1
|
Amin MN, Abdelmohsen UR, Samra YA. Turkish coffee has an antitumor effect on breast cancer cells in vitro and in vivo. Nutr Metab (Lond) 2024; 21:73. [PMID: 39272080 PMCID: PMC11396339 DOI: 10.1186/s12986-024-00846-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Breast cancer is the most diagnosed cancer in women. Its pathogenesis includes several pathways in cancer proliferation, apoptosis, and metastasis. Some clinical data have indicated the association between coffee consumption and decreased cancer risk. However, little data is available on the effect of coffee on breast cancer cells in vitro and in vivo. METHODS In our study, we assessed the effect of Turkish coffee and Fridamycin-H on different pathways in breast cancer, including apoptosis, proliferation, and oxidative stress. A human breast cancer cell line (MCF-7) was treated for 48 h with either coffee extract (5% or 10 v/v) or Fridamycin-H (10 ng/ml). Ehrlich solid tumors were induced in mice for in vivo modeling of breast cancer. Mice with Ehrlich solid tumors were treated orally with coffee extract in drinking water at a final concentration (v/v) of either 3%, 5%, or 10% daily for 21 days. Protein expression levels of Caspase-8 were determined in both in vitro and in vivo models using ELISA assay. Moreover, P-glycoprotein and peroxisome proliferator-activated receptor gamma (PPAR-γ) protein expression levels were analyzed in the in vitro model. β-catenin protein expression was analyzed in tumor sections using immunohistochemical analysis. In addition, malondialdehyde (MDA) serum levels were analyzed using colorimetry. RESULTS Both coffee extract and Fridamycin-H significantly increased Caspase-8, P-glycoprotein, and PPAR-γ protein levels in MCF-7 cells. Consistently, all doses of in vivo coffee treatment induced a significant increase in Caspase-8 and necrotic zones and a significant decrease in β- catenin, MDA, tumor volume, tumor weight, and viable tumor cell density. CONCLUSION These findings suggest that coffee extract and Fridamycin-H warrant further exploration as potential therapies for breast cancer.
Collapse
Affiliation(s)
- Mohamed N Amin
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, New Minia City, 61111, Egypt
| | - Yara A Samra
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
- Department of Basic Medical Sciences, Faculty of Oral and Dental Medicine, Ahram Canadian University, Giza, 12566, Egypt
| |
Collapse
|
2
|
Machado FJDM, Marta-Enguita J, Gómez SU, Rodriguez JA, Páramo-Fernández JA, Herrera M, Zandio B, Aymerich N, Muñoz R, Bermejo R, Marta-Moreno J, López B, González A, Roncal C, Orbe J. Transcriptomic Analysis of Extracellular Vesicles in the Search for Novel Plasma and Thrombus Biomarkers of Ischemic Stroke Etiologies. Int J Mol Sci 2024; 25:4379. [PMID: 38673963 PMCID: PMC11050408 DOI: 10.3390/ijms25084379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Accurate etiologic diagnosis provides an appropriate secondary prevention and better prognosis in ischemic stroke (IS) patients; still, 45% of IS are cryptogenic, urging us to enhance diagnostic precision. We have studied the transcriptomic content of plasma extracellular vesicles (EVs) (n = 21) to identify potential biomarkers of IS etiologies. The proteins encoded by the selected genes were measured in the sera of IS patients (n = 114) and in hypertensive patients with (n = 78) and without atrial fibrillation (AF) (n = 20). IGFBP-2, the most promising candidate, was studied using immunohistochemistry in the IS thrombi (n = 23) and atrium of AF patients (n = 13). In vitro, the IGFBP-2 blockade was analyzed using thromboelastometry and endothelial cell cultures. We identified 745 differentially expressed genes among EVs of cardioembolic, atherothrombotic, and ESUS groups. From these, IGFBP-2 (cutoff > 247.6 ng/mL) emerged as a potential circulating biomarker of embolic IS [OR = 8.70 (1.84-41.13) p = 0.003], which was increased in patients with AF vs. controls (p < 0.001) and was augmented in cardioembolic vs. atherothrombotic thrombi (p < 0.01). Ex vivo, the blockage of IGFBP-2 reduced clot firmness (p < 0.01) and lysis time (p < 0.001) and in vitro, diminished endothelial permeability (p < 0.05) and transmigration (p = 0.06). IGFBP-2 could be a biomarker of embolic IS and a new therapeutic target involved in clot formation and endothelial dysfunction.
Collapse
Affiliation(s)
- Florencio J. D. M. Machado
- Laboratory of Atherothrombosis, Cima Universidad de Navarra, 31008 Pamplona, Spain; (F.J.D.M.M.); (J.M.-E.); (S.U.G.); (J.A.R.); (J.A.P.-F.); (C.R.)
- Instituto de Investigación Sanitaria de Navarra IdiSNA, 31008 Pamplona, Spain; (M.H.); (B.L.)
| | - Juan Marta-Enguita
- Laboratory of Atherothrombosis, Cima Universidad de Navarra, 31008 Pamplona, Spain; (F.J.D.M.M.); (J.M.-E.); (S.U.G.); (J.A.R.); (J.A.P.-F.); (C.R.)
- Instituto de Investigación Sanitaria de Navarra IdiSNA, 31008 Pamplona, Spain; (M.H.); (B.L.)
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus, Instituto Salud Carlos III, 28029 Madrid, Spain; (B.Z.); (N.A.); (R.M.); (J.M.-M.)
| | - Susan U. Gómez
- Laboratory of Atherothrombosis, Cima Universidad de Navarra, 31008 Pamplona, Spain; (F.J.D.M.M.); (J.M.-E.); (S.U.G.); (J.A.R.); (J.A.P.-F.); (C.R.)
| | - Jose A. Rodriguez
- Laboratory of Atherothrombosis, Cima Universidad de Navarra, 31008 Pamplona, Spain; (F.J.D.M.M.); (J.M.-E.); (S.U.G.); (J.A.R.); (J.A.P.-F.); (C.R.)
- Instituto de Investigación Sanitaria de Navarra IdiSNA, 31008 Pamplona, Spain; (M.H.); (B.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José Antonio Páramo-Fernández
- Laboratory of Atherothrombosis, Cima Universidad de Navarra, 31008 Pamplona, Spain; (F.J.D.M.M.); (J.M.-E.); (S.U.G.); (J.A.R.); (J.A.P.-F.); (C.R.)
- Instituto de Investigación Sanitaria de Navarra IdiSNA, 31008 Pamplona, Spain; (M.H.); (B.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Hematology Department, Clinica Universidad de Navarra, 31008 Pamplona, Spain
| | - María Herrera
- Instituto de Investigación Sanitaria de Navarra IdiSNA, 31008 Pamplona, Spain; (M.H.); (B.L.)
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus, Instituto Salud Carlos III, 28029 Madrid, Spain; (B.Z.); (N.A.); (R.M.); (J.M.-M.)
- Neurology Department, Hospital Universitario de Navarra, 31008 Pamplona, Spain
| | - Beatriz Zandio
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus, Instituto Salud Carlos III, 28029 Madrid, Spain; (B.Z.); (N.A.); (R.M.); (J.M.-M.)
- Neurology Department, Hospital Universitario de Navarra, 31008 Pamplona, Spain
| | - Nuria Aymerich
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus, Instituto Salud Carlos III, 28029 Madrid, Spain; (B.Z.); (N.A.); (R.M.); (J.M.-M.)
- Neurology Department, Hospital Universitario de Navarra, 31008 Pamplona, Spain
| | - Roberto Muñoz
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus, Instituto Salud Carlos III, 28029 Madrid, Spain; (B.Z.); (N.A.); (R.M.); (J.M.-M.)
- Neurology Department, Hospital Universitario de Navarra, 31008 Pamplona, Spain
| | - Rebeca Bermejo
- Neurointervencionist Radiology, Hospital Universitario de Navarra, 31008 Pamplona, Spain;
| | - Javier Marta-Moreno
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus, Instituto Salud Carlos III, 28029 Madrid, Spain; (B.Z.); (N.A.); (R.M.); (J.M.-M.)
- Neurology Department, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria de Aragón (IIS-Aragon), 50009 Zaragoza, Spain
| | - Begoña López
- Instituto de Investigación Sanitaria de Navarra IdiSNA, 31008 Pamplona, Spain; (M.H.); (B.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Cardiovascular Diseases Program, Cima Universidad de Navarra, 31008 Pamplona, Spain
| | - Arantxa González
- Instituto de Investigación Sanitaria de Navarra IdiSNA, 31008 Pamplona, Spain; (M.H.); (B.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Cardiovascular Diseases Program, Cima Universidad de Navarra, 31008 Pamplona, Spain
- Department of Pathology, Anatomy and Physiology, Universidad de Navarra, 31008 Pamplona, Spain
| | - Carmen Roncal
- Laboratory of Atherothrombosis, Cima Universidad de Navarra, 31008 Pamplona, Spain; (F.J.D.M.M.); (J.M.-E.); (S.U.G.); (J.A.R.); (J.A.P.-F.); (C.R.)
- Instituto de Investigación Sanitaria de Navarra IdiSNA, 31008 Pamplona, Spain; (M.H.); (B.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Josune Orbe
- Laboratory of Atherothrombosis, Cima Universidad de Navarra, 31008 Pamplona, Spain; (F.J.D.M.M.); (J.M.-E.); (S.U.G.); (J.A.R.); (J.A.P.-F.); (C.R.)
- Instituto de Investigación Sanitaria de Navarra IdiSNA, 31008 Pamplona, Spain; (M.H.); (B.L.)
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus, Instituto Salud Carlos III, 28029 Madrid, Spain; (B.Z.); (N.A.); (R.M.); (J.M.-M.)
| |
Collapse
|
3
|
Harmon KA, Kammer M, Avery JT, Kimmerling KA, Mowry KC. Retention of Key Characteristics of Unprocessed Chorion Tissue Resulting in a Robust Scaffold to Support Wound Healing. Int J Mol Sci 2023; 24:15786. [PMID: 37958770 PMCID: PMC10649069 DOI: 10.3390/ijms242115786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Placental membranes have been widely studied and used clinically for wound care applications, but there is limited published information on the benefits of using the chorion membrane. The chorion membrane represents a promising source of placental-derived tissue to support wound healing, with its native composition of extracellular matrix (ECM) proteins and key regulatory proteins. This study examined the impact of hypothermic storage on the structure of chorion membrane, ECM content, and response to degradation in vitro. Hypothermically stored chorion membrane (HSCM) was further characterized for its proteomic content, and for its functionality as a scaffold for cell attachment and proliferation in vitro. HSCM retained the native ECM structure, composition, and integrity of native unprocessed chorion membrane and showed no differences in response to degradation in an in vitro wound model. HSCM retained key regulatory proteins previously shown to be present in placental membranes and promoted the attachment and proliferation of fibroblasts in vitro. These data support the fact that hypothermic storage does not significantly impact the structure and characteristics of the chorion membrane compared to unprocessed tissue or its functionality as a scaffold to support tissue growth.
