1
|
Colalto C. Aspects of complexity in quality and safety assessment of peptide therapeutics and peptide-related impurities. A regulatory perspective. Regul Toxicol Pharmacol 2024; 153:105699. [PMID: 39243929 DOI: 10.1016/j.yrtph.2024.105699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/12/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
In recent years, a number of therapeutic peptides have been authorized in the EU market, and several others are in the clinical development phase or under assessment for full dossier or generic applications. Quality and safety guidelines specific to peptides are limited, and some aspects have to be considered. In particular, concerns relate to the analytical investigation for impurities and the toxicological assessment of these substances. The guidelines and the compendial pharmacopoeias provide certain references but that may be questionable if interpreted according to whether therapeutic peptides are considered chemical or biological entities, large or small. The characterization of peptide-related impurities cannot follow the small molecule approach but should consider aspects closely linked to the complex mechanisms of action that these large molecules can exert in the human body. Although direct genotoxic mechanisms cannot be excluded, hazardous interactions on biological systems cannot be ruled out, as in the case of natural peptide toxins and their specific interactions with cellular or membrane targets. From a regulatory perspective, only after specific risk identification and characterization should an equally specific safety threshold in relation to potential toxicity be defined.
Collapse
Affiliation(s)
- Cristiano Colalto
- Marketing Authorization Unit, Italian Medicine Agency (AIFA), Via Del Tritone 181, Rome, Italy.
| |
Collapse
|
2
|
Mishra V, Sharma K, Bose A, Maisonneuve P, Visweswariah SS. The evolutionary divergence of receptor guanylyl cyclase C has implications for preclinical models for receptor-directed therapeutics. J Biol Chem 2024; 300:105505. [PMID: 38029963 PMCID: PMC7615481 DOI: 10.1016/j.jbc.2023.105505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023] Open
Abstract
Mutations in receptor guanylyl cyclase C (GC-C) cause severe gastrointestinal disease, including meconium ileus, early onset acute diarrhea, and pediatric inflammatory bowel disease that continues into adulthood. Agonists of GC-C are US Food and Drug Administration-approved drugs for the treatment of constipation and irritable bowel syndrome. Therapeutic strategies targeting GC-C are tested in preclinical mouse models, assuming that murine GC-C mimics human GC-C in its biochemical properties and downstream signaling events. Here, we reveal important differences in ligand-binding affinity and GC activity between mouse GC-C and human GC-C. We generated a series of chimeric constructs of various domains of human and mouse GC-C to show that the extracellular domain of mouse GC-C contributed to log-orders lower affinity of mouse GC-C for ligands than human GC-C. Further, the Vmax of the murine GC domain was lower than that of human GC-C, and allosteric regulation of the receptor by ATP binding to the intracellular kinase-homology domain also differed. These altered properties are reflected in the high concentrations of ligands required to elicit signaling responses in the mouse gut in preclinical models and the specificity of a GC inhibitor towards human GC-C. Therefore, our studies identify considerations in using the murine model to test molecules for therapeutic purposes that work as either agonists or antagonists of GC-C, and vaccines for the bacterial heat-stable enterotoxin that causes watery diarrhea in humans.
Collapse
Affiliation(s)
- Vishwas Mishra
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India
| | - Kritica Sharma
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India
| | - Avipsa Bose
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India
| | - Pierre Maisonneuve
- UMR 5248 - Chemistry & Biology of Membranes and Nano-Objects, CNRS - Université de Bordeaux, Institut Européen de Chimie et Biologie, Pessac, France
| | - Sandhya S Visweswariah
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India.
| |
Collapse
|
3
|
Londregan A, Alexander TD, Covarrubias M, Waldman SA. Fundamental Neurochemistry Review: The role of enteroendocrine cells in visceral pain. J Neurochem 2023; 167:719-732. [PMID: 38037432 PMCID: PMC10917140 DOI: 10.1111/jnc.16022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/03/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
While visceral pain is commonly associated with disorders of the gut-brain axis, underlying mechanisms are not fully understood. Dorsal root ganglion (DRG) neurons innervate visceral structures and undergo hypersensitization in inflammatory models. The characterization of peripheral DRG neuron terminals is an active area of research, but recent work suggests that they communicate with enteroendocrine cells (EECs) in the gut. EECs sense stimuli in the intestinal lumen and communicate information to the brain through hormonal and electrical signaling. In that context, EECs are a target for developing therapeutics to treat visceral pain. Linaclotide is an FDA-approved treatment for chronic constipation that activates the intestinal membrane receptor guanylyl cyclase C (GUCY2C). Clinical trials revealed that linaclotide relieves both constipation and visceral pain. We recently demonstrated that the analgesic effect of linaclotide reflects the overexpression of GUCY2C on neuropod cells, a specialized subtype of EECs. While this brings some clarity to the relationship between linaclotide and visceral analgesia, questions remain about the intracellular signaling mechanisms and neurotransmitters mediating this communication. In this Fundamental Neurochemistry Review, we discuss what is currently known about visceral nociceptors, enteroendocrine cells, and the gut-brain axis, and ongoing areas of research regarding that axis and visceral pain.
