Research Center for Diabetes, Tokushima University Hospital, Kuramoto-cho, Tokushima 770-8503, Japan.
| | | | | | | | | |
Collapse
|
26
|
Kim SJ, DeStefano MA, Oh WJ, Wu CC, Vega-Cotto NM, Finlan M, Liu D, Su B, Jacinto E. mTOR complex 2 regulates proper turnover of insulin receptor substrate-1 via the ubiquitin ligase subunit Fbw8. Mol Cell 2012; 48:875-87. [PMID: 23142081 DOI: 10.1016/j.molcel.2012.09.029] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 08/21/2012] [Accepted: 09/27/2012] [Indexed: 12/24/2022]
Abstract
The mammalian target of rapamycin (mTOR) integrates signals from nutrients and insulin via two distinct complexes, mTORC1 and mTORC2. Disruption of mTORC2 impairs the insulin-induced activation of Akt, an mTORC2 substrate. Here, we found that mTORC2 can also regulate insulin signaling at the level of insulin receptor substrate-1 (IRS-1). Despite phosphorylation at the mTORC1-mediated serine sites, which supposedly triggers IRS-1 downregulation, inactive IRS-1 accumulated in mTORC2-disrupted cells. Defective IRS-1 degradation was due to attenuated expression and phosphorylation of the ubiquitin ligase substrate-targeting subunit, Fbw8. mTORC2 stabilizes Fbw8 by phosphorylation at Ser86, allowing the insulin-induced translocation of Fbw8 to the cytosol where it mediates IRS-1 degradation. Thus, mTORC2 negatively feeds back to IRS-1 via control of Fbw8 stability and localization. Our findings reveal that in addition to persistent mTORC1 signaling, heightened mTORC2 signals can promote insulin resistance due to mTORC2-mediated degradation of IRS-1.
Collapse
Affiliation(s)
- Sung Jin Kim
- Department of Biochemistry and Molecular Biology, UMDNJ-RWJMS, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Copps KD, White MF. Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia 2012; 55:2565-2582. [PMID: 22869320 PMCID: PMC4011499 DOI: 10.1007/s00125-012-2644-8] [Citation(s) in RCA: 692] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 04/23/2012] [Indexed: 12/11/2022]
Abstract
The insulin receptor substrate proteins IRS1 and IRS2 are key targets of the insulin receptor tyrosine kinase and are required for hormonal control of metabolism. Tissues from insulin-resistant and diabetic humans exhibit defects in IRS-dependent signalling, implicating their dysregulation in the initiation and progression of metabolic disease. However, IRS1 and IRS2 are regulated through a complex mechanism involving phosphorylation of >50 serine/threonine residues (S/T) within their long, unstructured tail regions. In cultured cells, insulin-stimulated kinases (including atypical PKC, AKT, SIK2, mTOR, S6K1, ERK1/2 and ROCK1) mediate feedback (autologous) S/T phosphorylation of IRS, with both positive and negative effects on insulin sensitivity. Additionally, insulin-independent (heterologous) kinases can phosphorylate IRS1/2 under basal conditions (AMPK, GSK3) or in response to sympathetic activation and lipid/inflammatory mediators, which are present at elevated levels in metabolic disease (GRK2, novel and conventional PKCs, JNK, IKKβ, mPLK). An emerging view is that the positive/negative regulation of IRS by autologous pathways is subverted/co-opted in disease by increased basal and other temporally inappropriate S/T phosphorylation. Compensatory hyperinsulinaemia may contribute strongly to this dysregulation. Here, we examine the links between altered patterns of IRS S/T phosphorylation and the emergence of insulin resistance and diabetes.
Collapse
Affiliation(s)
- K D Copps
- Howard Hughes Medical Institute, Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, CLS 16020, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - M F White
- Howard Hughes Medical Institute, Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, CLS 16020, 300 Longwood Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
28
|
Gerrits AJ, Gitz E, Koekman CA, Visseren FL, van Haeften TW, Akkerman JWN. Induction of insulin resistance by the adipokines resistin, leptin, plasminogen activator inhibitor-1 and retinol binding protein 4 in human megakaryocytes. Haematologica 2012; 97:1149-57. [PMID: 22491740 DOI: 10.3324/haematol.2011.054916] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND In normal platelets, insulin inhibits agonist-induced Ca(2+) mobilization by raising cyclic AMP. Platelet from patients with type 2 diabetes are resistant to insulin and show increased Ca(2+) mobilization, aggregation and procoagulant activity. We searched for the cause of this insulin resistance. DESIGN AND METHODS Platelets, the megakaryocytic cell line CHRF-288-11 and primary megakaryocytes were incubated with adipokines and with plasma from individuals with a disturbed adipokine profile. Thrombin-induced Ca(2+) mobilization and signaling through the insulin receptor and insulin receptor substrate 1 were measured. Abnormalities induced by adipokines were compared with abnormalities found in platelets from patients with type 2 diabetes. RESULTS Resistin, leptin, plasminogen activator inhibitor-1 and retinol binding protein 4 left platelets unchanged but induced insulin resistance in CHRF-288-11 cells. Interleukin-6, tumor necrosis factor-α and visfatin had no effect. These results were confirmed in primary megakaryocytes. Contact with adipokines for 2 hours disturbed insulin receptor substrate 1 Ser(307)-phosphorylation, while contact for 72 hours caused insulin receptor substrate 1 degradation. Plasma with a disturbed adipokine profile also made CHRF-288-11 cells insulin-resistant. Platelets from patients with type 2 diabetes showed decreased insulin receptor substrate 1 expression. CONCLUSIONS Adipokines resistin, leptin, plasminogen activator-1 and retinol binding protein 4 disturb insulin receptor substrate 1 activity and expression in megakaryocytes. This might be a cause of the insulin resistance observed in platelets from patients with type 2 diabetes.