Collapse
|
4
|
Celikkin N, Presutti D, Maiullari F, Volpi M, Promovych Y, Gizynski K, Dolinska J, Wiśniewska A, Opałło M, Paradiso A, Rinoldi C, Fuoco C, Swieszkowski W, Bearzi C, Rizzi R, Gargioli C, Costantini M. Combining rotary wet-spinning biofabrication and electro-mechanical stimulation for the in vitroproduction of functional myo-substitutes. Biofabrication 2023; 15:045012. [PMID: 37473749 DOI: 10.1088/1758-5090/ace934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/20/2023] [Indexed: 07/22/2023]
Abstract
In this work, we present an innovative, high-throughput rotary wet-spinning biofabrication method for manufacturing cellularized constructs composed of highly-aligned hydrogel fibers. The platform is supported by an innovative microfluidic printing head (MPH) bearing a crosslinking bath microtank with a co-axial nozzle placed at the bottom of it for the immediate gelation of extruded core/shell fibers. After a thorough characterization and optimization of the new MPH and the fiber deposition parameters, we demonstrate the suitability of the proposed system for thein vitroengineering of functional myo-substitutes. The samples produced through the described approach were first characterizedin vitroand then used as a substrate to ascertain the effects of electro-mechanical stimulation on myogenic maturation. Of note, we found a characteristic gene expression modulation of fast (MyH1), intermediate (MyH2), and slow (MyH7) twitching myosin heavy chain isoforms, depending on the applied stimulation protocol. This feature should be further investigated in the future to biofabricate engineered myo-substitutes with specific functionalities.
Collapse
Affiliation(s)
- Nehar Celikkin
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Dario Presutti
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Fabio Maiullari
- Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi', Milan, Italy
- PhD Program in Cellular and Molecular Biology, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Marina Volpi
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Yurii Promovych
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Konrad Gizynski
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Dolinska
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | | | - Marcin Opałło
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Alessia Paradiso
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Chiara Rinoldi
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Claudia Fuoco
- Department of Biology, University of Rome, Tor Vergata, Rome, Italy
| | - Wojciech Swieszkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Claudia Bearzi
- Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi', Milan, Italy
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100 Latina, Rome, Italy
- Institute of Biomedical Technologies, National Research Council of Italy (ITB-CNR), Segrate, Milan, Italy
| | - Roberto Rizzi
- Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi', Milan, Italy
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100 Latina, Rome, Italy
- Institute of Biomedical Technologies, National Research Council of Italy (ITB-CNR), Segrate, Milan, Italy
| | - Cesare Gargioli
- Department of Biology, University of Rome, Tor Vergata, Rome, Italy
| | - Marco Costantini
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
5
|
Dya GA, Klychnikov OI, Adasheva DA, Vladychenskaya EA, Katrukha AG, Serebryanaya DV. IGF-Binding Proteins and Their Proteolysis as a Mechanism of Regulated IGF Release in the Nervous Tissue. BIOCHEMISTRY (MOSCOW) 2023; 88:S105-S122. [PMID: 37069117 DOI: 10.1134/s0006297923140079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Insulin-like growth factors 1 and 2 (IGF-1 and IGF-2) play a key role in the maintenance of the nervous tissue viability. IGF-1 and IGF-2 exhibit the neuroprotective effects by stimulating migration and proliferation of nervous cells, activating cellular metabolism, inducing regeneration of damaged cells, and regulating various stages of prenatal and postnatal development of the nervous system. The availability of IGFs for the cells is controlled via their interaction with the IGF-binding proteins (IGFBPs) that inhibit their activity. On the contrary, the cleavage of IGFBPs by specific proteases leads to the IGF release and activation of its cellular effects. The viability of neurons in the nervous tissue is controlled by a complex system of trophic factors secreted by auxiliary glial cells. The main source of IGF for the neurons are astrocytes. IGFs can accumulate as an extracellular free ligand near the neuronal membranes as a result of proteolytic degradation of IGFBPs by proteases secreted by astrocytes. This mechanism promotes interaction of IGFs with their genuine receptors and triggers intracellular signaling cascades. Therefore, the release of IGF by proteolytic cleavage of IGFBPs is an important mechanism of neuronal protection. This review summarizes the published data on the role of IGFs and IGFBPs as the key players in the neuroprotective regulation with a special focus on the specific proteolysis of IGFBPs as a mechanism for the regulation of IGF bioavailability and viability of neurons.
Collapse
Affiliation(s)
- German A Dya
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Oleg I Klychnikov
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Daria A Adasheva
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Elizaveta A Vladychenskaya
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Alexey G Katrukha
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Daria V Serebryanaya
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
6
|
Kita A, Saito Y, Miura N, Miyajima M, Yamamoto S, Sato T, Yotsuyanagi T, Fujimiya M, Chikenji TS. Altered regulation of mesenchymal cell senescence in adipose tissue promotes pathological changes associated with diabetic wound healing. Commun Biol 2022; 5:310. [PMID: 35383267 PMCID: PMC8983691 DOI: 10.1038/s42003-022-03266-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 03/14/2022] [Indexed: 01/13/2023] Open
Abstract
Pathologic diabetic wound healing is caused by sequential and progressive deterioration of hemostasis, inflammation, proliferation, and resolution/remodeling. Cellular senescence promotes wound healing; however, diabetic wounds exhibit low levels of senescent factors and accumulate senescent cells, which impair the healing process. Here we show that the number of p15INK4B + PDGFRα + senescent mesenchymal cells in adipose tissue increases transiently during early phases of wound healing in both non-diabetic mice and humans. Transplantation of adipose tissue from diabetic mice into non-diabetic mice results in impaired wound healing and an altered cellular senescence–associated secretory phenotype (SASP), suggesting that insufficient induction of adipose tissue senescence after injury is a pathological mechanism of diabetic wound healing. These results provide insight into how regulation of senescence in adipose tissue contributes to wound healing and could constitute a basis for developing therapeutic treatment for wound healing impairment in diabetes. Type-2 diabetic adipose tissue impairs transient senescence during wound healing with expression of different components of the senescence-associated secretory phenotype (SASP), and this is associated with deteriorated wound healing.
Collapse
Affiliation(s)
- Arisa Kita
- Department of Plastic and Reconstructive Surgery, Sapporo Medical University, Sapporo, Japan
| | - Yuki Saito
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan.
| | - Norihiro Miura
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Maki Miyajima
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Sena Yamamoto
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Tsukasa Sato
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Takatoshi Yotsuyanagi
- Department of Plastic and Reconstructive Surgery, Sapporo Medical University, Sapporo, Japan
| | - Mineko Fujimiya
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takako S Chikenji
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan. .,Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
7
|
Uehlin AF, Vines JB, Feldman DS, Nyairo E, Dean DR, Thomas V. Uni-Directionally Oriented Fibro-Porous PLLA/Fibrin Bio-Hybrid Scaffold: Mechano-Morphological and Cell Studies. Pharmaceutics 2022; 14:pharmaceutics14020277. [PMID: 35214010 PMCID: PMC8879164 DOI: 10.3390/pharmaceutics14020277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, we report a biohybrid oriented fibrous scaffold based on nanofibers of poly(l-lactic acid) (PLLA)/fibrin produced by electrospinning and subsequent post-treatment. Induced hydrolytic degradation of the fibers in 0.25 M NaOH solution for various time periods followed by the immobilization of fibrin on the hydrolyzed fiber surfaces was shown to significantly affect the mechanical properties, with the tensile strength (40.6 MPa ± 1.3) and strain at failure (38% ± 4.5) attaining a value within the range of human ligaments and ligament-replacement grafts. Unidirectional electrospinning with a mandrel rotational velocity of 26.4 m/s produced highly aligned fibers with an average diameter of 760 ± 96 nm. After a 20-min hydrolysis treatment in NaOH solution, this was further reduced to an average of 457 ± 89 nm, which is within the range of collagen bundles found in ligament tissue. Based on the results presented herein, the authors hypothesize that a combination of fiber orientation/alignment and immobilization of fibrin can result in the mechanical and morphological modification of PLLA tissue scaffolds for ligament-replacement grafts. Further, it was found that treatment with NaOH enhanced the osteogenic differentiation of hMSCs and the additional inclusion of fibrin further enhanced osteogenic differentiation, as demonstrated by decreased proliferative rates and increased ALP activity.
Collapse
Affiliation(s)
- Andrew F. Uehlin
- Department of Materials Science and Engineering, University of Alabama at Birmingham, Birmingham, AL 35205, USA;
| | - Jeremy B. Vines
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35205, USA; (J.B.V.); (D.S.F.)
| | - Dale S. Feldman
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35205, USA; (J.B.V.); (D.S.F.)
| | - Elijah Nyairo
- Biomedical Engineering, Alabama State University, Montgomery, AL 36101, USA;
| | - Derrick R. Dean
- Biomedical Engineering, Alabama State University, Montgomery, AL 36101, USA;
- Correspondence: (D.R.D.); (V.T.)
| | - Vinoy Thomas
- Department of Materials Science and Engineering, University of Alabama at Birmingham, Birmingham, AL 35205, USA;
- Correspondence: (D.R.D.); (V.T.)
| |
Collapse
|
8
|
Fibrinogen and Antifibrinolytic Proteins: Interactions and Future Therapeutics. Int J Mol Sci 2021; 22:ijms222212537. [PMID: 34830419 PMCID: PMC8625824 DOI: 10.3390/ijms222212537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
Thrombus formation remains a major cause of morbidity and mortality worldwide. Current antiplatelet and anticoagulant therapies have been effective at reducing vascular events, but at the expense of increased bleeding risk. Targeting proteins that interact with fibrinogen and which are involved in hypofibrinolysis represents a more specific approach for the development of effective and safe therapeutic agents. The antifibrinolytic proteins alpha-2 antiplasmin (α2AP), thrombin activatable fibrinolysis inhibitor (TAFI), complement C3 and plasminogen activator inhibitor-2 (PAI-2), can be incorporated into the fibrin clot by FXIIIa and affect fibrinolysis by different mechanisms. Therefore, these antifibrinolytic proteins are attractive targets for the development of novel therapeutics, both for the modulation of thrombosis risk, but also for potentially improving clot instability in bleeding disorders. This review summarises the main properties of fibrinogen-bound antifibrinolytic proteins, their effect on clot lysis and association with thrombotic or bleeding conditions. The role of these proteins in therapeutic strategies targeting the fibrinolytic system for thrombotic diseases or bleeding disorders is also discussed.