Collapse
Affiliation(s)
- Annie Londregan
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Tyler D. Alexander
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
- Vicki & Jack Farber Institute of Neuroscience at Jefferson Health, Philadelphia, Pennsylvania 19107
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Manuel Covarrubias
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
- Vicki & Jack Farber Institute of Neuroscience at Jefferson Health, Philadelphia, Pennsylvania 19107
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Scott A. Waldman
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| |
Collapse
|
4
|
In Silico Prediction, Molecular Docking and Dynamics Studies of Steroidal Alkaloids of Holarrhena pubescens Wall. ex G. Don to Guanylyl Cyclase C: Implications in Designing of Novel Antidiarrheal Therapeutic Strategies. Molecules 2021; 26:molecules26144147. [PMID: 34299422 PMCID: PMC8305770 DOI: 10.3390/molecules26144147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 01/08/2023] Open
Abstract
The binding of heat stable enterotoxin (STa) secreted by enterotoxigenic Escherichia coli (ETEC) to the extracellular domain of guanylyl cyclase c (ECDGC-C) causes activation of a signaling cascade, which ultimately results in watery diarrhea. We carried out this study with the objective of finding ligands that would interfere with the binding of STa on ECDGC-C. With this view in mind, we tested the biological activity of a alkaloid rich fraction of Holarrhena pubescens against ETEC under in vitro conditions. Since this fraction showed significant antibacterial activity against ETEC, we decided to test the screen binding affinity of nine compounds of steroidal alkaloid type from Holarrhena pubescens against extracellular domain (ECD) by molecular docking and identified three compounds with significant binding energy. Molecular dynamics simulations were performed for all the three lead compounds to establish the stability of their interaction with the target protein. Pharmacokinetics and toxicity profiling of these leads demonstrated that they possessed good drug-like properties. Furthermore, the ability of these leads to inhibit the binding of STa to ECD was evaluated. This was first done by identifying amino acid residues of ECDGC-C binding to STa by protein-protein docking. The results were matched with our molecular docking results. We report here that holadysenterine, one of the lead compounds that showed a strong affinity for the amino acid residues on ECDGC-C, also binds to STa. This suggests that holadysenterine has the potential to inhibit binding of STa on ECD and can be considered for future study, involving its validation through in vitro assays and animal model studies.
Collapse
|
5
|
Flickinger JC, Rappaport JA, Barton JR, Baybutt TR, Pattison AM, Snook AE, Waldman SA. Guanylyl cyclase C as a biomarker for immunotherapies for the treatment of gastrointestinal malignancies. Biomark Med 2021; 15:201-217. [PMID: 33470843 PMCID: PMC8293028 DOI: 10.2217/bmm-2020-0359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal cancers encompass a diverse class of tumors arising in the GI tract, including esophagus, stomach, pancreas and colorectum. Collectively, gastrointestinal cancers compose a high fraction of all cancer deaths, highlighting an unmet need for novel and effective therapies. In this context, the transmembrane receptor guanylyl cyclase C (GUCY2C) has emerged as an attractive target for the prevention, detection and treatment of many gastrointestinal tumors. GUCY2C is an intestinally-restricted protein implicated in tumorigenesis that is universally expressed by primary and metastatic colorectal tumors as well as ectopically expressed by esophageal, gastric and pancreatic cancers. This review summarizes the current state of GUCY2C-targeted modalities in the management of gastrointestinal malignancies, with special focus on colorectal cancer, the most incident gastrointestinal malignancy.
Collapse
Affiliation(s)
- John C Flickinger
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jeffrey A Rappaport
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Joshua R Barton
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Trevor R Baybutt
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Amanda M Pattison
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Adam E Snook
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Scott A Waldman
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
6
|
Bose A, Banerjee S, Visweswariah SS. Mutational landscape of receptor guanylyl cyclase C: Functional analysis and disease-related mutations. IUBMB Life 2020; 72:1145-1159. [PMID: 32293781 DOI: 10.1002/iub.2283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/18/2022]
Abstract
Guanylyl cyclase C (GC-C) is the receptor for the heat-stable enterotoxin, which causes diarrhea, and the endogenous ligands, guanylin and uroguanylin. GC-C is predominantly expressed in the intestinal epithelium and regulates fluid and ion secretion in the gut. The receptor has a complex domain organization, and in the absence of structural information, mutational analysis provides clues to mechanisms of regulation of this protein. Here, we review the mutational landscape of this receptor that reveals regulatory features critical for its activity. We also summarize the available information on mutations in GC-C that have been reported in humans and contribute to severe gastrointestinal abnormalities. Since GC-C is also expressed in extra-intestinal tissues, it is likely that mutations thus far reported in humans may also affect other organ systems, warranting a close observation of these patients in future.