Collapse
Affiliation(s)
- Anja J Gerrits
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | | | | | | | |
Collapse
|
29
|
Fisher-Wellman KH, Neufer PD. Linking mitochondrial bioenergetics to insulin resistance via redox biology. Trends Endocrinol Metab 2012; 23:142-53. [PMID: 22305519 PMCID: PMC3313496 DOI: 10.1016/j.tem.2011.12.008] [Citation(s) in RCA: 237] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Revised: 12/21/2011] [Accepted: 12/22/2011] [Indexed: 12/28/2022]
Abstract
Chronic overnutrition and physical inactivity are major risk factors for insulin resistance and type 2 diabetes. Recent research indicates that overnutrition generates an increase in hydrogen peroxide (H(2)O(2)) emission from mitochondria, serving as a release valve to relieve the reducing pressure created by fuel overload, as well as a primary signal that ultimately decreases insulin sensitivity. H(2)O(2) is a major input to cellular redox circuits that link to cysteine residues throughout the entire proteome to regulate cell function. Here we review the principles of mitochondrial bioenergetics and redox systems biology and offer new insight into how H(2)O(2) emission may be linked via redox biology to the etiology of insulin resistance.
Collapse
Affiliation(s)
- Kelsey H. Fisher-Wellman
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA
- Department of Kinesiology, East Carolina University, Greenville, NC 27834, USA
| | - P. Darrell Neufer
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA
- Department of Kinesiology, East Carolina University, Greenville, NC 27834, USA
- Department of Physiology, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
30
|
Nyman E, Fagerholm S, Jullesson D, Strålfors P, Cedersund G. Mechanistic explanations for counter-intuitive phosphorylation dynamics of the insulin receptor and insulin receptor substrate-1 in response to insulin in murine adipocytes. FEBS J 2012; 279:987-99. [PMID: 22248283 DOI: 10.1111/j.1742-4658.2012.08488.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Insulin signaling through insulin receptor (IR) and insulin receptor substrate-1 (IRS1) is important for insulin control of target cells. We have previously demonstrated a rapid and simultaneous overshoot behavior in the phosphorylation dynamics of IR and IRS1 in human adipocytes. Herein, we demonstrate that in murine adipocytes a similar overshoot behavior is not simultaneous for IR and IRS1. The peak of IRS1 phosphorylation, which is a direct consequence of the phosphorylation and the activation of IR, occurs earlier than the peak of IR phosphorylation. We used a conclusive modeling framework to unravel the mechanisms behind this counter-intuitive order of phosphorylation. Through a number of rejections, we demonstrate that two fundamentally different mechanisms may create the reversed order of peaks: (i) two pools of phosphorylated IR, where a large pool of internalized IR peaks late, but phosphorylation of IRS1 is governed by a small plasma membrane-localized pool of IR with an early peak, or (ii) inhibition of the IR-catalyzed phosphorylation of IRS1 by negative feedback. Although (i) may explain the reversed order, this two-pool hypothesis alone requires extensive internalization of IR, which is not supported by experimental data. However, with the additional assumption of limiting concentrations of IRS1, (i) can explain all data. Also, (ii) can explain all available data. Our findings illustrate how modeling can potentiate reasoning, to help draw nontrivial conclusions regarding competing mechanisms in signaling networks. Our work also reveals new differences between human and murine insulin signaling.
Collapse
Affiliation(s)
- Elin Nyman
- Department of Clinical and Experimental Medicine, Diabetes and Integrative Systems Biology, Linköping University, Sweden
| | | | | | | | | |
Collapse
|
31
|
Gao ZG, Ye JP. Why do anti-inflammatory therapies fail to improve insulin sensitivity? Acta Pharmacol Sin 2012; 33:182-8. [PMID: 22036866 PMCID: PMC3270211 DOI: 10.1038/aps.2011.131] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 09/06/2011] [Indexed: 12/25/2022] Open
Abstract
Chronic inflammation occurs in obese conditions in both humans and animals. It also contributes to the pathogenesis of type 2 diabetes (T2D) through insulin resistance, a status in which the body loses its ability to respond to insulin. Inflammation impairs insulin signaling through the functional inhibition of IRS-1 and PPARγ. Insulin sensitizers (such as rosiglitazone and pioglitazone) inhibit inflammation while improving insulin sensitivity. Therefore, anti-inflammatory agents have been suggested as a treatment strategy for insulin resistance. This strategy has been tested in laboratory studies and clinical trials for more than 10 years; however, no significant progress has been made in any of the model systems. This status has led us to re-evaluate the biological significance of chronic inflammation in obesity. Recent studies have consistently asserted that obesity-associated inflammation helps to maintain insulin sensitivity. Inflammation stimulates local adipose tissue remodeling and promotes systemic energy expenditure. We propose that these beneficial activities of inflammation provide an underlying mechanism for the failure of anti-inflammatory therapy in the treatment of insulin resistance. Current literature will be reviewed in this article to present evidence that supports this viewpoint.
