1
|
Sivcev S, Constantin S, Smiljanic K, Sokanovic SJ, Fletcher PA, Sherman AS, Zemkova H, Stojilkovic SS. Distribution and calcium signaling function of somatostatin receptor subtypes in rat pituitary. Cell Calcium 2024; 124:102967. [PMID: 39522307 PMCID: PMC11624061 DOI: 10.1016/j.ceca.2024.102967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
The somatostatin (SST) receptor family controls pituitary hormone secretion, but the distribution and specific roles of these receptors on the excitability and voltage-gated calcium signaling of hormone producing pituitary cells have not been fully characterized. Here we show that the rat pituitary gland expressed Sstr1, Sstr2, Sstr3, and Sstr5 receptor genes in a cell type-specific manner: Sstr1 and Sstr2 in thyrotrophs, Sstr3 in gonadotrophs and lactotrophs, Sstr2, Sstr3, and Sstr5 in somatotrophs, and none in corticotrophs and melanotrophs. Most gonadotrophs and thyrotrophs spontaneously fired high-amplitude single action potentials, which were silenced by SST without affecting intracellular calcium concentrations. In contrast, lactotrophs and somatotrophs spontaneously fired low-amplitude plateau-bursting action potentials in conjunction with calcium transients, both of which were silenced by SST. Moreover, SST inhibited GPCR-induced voltage-gated calcium signaling and hormone secretion in all cell types expressing SST receptors, but the inhibition was more pronounced in somatotrophs. The pattern of inhibition of electrical activity and calcium signaling was consistent with both direct and indirect inhibition of voltage-gated calcium channels, the latter being driven by cell type-specific hyperpolarization. These results indicate that the action of SST in somatotrophs is enhanced by the expression of several types of SST receptors and their slow desensitization, that SST may play a role in the electrical resynchronization of gonadotrophs, thyrotrophs, and lactotrophs, and that the lack of SST receptors in corticotrophs and melanotrophs keeps them excitable and ready to responses to stress.
Collapse
Affiliation(s)
- Sonja Sivcev
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda. USA
| | - Stephanie Constantin
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda. USA
| | - Kosara Smiljanic
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda. USA
| | - Srdjan J Sokanovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Patrick A Fletcher
- Laboratory of Biological Modeling, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, USA
| | - Arthur S Sherman
- Laboratory of Biological Modeling, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, USA
| | - Hana Zemkova
- Laboratory of Pain Research, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Stanko S Stojilkovic
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda. USA.
| |
Collapse
|
2
|
Johnson E, Clark M, Oncul M, Pantiru A, MacLean C, Deuchars J, Deuchars SA, Johnston J. Graded spikes differentially signal neurotransmitter input in cerebrospinal fluid contacting neurons of the mouse spinal cord. iScience 2022; 26:105914. [PMID: 36691620 PMCID: PMC9860393 DOI: 10.1016/j.isci.2022.105914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/06/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
The action potential and its all-or-none nature is fundamental to neural communication. Canonically, the action potential is initiated once voltage-activated Na+ channels are activated, and their rapid kinetics of activation and inactivation give rise to the action potential's all-or-none nature. Here we demonstrate that cerebrospinal fluid contacting neurons (CSFcNs) surrounding the central canal of the mouse spinal cord employ a different strategy. Rather than using voltage-activated Na+ channels to generate binary spikes, CSFcNs use two different types of voltage-activated Ca2+ channel, enabling spikes of different amplitude. T-type Ca2+ channels generate small amplitude spikes, whereas larger amplitude spikes require high voltage-activated Cd2+-sensitive Ca2+ channels. We demonstrate that these different amplitude spikes can signal input from different transmitter systems; purinergic inputs evoke smaller T-type dependent spikes whereas cholinergic inputs evoke larger spikes that do not rely on T-type channels. Different synaptic inputs to CSFcNs can therefore be signaled by the spike amplitude.
Collapse
Affiliation(s)
- Emily Johnson
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Marilyn Clark
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Merve Oncul
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Andreea Pantiru
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Claudia MacLean
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Jim Deuchars
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Susan A. Deuchars
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Jamie Johnston
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK,Corresponding author
| |
Collapse
|
3
|
Chang JP, Pemberton JG. Comparative aspects of GnRH-Stimulated signal transduction in the vertebrate pituitary - Contributions from teleost model systems. Mol Cell Endocrinol 2018; 463:142-167. [PMID: 28587765 DOI: 10.1016/j.mce.2017.06.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/31/2017] [Accepted: 06/01/2017] [Indexed: 02/07/2023]
Abstract
Gonadotropin-releasing hormone (GnRH) is a major regulator of reproduction through actions on pituitary gonadotropin release and synthesis. Although it is often thought that pituitary cells are exposed to only one GnRH, multiple GnRH forms are delivered to the pituitary of teleost fishes; interestingly this can include the cGnRH-II form usually thought to be non-hypophysiotropic. GnRHs can regulate other pituitary cell-types, both directly as well as indirectly, and multiple GnRH receptors (GnRHRs) may also be expressed in the pituitary, and even within a single pituitary cell-type. Literature on the differential actions of native GnRH isoforms in primary pituitary cells is largely derived from teleost fishes. This review will outline the diversity and complexity of GnRH-GnRHR signal transduction found within vertebrate gonadotropes as well as extra-gonadotropic sites with special emphasis on comparative studies from fish models. The implications that GnRHR transduction mechanisms are GnRH isoform-, function-, and cell-specific are also discussed.