Collapse
Affiliation(s)
- Avipsa Bose
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
| | - Sanghita Banerjee
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
| | - Sandhya S Visweswariah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
7
|
Serwa RA, Swiecicki JM, Homann D, Hackenberger CPR. Phosphoramidate-peptide synthesis by solution- and solid-phase Staudinger-phosphite reactions. J Pept Sci 2010; 16:563-7. [DOI: 10.1002/psc.1236] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
8
|
Cure and curse: E. coli heat-stable enterotoxin and its receptor guanylyl cyclase C. Toxins (Basel) 2010; 2:2213-29. [PMID: 22069681 PMCID: PMC3153297 DOI: 10.3390/toxins2092213] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 08/12/2010] [Accepted: 08/24/2010] [Indexed: 12/27/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) associated diarrhea is responsible for roughly half a million deaths per year, the majority taking place in developing countries. The main agent responsible for these diseases is the bacterial heat-stable enterotoxin STa. STa is secreted by ETEC and after secretion binds to the intestinal receptor guanylyl cyclase C (GC-C), thus triggering a signaling cascade that eventually leads to the release of electrolytes and water in the intestine. Additionally, GC-C is a specific marker for colorectal carcinoma and STa is suggested to have an inhibitory effect on intestinal carcinogenesis. To understand the conformational events involved in ligand binding to GC-C and to devise therapeutic strategies to treat both diarrheal diseases and colorectal cancer, it is paramount to obtain structural information on the receptor ligand system. Here we summarize the currently available structural data and report on physiological consequences of STa binding to GC-C in intestinal epithelia and colorectal carcinoma cells.
Collapse
|
9
|
Toxin mediated diarrhea in the 21 century: the pathophysiology of intestinal ion transport in the course of ETEC, V. cholerae and rotavirus infection. Toxins (Basel) 2010; 2:2132-57. [PMID: 22069677 PMCID: PMC3153279 DOI: 10.3390/toxins2082132] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 08/09/2010] [Indexed: 12/31/2022] Open
Abstract
An estimated 4 billion episodes of diarrhea occur each year. As a result, 2–3 million children and 0.5–1 million adults succumb to the consequences of this major healthcare concern. The majority of these deaths can be attributed to toxin mediated diarrhea by infectious agents, such as E. coli, V. cholerae or Rotavirus. Our understanding of the pathophysiological processes underlying these infectious diseases has notably improved over the last years. This review will focus on the cellular mechanism of action of the most common enterotoxins and the latest specific therapeutic approaches that have been developed to contain their lethal effects.
Collapse
|
10
|
Basu N, Arshad N, Visweswariah SS. Receptor guanylyl cyclase C (GC-C): regulation and signal transduction. Mol Cell Biochem 2009; 334:67-80. [PMID: 19960363 DOI: 10.1007/s11010-009-0324-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 11/04/2009] [Indexed: 12/27/2022]
Abstract
Receptor guanylyl cyclase C (GC-C) is the target for the gastrointestinal hormones, guanylin, and uroguanylin as well as the bacterial heat-stable enterotoxins. The major site of expression of GC-C is in the gastrointestinal tract, although this receptor and its ligands play a role in ion secretion in other tissues as well. GC-C shares the domain organization seen in other members of the family of receptor guanylyl cyclases, though subtle differences highlight some of the unique features of GC-C. Gene knock outs in mice for GC-C or its ligands do not lead to embryonic lethality, but modulate responses of these mice to stable toxin peptides, dietary intake of salts, and development and differentiation of intestinal cells. It is clear that there is much to learn in future about the role of this evolutionarily conserved receptor, and its properties in intestinal and extra-intestinal tissues.
Collapse
Affiliation(s)
- Nirmalya Basu
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|
11
|
Knake C, Burmann BM, Schweimer K, Matecko I, Rösch P. The membrane proximal extracellular domain of human hGC-B folds independently. J Biomol Struct Dyn 2008; 26:465-72. [PMID: 19108585 DOI: 10.1080/07391102.2009.10507261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Human Guanylyl Cyclase B (hGC-B) is a single-transmembrane receptor protein which upon binding C-type natriuretic peptide (CNP) to its extracellular domain catalyzes the intracellular conversion of GTP to the second messenger cGMP. cGMP in turn affects various physiological processes such as smooth muscle contraction, cell proliferation, phototransduction, and salt as well as fluid homeostasis. The 3-dimensional binding site of the peptide hormone is unknown, and the binding mechanism is not yet understood. Therefore, a model of the C-terminal moiety of the extracellular domain of human GC-B containing the potential binding site was derived from the crystal structure of (GC-A). The selected protein sequence was provided with an N-terminal TEV-cleavage site and fused with a 109 aa thioredoxin-tag and a hexahistidine-tag. The identity of the purified 25 kDa protein was confirmed by protein mass fingerprint and its secondary structure was determined by CD- and NMR-spectroscopy. The protein proved to be properly folded with the observed secondary structure matching the predicted secondary structure and the homologous structure in the extracellular domain of GC-A. Size exclusion chromatography confirmed the monomeric state of P-hGC-B.