Collapse
Affiliation(s)
- Zhan-guo Gao
- Antioxidant and Gene Regulation Lab, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Jian-ping Ye
- Antioxidant and Gene Regulation Lab, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| |
Collapse
|
32
|
Phosphatidylinositol 3-kinase and protein kinase D1 specifically cooperate to negatively regulate the insulin-like growth factor signaling pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:558-69. [DOI: 10.1016/j.bbamcr.2011.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Revised: 11/28/2011] [Accepted: 12/20/2011] [Indexed: 11/20/2022]
|
33
|
Lequieu J, Chakrabarti A, Nayak S, Varner JD. Computational modeling and analysis of insulin induced eukaryotic translation initiation. PLoS Comput Biol 2011; 7:e1002263. [PMID: 22102801 PMCID: PMC3213178 DOI: 10.1371/journal.pcbi.1002263] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 09/23/2011] [Indexed: 11/18/2022] Open
Abstract
Insulin, the primary hormone regulating the level of glucose in the bloodstream, modulates a variety of cellular and enzymatic processes in normal and diseased cells. Insulin signals are processed by a complex network of biochemical interactions which ultimately induce gene expression programs or other processes such as translation initiation. Surprisingly, despite the wealth of literature on insulin signaling, the relative importance of the components linking insulin with translation initiation remains unclear. We addressed this question by developing and interrogating a family of mathematical models of insulin induced translation initiation. The insulin network was modeled using mass-action kinetics within an ordinary differential equation (ODE) framework. A family of model parameters was estimated, starting from an initial best fit parameter set, using 24 experimental data sets taken from literature. The residual between model simulations and each of the experimental constraints were simultaneously minimized using multiobjective optimization. Interrogation of the model population, using sensitivity and robustness analysis, identified an insulin-dependent switch that controlled translation initiation. Our analysis suggested that without insulin, a balance between the pro-initiation activity of the GTP-binding protein Rheb and anti-initiation activity of PTEN controlled basal initiation. On the other hand, in the presence of insulin a combination of PI3K and Rheb activity controlled inducible initiation, where PI3K was only critical in the presence of insulin. Other well known regulatory mechanisms governing insulin action, for example IRS-1 negative feedback, modulated the relative importance of PI3K and Rheb but did not fundamentally change the signal flow.
Collapse
Affiliation(s)
- Joshua Lequieu
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
| | - Anirikh Chakrabarti
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
| | - Satyaprakash Nayak
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
| | - Jeffrey D. Varner
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
34
|
Langlais P, Yi Z, Finlayson J, Luo M, Mapes R, De Filippis E, Meyer C, Plummer E, Tongchinsub P, Mattern M, Mandarino LJ. Global IRS-1 phosphorylation analysis in insulin resistance. Diabetologia 2011; 54:2878-89. [PMID: 21850561 PMCID: PMC3882165 DOI: 10.1007/s00125-011-2271-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 07/08/2011] [Indexed: 01/25/2023]
Abstract
AIMS/HYPOTHESIS IRS-1 serine phosphorylation is often elevated in insulin resistance models, but confirmation in vivo in humans is lacking. We therefore analysed IRS-1 phosphorylation in human muscle in vivo. METHODS We used HPLC-electrospray ionisation (ESI)-MS/MS to quantify IRS-1 phosphorylation basally and after insulin infusion in vastus lateralis muscle from lean healthy, obese non-diabetic and type 2 diabetic volunteers. RESULTS Basal Ser323 phosphorylation was increased in type 2 diabetic patients (2.1 ± 0.43, p ≤ 0.05, fold change vs lean controls). Thr495 phosphorylation was decreased in type 2 diabetic patients (p ≤ 0.05). Insulin increased IRS-1 phosphorylation at Ser527 (1.4 ± 0.17, p ≤ 0.01, fold change, 60 min after insulin infusion vs basal) and Ser531 (1.3 ± 0.16, p ≤ 0.01, fold change, 60 min after insulin infusion vs basal) in the lean controls and suppressed phosphorylation at Ser348 (0.56 ± 0.11, p ≤ 0.01, fold change, 240 min after insulin infusion vs basal), Thr446 (0.64 ± 0.16, p ≤ 0.05, fold change, 60 min after insulin infusion vs basal), Ser1100 (0.77 ± 0.22, p ≤ 0.05, fold change, 240 min after insulin infusion vs basal) and Ser1142 (1.3 ± 0.2, p ≤ 0.05, fold change, 60 min after insulin infusion vs basal). CONCLUSIONS/INTERPRETATION We conclude that, unlike some aspects of insulin signalling, the ability of insulin to increase or suppress certain IRS-1 phosphorylation sites is intact in insulin resistance. However, some IRS-1 phosphorylation sites do not respond to insulin, whereas other Ser/Thr phosphorylation sites are either increased or decreased in insulin resistance.