Collapse
|
9
|
Cai Q, Dozmorov M, Oh Y. IGFBP-3/IGFBP-3 Receptor System as an Anti-Tumor and Anti-Metastatic Signaling in Cancer. Cells 2020; 9:cells9051261. [PMID: 32443727 PMCID: PMC7290346 DOI: 10.3390/cells9051261] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/11/2022] Open
Abstract
Insulin-like growth factor binding protein-3 (IGFBP-3) is a p53 tumor suppressor-regulated protein and a major carrier for IGFs in circulation. Among six high-affinity IGFBPs, which are IGFBP-1 through 6, IGFBP-3 is the most extensively investigated IGFBP species with respect to its IGF/IGF-I receptor (IGF-IR)-independent biological actions beyond its endocrine/paracrine/autocrine role in modulating IGF action in cancer. Disruption of IGFBP-3 at transcriptional and post-translational levels has been implicated in the pathophysiology of many different types of cancer including breast, prostate, and lung cancer. Over the past two decades, a wealth of evidence has revealed both tumor suppressing and tumor promoting effects of IGF/IGF-IR-independent actions of IGFBP-3 depending upon cell types, post-translational modifications, and assay methods. However, IGFBP-3′s anti-tumor function has been well accepted due to identification of functional IGFBP-3-interacting proteins, putative receptors, or crosstalk with other signaling cascades. This review mainly focuses on transmembrane protein 219 (TMEM219), which represents a novel IGFBP-3 receptor mediating antitumor effect of IGFBP-3. Furthermore, this review delineates the potential underlying mechanisms involved and the subsequent biological significance, emphasizing the clinical significance of the IGFBP-3/TMEM219 axis in assessing both the diagnosis and the prognosis of cancer as well as the therapeutic potential of TMEM219 agonists for cancer treatment.
Collapse
Affiliation(s)
- Qing Cai
- Department of Pathology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA; (Q.C.); (M.D.)
| | - Mikhail Dozmorov
- Department of Pathology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA; (Q.C.); (M.D.)
- Department of Biostatistics, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Youngman Oh
- Department of Pathology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA; (Q.C.); (M.D.)
- Correspondence: ; Tel.: +1-804-827-1324
| |
Collapse
|
10
|
Varma Shrivastav S, Bhardwaj A, Pathak KA, Shrivastav A. Insulin-Like Growth Factor Binding Protein-3 (IGFBP-3): Unraveling the Role in Mediating IGF-Independent Effects Within the Cell. Front Cell Dev Biol 2020; 8:286. [PMID: 32478064 PMCID: PMC7232603 DOI: 10.3389/fcell.2020.00286] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 04/02/2020] [Indexed: 12/22/2022] Open
Abstract
Insulin-like growth factor (IGF) binding protein-3 (IGFBP-3), one of the six members of the IGFBP family, is a key protein in the IGF pathway. IGFBP-3 can function in an IGF-dependent as well as in an IGF-independent manner. The IGF-dependent roles of IGFBP-3 include its endocrine role in the delivery of IGFs from the site of synthesis to the target cells that possess IGF receptors and the activation of associated downstream signaling. IGF-independent role of IGFBP-3 include its interactions with the proteins of the extracellular matrix and the proteins of the plasma membrane, its translocation through the plasma membrane into the cytoplasm and into the nucleus. The C-terminal domain of IGFBP-3 has the ability to undergo cell penetration therefore, generating a short 8-22-mer C-terminal domain peptides that can be conjugated to drugs or genes for effective intracellular delivery. This has opened doors for biotechnological applications of the molecule in molecular medicine. The aim of this this review is to summarize the complex roles of IGFBP-3 within the cell, including its mechanisms of cellular uptake and its translocation into the nucleus, various molecules with which it is capable of interacting, and its ability to regulate IGF-independent cell growth, survival and apoptosis. This would pave way into understanding the modus operandi of IGFBP-3 in regulating IGF-independent processes and its pleiotropic ability to bind with potential partners thus regulating several cellular functions implicated in metabolic diseases, including cancer.
Collapse
Affiliation(s)
- Shailly Varma Shrivastav
- VastCon Inc., Winnipeg, MB, Canada.,Department of Biology, University of Winnipeg, Winnipeg, MB, Canada
| | - Apurva Bhardwaj
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada
| | - Kumar Alok Pathak
- Research Institute of Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB, Canada.,Department of Surgery, University of Manitoba, Winnipeg, MB, Canada
| | - Anuraag Shrivastav
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada.,Research Institute of Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
11
|
Gligorijevic N, Robajac D, Nedic O. Enhanced Platelet Sensitivity to IGF-1 in Patients with Type 2 Diabetes Mellitus. BIOCHEMISTRY (MOSCOW) 2019; 84:1213-1219. [PMID: 31694517 DOI: 10.1134/s0006297919100109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Diabetes mellitus is characterized by increased platelet activation which is determined by many factors including changes in the expression of membrane proteins. The aim of this study was to investigate the sensitivity of human platelets to the insulin-like growth factor (IGF) system in patients with poorly controlled type 2 diabetes mellitus (DM2). Ligand binding was analyzed using 125I-labelled IGF-1 and insulin, and relative expression of insulin-like growth factor 1 receptor (IGF-1R) and insulin receptor (IR) was evaluated by Western blotting. Platelet aggregation in the presence of IGF-1 was studied by the plate aggregometry assay. We found that platelets from DM2 patients exhibited significantly higher IGF-1 binding and upregulation of IGF-1R expression in comparison with healthy individuals. Both insulin binding and IR expression were lower in the DM2 group, but the differences with the healthy control were statistically insignificant. The potentiating effect of IGF-1 on the thrombin-induced activation of platelets was detected in both groups but was significantly more pronounced in the DM2 patients. The initial rate of platelet activation in the presence of IGF-1 positively correlated with the concentration of glycated hemoglobin. Platelets isolated from DM2 patients displayed elevated expression of the IGF-1R subunits, which might have contributed to the higher sensitivity of these cells to IGF-1 in thrombin-initiated aggregation by increasing the rate of platelet activation. However, further experiments are needed to investigate the role of IGF-1 in thrombotic complications that usually accompany diabetes.
Collapse
Affiliation(s)
- N Gligorijevic
- Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Belgrade, 11080, Serbia.
| | - D Robajac
- Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Belgrade, 11080, Serbia.
| | - O Nedic
- Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Belgrade, 11080, Serbia.
| |
Collapse
|
12
|
Fibrin as a Multipurpose Physiological Platform for Bone Tissue Engineering and Targeted Delivery of Bioactive Compounds. Pharmaceutics 2019; 11:pharmaceutics11110556. [PMID: 31661853 PMCID: PMC6920828 DOI: 10.3390/pharmaceutics11110556] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/18/2019] [Accepted: 10/18/2019] [Indexed: 12/14/2022] Open
Abstract
Although bone graft is still considered as the gold standard method, bone tissue engineering offers promising alternatives designed to mimic the extracellular matrix (ECM) and to guide bone regeneration process. In this attempt, due to their similarity to the ECM and their low toxicity/immunogenicity properties, growing attention is paid to natural polymers. In particular, considering the early critical role of fracture hematoma for bone healing, fibrin, which constitutes blood clot, is a candidate of choice. Indeed, in addition to its physiological roles in bone healing cascade, fibrin biochemical characteristics make it suitable to be used as a multipurpose platform for bioactive agents’ delivery. Thus, taking advantage of these key assets, researchers and clinicians have the opportunity to develop composite systems that might further improve bone tissue reconstruction, and more generally prevent/treat skeletal disorders.
Collapse
|
13
|
Wang J, Khodabukus A, Rao L, Vandusen K, Abutaleb N, Bursac N. Engineered skeletal muscles for disease modeling and drug discovery. Biomaterials 2019; 221:119416. [PMID: 31419653 DOI: 10.1016/j.biomaterials.2019.119416] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 01/04/2023]
Abstract
Skeletal muscle is the largest organ of human body with several important roles in everyday movement and metabolic homeostasis. The limited ability of small animal models of muscle disease to accurately predict drug efficacy and toxicity in humans has prompted the development in vitro models of human skeletal muscle that fatefully recapitulate cell and tissue level functions and drug responses. We first review methods for development of three-dimensional engineered muscle tissues and organ-on-a-chip microphysiological systems and discuss their potential utility in drug discovery research and development of new regenerative therapies. Furthermore, we describe strategies to increase the functional maturation of engineered muscle, and motivate the importance of incorporating multiple tissue types on the same chip to model organ cross-talk and generate more predictive drug development platforms. Finally, we review the ability of available in vitro systems to model diseases such as type II diabetes, Duchenne muscular dystrophy, Pompe disease, and dysferlinopathy.