Collapse
Affiliation(s)
- John P Chang
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | - Joshua G Pemberton
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
4
|
Podda MV, Grassi C. New perspectives in cyclic nucleotide-mediated functions in the CNS: the emerging role of cyclic nucleotide-gated (CNG) channels. Pflugers Arch 2013; 466:1241-57. [PMID: 24142069 DOI: 10.1007/s00424-013-1373-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 09/27/2013] [Accepted: 09/28/2013] [Indexed: 01/07/2023]
Abstract
Cyclic nucleotides play fundamental roles in the central nervous system (CNS) under both physiological and pathological conditions. The impact of cAMP and cGMP signaling on neuronal and glial cell functions has been thoroughly characterized. Most of their effects have been related to cyclic nucleotide-dependent protein kinase activity. However, cyclic nucleotide-gated (CNG) channels, first described as key mediators of sensory transduction in retinal and olfactory receptors, have been receiving increasing attention as possible targets of cyclic nucleotides in the CNS. In the last 15 years, consistent evidence has emerged for their expression in neurons and astrocytes of the rodent brain. Far less is known, however, about the functional role of CNG channels in these cells, although several of their features, such as Ca(2+) permeability and prolonged activation in the presence of cyclic nucleotides, make them ideal candidates for mediators of physiological functions in the CNS. Here, we review literature suggesting the involvement of CNG channels in a number of CNS cellular functions (e.g., regulation of membrane potential, neuronal excitability, and neurotransmitter release) as well as in more complex phenomena, like brain plasticity, adult neurogenesis, and pain sensitivity. The emerging picture is that functional and dysfunctional cyclic nucleotide signaling in the CNS has to be reconsidered including CNG channels among possible targets. However, concerted efforts and multidisciplinary approaches are still needed to get more in-depth knowledge in this field.
Collapse
Affiliation(s)
- Maria Vittoria Podda
- Institute of Human Physiology, Medical School, Università Cattolica, Largo Francesco Vito 1, 00168, Rome, Italy
| | | |
Collapse
|
5
|
Asthana A, Kisaalita WS. Biophysical microenvironment and 3D culture physiological relevance. Drug Discov Today 2012; 18:533-40. [PMID: 23270783 DOI: 10.1016/j.drudis.2012.12.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 11/29/2012] [Accepted: 12/12/2012] [Indexed: 12/30/2022]
Abstract
Force and substrate physical property (pliability) is one of three well established microenvironmental factors (MEFs) that may contribute to the formation of physiologically more relevant constructs (or not) for cell-based high-throughput screening (HTS) in preclinical drug discovery. In 3D cultures, studies of the physiological relevance dependence on material pliability are inconclusive, raising questions regarding the need to design platforms with materials whose pliability lies within the physiological range. To provide more insight into this question, we examine the factors that may underlie the studies inconclusiveness and suggest the elimination of redundant physical cues, where applicable, to better control other MEFs, make it easier to incorporate 3D cultures into state of the art HTS instrumentation, and reduce screening costs per compound.
Collapse
Affiliation(s)
- Amish Asthana
- Cellular Bioengineering Laboratory, College of Engineering, Driftmier Engineering Center, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
6
|
Stojilkovic SS, Kretschmannova K, Tomić M, Stratakis CA. Dependence of the excitability of pituitary cells on cyclic nucleotides. J Neuroendocrinol 2012; 24:1183-200. [PMID: 22564128 PMCID: PMC3421050 DOI: 10.1111/j.1365-2826.2012.02335.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cyclic 3',5'-adenosine monophosphate and cyclic 3',5'-guanosine monophosphate are intracellular (second) messengers that are produced from the nucleotide triphosphates by a family of enzymes consisting of adenylyl and guanylyl cyclases. These enzymes are involved in a broad array of signal transduction pathways mediated by the cyclic nucleotide monophosphates and their kinases, which control multiple aspects of cell function through the phosphorylation of protein substrates. We review the findings and working hypotheses on the role of the cyclic nucleotides and their kinases in the control of electrical activity of the endocrine pituitary cells and the plasma membrane channels involved in this process.
Collapse
Affiliation(s)
- S S Stojilkovic
- Sections on Cellular Signalling and Endocrinology and Genetics, The Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | | | | |
Collapse
|
7
|
Molecular mechanisms of pituitary endocrine cell calcium handling. Cell Calcium 2011; 51:212-21. [PMID: 22138111 DOI: 10.1016/j.ceca.2011.11.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 10/30/2011] [Accepted: 11/07/2011] [Indexed: 11/23/2022]
Abstract
Endocrine pituitary cells express numerous voltage-gated Na(+), Ca(2+), K(+), and Cl(-) channels and several ligand-gated channels, and they fire action potentials spontaneously. Depending on the cell type, this electrical activity can generate localized or global Ca(2+) signals, the latter reaching the threshold for stimulus-secretion coupling. These cells also express numerous G-protein-coupled receptors, which can stimulate or silence electrical activity and Ca(2+) influx through voltage-gated Ca(2+) channels and hormone release. Receptors positively coupled to the adenylyl cyclase signaling pathway stimulate electrical activity with cAMP, which activates hyperpolarization-activated cyclic nucleotide-regulated channels directly, or by cAMP-dependent kinase-mediated phosphorylation of K(+), Na(+), Ca(2+), and/or non-selective cation-conducting channels. Receptors that are negatively coupled to adenylyl cyclase signaling pathways inhibit spontaneous electrical activity and accompanied Ca(2+) transients predominantly through the activation of inwardly rectifying K(+) channels and the inhibition of voltage-gated Ca(2+) channels. The Ca(2+)-mobilizing receptors activate inositol trisphosphate-gated Ca(2+) channels in the endoplasmic reticulum, leading to Ca(2+) release in an oscillatory or non-oscillatory manner, depending on the cell type. This Ca(2+) release causes a cell type-specific modulation of electrical activity and intracellular Ca(2+) handling.