Collapse
Affiliation(s)
- Claudia Knake
- Department of Biopolymers and Research Center for Bio-Macromolecules, University of Bayreuth, Universitatsstrabe 30, 95440 Bayreuth, Germany
| | | | | | | | | |
Collapse
|
12
|
Lauber T, Tidten N, Matecko I, Zeeb M, Rösch P, Marx UC. Design and characterization of a soluble fragment of the extracellular ligand-binding domain of the peptide hormone receptor guanylyl cyclase-C. Protein Eng Des Sel 2008; 22:1-7. [PMID: 18987130 DOI: 10.1093/protein/gzn062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The intestinal guanylyl cyclase-C (GC-C) was originally identified as an Escherichia coli heat-stable enterotoxin (STa) receptor. STa stimulates GC-C to much higher activity than the endogenous ligands guanylin and uroguanylin, causing severe diarrhea. To investigate the interactions of the endogenous and bacterial ligands with GC-C, we designed and characterized a soluble and properly folded fragment of the extracellular ligand-binding domain of GC-C. The membrane-bound guanylyl cyclases exhibit a single transmembrane spanning helix and a globularly folded extracellular ligand-binding domain that comprises about 410 of 1050 residues. Based on the crystal structure of the dimerized-binding domain of the guanylyl cyclase-coupled atrial natriuretic peptide receptor and a secondary structure-guided sequence alignment, we generated a model of the extracellular domain of GC-C comprised of two subdomains. Mapping of mutational and cross-link data onto this structural model restricts the ligand-binding region to the membrane proximal subdomain. We thus designed miniGC-C, a 197 amino acid fragment that mimics the ligand-binding membrane proximal subdomain. Cloning, expression and spectroscopic studies reveal miniGC-C to be a soluble and properly folded protein with a distinct secondary and tertiary structure. MiniGC-C binds STa with nanomolar affinity.
Collapse
Affiliation(s)
- T Lauber
- Lehrstuhl für Biopolymere and Forschungszentrum für Bio-Makromoleküle, Universität Bayreuth 95440, Bayreuth
| | | | | | | | | | | |
Collapse
|
13
|
Shinohara H, Ogawa M, Sakagami Y, Matsubayashi Y. Identification of ligand binding site of phytosulfokine receptor by on-column photoaffinity labeling. J Biol Chem 2007; 282:124-31. [PMID: 17092941 DOI: 10.1074/jbc.m604558200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phytosulfokine (PSK), an endogenous 5-amino-acid-secreted peptide in plants, affects cellular potential for growth via binding to PSKR1, a member of the leucine-rich repeat receptor kinase (LRR-RK) family. PSK interacts with PSKR1 in a highly specific manner with a nanomolar dissociation constant. However, it is not known which residues in the PSKR1 extracellular domain constitute the ligand binding pocket. Here, we have identified the PSK binding domain of carrot PSKR1 (DcPSKR1) by photoaffinity labeling. We cross-linked the photoactivatable PSK analog [(125)I]-[N(epsilon)-(4-azidosalicyl)Lys(5)]PSK with DcPSKR1 using UV irradiation and mapped the cross-linked region using chemical and enzymatic fragmentation. We also established a novel "on-column photoaffinity labeling" methodology that allows repeated incorporation of the photoaffinity label to increase the efficiency of the photoaffinity cross-linking reactions. We purified a labeled DcPSKR1 tryptic fragment using anti-PSK antibodies and identified a peptide fragment that corresponds to the 15-amino-acid Glu(503)-Lys(517) region of DcPSKR1 by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Deletion of Glu(503)-Lys(517) completely abolishes the ligand binding activity of DcPSKR1. This region is in the island domain flanked by extracellular LRRs, indicating that this domain forms a ligand binding pocket that directly interacts with PSK.
Collapse
Affiliation(s)
- Hidefumi Shinohara
- Graduate School of Bio-agricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | | | | | | |
Collapse
|
14
|
Hasegawa M, Matsumoto-Ishikawa Y, Hijikata A, Hidaka Y, Go M, Shimonishi Y. Disulfide linkages and a three-dimensional structure model of the extracellular ligand-binding domain of guanylyl cyclase C. Protein J 2006; 24:315-25. [PMID: 16284729 DOI: 10.1007/s10930-005-6752-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Guanylyl cyclase C (GC-C) is a single-transmembrane receptor that is specifically activated by endogenous ligands, including guanylin, and the exogenous ligand, heat-stable enterotoxin. Using combined HPLC separation and MS analysis techniques the positions of the disulfide linkages in the extracellular ligand-binding domain (ECD) of GC-C were determined to be between Cys7-Cys94, Cys72-Cys77, Cys101-Cys128 and Cys179-Cys226. Furthermore, a three-dimensional structural model of the ECD was constructed by homology modeling, using the structure of the ECD of GC-A as a template (van den Akker et al., 2000, Nature, 406: 101-104) and the information of the disulfide linkages. Although the GC-C model was similar to the known structure of GC-A, importantly its ligand-binding site appears to be located on the quite different region from that in GC-A.
Collapse
Affiliation(s)
- Makoto Hasegawa
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, 526-0829, Japan.