Collapse
Affiliation(s)
- Jason Wang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Lingjun Rao
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Keith Vandusen
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Nadia Abutaleb
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
14
|
Kim HJ, Yang H, Jung DH, Hwang JT, Ko BS. Ameliorating effects of Cuscuta chinensis Lamak extract on hind‑limb ischemia, and angiogenic‑ or inflammatory associated factors in ovariectomized mice. Mol Med Rep 2019; 19:3321-3329. [PMID: 30816501 DOI: 10.3892/mmr.2019.9977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 02/15/2019] [Indexed: 11/06/2022] Open
Abstract
Cuscuta chinensis Lamak (CCL) has traditionally been used in Korea to treat sexual disorders and skin problems. The aim of the present study was to investigate the effects of CCL extract on surgical injury‑induced ischemia in the hind limbs of mice. Specifically, female C57BL/6 mice were ovariectomized, and their hind‑limb vessels were ligated with surgical silk (6‑0) and excised. CCL (150 or 450 mg/kg/BW) was then administered to the mice for 3 weeks, and the blood flow rate was evaluated using a laser Doppler system at ‑7, 0, 7, 14 and 21 days following hind‑limb ischemia. The serum expression profiles of angiogenic and inflammatory mediators were measured using an antibody array, and the transcript levels were reverse transcription‑quantitative polymerase chain reaction. The rate of hind limb blood flow was normalized to non‑ischemic lesions and revealed to be markedly elevated at 14 and 21 days following ischemia when compared with the vehicle group. The density of capillaries in the hind limbs was also significantly increased following treatment with CCL in a dose‑dependent manner. In addition, the transcriptional expression of angiogenetic factors were upregulated, whereas that of inflammatory cytokines were downregulated. Finally, vascular endothelial cell migration and tube formation were evaluated in vitro using human umbilical vein endothelial cells (HUVECs) and identified to be significantly increased following treatment with CCL. Overall, the results of the present study indicate that CCL extract exhibits therapeutic potential for the treatment of hind‑limb ischemia as it promotes peripheral angiogenic and anti‑inflammatory effects in mice.
Collapse
Affiliation(s)
- Hye Jin Kim
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Hyun Yang
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Dong Ho Jung
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Joo Tae Hwang
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Byoung-Seob Ko
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| |
Collapse
|
15
|
Lu T, Hixon KR, Ona WJ, Carletta MN, Garg K, Sell SA. An
in vitro
analysis of injectable methacrylated alginate cryogels incorporated with PRP targeting minimally invasive treatment of bone nonunion. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aad298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Heher P, Mühleder S, Mittermayr R, Redl H, Slezak P. Fibrin-based delivery strategies for acute and chronic wound healing. Adv Drug Deliv Rev 2018; 129:134-147. [PMID: 29247766 DOI: 10.1016/j.addr.2017.12.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/24/2017] [Accepted: 12/09/2017] [Indexed: 12/17/2022]
Abstract
Fibrin, a natural hydrogel, is the end product of the physiological blood coagulation cascade and naturally involved in wound healing. Beyond its role in hemostasis, it acts as a local reservoir for growth factors and as a provisional matrix for invading cells that drive the regenerative process. Its unique intrinsic features do not only promote wound healing directly via modulation of cell behavior but it can also be fine-tuned to evolve into a delivery system for sustained release of therapeutic biomolecules, cells and gene vectors. To further augment tissue regeneration potential, current strategies exploit and modify the chemical and physical characteristics of fibrin to employ combined incorporation of several factors and their timed release. In this work we show advanced therapeutic approaches employing fibrin matrices in wound healing and cover the many possibilities fibrin offers to the field of regenerative medicine.
Collapse
|
17
|
Lev R, Seliktar D. Hydrogel biomaterials and their therapeutic potential for muscle injuries and muscular dystrophies. J R Soc Interface 2018; 15:20170380. [PMID: 29343633 PMCID: PMC5805959 DOI: 10.1098/rsif.2017.0380] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 12/18/2017] [Indexed: 12/23/2022] Open
Abstract
Muscular diseases such as muscular dystrophies and muscle injuries constitute a large group of ailments that manifest as muscle weakness, atrophy or fibrosis. Although cell therapy is a promising treatment option, the delivery and retention of cells in the muscle is difficult and prevents sustained regeneration needed for adequate functional improvements. Various types of biomaterials with different physical and chemical properties have been developed to improve the delivery of cells and/or growth factors for treating muscle injuries. Hydrogels are a family of materials with distinct advantages for use as cell delivery systems in muscle injuries and ailments, including their mild processing conditions, their similarities to natural tissue extracellular matrix, and their ability to be delivered with less invasive approaches. Moreover, hydrogels can be made to completely degrade in the body, leaving behind their biological payload in a process that can enhance the therapeutic process. For these reasons, hydrogels have shown great potential as cell delivery matrices. This paper reviews a few of the hydrogel systems currently being applied together with cell therapy and/or growth factor delivery to promote the therapeutic repair of muscle injuries and muscle wasting diseases such as muscular dystrophies.
Collapse
Affiliation(s)
- Rachel Lev
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Dror Seliktar
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| |
Collapse
|
18
|
Galler KM, Widbiller M. Perspectives for Cell-homing Approaches to Engineer Dental Pulp. J Endod 2017; 43:S40-S45. [DOI: 10.1016/j.joen.2017.06.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
19
|
Gligorijević N, Penezić A, Nedić O. Influence of glyco-oxidation on complexes between fibrin(ogen) and insulin-like growth factor-binding protein-1 in patients with diabetes mellitus type 2. Free Radic Res 2017; 51:64-72. [PMID: 27919172 DOI: 10.1080/10715762.2016.1268689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Fibrinogen and insulin-like growth factor-binding protein-1 (IGFBP-1) are tightly connected to metabolic changes and complications in patients with diabetes mellitus (DM), and since they mutually interact to form complexes in plasma, we investigated whether and to what extent IGFBP-1/fibrinogen complexes change due to glyco-oxidative processes in DM and whether they participate in fibrin clot formation. These complexes were determined by immunoblotting in plasma samples from healthy adults and patients with DM type 2 (DM2). The influence of glyco-oxidation in vitro on the complexes was also investigated. Amounts of IGFBP-1/fibrinogen complexes in plasma from patients with DM2 were slightly but not significantly lower than in healthy persons. Such complexes in patients' samples participated in fibrin clot formation to a significantly decreased extent. In vitro experiments with glucose or methylglyoxal (MGO) as reactive agents demonstrated that the complexes underwent glyco-oxidative modification leading to reduced formation and/or stability. Extensively oxidized fibrinogen almost completely lost its ability to bind IGFBP-1. The reduced affinity of fibrinogen for IGFBP-1 accompanying diabetes may potentially shift the equilibrium to liberate more IGFBP-1 (and possibly insulin-like growth factor (IGF)-I) able to activate platelets during coagulation, so contributing to the hypercoagulation state together with other factors. This hypothesis, however, needs further examination.
Collapse
Affiliation(s)
- Nikola Gligorijević
- a Department for Metabolism , Institute for the Application of Nuclear Energy (INEP), University of Belgrade , Belgrade, Serbia
| | - Ana Penezić
- a Department for Metabolism , Institute for the Application of Nuclear Energy (INEP), University of Belgrade , Belgrade, Serbia
| | - Olgica Nedić
- a Department for Metabolism , Institute for the Application of Nuclear Energy (INEP), University of Belgrade , Belgrade, Serbia
| |
Collapse
|
20
|
Pastar I, Stojadinovic O, Sawaya AP, Stone RC, Lindley LE, Ojeh N, Vukelic S, Samuels HH, Tomic-Canic M. Skin Metabolite, Farnesyl Pyrophosphate, Regulates Epidermal Response to Inflammation, Oxidative Stress, and Migration. J Cell Physiol 2016; 231:2452-63. [PMID: 26916741 DOI: 10.1002/jcp.25357] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/22/2016] [Indexed: 12/20/2022]
Abstract
Skin produces cholesterol and a wide array of sterols and non-sterol mevalonate metabolites, including isoprenoid derivative farnesyl pyrophosphate (FPP). To characterize FPP action in epidermis, we generated transcriptional profiles of primary human keratinocytes treated with zaragozic acid (ZGA), a squalene synthase inhibitor that blocks conversion of FPP to squalene resulting in endogenous accumulation of FPP. The elevated levels of intracellular FPP resulted in regulation of epidermal differentiation and adherens junction signaling, insulin growth factor (IGF) signaling, oxidative stress response and interferon (IFN) signaling. Immunosuppressive properties of FPP were evidenced by STAT-1 downregulation and prominent suppression of its nuclear translocation by IFNγ. Furthermore, FPP profoundly downregulated genes involved in epidermal differentiation of keratinocytes in vitro and in human skin ex vivo. Elevated levels of FPP resulted in induction of cytoprotective transcriptional factor Nrf2 and its target genes. We have previously shown that FPP functions as ligand for the glucocorticoid receptor (GR), one of the major regulator of epidermal homeostasis. Comparative microarray analyses show significant but not complete overlap between FPP and glucocorticoid regulated genes, suggesting that FPP may have wider transcriptional impact. This was further supported by co-transfection and chromatin immunoprecipitation experiments where we show that upon binding to GR, FPP recruits β-catenin and, unlike glucocorticoids, recruits co-repressor GRIP1 to suppress keratin 6 gene. These findings have many clinical implications related to epidermal lipid metabolism, response to glucocorticoid therapy as well as pleiotropic effects of cholesterol lowering therapeutics, statins. J. Cell. Physiol. 231: 2452-2463, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Olivera Stojadinovic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Andrew P Sawaya
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Rivka C Stone
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Linsey E Lindley
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Nkemcho Ojeh
- Faculty of Medical Sciences, University of the West Indies, Bridgetown, Barbados
| | - Sasa Vukelic
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, Geogria
| | - Herbert H Samuels
- Department of Biochemistry and Molecular Pharmacology and Department of Medicine, New York University School of Medicine, New York City, New York
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida.,John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
21
|
Gligorijević N, Nedić O. Interaction between fibrinogen and insulin-like growth factor-binding protein-1 in human plasma under physiological conditions. BIOCHEMISTRY (MOSCOW) 2016; 81:135-40. [DOI: 10.1134/s0006297916020073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Heher P, Maleiner B, Prüller J, Teuschl AH, Kollmitzer J, Monforte X, Wolbank S, Redl H, Rünzler D, Fuchs C. A novel bioreactor for the generation of highly aligned 3D skeletal muscle-like constructs through orientation of fibrin via application of static strain. Acta Biomater 2015; 24:251-65. [PMID: 26141153 DOI: 10.1016/j.actbio.2015.06.033] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/10/2015] [Accepted: 06/29/2015] [Indexed: 01/31/2023]
Abstract
The generation of functional biomimetic skeletal muscle constructs is still one of the fundamental challenges in skeletal muscle tissue engineering. With the notion that structure strongly dictates functional capabilities, a myriad of cell types, scaffold materials and stimulation strategies have been combined. To further optimize muscle engineered constructs, we have developed a novel bioreactor system (MagneTissue) for rapid engineering of skeletal muscle-like constructs with the aim to resemble native muscle in terms of structure, gene expression profile and maturity. Myoblasts embedded in fibrin, a natural hydrogel that serves as extracellular matrix, are subjected to mechanical stimulation via magnetic force transmission. We identify static mechanical strain as a trigger for cellular alignment concomitant with the orientation of the scaffold into highly organized fibrin fibrils. This ultimately yields myotubes with a more mature phenotype in terms of sarcomeric patterning, diameter and length. On the molecular level, a faster progression of the myogenic gene expression program is evident as myogenic determination markers MyoD and Myogenin as well as the Ca(2+) dependent contractile structural marker TnnT1 are significantly upregulated when strain is applied. The major advantage of the MagneTissue bioreactor system is that the generated tension is not exclusively relying on the strain generated by the cells themselves in response to scaffold anchoring but its ability to subject the constructs to individually adjustable strain protocols. In future work, this will allow applying mechanical stimulation with different strain regimes in the maturation process of tissue engineered constructs and elucidating the role of mechanotransduction in myogenesis. STATEMENT OF SIGNIFICANCE Mechanical stimulation of tissue engineered skeletal muscle constructs is a promising approach to increase tissue functionality. We have developed a novel bioreactor-based 3D culture system, giving the user the possibility to apply different strain regimes like static, cyclic or ramp strain to myogenic precursor cells embedded in a fibrin scaffold. Application of static mechanical strain leads to alignment of fibrin fibrils along the axis of strain and concomitantly to highly aligned myotube formation. Additionally, the pattern of myogenic gene expression follows the temporal progression observed in vivo with a more thorough induction of the myogenic program when static strain is applied. Ultimately, the strain protocol used in this study results in a higher degree of muscle maturity demonstrated by enhanced sarcomeric patterning and increased myotube diameter and length. The introduced bioreactor system enables new possibilities in muscle tissue engineering as longer cultivation periods and different strain applications will yield tissue engineered muscle-like constructs with improved characteristics in regard to functionality and biomimicry.