Collapse
|
8
|
Kretschmannova K, Kucka M, Gonzalez-Iglesias AE, Stojilkovic SS. The expression and role of hyperpolarization-activated and cyclic nucleotide-gated channels in endocrine anterior pituitary cells. Mol Endocrinol 2011; 26:153-64. [PMID: 22135067 DOI: 10.1210/me.2011-1207] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Pituitary cells fire action potentials independently of external stimuli, and such spontaneous electrical activity is modulated by a large variety of hypothalamic and intrapituitary agonists. Here, we focused on the potential role of hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels in electrical activity of cultured rat anterior pituitary cells. Quantitative RT-PCR analysis showed higher level of expression of mRNA transcripts for HCN2 and HCN3 subunits and lower expression of HCN1 and HCN4 subunits in these cells. Western immunoblot analysis of lysates from normal and GH(3) immortalized pituitary cells showed bands with appropriate molecular weights for HCN2, HCN3, and HCN4. Electrophysiological experiments showed the presence of a slowly developing hyperpolarization-activated inward current, which was blocked by Cs(+) and ZD7288, in gonadotrophs, thyrotrophs, somatotrophs, and a fraction of lactotrophs, as well as in other unidentified pituitary cell types. Stimulation of adenylyl cyclase and addition of 8-Br-cAMP enhanced this current and depolarized the cell membrane, whereas 8-Br-cGMP did not alter the current and hyperpolarized the cell membrane. Both inhibition of basal adenylyl cyclase activity and stimulation of phospholipase C signaling pathway inhibited this current. Inhibition of HCN channels affected the frequency of firing but did not abolish spontaneous electrical activity. These experiments indicate that cAMP and cGMP have opposite effects on the excitability of endocrine pituitary cells, that basal cAMP production in cultured cells is sufficient to integrate the majority of HCN channels in electrical activity, and that depletion of phosphatidylinositol 4,5-bisphosphate caused by activation of phospholipase C silences them.
Collapse
Affiliation(s)
- Karla Kretschmannova
- Section on Cellular Signaling, Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-4510, USA
| | | | | | | |
Collapse
|
9
|
Yu Y, Chang JP. Goldfish brain somatostatin-28 differentially affects dopamine- and pituitary adenylate cyclase-activating polypeptide-induced GH release and Ca(2+) and cAMP signals. Mol Cell Endocrinol 2011; 332:283-92. [PMID: 21093539 DOI: 10.1016/j.mce.2010.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 10/14/2010] [Accepted: 11/09/2010] [Indexed: 10/18/2022]
Abstract
Dopamine (DA) and pituitary adenylate cyclase-activating polypeptide (PACAP) stimulate goldfish growth hormone (GH) release via cAMP- and Ca(2+)-dependent pathways while DA also utilizes NO. In this study, identified goldfish somatotropes responded to sequential applications of PACAP and the DA D1 agonist SKF38393 with increased intracellular Ca(2+) levels ([Ca(2+)](i)), indicating that PACAP and DA D1 receptors were present on the same cell. A native goldfish brain somatostatin (gbSS-28) reduced SKF38393-stimulated cAMP production and PACAP- and NO donor-elicited GH and [Ca(2+)](i) increases, but not PACAP-induced cAMP production nor the GH and [Ca(2+)](i) responses to forskolin, 8-bromo-cAMP and SKF38393. gbSS-28 might inhibit PACAP-induced GH release by interfering with PACAP's ability to increase [Ca(2+)](i) in a non-cAMP-dependent manner. However, DA D1 receptor activation bypassed gbSS-28 inhibitory effects on cAMP production and NO actions via unknown mechanisms to maintain a normal [Ca(2+)](i) response leading to unhampered GH release.
Collapse
Affiliation(s)
- Yi Yu
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
10
|
Abstract
Endocrine pituitary cells are neuronlike; they express numerous voltage-gated sodium, calcium, potassium, and chloride channels and fire action potentials spontaneously, accompanied by a rise in intracellular calcium. In some cells, spontaneous electrical activity is sufficient to drive the intracellular calcium concentration above the threshold for stimulus-secretion and stimulus-transcription coupling. In others, the function of these action potentials is to maintain the cells in a responsive state with cytosolic calcium near, but below, the threshold level. Some pituitary cells also express gap junction channels, which could be used for intercellular Ca(2+) signaling in these cells. Endocrine cells also express extracellular ligand-gated ion channels, and their activation by hypothalamic and intrapituitary hormones leads to amplification of the pacemaking activity and facilitation of calcium influx and hormone release. These cells also express numerous G protein-coupled receptors, which can stimulate or silence electrical activity and action potential-dependent calcium influx and hormone release. Other members of this receptor family can activate calcium channels in the endoplasmic reticulum, leading to a cell type-specific modulation of electrical activity. This review summarizes recent findings in this field and our current understanding of the complex relationship between voltage-gated ion channels, ligand-gated ion channels, gap junction channels, and G protein-coupled receptors in pituitary cells.
Collapse
Affiliation(s)
- Stanko S Stojilkovic
- Program in Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Building 49, Room 6A-36, 49 Convent Drive, Bethesda, Maryland 20892-4510, USA.
| | | | | |
Collapse
|
11
|
Yu Y, Ali DW, Chang JP. Characterization of ionic currents and electrophysiological properties of goldfish somatotropes in primary culture. Gen Comp Endocrinol 2010; 169:231-43. [PMID: 20850441 DOI: 10.1016/j.ygcen.2010.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 09/02/2010] [Accepted: 09/09/2010] [Indexed: 11/30/2022]
Abstract
Growth hormone release in goldfish is partly dependent on voltage-sensitive Ca(2+) channels but somatotrope electrophysiological events affecting such channel activities have not been elucidated in this system. The electrophysiological properties of goldfish somatotropes in primary culture were studied using the whole-cell and amphotericin B-perforated patch-clamp techniques. Intracellular Ca(2+) concentration ([Ca(2+)]i) of identified somatotropes was measured using Fura-2/AM dye. Goldfish somatotropes had an average resting membrane potential of -78.4 ± 4.6 mV and membrane input resistance of 6.2 ± 0.2 GΩ. Voltage steps from a holding potential of -90 mV elicited a non-inactivating outward current and transient inward currents at potentials more positive than 0 and -30 mV, respectively. Isolated current recordings indicate the presence of 4-aminopyridine- and tetraethylammonium (TEA)-sensitive K(+), tetrodotoxin (TTX)-sensitive Na(+), and nifedipine (L-type)- and ω-conotoxin GVIA (N-type)-sensitive Ca(2+) channels. Goldfish somatotropes rarely fire action potentials (APs) spontaneously, but single APs can be induced at the start of a depolarizing current step; this single AP was abolished by TTX and significantly reduced by nifedipine and ω-conotoxin GVIA. TEA increased AP duration and triggered repetitive AP firing resulting in an increase in [Ca(2+)]i, whereas TTX, nifedipine and ω-conotoxin GVIA inhibited TEA-induced [Ca(2+)]i pulses. These results indicate that in goldfish somatotropes, TEA-sensitive K(+) channels regulate excitability while TTX-sensitive Na(+) channels together with N- and L-type Ca channels mediates the depolarization phase of APs. Opening of voltage-sensitive Ca(2+) channels during AP firing leads to increases in [Ca(2+)]i.