| | | | | | | | | | | |
Collapse
|
15
|
Hasegawa M, Shimonishi Y. Recognition and signal transduction mechanism of Escherichia coli heat-stable enterotoxin and its receptor, guanylate cyclase C. ACTA ACUST UNITED AC 2005; 65:261-71. [PMID: 15705168 DOI: 10.1111/j.1399-3011.2005.00218.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Guanylate cyclase C (GC-C), a member of the membrane-bound GC family, consists of an extracellular domain (ECD) and an intracellular domain, which are connected by a single-transmembrane region. GC-C is a receptor protein, i.e. specifically stimulated by the endogenous peptides guanylin, uroguanylin, lymphoguanylin, and the exogenous peptide heat-stable enterotoxin (ST(a)), secreted by pathogenic Escherichia coli and acting on the intestinal brush border membranes. The binding of these peptide ligands to the ECD of GC-C results in the synthesis of cyclic GMP in cells, which, in turn, regulates a variety of intracellular physiologic processes. As the cloning of GC-C, its physiologic functions of each domain have been vigorously investigated. The structural characterization of the ligand-binding domain of the receptor promises to provide important clues for better understanding of the mechanisms of receptor recognition and activation. Recently, structural data for each domain of membrane-bound GCs and related proteins has become available. Coupling information obtained from such work and validation of structure-function relationships of GC-C and its ligands should allow for three-dimensional mapping of their interaction site in detail. Our approach to this issue involved designing photoaffinity-labeling ST(a) analogs, capable of binding covalently to the ligand-binding region of the ECD of GC-C. The photoaffinity-labeling ligand was used to covalently label a soluble form of the recombinant ECD protein. Mass spectrometric analyses of an endoproteinase digest of the ECD revealed that the ligand specifically bound to a narrow region contained in the membrane-proximal subdomain of the ECD of GC-C. These results will enable us to identify the possible binding motifs within the ligand-binding domain by computer modeling. In this review, we summarize the available data on the recognition mechanism between ST(a) and GC-C at the molecular level.
Collapse
Affiliation(s)
- M Hasegawa
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan.
| | | |
Collapse
|
16
|
Nakauchi M, Suzuki N. Enterotoxin/Guanylin Receptor Type Guanylyl Cyclases in Non-Mammalian Vertebrates. Zoolog Sci 2005; 22:501-9. [PMID: 15930822 DOI: 10.2108/zsj.22.501] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cyclic GMP is a ubiquitous intracellular second messenger produced by guanylyl cyclases (GCs). The enterotoxin/guanylin receptor type membrane GC (designated as GC-C in mammals) is activated by exogenous ligands such as heat-stable enterotoxins (STa), small peptides secreted by some pathogenic strains of Escherichia coli which cause severe secretory diarrhea and also activated by endogenous ligands such as guanylin and uroguanylin. The STa/guanylin receptor type membrane GC, as well as other type membrane GCs, is composed of an extracellular domain, a single transmembrane domain, and an intracellular region comprising a kinase-like domain and a catalytic domain. The STa/guanylin receptor type membrane GC is identified in various vertebrates including fishes, amphibians, reptiles, and birds, implying that it serves some important and undefined physiological roles in the intestine of non-mammalian vertebrates, e.g. the regulation of water and salt absorption. In mammals, only a single membrane GC (GC-C) is known to be the STa/guanylin receptor. On the contrary, two membrane GC cDNAs are cloned from the intestine of the European eel Anguilla anguilla (GC-C1 and GC-C2) and the medaka fish Oryzias latipes (OlGC6 and OlGC9). OlGC6 and OlGC9 are structurally distinct and show different ligand responsibility. Accumulated evidences indicate that the transcriptional regulatory mechanism of the human GC-C gene is different from that of the corresponding medaka fish GC gene; the human GC-C gene is regulated by Cdx2 and/or HNF-4, and the medaka fish OlGC6 gene is regulated by OlPC4, which is a medaka fish homologue of the mammalian transcriptional positive co-factor 4 (PC4). Furthermore, the transcriptional regulatory mechanism of the OlGC9 gene is different from those of both the OlGC6 and human GC-C genes, indicating that the study on these two medaka fish GCs will be useful for further understanding of the STa/guanylin receptor type membrane GC in the vertebrates.
Collapse
Affiliation(s)
- Mina Nakauchi
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
17
|
Iio K, Nakauchi M, Yamagami S, Tsutsumi M, Hori H, Naruse K, Mitani H, Shima A, Suzuki N. A novel membrane guanylyl cyclase expressed in medaka (Oryzias latipes) intestine. Comp Biochem Physiol B Biochem Mol Biol 2005; 140:569-78. [PMID: 15763512 DOI: 10.1016/j.cbpc.2004.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2004] [Revised: 11/29/2004] [Accepted: 12/09/2004] [Indexed: 11/23/2022]
Abstract
A novel membrane guanylyl cyclase (GC), OlGC9, was identified in the intestine of the medaka fish Oryzias latipes by the isolation of a full-length cDNA clone (3783 bp). Phylogenetic analysis indicated that OlGC9 belongs in the enterotoxin/guanylin receptor membrane GC subfamily. The nucleotide and deduced amino acid sequences of OlGC9 were highly homologous to those of OlGC6, another enterotoxin/guanylin receptor membrane GC in medaka fish. Linkage analysis of the medaka fish chromosome demonstrated that the OlGC9 gene was mapped to LG8, which distinguishes it from the OlGC6 gene. Determination of the cGMP concentrations in COS-7 cells expressed with OlGC9 indicated that Escherichia coli heat-stable enterotoxin (STa) stimulated the activity of OlGC9 in a concentration-dependent manner, although it did not activate the OlGC6 expressed in the COS-7 cells. The 5'-flanking region of the OlGC9 gene important for its transcription was partially determined using both CACO-2 cells and COS-1 cells, and was not found to be conserved with respect to either the mammalian GC-C gene or the OlGC6 gene.