Collapse
|
23
|
Dutta D, Fauer C, Mulleneux HL, Stabenfeldt SE. Tunable Controlled Release of Bioactive SDF-1α via Protein Specific Interactions within Fibrin/Nanoparticle Composites. J Mater Chem B 2015; 3:7963-7973. [PMID: 26660666 DOI: 10.1039/c5tb00935a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The chemokine, stromal cell-derived factor 1α (SDF-1α), is a key regulator of the endogenous neural progenitor/stem cell-mediated regenerative response after neural injury. Increased and sustained bioavailability of SDF-1α in the peri-injury region is hypothesized to modulate this endogenous repair response. Here, we describe poly(lactic-co-glycolic) acid (PLGA) nanoparticles capable of releasing bioactive SDF-1α in a sustained manner over 60days after a burst of 23%. Moreover, we report a biphasic cellular response to SDF-1α concentrations thus the large initial burst release in an in vivo setting may result in supratherapeutic concentrations of SDF-1α. Specific protein-protein interactions between SDF-1α and fibrin (as well as its monomer, fibrinogen) were exploited to control the magnitude of the burst release. Nanoparticles embedded in fibrin significantly reduced the amount of SDF-1α released after 72 hrs as a function of fibrin density. Therefore, the nanoparticle/fibrin composites represented a means to independently tune the magnitude of the burst phase release from the nanoparticles while perserving a bioactive depot of SDF-1α for release over 60days.
Collapse
Affiliation(s)
- D Dutta
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - C Fauer
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - H L Mulleneux
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - S E Stabenfeldt
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
24
|
Ahmad E, Fatima MT, Hoque M, Owais M, Saleemuddin M. Fibrin matrices: The versatile therapeutic delivery systems. Int J Biol Macromol 2015; 81:121-36. [PMID: 26231328 DOI: 10.1016/j.ijbiomac.2015.07.054] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 07/24/2015] [Accepted: 07/26/2015] [Indexed: 12/12/2022]
Abstract
Fibrin sealants, that have been employed for over a century by surgeons to stop post surgery bleeding, are finding novel applications in the controlled delivery of antibiotics and several other therapeutics. Fibrinogen can be easily purified from blood plasma and converted by thrombolysis to fibrin that undergoes spontaneous aggregation to form insoluble clot. During the gelling, fibrin can be formulated into films, clots, threads, microbeads, nanoconstructs and nanoparticles. Whole plasma clots in the form of beads and microparticles can also be prepared by activating endogenous thrombin, for possible drug delivery. Fibrin formulations offer remarkable scope for controlling the porosity as well as in vivo degradability and hence the release of the associated therapeutics. Binding/covalent-linking of therapeutics to the fibrin matrix, crosslinking of the matrix with bifunctional reagents and coentrapment of protease inhibitors have been successful in regulating both in vitro and in vivo release of the therapeutics. The release rates can also be remarkably lowered by preentrapment of therapeutics in insoluble particles like liposomes or by anchoring them to the matrix via molecules that bind them as well as fibrin.
Collapse
Affiliation(s)
- Ejaj Ahmad
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | | | - Mehboob Hoque
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Owais
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammed Saleemuddin
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
25
|
Lv J, Xiu P, Tan J, Jia Z, Cai H, Liu Z. Enhanced angiogenesis and osteogenesis in critical bone defects by the controlled release of BMP-2 and VEGF: implantation of electron beam melting-fabricated porous Ti
6
Al
4
V scaffolds incorporating growth factor-doped fibrin glue. Biomed Mater 2015; 10:035013. [DOI: 10.1088/1748-6041/10/3/035013] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Miljuš G, Malenković V, Đukanović B, Kolundžić N, Nedić O. IGFBP-3/transferrin/transferrin receptor 1 complexes as principal mediators of IGFBP-3 delivery to colon cells in non-cancer and cancer tissues. Exp Mol Pathol 2015; 98:431-8. [DOI: 10.1016/j.yexmp.2015.03.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 03/27/2015] [Indexed: 02/07/2023]
|
27
|
|
28
|
Lee H, Kim SR, Oh Y, Cho SH, Schleimer RP, Lee YC. Targeting insulin-like growth factor-I and insulin-like growth factor-binding protein-3 signaling pathways. A novel therapeutic approach for asthma. Am J Respir Cell Mol Biol 2014; 50:667-77. [PMID: 24219511 PMCID: PMC5455301 DOI: 10.1165/rcmb.2013-0397tr] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/05/2013] [Indexed: 02/04/2023] Open
Abstract
Insulin-like growth factor (IGF)-I has been recognized to play critical roles in the pathogenesis of asthma, whereas IGF-binding protein (IGFBP)-3 blocks crucial physiologic manifestations of asthma. IGF-I enhances subepithelial fibrosis, airway inflammation, airway hyperresponsiveness, and airway smooth muscle hyperplasia by interacting with various inflammatory mediators and complex signaling pathways, such as intercellular adhesion molecule-1, and the hypoxia-inducible factor/vascular endothelial growth factor axis. On the other hand, IGFBP-3 decreases airway inflammation and airway hyperresponsiveness through IGFBP-3 receptor-mediated activation of caspases, which subsequently inhibits NF-κB signaling pathway. It also inhibits the IGF-I/hypoxia-inducible factor/vascular endothelial growth factor axis via IGF-I-dependent and/or IGF-I-independent mechanisms. This Translational Review summarizes the role of IGF-I and IGFBP-3 in the context of allergic airway disease, and discusses the therapeutic potential of various strategies targeting the IGF-I and IGFBP-3 signaling pathways for the management of asthma.
Collapse
Affiliation(s)
- Hyun Lee
- Department of Internal Medicine and Research Center for Pulmonary Disorders, Chonbuk National University Medical School, Jeonju, South Korea
| | - So Ri Kim
- Department of Internal Medicine and Research Center for Pulmonary Disorders, Chonbuk National University Medical School, Jeonju, South Korea
| | - Youngman Oh
- Department of Pathology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia; and
| | - Seong Ho Cho
- Division of Allergy–Immunology, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Robert P. Schleimer
- Division of Allergy–Immunology, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Yong Chul Lee
- Department of Internal Medicine and Research Center for Pulmonary Disorders, Chonbuk National University Medical School, Jeonju, South Korea
| |
Collapse
|
29
|
Hjortebjerg R, Flyvbjerg A, Frystyk J. Insulin growth factor binding proteins as therapeutic targets in type 2 diabetes. Expert Opin Ther Targets 2013; 18:209-24. [PMID: 24261835 DOI: 10.1517/14728222.2014.858698] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION The signaling pathways of the insulin-like growth factors (IGFs) have been implicated in the aetiology of type 2 diabetes (T2D) and a number of therapeutic modalities aiming at the IGF-axis have been considered. Administration of IGF-I has been reported to improve insulin sensitivity in healthy subjects and patients with T2D. In recent years, the IGF binding proteins (IGFBPs) have also been associated with metabolic disorders, prompting the idea that IGFBPs play important roles in the pathogenesis of T2D. Thus, by virtue of their role in the regulation of IGF effects, the IGFBPs have emerged as potential biomarkers and therapeutic targets in metabolic syndromes and T2D. AREAS COVERED The article provides an overview on recent findings in clinical and experimental IGFBP-research and addresses the studies that have investigated the potentials of the IGFBPs as therapeutic targets in T2D. EXPERT OPINION There is plenty of therapeutic promise within the IGF system, but further understanding of the IGFs in T2D is necessary to avoid off-target effects. Strong evidence supports the use of IGFBPs as therapeutic targets in the treatment of T2D, and it is not difficult to foresee the use of IGFBPs as part of a combination therapy alongside other anti-diabetic drugs.