Collapse
Affiliation(s)
- Yi Yu
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
12
|
Abstract
The hormones secreted by the anterior pituitary gland regulate major functions such as reproduction, as well as body growth and metabolism. Their efficiency of action highly depends on their temporal profile of release in the blood stream. This review summarises the recent evidence suggesting that the circadian clock genes that pace our daily rhythms may also contribute to the regulation of pituitary pulsatility, even in the non 24-h range. This inter-relation between molecular circadian oscillators and endocrine rhythmicities is discussed in light of the longstanding literature that has considered the involvement of the central circadian pacemaker located within the suprachiasmatic nuclei. Other arguments that suggest a role for circadian clock genes outside the suprachiasmatic nuclei are also presented, with a special emphasis on endocrine pituitary cells and hypothalamic neuroendocrine neurones that directly pace pituitary secretion rates.
Collapse
Affiliation(s)
- X Bonnefont
- CNRS, UMR 5203, Institut de Génomique Fonctionnelle, Montpellier, France.
| |
Collapse
|
13
|
Kucka M, Kretschmannova K, Murano T, Wu CP, Zemkova H, Ambudkar SV, Stojilkovic SS. Dependence of multidrug resistance protein-mediated cyclic nucleotide efflux on the background sodium conductance. Mol Pharmacol 2010; 77:270-9. [PMID: 19903828 PMCID: PMC2812068 DOI: 10.1124/mol.109.059386] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 11/09/2009] [Indexed: 11/22/2022] Open
Abstract
Anterior pituitary cells fire action potentials and release cyclic nucleotides both spontaneously and in response to agonist stimulation, but the relationship between electrical activity and cyclic nucleotide efflux has not been studied. In these cells, a tetrodotoxin-resistant background N(+) conductance is critical for firing of action potentials, and multidrug resistance proteins (MRPs) MRP4 and MRP5 contribute to cyclic nucleotide efflux. Here, we show that abolition of the background Na(+) conductance in rat pituitary cells by complete or partial replacement of extracellular Na(+) with organic cations or sucrose induced a rapid and reversible hyperpolarization of cell membranes and inhibition of action potential firing, accompanied by a rapid inhibition of cyclic nucleotide efflux. Valinomycin-induced hyperpolarization of plasma membranes also inhibited cyclic nucleotide efflux, whereas depolarization of cell membranes induced by the inhibition of Ca(2+) influx or stimulation of Na(+) influx by gramicidin was accompanied by a facilitation of cyclic nucleotide efflux. In contrast, inhibition of cyclic nucleotide efflux by probenecid did not affect the background Na(+) conductance. In human embryonic kidney 293 cells stably transfected with human MRP4 or MRP5, replacement of bath Na(+) with organic cations also hyperpolarized the cell membranes and inhibited cyclic nucleotide efflux. In these cells, the Na(+)/H(+) antiporter monensin did not affect the membrane potential and was practically ineffective in altering cyclic nucleotide efflux. In both pituitary and MRP4- and MRP5-expressing cells, 3-[[3-[2-(7-chloroquinolin-2-yl)vinyl]phenyl]-(2-dimethylcarbamoylethylsulfanyl)methylsulfanyl] propionic acid (MK571) inhibited cyclic nucleotide efflux. These results indicate that the MRP4/5-mediated cyclic nucleotide efflux can be rapidly modulated by membrane potential determined by the background Na(+) conductance.
Collapse
Affiliation(s)
- Marek Kucka
- National Institute of Child Health and Human Development, Bethesda, MD 20892-4510, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Bosch MA, Hou J, Fang Y, Kelly MJ, Rønnekleiv OK. 17Beta-estradiol regulation of the mRNA expression of T-type calcium channel subunits: role of estrogen receptor alpha and estrogen receptor beta. J Comp Neurol 2009; 512:347-58. [PMID: 19003958 PMCID: PMC2821194 DOI: 10.1002/cne.21901] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Low-voltage-activated (T-type) calcium channels are responsible for burst firing and transmitter release in neurons and are important for exocytosis and hormone secretion in pituitary cells. T-type channels contain an alpha1 subunit, of which there are three subtypes, Cav3.1, -3.2, and -3.3, and each subtype has distinct kinetic characteristics. Although 17beta-estradiol (E2) modulates T-type calcium channel expression and function, little is known about the molecular mechanisms involved. We used real-time PCR quantification of RNA extracted from hypothalamic nuclei and pituitary in vehicle and E2-treated C57BL/6 mice to elucidate E2-mediated regulation of Cav3.1, -3.2, and -3.3 subunits. The three subunits were expressed in both the hypothalamus and the pituitary. E2 treatment increased the mRNA expression of Cav3.1 and -3.2, but not Cav3.3, in the medial preoptic area and the arcuate nucleus. In the pituitary, Cav3.1 was increased with E2 treatment, and Cav3.2 and -3.3 were decreased. To examine whether the classical estrogen receptors (ERs) were involved in the regulation, we used ERalpha- and ERbeta-deficient C57BL/6 mice and explored the effects of E2 on T-type channel subtypes. Indeed, we found that the E2-induced increase in Cav3.1 in the hypothalamus was dependent on ERalpha, whereas the E2 effect on Cav3.2 was dependent on both ERalpha and ERbeta. However, the E2-induced effects in the pituitary were dependent on only the expression of ERalpha. The robust E2 regulation of T-type calcium channels could be an important mechanism by which E2 increases the excitability of hypothalamic neurons and modulates pituitary secretion.