Collapse
Affiliation(s)
- Kaori Iio
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sato T, Shimonishi Y. Structural features of Escherichia coli heat-stable enterotoxin that activates membrane-associated guanylyl cyclase. ACTA ACUST UNITED AC 2004; 63:200-6. [PMID: 15049831 DOI: 10.1111/j.1399-3011.2004.00125.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Heat-stable enterotoxin (ST), a small peptide of 18 or 19 amino acid residues produced by enterotoxigenic Escherichia coli, is the cause of acute diarrhea in infants and travelers in developing countries. ST triggers a biological response by binding to a membrane-associated guanylyl cyclase C (GC-C) which is located on intestinal epithelial cell membranes. This binding causes an increase in the concentration of cGMP as a second messenger in cells and activates protein kinase A and cystic fibrosis transmembrane conductance regulator. Here we describe the crystal structure of an ST at 0.89 A resolution. The molecule has a ring-shaped molecular architecture consisting of six peptide molecules with external and internal diameters of approximately 35 and 7 A, respectively and a thickness of approximately 11 A. The conserved residues at the central portion of ST are distributed on the outer surface of the ring-shaped peptide hexamer, suggesting that the hexamer may be implicated in the association with GC-C through these invariant residues.
Collapse
Affiliation(s)
- T Sato
- Department of Applied Biological Sciences, Saga University, Saga, Japan
| | | |
Collapse
|
19
|
Ghanekar Y, Chandrashaker A, Tatu U, Visweswariah SS. Glycosylation of the receptor guanylate cyclase C: role in ligand binding and catalytic activity. Biochem J 2004; 379:653-63. [PMID: 14748740 PMCID: PMC1224121 DOI: 10.1042/bj20040001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Accepted: 01/28/2004] [Indexed: 11/17/2022]
Abstract
GC-C (guanylate cyclase C) is the receptor for heat-stable enterotoxins, guanylin and uroguanylin peptides. Ligand binding to the extracellular domain of GC-C activates the guanylate cyclase domain leading to accumulation of cGMP. GC-C is expressed as differentially glycosylated forms in HEK-293 cells (human embryonic kidney-293 cells). In the present study, we show that the 145 kDa form of GC-C contains sialic acid and galactose residues and is present on the PM (plasma membrane) of cells, whereas the 130 kDa form is a high mannose form that is resident in the endoplasmic reticulum and serves as the precursor for the PM-associated form. Ligand-binding affinities of the differentially glycosylated forms are similar, indicating that glycosylation of GC-C does not play a role in direct ligand interaction. However, ligand-stimulated guanylate cyclase activity was observed only for the fully mature form of the receptor present on the PM, suggesting that glycosylation had a role to play in imparting a conformation to the receptor that allows ligand stimulation. Treatment of cells at 20 degrees C led to intracellular accumulation of a mature glycosylated form of GC-C that now showed ligand-stimulated guanylate cyclase activity, indicating that localization of GC-C was not critical for its catalytic activity. To determine if complex glycosylation was required for ligand-stimulated activation of GC-C, the receptor was expressed in HEK-293 cells that were deficient in N -acetylglucosaminyltransferase 1. This minimally glycosylated form of the receptor was expressed on the cell surface and could bind a ligand with an affinity comparable with the 145 kDa form of the receptor. However, this form of the receptor was poorly activated by the ligand. Therefore our studies indicate a novel role for glycosidic modification of GC-C during its biosynthesis, in imparting subtle conformational changes in the receptor that allow for ligand-mediated activation and perhaps regulation of basal activity.
Collapse
Affiliation(s)
- Yashoda Ghanekar
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | | | | | | |
Collapse
|
20
|
Lauber T, Neudecker P, Rösch P, Marx UC. Solution structure of human proguanylin: the role of a hormone prosequence. J Biol Chem 2003; 278:24118-24. [PMID: 12707255 DOI: 10.1074/jbc.m300370200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The endogenous ligand of guanylyl cyclase C, guanylin, is produced as the 94-amino-acid prohormone proguanylin, with the hormone guanylin located at the COOH terminus of the prohormone. The solution structure of proguanylin adopts a new protein fold and consists of a three-helix bundle, a small three-stranded beta-sheet of two NH2-terminal strands and one COOH-terminal strand, and an unstructured linker region. The sequence corresponding to guanylin is fixed in its bioactive topology and is involved in interactions with the NH2-terminal beta-hairpin: the hormone region (residues 80-94) partly wraps around the first 4 NH2-terminal residues that thereby shield parts of the hormone surface. These interactions provide an explanation for the negligible bioactivity of the prohormone as well as the important role of the NH2-terminal residues in the disulfide-coupled folding of proguanylin. Since the ligand binding region of guanylyl cyclase C is predicted to be located around an exposed beta-strand, the intramolecular interactions observed between guanylin and its prosequence may be comparable with the guanylin/receptor interaction.