Collapse
Affiliation(s)
- P. Langlais
- Center for Metabolic and Vascular Biology, School of Life Science, Arizona State University, ISTB1, 550 E. Orange St, Tempe, AZ 85287, USA
| | - Z. Yi
- Center for Metabolic and Vascular Biology, School of Life Science, Arizona State University, ISTB1, 550 E. Orange St, Tempe, AZ 85287, USA; Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy/Health Sciences, Wayne State University, Detroit, MI, USA
| | - J. Finlayson
- Center for Metabolic and Vascular Biology, School of Life Science, Arizona State wwUniversity, ISTB1, 550 E. Orange St, Tempe, AZ 85287, USA
| | - M. Luo
- Center for Metabolic and Vascular Biology, School of Life Science, Arizona State University, ISTB1, 550 E. Orange St, Tempe, AZ 85287, USA
| | - R. Mapes
- Center for Metabolic and Vascular Biology, School of Life Science, Arizona State University, ISTB1, 550 E. Orange St, Tempe, AZ 85287, USA
| | - E. De Filippis
- Center for Metabolic and Vascular Biology, School of Life Science, Arizona State University, ISTB1, 550 E. Orange St, Tempe, AZ 85287, USA
| | - C. Meyer
- Center for Metabolic and Vascular Biology, School of Life Science, Arizona State University, ISTB1, 550 E. Orange St, Tempe, AZ 85287, USA; Division of Endocrinology, Carl T. Hayden VA Medical Center, Mayo Clinic in Arizona, Phoenix, AZ, USA
| | - E. Plummer
- Division of Endocrinology, Carl T. Hayden VA Medical Center, Mayo Clinic in Arizona, Phoenix, AZ, USA
| | - P. Tongchinsub
- Center for Metabolic and Vascular Biology, School of Life Science, Arizona State University, ISTB1, 550 E. Orange St, Tempe, AZ 85287, USA
| | - M. Mattern
- Center for Metabolic and Vascular Biology, School of Life Science, Arizona State University, ISTB1, 550 E. Orange St, Tempe, AZ 85287, USA
| | - L. J. Mandarino
- Center for Metabolic and Vascular Biology, School of Life Science, Arizona State University, ISTB1, 550 E. Orange St, Tempe, AZ 85287, USA; Department of Medicine, Mayo Clinic in Arizona, Scottsdale, AZ, USA
| |
Collapse
|
35
|
Abstract
The mechanistic (or mammalian) target of rapamycin (mTOR), an evolutionarily conserved protein kinase, orchestrates cellular responses to growth, metabolic and stress signals. mTOR processes various extracellular and intracellular inputs as part of two mTOR protein complexes, mTORC1 or mTORC2. The mTORCs have numerous cellular targets but members of a family of protein kinases, the protein kinase (PK)A/PKG/PKC (AGC) family are the best characterized direct mTOR substrates. The AGC kinases control multiple cellular functions and deregulation of many members of this family underlies numerous pathological conditions. mTOR phosphorylates conserved motifs in these kinases to allosterically augment their activity, influence substrate specificity, and promote protein maturation and stability. Activation of AGC kinases in turn triggers the phosphorylation of diverse, often overlapping, targets that ultimately control cellular response to a wide spectrum of stimuli. This review will highlight recent findings on how mTOR regulates AGC kinases and how mTOR activity is feedback regulated by these kinases. We will discuss how this regulation can modulate downstream targets in the mTOR pathway that could account for the varied cellular functions of mTOR.
Collapse
Affiliation(s)
- Bing Su
- Department of Immunobiology and The Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA.
| | | |
Collapse
|
36
|
Bonhomme S, Guijarro A, Keslacy S, Goncalves CG, Suzuki S, Chen C, Meguid MM. Gastric bypass up-regulates insulin signaling pathway. Nutrition 2011; 27:73-80. [DOI: 10.1016/j.nut.2010.08.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 07/29/2010] [Accepted: 08/09/2010] [Indexed: 02/01/2023]
|
37
|
Wang G. Singularity analysis of the AKT signaling pathway reveals connections between cancer and metabolic diseases. Phys Biol 2010; 7:046015. [PMID: 21178243 DOI: 10.1088/1478-3975/7/4/046015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Connections between cancer and metabolic diseases may consist in the complex network of interactions among a common set of biomolecules. By applying singularity and bifurcation analysis, the phenotypes constrained by the AKT signaling pathway are identified and mapped onto the parameter space, which include cancer and certain metabolic diseases. By considering physiologic properties (sensitivity, robustness and adaptivity) the AKT pathway must possess in order to efficiently sense growth factors and nutrients, the region of normal responses is located. To optimize these properties, the intracellular concentration of the AKT protein must be sufficiently high to saturate its enzymes; the strength of the positive feedback must be stronger than that of the negative feedback. The analysis illuminates the parameter space and reveals system-level mechanisms in regulating biological functions (cell growth, survival, proliferation and metabolism) and how their deregulation may lead to the development of diseases. The analytical expressions summarize the synergistic interactions among many molecules, which provides valuable insights into therapeutic interventions. In particular, a strategy for overcoming the limitations of mTOR inhibition is proposed for cancer therapy.
Collapse
Affiliation(s)
- Guanyu Wang
- Department of Physics, George Washington University, 725 21st Street NW, Washington, DC 20052, USA.