Collapse
Affiliation(s)
- Martha A Bosch
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | | | |
Collapse
|
15
|
Fiordelisio T, Jiménez N, Baba S, Shiba K, Hernández-Cruz A. Immunoreactivity to neurofilaments in the rodent anterior pituitary is associated with the expression of alpha 1A protein subunits of voltage-gated Ca2+ channels. J Neuroendocrinol 2007; 19:870-81. [PMID: 17927665 DOI: 10.1111/j.1365-2826.2007.01596.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We recently reported that rodent anterior pituitary (AP) cells (with the exception of corticotrophs and melanotrophs) express neuronal markers, including 68-kDa neurofilaments (NF68) in an oestrogen-dependent manner. The functional significance of neurofilament (NF) expression in the AP is unknown, but recent data in myelinated nerve fibres from NF-null mice suggest that NFs can regulate ion channel function. Because Ca(2+) influx through voltage-gated Ca(2+) channels is required for hormone secretion in AP cells, and oestrogen regulates the expression of Ca(2+) channels in AP cells, the present study examined the expression of alpha1 subunits of voltage gated Ca(2+) channels in relation to that of NF68. Using quantitative immunofluorescence, we demonstrate that alpha 1C and alpha 1D subunits are abundantly expressed in female AP cells, alpha 1A subunits are moderately expressed, and alpha 1G and alpha 1B subunits are expressed at the lowest levels. Double-immunostaining showed that NF68 expression is not correlated with that of alpha 1C, alpha 1D or alpha 1B. Expression of alpha 1G and NF68 appear to be mutually exclusive from each other. Moreover, alpha 1A subunit and NF68 expression are significantly correlated and alpha 1A immunoreactivity is sexually dimorphic (i.e. low in males and high in females) and its levels of expression vary during the oestrous cycle, similar to NF68. Finally, omega-agatoxin IVA, a specific blocker of P/Q type Ca(2+) currents that are a result of the activity of alpha 1A subunits, inhibited to a greater extent spontaneous [Ca(2+)](i) fluctuations in AP cells from females in oestrous and dioestrous, whereas cells from females in pro-oestrous and males were less affected by this toxin. These results suggest a preferential participation of P/Q-type Ca(2+) channels and hence alpha 1A subunits, in regulating spontaneous Ca(2+) transients in AP cells under conditions where the proportion of NF68-expressing cells is high. It remains to be determined whether the expression of NF68 affects that of alpha 1A Ca(2+) channel subunits or vice versa.
Collapse
Affiliation(s)
- T Fiordelisio
- Instituto de Fisiología Celular, Departamento de Biofísica, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México City, Mexico.
| | | | | | | | | |
Collapse
|
16
|
Tsaneva-Atanasova K, Sherman A, van Goor F, Stojilkovic SS. Mechanism of Spontaneous and Receptor-Controlled Electrical Activity in Pituitary Somatotrophs: Experiments and Theory. J Neurophysiol 2007; 98:131-44. [PMID: 17493919 DOI: 10.1152/jn.00872.2006] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cultured pituitary somatotrophs release growth hormone in response to spontaneous Ca2+ entry through voltage-gated calcium channels (VGCCs) that is governed by plateau-bursting electrical activity and is regulated by several neurohormones, including GH-releasing hormone (GHRH) and somatostatin. Here we combine experiments and theory to clarify the mechanisms underlying spontaneous and receptor-controlled electrical activity. Experiments support a role of a Na+-conducting and tetrodotoxin-insensitive channel in controlling spontaneous and GHRH-stimulated pacemaking, the latter in a cAMP-dependent manner; an opposing role of spontaneously active inwardly rectifying K+ ( Kir) channels and G-protein-regulated Kir channels in somatostatin-mediated inhibition of pacemaking; as well as a role of VGCCs in spiking and large conductance (BK-type) Ca2+-activated K+ channels in plateau bursting. The mathematical model is compatible with a wide variety of experimental data involving pharmacology and extracellular ion substitution and supports the importance of constitutively active tetrodotoxin-insensitive Na+ and Kir channels in maintaining spontaneous pacemaking in pituitary somatotrophs. The model also suggests that these channels are involved in the up- and downregulation of electrical activity by GHRH and somatostatin. In the model, the plateau bursting is controlled by two functional populations of BK channels, characterized by distance from the VGCCs. The rapid activation of the proximal BK channels is critical for the establishment of the plateau, whereas slow recruitment of the distal BK channels terminates the plateau.
Collapse
|
17
|
Dominguez B, Felix R, Monjaraz E. Ghrelin and GHRP-6 enhance electrical and secretory activity in GC somatotropes. Biochem Biophys Res Commun 2007; 358:59-65. [PMID: 17481583 DOI: 10.1016/j.bbrc.2007.04.085] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Accepted: 04/10/2007] [Indexed: 10/23/2022]
Abstract
It is well established that pituitary somatotropes fire spontaneous action potentials (SAP) which generate Ca(2+) signals of sufficient amplitude to trigger growth hormone (GH) release. It is also known that ghrelin and synthetic GH-releasing peptides (GHRPs) stimulate GH secretion, though the mechanisms involved remain unclear. In the current report, we show that the chronic (96h) treatment with ghrelin and GHRP-6 increases the firing frequency of SAP in the somatotrope GC cell line. This action is associated with a significant increase in whole-cell inward current density. In addition, long-term application of Na(+) or L-type Ca(2+) current antagonists decreases GHRP-6-induced release of GH, indicating that the ionic currents that give rise to SAP play important roles for hormone secretion in the GC cells. Together, our results suggest that ghrelin and GHPR-6 may increase whole-cell inward current density thereby enhancing SAP firing frequency and facilitating GH secretion from GC somatotropes.