Collapse
Affiliation(s)
- Thomas Lauber
- Lehrstuhl für Biopolymere, Universität Bayreuth, Universitätstrasse 30, 95447 Bayreuth, Germany
| | | | | | | |
Collapse
|
21
|
Hidaka Y, Matsumoto Y, Shimonishi Y. The micro domain responsible for ligand-binding of guanylyl cyclase C. FEBS Lett 2002; 526:58-62. [PMID: 12208504 DOI: 10.1016/s0014-5793(02)03114-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Guanylyl cyclase C (GC-C), a member of membrane-bound guanylyl cyclases, is a receptor protein for guanylin and uroguanylin. The binding of a ligand to the extracellular domain of GC-C (ECD(GC-C)) triggers signal transduction, resulting in the regulation of intestinal fluids and electrolytes. A previous study proposed that a ligand-binding site on GC-C is localized near the transmembrane region. To further investigate the mechanism by which GC-C is activated, the C-terminal polypeptide (Met341-Gln407) of ECD(GC-C) (the micro domain), which includes the ligand-binding site, was over-expressed in Escherichia coli and its ligand-binding ability was examined. The micro domain showed ligand-binding activity (IC(50)=1 x 10(-8) M). This result clearly indicates that a ligand-binding site is located in close proximity to the membrane-bound region, and that the micro domain is capable of independently binding the ligand, without assistance from other domains. The use of this micro binding domain in the study of interactions between GC-C and ligands could be a useful tool and could lead to a better understanding of GC-C signal transduction.
Collapse
Affiliation(s)
- Yuji Hidaka
- Division of Organic Chemistry, Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| | | | | |
Collapse
|
22
|
Kawahara K, Kuniyasu A, Masuda K, Ishiguro M, Nakayama H. Efficient identification of photolabelled amino acid residues by combining immunoaffinity purification with MS: revealing the semotiadil-binding site and its relevance to binding sites for myristates in domain III of human serum albumin. Biochem J 2002; 363:223-32. [PMID: 11931649 PMCID: PMC1222470 DOI: 10.1042/0264-6021:3630223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To identify photoaffinity-labelled amino acid residue(s), we devised an effective method utilizing immunoaffinity purification of photolabelled fragments, followed by matrix-assisted laser-desorption ionization-time of flight (MALDI-TOF) MS and nanoelectrospray ionization tandem MS (nano-ESI-MS/MS) analysis. Human serum albumin (HSA) was photolabelled with an azidophenyl derivative of semotiadil, FNAK [(+)-(R)-3,4-dihydro-2-[5-methoxy-2-[3-[N-methyl-N-[2-(3-azidophenoxy)-ethyl]amino]propoxyl]phenyl]-4-methyl-2H-1,4-benzothiazin-3-(4H)-one], since HSA is a major binding protein for semotiadil in serum. After lysyl endopeptidase digestion, photolabelled HSA fragments were adsorbed selectively on to Sepharose beads on which an anti-semotiadil antibody was immobilized, and fractions were eluted quantitatively by 50% acetonitrile/10 mM HCl. MALDI-TOF MS analysis of the eluted fraction showed that it contained two photolabelled fragments of m/z 2557.54 (major) and 1322.44 (minor), corresponding to Lys-414-Lys-432 and Ala-539-Lys-545, respectively. Further nano-ESI-MS/MS analysis revealed that Lys-414 was the photolabelled amino acid residue in fragment 414-432 and Lys-541 was a likely candidate in fragment 539-545. Based on the photolabelling results, we constructed a three-dimensional model of the FNAK-HSA complex, revealing that FNAK resides in a pocket that overlaps considerably with myristate (Myr)-binding sites, Myr-3 and -4, by comparison with crystallographic data of HSA-Myr complexes described in Curry, Mandelkow, Brick and Franks (1998) Nat. Struct. Biol. 5, 827-835. Moreover, addition of Myr increased photo-incorporation into Lys-414, whereas incorporation into Lys-541 decreased under conditions of [Myr]/[HSA]<1. Further addition of Myr, however, uniformly decreased photo-incorporation into both Lys residues. These results indicate that FNAK labelling can also be used to monitor Myr binding in domain III. An interpretation for the concomitant local conformational change of HSA is provided.
Collapse
Affiliation(s)
- Kohichi Kawahara
- Department of Biofunctional Chemistry, Faculty of Pharmaceutical Sciences, Kumamoto University, 5-1 Ohe-honmachi, Kumamoto 862-0973, Japan
| | | | | | | | | |
Collapse
|
23
|
van den Akker F. Structural insights into the ligand binding domains of membrane bound guanylyl cyclases and natriuretic peptide receptors. J Mol Biol 2001; 311:923-37. [PMID: 11556325 DOI: 10.1006/jmbi.2001.4922] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Membrane bound guanylyl cyclases are single chain transmembrane receptors that produce the second messenger cGMP by either intra- or extracellular stimuli. This class of type I receptors contain an intracellular catalytic guanylyl cyclase domain, an adjacent kinase-like domain and an extracellular ligand binding domain though some receptors have their ligands yet to be identified. The most studied member is the atrial natriuretic peptide (ANP) receptor, which is involved in blood pressure regulation. Extracellular ANP binding induces a conformational change thereby activating the pre-oligomerized receptor leading to the production of cGMP. The recent crystal structure of the dimerized hormone binding domain of the ANP receptor provides a first three-dimensional view of this domain and can serve as a basis to structurally analyze mutagenesis, cross-linking, and genetic studies of this class of receptors as well as a non-catalytic homolog, the clearance receptor. The fold of the ligand binding domain is that of a bilobal periplasmic binding protein (PBP) very similar to that of the Leu/Ile/Val binding protein, AmiC, multi-domain transmembrane metabotropic glutamate receptors, and several DNA binding proteins such as the lactose repressor. Unlike these structural homologs, the guanylyl cyclase receptors bind much larger molecules at a site seemingly remote from the usual small molecule binding site in periplasmic binding protein folds. Detailed comparisons with these structural homologs offer insights into mechanisms of signal transduction and allosteric regulation, and into the remarkable usage of the periplasmic binding protein fold in multi-domain receptors/proteins.