Collapse
Affiliation(s)
- Rikke Hjortebjerg
- Aarhus University, Department of Clinical Medicine, Medical Research Laboratory, Faculty of Health , DK-8000 Aarhus C , Denmark
| | | | | |
Collapse
|
30
|
Anitua E, Zalduendo MM, Alkhraisat MH, Orive G. Release kinetics of platelet-derived and plasma-derived growth factors from autologous plasma rich in growth factors. Ann Anat 2013; 195:461-6. [PMID: 23722041 DOI: 10.1016/j.aanat.2013.04.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/01/2013] [Accepted: 04/02/2013] [Indexed: 10/26/2022]
Abstract
Many studies have evaluated the biological effects of platelet rich plasma reporting the final outcomes on cell and tissues. However, few studies have dealt with the kinetics of growth factor delivery by plasma rich in growth factors. Venous blood was obtained from three healthy volunteers and processed with PRGF-Endoret technology to prepare autologous plasma rich in growth factors. The gel-like fibrin scaffolds were then incubated in triplicate, in a cell culture medium to monitor the release of PDGF-AB, VEGF, HGF and IGF-I during 8 days of incubation. A leukocyte-platelet rich plasma was prepared employing the same technology and the concentrations of growth factors and interleukin-1β were determined after 24h of incubation. After each period, the medium was collected, fibrin clot was destroyed and the supernatants were stored at -80°C until analysis. The growth factor delivery is diffusion controlled with a rapid initial release by 30% of the bioactive content after 1h of incubation and a steady state release when almost 70% of the growth factor content has been delivered. Autologous fibrin matrix retained almost 30% of the amount of the growth factors after 8 days of incubation. The addition of leukocytes to the formula of platelet rich plasma did not increase the concentration of the growth factors, while it drastically increased the presence of pro-inflammatory IL-1β. Further studies employing an in vitro inflammatory model would be interesting to study the difference in growth factors and pro-inflammatory cytokines between leukocyte-free and leukocyte-rich platelet rich plasma.
Collapse
Affiliation(s)
- Eduardo Anitua
- Eduardo Anitua Foundation, c/Jose Maria Cagigal 19, 01007 Vitoria, Spain; BTI Biotechnology Institute, c/Jacinto Quincoces 39, 01007 Vitoria, Spain.
| | | | | | | |
Collapse
|
31
|
Zhang Q, Steinle JJ. DNA-PK phosphorylation of IGFBP-3 is required to prevent apoptosis in retinal endothelial cells cultured in high glucose. Invest Ophthalmol Vis Sci 2013; 54:3052-7. [PMID: 23557743 DOI: 10.1167/iovs.12-11533] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
PURPOSE The goal of this study was to determine whether Compound 49b stimulates insulin-like growth factor binding protein-3 (IGFBP-3) activation in retinal endothelial cells (REC) through DNA-dependent protein kinase (DNA-PK). METHODS REC were grown in a normal glucose (5 mM) or high glucose medium (25 mM). Some cells were transfected with protein kinase A (PKA) siRNA, following treatment with 50 nM Compound 49b, a novel β-adrenergic receptor agonist. Cell proteins were extracted and analyzed for DNA-PK expression by Western blotting. Additional cells were treated with or without NU7441 (a specific DNA-PK inhibitor) prior to Compound 49b treatment. Cell lysates were processed for IGFBP-3 ELISA analyses and Western blotting to measure casein kinase 2 (CK2). Immunoprecipitation for total and phospho-IGFBP-3, cell proliferation and cell death measurements were done after transfection with the S(156)A IGFBP-3 mutation (key phosphorylation site involved in DNA-PK) plasmid DNA. RESULTS Compound 49b required DNA-PK to activate IGFBP-3 in REC. IGFBP-3 activation was significantly reduced following treatment with either the DNA-PK inhibitor or following transfection with the IGFBP-3 S(156)A mutant plasmid (P < 0.05). Significant increases in cell death and decreases in cell proliferation were also observed in cells transfected with the IGFBP-3 S(156)A mutant plasmid (P < 0.05). Casein kinase levels were not altered after treatment with NU7741 or Compound 49b. CONCLUSIONS Our findings suggest Compound 49b induces DNA-PK levels through PKA activity. DNA-PK is required for Compound 49b-induced IGFBP-3 expression, leading to inhibition of REC cell death.
Collapse
Affiliation(s)
- Qiuhua Zhang
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | | |
Collapse
|
32
|
Dong J, Cui G, Bi L, Li J, Lei W. The mechanical and biological studies of calcium phosphate cement-fibrin glue for bone reconstruction of rabbit femoral defects. Int J Nanomedicine 2013; 8:1317-24. [PMID: 23576869 PMCID: PMC3617789 DOI: 10.2147/ijn.s42862] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In order to improve the mechanical and biological properties of calcium phosphate cement (CPC, nanometer-biomaterial) for bone reconstruction in the rabbit femoral defect model, fibrin glue (FG, the natural product, purified from the blood) was introduced at three different ratios. The CPC powder and the FG solution were mixed, respectively, at the powder/liquid (P/L) ratios (g/mL) of 1:1, 3:1, and 5:1 (g/mL), and pure CPC was used as a control. After being implanted into the femoral defect in rabbit, the healing process was evaluated by micro-computed tomography scan, biomechanical testing, and histological examination. By micro-computed tomography analysis, the P/L ratio of 1:1 (g/mL) group indicated the largest quantity of new bone formation at 4 weeks, 8 weeks, and 12 weeks after implantation, respectively. Bone volume per trabecular volume of the 1:1 group was highest in the four groups, which was 1.45% ± 0.42%, 7.35% ± 1.45%, and 29.10% ± 1.67% at 4 weeks, 8 weeks, and 12 weeks after the operation, respectively. In the biomechanical tests, the compressive strength and the elastic modulus of the three CPC–FG groups were much higher than those of the pure CPC group at the determined time point (P < 0.05). The histological evaluation also showed the best osseointegration in the 1:1 group at 4 weeks, 8 weeks, and 12 weeks after the operation, respectively. In the 1:1 group, the bone grew into the pore of the cement in the laminar arrangement and connected with the cement tightly at the 12th week after the operation. This present study indicated that the CPC–FG composite at the P/L ratio of 1:1 (g/mL) stimulated bone regeneration better than any other designed group, which suggested that CPC–FG at the P/L ratio of 1:1 has significant potential as the bioactive material for the treatment of bone defects.
Collapse
Affiliation(s)
- Jingjing Dong
- Institute of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | | | | | | | | |
Collapse
|
33
|
Heparin-binding domain of fibrin(ogen) binds growth factors and promotes tissue repair when incorporated within a synthetic matrix. Proc Natl Acad Sci U S A 2013; 110:4563-8. [PMID: 23487783 DOI: 10.1073/pnas.1221602110] [Citation(s) in RCA: 329] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
By binding growth factors (GFs), the ECM tightly regulates their activity. We recently reported that the heparin-binding domain II of fibronectin acts as a promiscuous high-affinity GF-binding domain. Here we hypothesized that fibrin, the provisional ECM during tissue repair, also could be highly promiscuous in its GF-binding capacity. Using multiple affinity-based assays, we found that fibrin(ogen) and its heparin-binding domain bind several GFs from the PDGF/VEGF and FGF families and some GFs from the TGF-β and neurotrophin families. Overall, we identified 15 unique binding interactions. The GF binding ability of fibrinogen caused prolonged retention of many of the identified GFs within fibrin. Thus, based on the promiscuous and high-affinity interactions in fibrin, GF binding may be one of fibrin's main physiological functions, and these interactions may potentially play an important and ubiquitous role during tissue repair. To prove this role in a gain-of-function model, we incorporated the heparin-binding domain of fibrin into a synthetic fibrin-mimetic matrix. In vivo, the multifunctional synthetic matrix could fully mimic the effect of fibrin in a diabetic mouse model of impaired wound healing, demonstrating the benefits of generating a hybrid biomaterial consisting of a synthetic polymeric scaffold and recombinant bioactive ECM domains. The reproduction of GF-ECM interactions with a fibrin-mimetic matrix could be clinically useful, and has the significant benefit of a more straightforward regulatory path associated with chemical synthesis rather than human sourcing.
Collapse
|
34
|
Engineered insulin-like growth factor-1 for improved smooth muscle regeneration. Biomaterials 2011; 33:494-503. [PMID: 22014943 DOI: 10.1016/j.biomaterials.2011.09.088] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 09/27/2011] [Indexed: 02/05/2023]
Abstract
Insulin-like growth factor-1 (IGF-1) has been shown to induce potent mitogenic responses in various cell types, yet its sustained local delivery is still an underdeveloped domain in the clinic. We report here an engineered IGF-1 that facilitates extended local delivery to a site through its immobilization capacity within fibrin. Through recombinant fusion with a substrate sequence tag derived from α(2)-plasmin inhibitor (α(2)PI(1-8)), the resulting variant, α(2)PI(1-8)-IGF-1, was covalently incorporated into fibrin matrices during normal thrombin/factor XIIIa-mediated polymerization. Bioactivity of the variant was confirmed to be equivalent to wild type (WT) IGF-1 via IGF-1 receptor phosphorylation and cell proliferation studies in urinary tract-derived cells in 2-D. Assessment of functional retention within 3-D fibrin matrices demonstrated that incorporation of α(2)PI(1-8)-IGF-1 induced a 1.3- and 1.5-fold more robust proliferative response in smooth muscle cells (SMCs) than WT IGF-1 and negative control matrices, respectively, when release was not contained. Sustained α(2)PI(1-8)-IGF-1 availability at bladder lesion sites in vivo evoked a considerable increase in SMC proliferation and a favorable host tissue response after 28 days in rats. We conclude that the sustained local IGF-1 availability from fibrin provided by our variant protein enhances smooth muscle regeneration better than the WT form of the protein.
Collapse
|
35
|
Abstract
Aim: The aim of the study was to prepare a drug-entrapped, beaded form of blood plasma for possible sustained drug delivery. Method: Blood plasma mixed with various drugs was enriched with CaCl2 and transferred in the form of small droplets on to a glass slide covered with parafilm. Clot formation was induced by incubation at 37°C. Results: Plasma-bead entrapped tetracycline, amphotericin B and daunorubicin were released gradually in vitro. Crosslinking of the beads with glutaraldehyde decreased the release rate of drugs remarkably. The plasma bead-entrapped cefotaxime administered subcutaneously in mice was released in a slow and sustained fashion and remained in circulation for a longer duration than the antibiotic administered in the free form. Conclusion: The plasma beads have potential for the sustained delivery of drugs in vivo, since their preparation does not require additional thrombin or other proteins and can be readily accomplished by using autologous plasma, thereby minimizing the risk of immunological complications.