Collapse
Affiliation(s)
- Belisario Dominguez
- Laboratory of Neuroendocrinology, Institute of Physiology, University of Puebla, Puebla, Mexico
| | | | | |
Collapse
|
18
|
Qiu J, Bosch MA, Jamali K, Xue C, Kelly MJ, Rønnekleiv OK. Estrogen upregulates T-type calcium channels in the hypothalamus and pituitary. J Neurosci 2006; 26:11072-82. [PMID: 17065449 PMCID: PMC6674650 DOI: 10.1523/jneurosci.3229-06.2006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 09/15/2006] [Accepted: 09/19/2006] [Indexed: 11/21/2022] Open
Abstract
Low voltage-activated (T-type) Ca2+ channels are responsible for generating low-threshold spikes (LTS) that facilitate burst firing and transmitter release in neurons. The T-type Ca2+ channels contain a regulatory alpha1 subunit, and several isoforms of the alpha1 subunit (Cav3.1, 3.2, 3.3) have been cloned. The Cav 3.1 alpha1 subunit is abundantly expressed in the hypothalamus. Previously, we found that 17 beta-estradiol (E2) increased the number of arcuate neurons expressing LTS. Therefore, we used an ovariectomized female guinea pig model to measure the distribution and regulation of Cav3.1 mRNA expression by E2. Guinea pig Cav3.1 alpha1 subunit sequences, which were cloned by PCR, were used in ribonuclease protection (RPA) and in situ hybridization assays to evaluate mRNA expression. Based on a RPA, E2 significantly increased the mRNA expression of Cav3.1 alpha1 subunit in the mediobasal hypothalamus and the pituitary. In situ hybridization analysis revealed that E2 significantly increased Cav 3.1 mRNA expression in medial preoptic nuclei, bed nuclei stria terminalis, and the arcuate nucleus. Whole-cell patch recordings in arcuate neurons revealed that E2 treatment significantly increased the peak T-type Ca2+ current density by twofold without affecting the activation/inactivation characteristics and augmented the rebound excitation by threefold to fourfold. These results suggest that estrogen regulates the mRNA expression of T-type calcium channels, which leads to increased functional expression of the channel. Increased expression of T-type channels could be one mechanism by which estrogen augments burst firing and transmitter release in hypothalamic neurons.
Collapse
Affiliation(s)
- Jian Qiu
- Department of Physiology and Pharmacology and
| | - Martha A. Bosch
- Department of Physiology and Pharmacology and
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Portland, Oregon 97239-3098
| | | | | | | | - Oline K. Rønnekleiv
- Department of Physiology and Pharmacology and
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Portland, Oregon 97239-3098
| |
Collapse
|
19
|
Andric SA, Kostic TS, Stojilkovic SS. Contribution of multidrug resistance protein MRP5 in control of cyclic guanosine 5'-monophosphate intracellular signaling in anterior pituitary cells. Endocrinology 2006; 147:3435-45. [PMID: 16614078 DOI: 10.1210/en.2006-0091] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The energy-dependent cyclic nucleotide cellular efflux is operative in numerous eukaryotic cells and could be mediated by multidrug resistance proteins MRP4, MRP5, and MRP8. In pituitary cells, however, the operation of export pumps and their contribution to the control of intracellular cyclic nucleotide levels were not studied previously. Here we show that cellular efflux of cyclic nucleotides was detectable in normal and immortalized GH(3) pituitary cells under resting conditions and was enlarged after concurrent stimulation of cAMP and cGMP production with GHRH, corticotropin-releasing factor, vasoactive intestinal peptide, pituitary adenylate cyclase-activating polypeptide, and forskolin. In resting and stimulated cells, the efflux pumps transported the majority of de novo-produced cGMP, limiting its intracellular accumulation in a concentration range of 1-2 microm. In contrast, only a small fraction of cAMP was released and there was a time- and concentration-dependent accumulation of this messenger in the cytosol, ranging from 1-100 microm. Stimulation and inhibition of cGMP production alone did not affect cAMP efflux, suggesting the operation of two different transport pathways in pituitary cells. The rates of cAMP and cGMP effluxes were comparable, and both pathways were blocked by probenecid and progesterone. Pituitary cells expressed mRNA transcripts for MRP4, MRP5, and MRP8, whereas GH(3) cells expressed only transcripts for MRP5. Down-regulation of MRP5 expression in GH(3) cells decreased cGMP release without affecting cAMP efflux. These results indicate that cyclic nucleotide cellular efflux plays a critical role in elimination of intracellular cGMP but not cAMP in pituitary cells and that such selectivity is achieved by expression of MRP5.
Collapse
Affiliation(s)
- Silvana A Andric
- Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, Building 49, Room 6A-36, 49 Convent Drive, Bethesda, Maryland 20892-4510, USA
| | | | | |
Collapse
|
20
|
Gonzalez-Iglesias AE, Jiang Y, Tomić M, Kretschmannova K, Andric SA, Zemkova H, Stojilkovic SS. Dependence of electrical activity and calcium influx-controlled prolactin release on adenylyl cyclase signaling pathway in pituitary lactotrophs. Mol Endocrinol 2006; 20:2231-46. [PMID: 16645040 DOI: 10.1210/me.2005-0363] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Pituitary lactotrophs in vitro fire extracellular Ca2+-dependent action potentials spontaneously through still unidentified pacemaking channels, and the associated voltage-gated Ca2+influx (VGCI) is sufficient to maintain basal prolactin (PRL) secretion high and steady. Numerous plasma membrane channels have been characterized in these cells, but the mechanism underlying their pacemaking activity is still not known. Here we studied the relevance of cyclic nucleotide signaling pathways in control of pacemaking, VGCI, and PRL release. In mixed anterior pituitary cells, both VGCI-inhibitable and -insensitive adenylyl cyclase (AC) subtypes contributed to the basal cAMP production, and soluble guanylyl cyclase was exclusively responsible for basal cGMP production. Inhibition of basal AC activity, but not soluble guanylyl cyclase activity, reduced PRL release. In contrast, forskolin stimulated cAMP and cGMP production as well as pacemaking, VGCI, and PRL secretion. Elevation in cAMP and cGMP levels by inhibition of phosphodiesterase activity was also accompanied with increased PRL release. The AC inhibitors attenuated forskolin-stimulated cyclic nucleotide production, VGCI, and PRL release. The cell-permeable 8-bromo-cAMP stimulated firing of action potentials and PRL release and rescued hormone secretion in cells with inhibited ACs in an extracellular Ca2+-dependent manner, whereas 8-bromo-cGMP and 8-(4-chlorophenylthio)-2'-O-methyl-cAMP were ineffective. Protein kinase A inhibitors did not stop spontaneous and forskolin-stimulated pacemaking, VGCI, and PRL release. These results indicate that cAMP facilitates pacemaking, VGCI, and PRL release in lactotrophs predominantly in a protein kinase A- and Epac cAMP receptor-independent manner.