| |
Collapse
|
38
|
Boura-Halfon S, Shuster-Meiseles T, Beck A, Petrovich K, Gurevitch D, Ronen D, Zick Y. A novel domain mediates insulin-induced proteasomal degradation of insulin receptor substrate 1 (IRS-1). Mol Endocrinol 2010; 24:2179-92. [PMID: 20843941 PMCID: PMC5417385 DOI: 10.1210/me.2010-0072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 08/16/2010] [Indexed: 11/19/2022] Open
Abstract
Insulin receptor substrate-1 (IRS-1) plays a pivotal role in insulin signaling, therefore its degradation is exquisitely regulated. Here, we show that insulin-stimulated degradation of IRS-1 requires the presence of a highly conserved Ser/Thr-rich domain that we named domain involved in degradation of IRS-1 (DIDI). DIDI (amino acids 386-430 of IRS-1) was identified by comparing the intracellular degradation rate of several truncated forms of IRS-1 transfected into CHO cells. The isolated DIDI domain underwent insulin-stimulated Ser/Thr phosphorylation, suggesting that it serves as a target for IRS-1 kinases. The effects of deletion of DIDI were studied in Fao rat hepatoma and in CHO cells expressing Myc-IRS-1(WT) or Myc-IRS-1(Δ386-430). Deletion of DIDI maintained the ability of IRS-1(Δ386-434) to undergo ubiquitination while rendering it insensitive to insulin-induced proteasomal degradation, which affected IRS-1(WT) (80% at 8 h). Consequently, IRS-1(Δ386-434) mediated insulin signaling (activation of Akt and glycogen synthesis) better than IRS-1(WT). IRS-1(Δ386-434) exhibited a significant greater preference for nuclear localization, compared with IRS-1(WT). Higher nuclear localization was also observed when cells expressing IRS-1(WT) were incubated with the proteasome inhibitor MG-132. The sequence of DIDI is conserved more than 93% across species, from fish to mammals, as opposed to approximately 40% homology of the entire IRS-1. These findings implicate DIDI as a novel, highly conserved domain of IRS-1, which mediates its cellular localization, rate of degradation, and biological activity, with a direct impact on insulin signal transduction.
Collapse
Affiliation(s)
- Sigalit Boura-Halfon
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
39
|
Gamboa JL, Garcia-Cazarin ML, Andrade FH. Chronic hypoxia increases insulin-stimulated glucose uptake in mouse soleus muscle. Am J Physiol Regul Integr Comp Physiol 2010; 300:R85-91. [PMID: 20962202 DOI: 10.1152/ajpregu.00078.2010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
People living at high altitude appear to have lower blood glucose levels and decreased incidence of diabetes. Faster glucose uptake and increased insulin sensitivity are likely explanations for these findings: skeletal muscle is the largest glucose sink in the body, and its adaptation to the hypoxia of altitude may influence glucose uptake and insulin sensitivity. This study tested the hypothesis that chronic normobaric hypoxia increases insulin-stimulated glucose uptake in soleus muscles and decreases plasma glucose levels. Adult male C57BL/6J mice were kept in normoxia [fraction of inspired O₂ = 21% (Control)] or normobaric hypoxia [fraction of inspired O₂ = 10% (Hypoxia)] for 4 wk. Then blood glucose and insulin levels, in vitro muscle glucose uptake, and indexes of insulin signaling were measured. Chronic hypoxia lowered blood glucose and plasma insulin [glucose: 14.3 ± 0.65 mM in Control vs. 9.9 ± 0.83 mM in Hypoxia (P < 0.001); insulin: 1.2 ± 0.2 ng/ml in Control vs. 0.7 ± 0.1 ng/ml in Hypoxia (P < 0.05)] and increased insulin sensitivity determined by homeostatic model assessment 2 [21.5 ± 3.8 in Control vs. 39.3 ± 5.7 in Hypoxia (P < 0.03)]. There was no significant difference in basal glucose uptake in vitro in soleus muscle (1.59 ± 0.24 and 1.71 ± 0.15 μmol·g⁻¹·h⁻¹ in Control and Hypoxia, respectively). However, insulin-stimulated glucose uptake was 30% higher in the soleus after 4 wk of hypoxia than Control (6.24 ± 0.23 vs. 4.87 ± 0.37 μmol·g⁻¹·h⁻¹, P < 0.02). Muscle glycogen content was not significantly different between the two groups. Levels of glucose transporters 4 and 1, phosphoinositide 3-kinase, glycogen synthase kinase 3, protein kinase B/Akt, and AMP-activated protein kinase were not affected by chronic hypoxia. Akt phosphorylation following insulin stimulation in soleus muscle was significantly (25%) higher in Hypoxia than Control (P < 0.05). Neither glycogen synthase kinase 3 nor AMP-activated protein kinase phosphorylation changed after 4 wk of hypoxia. These results demonstrate that the adaptation of skeletal muscles to chronic hypoxia includes increased insulin-stimulated glucose uptake.