Collapse
|
36
|
Roet KCD, Bossers K, Franssen EHP, Ruitenberg MJ, Verhaagen J. A meta-analysis of microarray-based gene expression studies of olfactory bulb-derived olfactory ensheathing cells. Exp Neurol 2011; 229:10-45. [PMID: 21396936 DOI: 10.1016/j.expneurol.2011.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 12/28/2010] [Accepted: 03/02/2011] [Indexed: 12/23/2022]
Abstract
Genome wide transcriptional profiling and large scale proteomics have emerged as two powerful methods to dissect the molecular properties of specific neural tissues or cell types on a global scale. Several genome-wide transcriptional profiling and proteomics studies have been published on cultured olfactory ensheathing cells (OEC). In this article we present a meta-analysis of all five published and publicly available micro-array gene expression datasets of cultured early-passage-OB-OEC with other cell types (Schwann cells, late-passage-OB-OEC, mucosa-OEC, an OEC cell line, and acutely dissected OEC). The aim of this meta-analysis is to identify genes and molecular pathways that are found in multiple instead of one isolated study. 454 Genes were detected in at least three out of five microarray datasets. In this "Top-list", genes involved in the biological processes "growth of neurites", "blood vessel development", "migration of cells" and "immune response" were strongly overrepresented. By applying network analysis tools, molecular networks were constructed and Hub-genes were identified that may function as key genes in the above mentioned interrelated processes. We also identified 7 genes (ENTPD2, MATN2, CTSC, PTHLH, GLRX1, COL27A1 and ID2) with uniformly higher or lower expression in early-passage-OB-OEC in all five microarray comparisons. These genes have diverse but intriguing roles in neuroprotection, neurite extension and/or tissue repair. Our meta-analysis provides novel insights into the molecular basis of OB-OEC-mediated neural repair and can serve as a repository for investigators interested in the molecular biology of OEC. This article is part of a Special Issue entitled: Understanding olfactory ensheathing glia and their prospect for nervous system repair.
Collapse
Affiliation(s)
- Kasper C D Roet
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Meibergdreef 47, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
37
|
McIntosh J, Dennison G, Holly JMP, Jarrett C, Frankow A, Foulstone EJ, Winters ZE, Perks CM. IGFBP-3 can either inhibit or enhance EGF-mediated growth of breast epithelial cells dependent upon the presence of fibronectin. J Biol Chem 2010; 285:38788-800. [PMID: 20851879 DOI: 10.1074/jbc.m110.177311] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Progression of breast cancer is associated with remodeling of the extracellular matrix, often involving a switch from estrogen dependence to a dependence on EGF receptor (EGFR)/HER-2 and is accompanied by increased expression of the main binding protein for insulin-like growth factors (IGFBP-3). We have examined the effects of IGFBP-3 on EGF responses of breast epithelial cells in the context of changes in the extracellular matrix. On plastic and laminin with MCF-10A normal breast epithelial cells, EGF and IGFBP-3 each increased cell growth and together produced a synergistic response, whereas with T47D breast cancer cells IGFBP-3 alone had no effect, but the ability of EGF to increase cell proliferation was markedly inhibited in the presence of IGFBP-3. In contrast on fibronectin with MCF-10A cells, IGFBP-3 alone inhibited cell growth and blocked EGF-induced proliferation. With the cancer cells, IGFBP-3 alone had no effect but enhanced the EGF-induced increase in cell growth. The insulin-like growth factor-independent effects of IGFBP-3 alone on cell proliferation were completely abrogated in the presence of an EGFR, tyrosine kinase inhibitor, Iressa. Although IGFBP-3 did not affect EGFR phosphorylation [Tyr(1068)], it was found to modulate receptor internalization and was associated with activation of Rho and subsequent changes in MAPK phosphorylation. The levels of fibronectin and IGFBP-3 within breast tumors may determine their dependence on EGFR and their response to therapies targeting this receptor.
Collapse
Affiliation(s)
- Jamie McIntosh
- School of Clinical Sciences, IGFs and Metabolic Endocrinology Group, Learning and Research Building, 2nd Floor, University of Bristol, Southmead Hospital, Bristol BS10 5NB, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Mireuta M, Darnel A, Pollak M. IGFBP-2 expression in MCF-7 cells is regulated by the PI3K/AKT/mTOR pathway through Sp1-induced increase in transcription. Growth Factors 2010; 28:243-55. [PMID: 20370577 DOI: 10.3109/08977191003745472] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Insulin-like growth factor binding protein 2 (IGFBP-2) has been implicated in the pathophysiology of neoplasia. The PI3K/AKT/mTOR pathway has recently been shown to be a predominant regulator of IGFBP-2 at the protein level in MCF-7 breast cancer cells. However, there are gaps in knowledge with respect to the molecular mechanisms that underlie this regulation. Here, we show that the PI3K/AKT/mTOR pathway regulates IGFBP-2 protein levels by modulating IGFBP-2 mRNA abundance in MCF-7 cells. This change is achieved by regulating transcription through a critical region present in the first 200 bp upstream of the transcription initiation site where Sp1 transcription factor binds and drives transcription. IGF-1 treatment leads to increased nuclear abundance of Sp1 and increased IGFBP-2 mRNA and protein levels. Rapamycin and LY294002 induce a decline in Sp1 nuclear abundance and IGFBP-2 mRNA and protein levels. This work provides a mechanistic explanation for the observed effects of the PI3K/AKT/mTOR pathway on IGFBP-2 levels in MCF-7 cells.
Collapse
Affiliation(s)
- Matei Mireuta
- Departments of Medicine and Oncology, Lady Davis Institute for Medical Research, Montreal SMBD Jewish General Hospital, and McGill University, Montreal, Quebec, CanadaH3T 1E2
| | | | | |
Collapse
|
39
|
Spicer PP, Mikos AG. Fibrin glue as a drug delivery system. J Control Release 2010; 148:49-55. [PMID: 20637815 DOI: 10.1016/j.jconrel.2010.06.025] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 06/20/2010] [Accepted: 06/29/2010] [Indexed: 11/17/2022]
Abstract
Fibrin glue has been used surgically for decades for hemostasis as well as a sealant. It has also been researched as both a gel for cell delivery and a vehicle for drug delivery. The drug delivery applications for fibrin glue span tissue engineering to chemotherapy and involve several mechanisms for drug matrix interactions and control of release kinetics. Additionally, drugs or factors can be loaded in the gel via impregnation and tethering to the gel through covalent linkages or affinity-based systems. This review highlights recent research of fibrin glue as a drug delivery vehicle.
Collapse
Affiliation(s)
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|
40
|
Cooper GM, Miller ED, Decesare GE, Usas A, Lensie EL, Bykowski MR, Huard J, Weiss LE, Losee JE, Campbell PG. Inkjet-based biopatterning of bone morphogenetic protein-2 to spatially control calvarial bone formation. Tissue Eng Part A 2010; 16:1749-59. [PMID: 20028232 DOI: 10.1089/ten.tea.2009.0650] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The purpose of this study was to demonstrate spatial control of osteoblast differentiation in vitro and bone formation in vivo using inkjet bioprinting technology and to create three-dimensional persistent bio-ink patterns of bone morphogenetic protein-2 (BMP-2) and its modifiers immobilized within microporous scaffolds. Semicircular patterns of BMP-2 were printed within circular DermaMatrix human allograft scaffold constructs. The contralateral halves of the constructs were unprinted or printed with BMP-2 modifiers, including the BMP-2 inhibitor, noggin. Printed bio-ink pattern retention was validated using fluorescent or (125)I-labeled bio-inks. Mouse C2C12 progenitor cells cultured on patterned constructs differentiated in a dose-dependent fashion toward an osteoblastic fate in register to BMP-2 patterns. The fidelity of spatial restriction of osteoblastic differentiation at the boundary between neighboring BMP-2 and noggin patterns improved in comparison with patterns without noggin. Acellular DermaMatrix constructs similarly patterned with BMP-2 and noggin were then implanted into a mouse calvarial defect model. Patterns of bone formation in vivo were comparable with patterned responses of osteoblastic differentiation in vitro. These results demonstrate that three-dimensional biopatterning of a growth factor and growth factor modifier within a construct can direct cell differentiation in vitro and tissue formation in vivo in register to printed patterns.
Collapse
Affiliation(s)
- Gregory M Cooper
- Division of Plastic Surgery, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15224, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Mazzucco L, Borzini P, Gope R. Platelet-Derived Factors Involved in Tissue Repair—From Signal to Function. Transfus Med Rev 2010; 24:218-34. [DOI: 10.1016/j.tmrv.2010.03.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
42
|
Shih B, Garside E, McGrouther DA, Bayat A. Molecular dissection of abnormal wound healing processes resulting in keloid disease. Wound Repair Regen 2009; 18:139-53. [PMID: 20002895 DOI: 10.1111/j.1524-475x.2009.00553.x] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Keloids are locally aggressive scars that typically invade into healthy surrounding skin and cause both physical and psychosocial distress to the patient. These pathological scars occur following minimal skin trauma after a variety of causes including burns and trauma. Although the pathogenesis of keloid disease is not well understood, it is considered to be the end product of an abnormal healing process. The aim of this review was to investigate the molecular and cellular pathobiology of keloid disease in relation to the normal wound healing process. The molecular aberrances in keloids that correlate with the molecular mechanisms in normal wound healing can be categorized into three groups: (1) extracellular matrix proteins and their degradation, (2) cytokines and growth factors, and (3) apoptotic pathways. With respect to cellular involvements, fibroblasts are the most well-studied cell population. However, it is unclear whether the fibroblast is the causative cell; they are modulated by other cell populations in wound repair, such as keratinocytes and macrophages. This review presents a detailed account of individual phases of the healing process and how they may potentially be implicated in aberrant raised scar formation, which may help in clarifying the mechanisms involved in keloid disease pathogenesis.
Collapse
Affiliation(s)
- Barbara Shih
- Plastic and Reconstructive Surgery Research, Manchester Interdisciplinary Biocentre, University of Manchester, Manchester, United Kingdom
| | | | | | | |
Collapse
|
43
|
Jogie-Brahim S, Feldman D, Oh Y. Unraveling insulin-like growth factor binding protein-3 actions in human disease. Endocr Rev 2009; 30:417-37. [PMID: 19477944 PMCID: PMC2819737 DOI: 10.1210/er.2008-0028] [Citation(s) in RCA: 230] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The IGF system plays critical roles in somatic growth in an endocrine fashion (somatomedin hypothesis) as well as proliferation and differentiation of normal and malignant cells in a paracrine/autocrine fashion. IGFBP-3 is known to modulate the actions of IGFs in circulation as well as the immediate extracellular environment. Interestingly, apart from the ability to inhibit or enhance IGF actions, IGFBP-3 also exhibits very clear, distinct biological effects independent of the IGF/IGF-I receptor axis. Over the past decade it has become widely appreciated that IGF/IGF-IR-independent actions of IGFBP-3 (antiproliferative and proapoptotic effects) contribute to improving the pathophysiology of a variety of human diseases, such as cancer, diabetes, and malnutrition. Recent studies have implicated interaction of IGFBP-3 with a variety of proteins or signaling cascades critical to cell cycle control and apoptosis; however, the actual mechanism of IGFBP-3 action is still unclear. This review reinforces the concept in support of the IGF/IGF-IR axis-independent actions of IGFBP-3 and delineates potential underlying mechanisms involved and subsequent biological significance, focusing in particular on functional binding partners and the clinical significance of IGFBP-3 in the assessment of cancer risk.