Collapse
Affiliation(s)
- Arturo E Gonzalez-Iglesias
- Section on Cellular Signaling, Endocrinology and Reproduction Research Branch/National Institute of Child Health and Human Development/National Institutes of Health, Building 49, Room 6A-36, 49 Convent Drive, Bethesda, Maryland 20892-4510, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Secondo A, Pannaccione A, Cataldi M, Sirabella R, Formisano L, Di Renzo G, Annunziato L. Nitric oxide induces [Ca2+]i oscillations in pituitary GH3 cells: involvement of IDR and ERG K+ currents. Am J Physiol Cell Physiol 2005; 290:C233-43. [PMID: 16207796 DOI: 10.1152/ajpcell.00231.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of nitric oxide (NO) in the occurrence of intracellular Ca2+ concentration ([Ca2+]i) oscillations in pituitary GH3 cells was evaluated by studying the effect of increasing or decreasing endogenous NO synthesis with L-arginine and nitro-L-arginine methyl ester (L-NAME), respectively. When NO synthesis was blocked with L-NAME (1 mM) [Ca2+]i, oscillations disappeared in 68% of spontaneously active cells, whereas 41% of the quiescent cells showed [Ca2+]i oscillations in response to the NO synthase (NOS) substrate L-arginine (10 mM). This effect was reproduced by the NO donors NOC-18 and S-nitroso-N-acetylpenicillamine (SNAP). NOC-18 was ineffective in the presence of the L-type voltage-dependent Ca2+ channels (VDCC) blocker nimodipine (1 microM) or in Ca2+-free medium. Conversely, its effect was preserved when Ca2+ release from intracellular Ca2+ stores was inhibited either with the ryanodine-receptor blocker ryanodine (500 microM) or with the inositol 1,4,5-trisphosphate receptor blocker xestospongin C (3 microM). These results suggest that NO induces the appearance of [Ca2+]i oscillations by determining Ca2+ influx. Patch-clamp experiments excluded that NO acted directly on VDCC but suggested that NO determined membrane depolarization because of the inhibition of voltage-gated K+ channels. NOC-18 and SNAP caused a decrease in the amplitude of slow-inactivating (IDR) and ether-à-go-go-related gene (ERG) hyperpolarization-evoked, deactivating K+ currents. Similar results were obtained when GH3 cells were treated with L-arginine. The present study suggests that in GH3 cells, endogenous NO plays a permissive role for the occurrence of spontaneous [Ca2+]i oscillations through an inhibitory effect on IDR and on IERG.
Collapse
Affiliation(s)
- Agnese Secondo
- Division of Pharmacology, Dept. of Neuroscience, School of Medicine, Federico II Univ. of Naples, via Sergio Pansini 5, 80131 Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
22
|
Stojilkovic SS, Zemkova H, Van Goor F. Biophysical basis of pituitary cell type-specific Ca2+ signaling-secretion coupling. Trends Endocrinol Metab 2005; 16:152-9. [PMID: 15860411 DOI: 10.1016/j.tem.2005.03.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
All secretory pituitary cells exhibit spontaneous and extracellular Ca2+-dependent electrical activity. Somatotrophs and lactotrophs fire plateau-bursting action potentials, which generate Ca2+ signals of sufficient amplitude to trigger hormone release. Gonadotrophs also fire action potentials spontaneously, but as single, high-amplitude spikes with limited ability to promote Ca2+ influx and secretion. However, Ca2+ mobilization in gonadotrophs transforms single spiking into plateau-bursting-type electrical activity and triggers secretion. Patch clamp analysis revealed that somatotrophs and lactotrophs, but not gonadotrophs, express BK (big)-type Ca2+-controlled K+ channels, activation of which is closely associated with voltage-gated Ca2+ influx. Conversely, pituitary gonadotrophs express SK (small)-type Ca2+-activated K+ channels that are colocalized with intracellular Ca2+ release sites. Activation of both channels is crucial for plateau-bursting-type rhythmic electrical activity and secretion.
Collapse
Affiliation(s)
- Stanko S Stojilkovic
- Section on Cellular Signaling, Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, MD 20892-4510, USA.
| | | | | |
Collapse
|
23
|
Aalkjaer C, Nilsson H. Vasomotion: cellular background for the oscillator and for the synchronization of smooth muscle cells. Br J Pharmacol 2005; 144:605-16. [PMID: 15678091 PMCID: PMC1576043 DOI: 10.1038/sj.bjp.0706084] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Revised: 10/25/2004] [Accepted: 11/04/2004] [Indexed: 11/09/2022] Open
Abstract
1. Vasomotion is the oscillation of vascular tone with frequencies in the range from 1 to 20 min(-1) seen in most vascular beds. The oscillation originates in the vessel wall and is seen both in vivo and in vitro. 2. Recently, our ideas on the cellular mechanisms responsible for vasomotion have improved. Three different types of cellular oscillations have been suggested. One model has suggested that oscillatory release of Ca2+ from intracellular stores is important (the oscillation is based on a cytosolic oscillator). A second proposed mechanism is an oscillation originating in the sarcolemma (a membrane oscillator). A third mechanism is based on an oscillation of glycolysis (metabolic oscillator). For the two latter mechanisms, only limited experimental evidence is available. 3. To understand vasomotion, it is important to understand how the cells synchronize. For the cytosolic oscillators synchronization may occur via activation of Ca2+-sensitive ion channels by oscillatory Ca2+ release. The ensuing membrane potential oscillation feeds back on the intracellular Ca2+ stores and causes synchronization of the Ca2+ release. While membrane oscillators in adjacent smooth muscle cells could be synchronized through the same mechanism that sets up the oscillation in the individual cells, a mechanism to synchronize the metabolic-based oscillators has not been suggested. 4. The interpretation of the experimental observations is supported by theoretical modelling of smooth muscle cells behaviour, and the new insight into the mechanisms of vasomotion has the potential to provide tools to investigate the physiological role of vasomotion.