Collapse
Affiliation(s)
- J L Gamboa
- Department of Physiology, University of Kentucky, Lexington, 40536, USA
| | | | | |
Collapse
|
40
|
Yang L, Qian Z, Ji H, Yang R, Wang Y, Xi L, Sheng L, Zhao B, Zhang X. Inhibitory effect on protein kinase Ctheta by Crocetin attenuates palmitate-induced insulin insensitivity in 3T3-L1 adipocytes. Eur J Pharmacol 2010; 642:47-55. [PMID: 20541543 DOI: 10.1016/j.ejphar.2010.05.061] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 05/27/2010] [Accepted: 05/31/2010] [Indexed: 10/19/2022]
Abstract
Epidemiologic and experimental studies have pointed to an etiologic role of elevated plasma free fatty acids in insulin resistance, which is frequently associated with a state of low-grade inflammation. In this study, we investigated the effects of Crocetin, a unique carotenoid, on insulin resistance induced by palmitate in 3T3-L1 adipocytes. Exposure of palmitate led to an increase in insulin receptor substrate-1 (IRS-1) serine(307) phosphorylation as well as activation of c-Jun NH(2)-terminal kinase (JNK) and inhibitor kappaB kinase beta (IKKbeta), concomitantly with reductions of IRS-1 function and glucose metabolism. Interestingly, pretreatment with Crocetin almost reversed all of these abnormalities in a dose-dependent manner. IRS-1 serine(307) phosphorylation was significantly reduced by JNK or IKKbeta inhibitor, especially by combination of these two inhibitors. Moreover, palmitate treatment induced activation of protein kinase Ctheta (PKCtheta) while blocking PKCtheta significantly inhibited JNK and IKKbeta activation induced by palmitate or phorbol 12-myristate 13-acetate (PKC activator, PMA), and attenuated the palmitate-induced defects in insulin action. Crocetin demonstrated an impressive suppression in the activation of PKCtheta induced not only by palmitate but also by PMA in a dose-dependent manner. Taken together, Crocetin inhibited JNK and IKKbeta activation via suppression of PKCtheta phosphorylation, attenuating insulin insensitivity induced by palmitate in 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- Lina Yang
- Department of Pharmacology, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ost A, Svensson K, Ruishalme I, Brännmark C, Franck N, Krook H, Sandström P, Kjolhede P, Strålfors P. Attenuated mTOR signaling and enhanced autophagy in adipocytes from obese patients with type 2 diabetes. Mol Med 2010; 16:235-46. [PMID: 20386866 DOI: 10.2119/molmed.2010.00023] [Citation(s) in RCA: 211] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 03/25/2010] [Indexed: 01/12/2023] Open
Abstract
Type 2 diabetes (T2D) is strongly linked to obesity and an adipose tissue unresponsive to insulin. The insulin resistance is due to defective insulin signaling, but details remain largely unknown. We examined insulin signaling in adipocytes from T2D patients, and contrary to findings in animal studies, we observed attenuation of insulin activation of mammalian target of rapamycin (mTOR) in complex with raptor (mTORC1). As a consequence, mTORC1 downstream effects were also affected in T2D: feedback signaling by insulin to signal-mediator insulin receptor substrate-1 (IRS1) was attenuated, mitochondria were impaired and autophagy was strongly upregulated. There was concomitant autophagic destruction of mitochondria and lipofuscin particles, and a dependence on autophagy for ATP production. Conversely, mitochondrial dysfunction attenuated insulin activation of mTORC1, enhanced autophagy and attenuated feedback to IRS1. The overactive autophagy was associated with large numbers of cytosolic lipid droplets, a subset with colocalization of perlipin and the autophagy protein LC3/atg8, which can contribute to excessive fatty acid release. Patients with diagnoses of T2D and overweight were consecutively recruited from elective surgery, whereas controls did not have T2D. Results were validated in a cohort of patients without diabetes who exhibited a wide range of insulin sensitivities. Because mitochondrial dysfunction, inflammation, endoplasmic-reticulum stress and hypoxia all inactivate mTORC1, our results may suggest a unifying mechanism for the pathogenesis of insulin resistance in T2D, although the underlying causes might differ.
Collapse
Affiliation(s)
- Anita Ost
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Cerovac V, Monteserin-Garcia J, Rubinfeld H, Buchfelder M, Losa M, Florio T, Paez-Pereda M, Stalla GK, Theodoropoulou M. The Somatostatin Analogue Octreotide Confers Sensitivity to Rapamycin Treatment on Pituitary Tumor Cells. Cancer Res 2010; 70:666-74. [DOI: 10.1158/0008-5472.can-09-2951] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Klein AL, Berkaw MN, Buse MG, Ball LE. O-linked N-acetylglucosamine modification of insulin receptor substrate-1 occurs in close proximity to multiple SH2 domain binding motifs. Mol Cell Proteomics 2009; 8:2733-45. [PMID: 19671924 DOI: 10.1074/mcp.m900207-mcp200] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Insulin receptor substrate-1 (IRS-1) is a highly phosphorylated adaptor protein critical to insulin and IGF-1 receptor signaling. Ser/Thr kinases impact the metabolic and mitogenic effects elicited by insulin and IGF-1 through feedback and feed forward regulation at the level of IRS-1. Ser/Thr residues of IRS-1 are also O-GlcNAc-modified, which may influence the phosphorylation status of the protein. To facilitate the understanding of the functional effects of O-GlcNAc modification on IRS-1-mediated signaling, we identified the sites of O-GlcNAc modification of rat and human IRS-1. Tandem mass spectrometric analysis of IRS-1, exogenously expressed in HEK293 cells, revealed that the C terminus, which is rich in docking sites for SH2 domain-containing proteins, was O-GlcNAc-modified at multiple residues. Rat IRS-1 was O-GlcNAc-modified at Ser(914), Ser(1009), Ser(1036), and Ser(1041). Human IRS-1 was O-GlcNAc-modified at Ser(984) or Ser(985), at Ser(1011), and possibly at multiple sites within residues 1025-1045. O-GlcNAc modification at a conserved residue in rat (Ser(1009)) and human (Ser(1011)) IRS-1 is adjacent to a putative binding motif for the N-terminal SH2 domains of p85alpha and p85beta regulatory subunits of phosphatidylinositol 3-kinase and the tyrosine phosphatase SHP2 (PTPN11). Immunoblot analysis using an antibody generated against human IRS-1 Ser(1011) GlcNAc further confirmed the site of attachment and the identity of the +203.2-Da mass shift as beta-N-acetylglucosamine. The accumulation of IRS-1 Ser(1011) GlcNAc in HEPG2 liver cells and MC3T3-E1 preosteoblasts upon inhibition of O-GlcNAcase indicates that O-GlcNAcylation of endogenously expressed IRS-1 is a dynamic process that occurs at normal glucose concentrations (5 mm). O-GlcNAc modification did not occur at any known or newly identified Ser/Thr phosphorylation sites and in most cases occurred simultaneously with phosphorylation of nearby residues. These findings suggest that O-GlcNAc modification represents an additional layer of posttranslational regulation that may impact the specificity of effects elicited by insulin and IGF-1.