Collapse
Affiliation(s)
- F van den Akker
- Department of Molecular Biology/NB20, Cleveland Clinic Foundation, Ohio 44195, USA.
| |
Collapse
|
24
|
Roy N, Guruprasad MR, Kondaiah P, Mann EA, Giannella RA, Visweswariah SS. Protein kinase C regulates transcription of the human guanylate cyclase C gene. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:2160-71. [PMID: 11277940 DOI: 10.1046/j.1432-1327.2001.02101.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Guanylate cyclase C is the receptor for the bacterial heat-stable enterotoxins and guanylin family of peptides, and mediates its action by elevating intracellular cGMP levels. Potentiation of ligand-stimulated activity of guanylate cyclase C in human colonic T84 cells is observed following activation of protein kinase C as a result of direct phosphorylation of guanylate cyclase C. Here, we show that prolonged exposure of cells to phorbol esters results in a decrease in guanylate cyclase C content in 4beta-phorbol 12-myristate 13-acetate-treated cells, as a consequence of a decrease in guanylate cyclase C mRNA levels. The reduction in guanylate cyclase C mRNA was inhibited when cells were treated with 4beta-phorbol 12-myristate 13-acetate (PMA) in the presence of staurosporine, indicating that a primary phosphorylation event by protein kinase C triggered the reduction in RNA levels. The reduction in guanylate cyclase C mRNA levels was not due to alterations in the half-life of guanylate cyclase C mRNA, but regulation occurred at the level of transcription of guanylate cyclase C mRNA. Expression in T84 cells of a guanylate cyclase C promoter-luciferase reporter plasmid, containing 1973 bp of promoter sequence of the guanylate cyclase C gene, indicated that luciferase activity was reduced markedly on PMA treatment of cells, and the protein kinase C-responsive element was present in a 129-bp region of the promoter, containing a HNF4 binding element. Electrophoretic mobility shift assays using an oligonucleotide corresponding to the HNF4 binding site, indicated a decrease in binding of the factor to its cognate sequence in nuclear extracts prepared from PMA-treated cells. We therefore show for the first time that regulation of guanylate cyclase C activity can be controlled at the transcriptional level by cross-talk with signaling pathways that modulate protein kinase C activity. We also suggest a novel regulation of the HNF4 transcription factor by protein kinase C.
Collapse
Affiliation(s)
- N Roy
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | | | | | | | | | | |
Collapse
|
25
|
Vijayachandra K, Guruprasad M, Bhandari R, Manjunath UH, Somesh BP, Srinivasan N, Suguna K, Visweswariah SS. Biochemical characterization of the intracellular domain of the human guanylyl cyclase C receptor provides evidence for a catalytically active homotrimer. Biochemistry 2000; 39:16075-83. [PMID: 11123935 DOI: 10.1021/bi0013849] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Guanylyl cyclase C (GCC) is the receptor for the family of guanylin peptides and bacterial heat-stable enterotoxins (ST). The receptor is composed of an extracellular, ligand-binding domain and an intracellular domain with a region of homology to protein kinases and a guanylyl cyclase catalytic domain. We have expressed the entire intracellular domain of GCC in insect cells and purified the recombinant protein, GCC-IDbac, to study its catalytic activity and regulation. Kinetic properties of the purified protein were similar to that of full-length GCC, and high activity was observed when MnGTP was used as the substrate. Nonionic detergents, which stimulate the guanylyl cyclase activity of membrane-associated GCC, did not appreciably increase the activity of GCC-IDbac, indicating that activation of the receptor by Lubrol involved conformational changes that required the transmembrane and/or the extracellular domain. The guanylyl cyclase activity of GCC-IDbac was inhibited by Zn(2+), at concentrations shown to inhibit adenylyl cyclase, suggesting a structural homology between the two enzymes. Covalent cross-linking of GCC-IDbac indicated that the protein could associate as a dimer, but a large fraction was present as a trimer. Gel filtration analysis also showed that the major fraction of the protein eluted at a molecular size of a trimer, suggesting that the dimer detected by cross-linking represented subtle differences in the juxtaposition of the individual polypeptide chains. We therefore provide evidence that the trimeric state of GCC is catalytically active, and sequences required to generate the trimer are present in the intracellular domain of GCC.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Baculoviridae/genetics
- Blotting, Western
- Catalysis
- Catalytic Domain/genetics
- Cell Line
- Chromatography, Gel
- Cross-Linking Reagents/chemistry
- Dimerization
- Guanylate Cyclase/genetics
- Guanylate Cyclase/metabolism
- Humans
- Intracellular Fluid/enzymology
- Molecular Sequence Data
- Protein Structure, Secondary/genetics
- Rabbits
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Enterotoxin
- Receptors, Guanylate Cyclase-Coupled
- Receptors, Peptide
- Sequence Homology, Amino Acid
- Spodoptera/genetics
- Succinimides/chemistry
Collapse
Affiliation(s)
- K Vijayachandra
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | | | | | | | | | | | | | | |
Collapse
|