Collapse
Affiliation(s)
- Sherryline Jogie-Brahim
- Department of Pathology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298-0662, USA
| | | | | |
Collapse
|
44
|
Nedić O, Masnikosa R. Separation of the molecular forms of the insulin-like growth factor (IGF)-Binding proteins by affinity chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:743-6. [PMID: 19233744 DOI: 10.1016/j.jchromb.2009.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 02/02/2009] [Accepted: 02/02/2009] [Indexed: 11/15/2022]
Abstract
Association of IGFBP-1, IGFBP-2 and IGFBP-3 with other proteins in human serum and placental cell membranes was investigated using affinity chromatography matrix with immobilized antibodies. Circulating IGFBP-1 was found to be predominantly bound to alpha(2)-macroglobulin and not in the binary complex with its ligand, IGFBP-2 complexes and/or polymers were detected, which was not acknowledged before, and IGFBP-3 molecular forms were differentiated into those that form binary/ternary complexes and those that form stable associations with other serum proteins. As for placental membranes, both IGFBP-1 dimers and high molecular mass IGFBP-1 associations, most probably with alpha(2)-macroglobulin, were recognized and resolved.
Collapse
Affiliation(s)
- Olgica Nedić
- INEP-Institute for the Application of Nuclear Energy, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| | | |
Collapse
|
45
|
Yamada PM, Lee KW. Perspectives in mammalian IGFBP-3 biology: local vs. systemic action. Am J Physiol Cell Physiol 2009; 296:C954-76. [PMID: 19279229 DOI: 10.1152/ajpcell.00598.2008] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Insulin-like growth factor (IGF) binding protein (IGFBP)-3 has traditionally been defined by its role as a binding protein and its association with IGF delivery and availability. Development of non-IGF binding IGFBP-3 analogs and the use of cell lines devoid of type 1 IGF receptors (IGF-R) have led to critical advances in the field of IGFBP-3 biology. These studies show that IGFBP-3 has IGF-independent roles in inhibiting cell proliferation in cancer cell lines. Nuclear transcription factor, retinoid X receptor (RXR)-alpha, and IGFBP-3 functionally interact to reduce prostate tumor growth and prostate-specific antigen in vivo. Moreover, IGFBP-3 inhibits insulin-stimulated glucose uptake into adipocytes independent of IGF. The purpose of this review is to highlight IGFBP-3 as a novel effector molecule and not just another "binding protein" by discussing its IGF-independent actions on metabolism and cell growth. Although this review presents studies that assume the role of IGFBP-3 as either an endocrine or autocrine/paracrine molecule, these systems may not exist as distinct entities, justifying the examination of IGFBP-3 in an integrated model. Also, we provide an overview of factors that regulate IGFBP-3 availability, including its production, methylation, and ubiquitination. We conclude with the role of IGFBP-3 in whole body systems and possible future applications of IGFBP-3 in physiology.
Collapse
Affiliation(s)
- Paulette M Yamada
- Dept. of Pediatrics, Mattel Children's Hospital, Los Angeles, CA 90095-1752, USA
| | | |
Collapse
|
46
|
Xi Y, Nakajima G, Hamil T, Fodstad O, Riker A, Ju J. Association of insulin-like growth factor binding protein-3 expression with melanoma progression. Mol Cancer Ther 2007; 5:3078-84. [PMID: 17172410 DOI: 10.1158/1535-7163.mct-06-0424] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous studies from our laboratory have identified several endothelial cell-associated marker genes implicated in human melanoma metastasis via tumor vasculogenic mimicry. In this study, we used dual model systems composed of melanoma cell lines and clinical melanoma samples to validate the importance of insulin-like growth factor binding protein-3 (IGFBP-3) as a marker involved in disease progression. Gene expression analysis was done using a microarray approach for both primary and metastatic melanoma samples. The expression of IGFBP-3 was decreased using a small interfering RNA (siRNA) knockdown approach and quantified with real-time quantitative reverse transcription-PCR analysis. The expression of insulin-like growth factor binding protein 3 (IGFBP-3) was up-regulated by nearly 16-fold in WM266-4 compared with WM35 cells. A subsequent parallel analysis using freshly isolated primary and metastatic melanoma cell samples and melanoma tissue array confirmed the previous findings. The functional significance of IGFBP-3 in melanoma invasion was further investigated using a siRNA gene knockdown approach, with the expression of IGFBP-3 markedly reduced. Additionally, siRNA knockdown resulted in a significant reduction in cell motility, migration, and invasive capacity of WM266-4 cells in vitro. These results strongly suggest that IGFBP-3 expression may be a vital cell motility, migration, and proliferation factor necessary for melanoma metastasis and is an important biomarker in human melanoma.
Collapse
Affiliation(s)
- Yaguang Xi
- Cancer Genomics Laboratory, Mitchell Cancer Institute, University of South Alabama, 307 North University Boulevard, MSB 2015, Mobile, AL 36688, USA
| | | | | | | | | | | |
Collapse
|
47
|
Tajima N, Sotome S, Marukawa E, Omura K, Shinomiya K. A three-dimensional cell-loading system using autologous plasma loaded into a porous β-tricalcium-phosphate block promotes bone formation at extraskeletal sites in rats. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2007. [DOI: 10.1016/j.msec.2006.05.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
48
|
Nauman JV, Campbell PG, Lanni F, Anderson JL. Diffusion of insulin-like growth factor-I and ribonuclease through fibrin gels. Biophys J 2007; 92:4444-50. [PMID: 17400703 PMCID: PMC1877763 DOI: 10.1529/biophysj.106.102699] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A fluorescence-based method for simultaneously determining the diffusion coefficients of two proteins is described, and the diffusion coefficient of insulin-like growth factor (IGF-I) and ribonuclease (RNase) in a 0.27% fibrin hydrogel is reported. The method is based on two-color imaging of the relaxation of the protein concentration field with time and comparing the results with a transport model. The gel is confined in a thin (200 microm) capillary and the protein is labeled with a fluorescent dye. The experimentally determined diffusion coefficient of RNase (D = 1.21 x 10(-6) cm(2)/s) agrees with literature values for dilute gels and bulk aqueous solutions, thus indicating the gel and the dye had a negligible effect on diffusion. The experimental diffusion coefficient of IGF-I (D = 1.59 x 10(-6) cm(2)/s), in the absence of binding to the fibrin matrix, is consistent with the dimensions of the molecule known from x-ray crystallography and a correlation between D and molecular weight based on 14 other proteins. The experimental method developed here holds promise for determining molecular transport properties of biomolecules under a variety of conditions, for example, when the molecule adsorbs to the gel or is convected through the gel by fluid transport.
Collapse
Affiliation(s)
- Jess V Nauman
- Molecular Biosensor and Imaging Center, Institute for Complex Engineered Systems, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | |
Collapse
|
49
|
Oufattole M, Lin SWJ, Liu B, Mascarenhas D, Cohen P, Rodgers BD. Ribonucleic acid polymerase II binding subunit 3 (Rpb3), a potential nuclear target of insulin-like growth factor binding protein-3. Endocrinology 2006; 147:2138-46. [PMID: 16455777 DOI: 10.1210/en.2005-1269] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IGF-binding protein (IGFBP)-3 has intrinsic antiproliferative and proapoptotic functions that are independent of IGF binding and may involve nuclear localization. We determined that exogenous IGFBP-3 rapidly translocates to myoblast nuclei and that a 22-residue peptide containing the metal binding domain (MBD) and nuclear localization sequence (NLS) can similarly direct chimeric GFP into myoblast nuclei. Furthermore, a non-IGF-binding IGFBP-3 mutant inhibited myoblast proliferation without stimulating apoptosis. These results suggest that IGFBP-3 inhibits muscle cell growth in an IGF-independent manner that may be influenced by its rapid nuclear localization. We therefore identified IGFBP-3 interacting proteins by screening a rat L6 myoblast cDNA library using the yeast two-hybrid assay and two N-terminal deletion mutants as bait: BP3/231 (231 residues, L61 to K291) and BP3/111 (K181-K291). Proteins previously known to interact with IGFBP-3 as well as several novel proteins were identified, including RNA polymerase II binding subunit 3 (Rpb3). The domain necessary for Rpb3 binding was subsequently identified using different IGFBP-3 deletion mutants and was localized to the MBD/NLS epitope. Rpb3/IGFBP-3 binding was confirmed by coimmunoprecipitation assays with specific antisera, whereas a NLS mutant IGFBP-3 did not associate with Rpb3, suggesting that a functional NLS is required. Rpb3 facilitates recruitment of the polymerase complex to specific transcription factors and is necessary for the transactivation of many genes. Its association with IGFBP-3 provides a functional role for IGFBP-3 in the direct modulation of gene transcription.
Collapse
Affiliation(s)
- Mohammed Oufattole
- Department of Animal Sciences, Washington State University, Pullman, 99164-6351, USA
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Insulin-like growth factors (IGFs) are fundamental cell regulators with an evolutionary conserved role synchronising tissue growth, development and function according to metabolic conditions. Although structurally very similar to insulin, the IGFs act in a very different way as cell regulators. Whereas insulin is stored in a specific gland and released when needed, the IGFs are stored outside of cells with soluble binding proteins. A very complex system of six IGF binding proteins, each of which exists in various modified states and interacts with other proteins, provides a sophisticated system for conferring specificity to provide a finely tuned system for local regulation at the tissue level.
Collapse
Affiliation(s)
- Jeff Holly
- Department of Clinical Science at North Bristol, University of Bristol, Bristol, UK.
| | | |
Collapse
|