Collapse
Affiliation(s)
- Amanda L Klein
- Department of Molecular and Cellular Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | |
Collapse
|
44
|
Vinod PKU, Venkatesh KV. Quantification of the effect of amino acids on an integrated mTOR and insulin signaling pathway. MOLECULAR BIOSYSTEMS 2009; 5:1163-73. [PMID: 19756306 DOI: 10.1039/b816965a] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Integration of nutrient and growth factor signaling pathways through mammalian TOR (mTOR) plays a central role in the regulation of cell growth. However, the mechanism of integration of these two signals in mTOR activation is largely unknown. Moreover, the nutritional input involving amino acids is yet to be characterized. Excess amino acid conditions, such as in obesity and protein-rich diets, are known to regulate insulin signaling through mTOR activation resulting in insulin resistance. Here, we develop a dynamic model to identify the regulatory role of amino acids in mTOR activation and to study its effect on insulin signaling in relation to multiple feedback loops present in the insulin signaling pathway. The analysis revealed that amino acids bring about multiple effects in the regulation of mTOR that might be represented by a single mechanism. Insulin signaling was demonstrated to operate between two extreme conditions involving tumor growth and insulin resistance, with multiple feedback loops tightly controlling and maintaining a robust insulin response. The state of insulin resistance was characterized by a decrease in the time lag or an increase in the magnitude of the negative feedback loop facilitated through perturbations such as excess input of amino acids. Such a condition disturbs the delicate balance between positive and negative feedback loops to yield an insulin-resistant state.
Collapse
|
45
|
Abstract
Insulin signaling at target tissues is essential for growth and development and for normal homeostasis of glucose, fat, and protein metabolism. Control over this process is therefore tightly regulated. It can be achieved by a negative feedback control mechanism whereby downstream components inhibit upstream elements along the insulin-signaling pathway (autoregulation) or by signals from apparently unrelated pathways that inhibit insulin signaling thus leading to insulin resistance. Phosphorylation of insulin receptor substrate (IRS) proteins on serine residues has emerged as a key step in these control processes under both physiological and pathological conditions. The list of IRS kinases implicated in the development of insulin resistance is growing rapidly, concomitant with the list of potential Ser/Thr phosphorylation sites in IRS proteins. Here, we review a range of conditions that activate IRS kinases to phosphorylate IRS proteins on "hot spot" domains. The flexibility vs. specificity features of this reaction is discussed and its characteristic as an "array" phosphorylation is suggested. Finally, its implications on insulin signaling, insulin resistance and type 2 diabetes, an emerging epidemic of the 21st century are outlined.
Collapse
Affiliation(s)
- Sigalit Boura-Halfon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100 Israel
| | | |
Collapse
|
46
|
Bashan N, Kovsan J, Kachko I, Ovadia H, Rudich A. Positive and negative regulation of insulin signaling by reactive oxygen and nitrogen species. Physiol Rev 2009; 89:27-71. [PMID: 19126754 DOI: 10.1152/physrev.00014.2008] [Citation(s) in RCA: 351] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Regulated production of reactive oxygen species (ROS)/reactive nitrogen species (RNS) adequately balanced by antioxidant systems is a prerequisite for the participation of these active substances in physiological processes, including insulin action. Yet, increasing evidence implicates ROS and RNS as negative regulators of insulin signaling, rendering them putative mediators in the development of insulin resistance, a common endocrine abnormality that accompanies obesity and is a risk factor of type 2 diabetes. This review deals with this dual, seemingly contradictory, function of ROS and RNS in regulating insulin action: the major processes for ROS and RNS generation and detoxification are presented, and a critical review of the evidence that they participate in the positive and negative regulation of insulin action is provided. The cellular and molecular mechanisms by which ROS and RNS are thought to participate in normal insulin action and in the induction of insulin resistance are then described. Finally, we explore the potential usefulness and the challenges in modulating the oxidant-antioxidant balance as a potentially promising, but currently disappointing, means of improving insulin action in insulin resistance-associated conditions, leading causes of human morbidity and mortality of our era.
Collapse
Affiliation(s)
- Nava Bashan
- Department of Clinical Biochemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | | | | | | | | |
Collapse
|
47
|
Boura-Halfon S, Zick Y. Serine kinases of insulin receptor substrate proteins. VITAMINS AND HORMONES 2009; 80:313-49. [PMID: 19251043 DOI: 10.1016/s0083-6729(08)00612-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Signaling of insulin and insulin-like growth factor-I (IGF-1) at target tissues is essential for growth, development and for normal homeostasis of glucose, fat, and protein metabolism. Control over this process is therefore tightly regulated. It can be achieved by a negative-feedback control mechanism, whereby downstream components inhibit upstream elements along the insulin and IGF-1 signaling pathway or by signals from other pathways that inhibit insulin/IGF-1 signaling thus leading to insulin/IGF-1 resistance. Phosphorylation of insulin receptor substrates (IRS) proteins on serine residues has emerged as a key step in these control processes both under physiological and pathological conditions. The list of IRS kinases is growing rapidly, concomitant with the list of potential Ser/Thr phosphorylation sites in IRS proteins. Here we review a range of conditions that activate IRS kinases to phosphorylate IRS proteins on selected domains. The specificity of this reaction is discussed and its characteristic as an "array" phosphorylation is suggested. Finally, its implications on insulin/IGF-1 signaling, insulin/IGF-1 resistance and diabetes, an emerging epidemic of the twenty-first century are outlined.
Collapse
Affiliation(s)
- Sigalit Boura-Halfon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
48
|
Waraich RS, Zaidi N, Moeschel K, Beck A, Weigert C, Voelter W, Kalbacher H, Lehmann R. Development and precise characterization of phospho-site-specific antibody of Ser357 of IRS-1: Elimination of cross reactivity with adjacent Ser358. Biochem Biophys Res Commun 2008; 376:26-31. [DOI: 10.1016/j.bbrc.2008.08.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 08/09/2008] [Indexed: 01/18/2023]
|
49
|
Zhang J, Gao Z, Yin J, Quon MJ, Ye J. S6K directly phosphorylates IRS-1 on Ser-270 to promote insulin resistance in response to TNF-(alpha) signaling through IKK2. J Biol Chem 2008; 283:35375-82. [PMID: 18952604 DOI: 10.1074/jbc.m806480200] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
S6K1 (p70S6K) is a serine kinase downstream from Akt in the insulin signaling pathway that is involved in negative feedback regulation of insulin action. S6K1 is also activated by TNF-alpha, a pro-inflammatory cytokine. However, its role remains to be characterized. In the current study, we elucidated a mechanism for S6K1 to mediate TNF-alpha-induced insulin resistance in adipocytes and hepatocytes. S6K1 was phosphorylated at Thr-389 in response to TNF-alpha. This led to phosphorylation of IRS-1 by S6K1 at multiple serine residues including Ser-270, Ser-307, Ser-636, and Ser-1101 in human IRS-1 (Ser-265, Ser-302, Ser-632, and Ser-1097, in rodent IRS-1). Direct phosphorylation of these sites by S6K1 was observed in an in vitro kinase assay using purified IRS-1 and S6K1. Phosphorylation of all these serines was increased in the adipose tissue of obese mice. RNAi knockdown demonstrated an important role for S6K1 in mediating TNF-alpha-induced IRS-1 inhibition that led to impaired insulin-stimulated glucose uptake in adipocytes. A point mutant of IRS-1 (S270A) impaired association of IRS-1 with S6K1 resulting in diminished phosphorylation of IRS-1 at three other S6K1 phosphorylation sites (Ser-307, Ser-636, and Ser-1101). Expression of a dominant negative S6K1 mutant prevented TNF-induced Ser-270 phosphorylation and IRS-1 protein degradation. Moreover, in IKK2 (but not IKK1)-null cells, TNF-alpha treatment did not result in Thr-389 phosphorylation of S6K1. We present a new mechanism for TNF-alpha to induce insulin resistance that involves activation of S6K by an IKK2-dependent pathway. S6K directly phosphorylates IRS-1 on multiple serine residues to inhibit insulin signaling.
Collapse
Affiliation(s)
- Jin Zhang
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana 70808, USA
| | | | | | | | | |
Collapse
|
50
|
Weigert C, Kron M, Kalbacher H, Pohl AK, Runge H, Häring HU, Schleicher E, Lehmann R. Interplay and effects of temporal changes in the phosphorylation state of serine-302, -307, and -318 of insulin receptor substrate-1 on insulin action in skeletal muscle cells. Mol Endocrinol 2008; 22:2729-40. [PMID: 18927238 DOI: 10.1210/me.2008-0102] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Transduction of the insulin signal is mediated by multisite Tyr and Ser/Thr phosphorylation of the insulin receptor substrates (IRSs). Previous studies on the function of single-site phosphorylation, particularly phosphorylation of Ser-302, -307, and -318 of IRS-1, showed attenuating as well as enhancing effects on insulin action. In this study we investigated a possible cross talk of these opposedly acting serine residues in insulin-stimulated skeletal muscle cells by monitoring phosphorylation kinetics, and applying loss of function, gain of function, and combination mutants of IRS-1. The phosphorylation at Ser-302 was rapid and transient, followed first by Ser-318 phosphorylation and later by phosphorylation of Ser-307, which remained elevated for 120 min. Mutation of Ser-302 to alanine clearly reduced the subsequent protein kinase C-zeta-mediated Ser-318 phosphorylation. The Ser-307 phosphorylation was independent of Ser-302 and/or Ser-318 phosphorylation status. The functional consequences of these phosphorylation patterns were studied by the expression of IRS-1 mutants. The E302A307E318 mutant simulating the early phosphorylation pattern resulted in a significant increase in Akt and glycogen synthase kinase 3 phosphorylation. Furthermore, glucose uptake was enhanced. Because the down-regulation of the insulin signal was not affected, this phosphorylation pattern seems to be involved in the enhancement but not in the termination of the insulin signal. This enhancing effect was completely absent when Ser-302 was unphosphorylated and Ser-307 was phosphorylated as simulated by the A302E307E318 mutant. Phospho-Ser-318, sequentially phosphorylated at least by protein kinase C-zeta and a mammalian target of rapamycin/raptor-dependent kinase, was part of the positive as well as of the subsequent negative phosphorylation pattern. Thus we conclude that insulin stimulation temporally generates different phosphorylation statuses of the same residues that exert different functions in insulin signaling.
Collapse
Affiliation(s)
- Cora Weigert
- Division of Clinical Chemistry and Pathobiochemistry, University Hospital of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|