Collapse
Affiliation(s)
- Christian Aalkjaer
- Institute of Physiology and Biophysics, University of Aarhus, The Water and Salt Research Center, Universitetsparken Bldg. 160, DK-8000 Aarhus C, Denmark.
| | | |
Collapse
|
24
|
Tiyyagura SR, Kazerounian S, Schulz S, Waldman SA, Pitari GM. Reciprocal regulation and integration of signaling by intracellular calcium and cyclic GMP. VITAMINS AND HORMONES 2004; 69:69-94. [PMID: 15196879 DOI: 10.1016/s0083-6729(04)69003-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Calcium and guanosine-3',5'-cyclic monophosphate (cGMP) are second messenger molecules that regulate opposing physiological functions, reflected in the reciprocal regulation of their intracellular concentrations, in many systems. Indeed, cGMP and Ca2+ constitute discrete points of integration between multiple cell signaling cascades in both convergent and parallel pathways. This chapter describes the molecular mechanisms regulating intracellular Ca2+ and cGMP, and their integration in specific cellular responses.
Collapse
Affiliation(s)
- Satish R Tiyyagura
- Division of Clinical Pharmacology, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
25
|
Bonnefont X, Mollard P. Electrical activity in endocrine pituitary cells in situ: a support for a multiple-function coding. FEBS Lett 2003; 548:49-52. [PMID: 12885406 DOI: 10.1016/s0014-5793(03)00727-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The anterior pituitary is an endocrine gland that controls basic body functions. Pituitary cell functioning depends on membrane excitability, which induces cytosolic calcium rises. Here, we reported the first identification of small-amplitude voltage fluctuations that controlled spike firing in endocrine cells recorded in situ. Three patterns of voltage fluctuations were distinguishable by their durations (1-100 s). These patterns could be ordered on top of each other, namely in response to secretagogues. Thus, pituitary endocrine cells express in situ a cell code in which small-amplitude voltage fluctuations lead to a multimodal arrangement of spike firing, which may finely tune calcium-dependent functions.
Collapse
Affiliation(s)
- Xavier Bonnefont
- INSERM U469, Centre CNRS-INSERM de Pharmacologie Endocrinologie, 34094 Montpellier Cedex 5, France
| | | |
Collapse
|
26
|
Andric SA, Gonzalez-Iglesias AE, Van Goor F, Tomić M, Stojilkovic SS. Nitric oxide inhibits prolactin secretion in pituitary cells downstream of voltage-gated calcium influx. Endocrinology 2003; 144:2912-21. [PMID: 12810546 DOI: 10.1210/en.2002-0147] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The coupling between nitric oxide (NO)-cGMP signaling pathway and prolactin (PRL) release in pituitary lactotrophs has been established previously. However, the messenger that mediates the action of this signaling pathway on hormone secretion and the secretory mechanism affected, calcium dependent or independent, have not been identified. In cultured pituitary cells, basal PRL release was controlled by spontaneous voltage-gated calcium influx and was further enhanced by depolarization of cells and stimulation with TRH. Inhibition of constitutively expressed neuronal NO synthase decreased NO and cGMP levels and increased basal PRL release. The addition of a slowly releasable NO donor increased cGMP levels and inhibited basal PRL release in a time-dependent manner. Expression of inducible NO synthase also increased NO and cGMP levels and inhibited basal, depolarization-induced, and TRH-induced PRL release, whereas inhibition of this enzyme decreased NO and cGMP production and recovered PRL release. None of these treatments affected spontaneous and stimulated voltage-gated calcium influx. At basal NO levels, the addition of permeable cGMP analogs did not inhibit PRL secretion. At elevated NO levels, inhibition of cGMP production and facilitation of its degradation did not reverse inhibited PRL secretion. These experiments indicate that NO inhibits calcium-dependent PRL secretion in a cGMP-independent manner and downstream of voltage-gated calcium influx.
Collapse
Affiliation(s)
- Silvana A Andric
- Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, 49 Convent Drive, Bethesda, MD 20892-4510, USA
| | | | | | | | | |
Collapse
|
27
|
Jenks BG, Roubos EW, Scheenen WJJM. Ca2+ oscillations in melanotropes of Xenopus laevis: their generation, propagation, and function. Gen Comp Endocrinol 2003; 131:209-19. [PMID: 12714002 DOI: 10.1016/s0016-6480(03)00120-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The melanotrope cell of the amphibian Xenopus laevis is a neuroendocrine transducer that converts neuronal input concerning the color of background into an endocrine output, the release of alpha-melanophore-stimulating hormone (alpha-MSH). The cell displays intracellular Ca(2+) oscillations that are thought to be the driving force for secretion as well as for the expression of genes important to the process of background adaptation. Here we review the functioning of the Xenopus melanotrope cell, with emphasis on the role of Ca(2+) oscillations in signal transduction in this cell. We start by giving a general overview of the evolution of Ca(2+) as an intracellular messenger molecule. This is followed by an examination of the melanotrope as a neuroendocrine integrator cell. Then, the evidence that Ca(2+) oscillations drive the secretion of alpha-MSH is reviewed, followed by a similar analysis of the evidence that the same oscillations regulate the expression of proopiomelanocortin (POMC), the precursor protein for alpha-MSH. Finally, the possible importance of the pattern of Ca(2+) signaling to melanotrope cell function is considered.
Collapse
Affiliation(s)
- Bruce G Jenks
- Department of Cellular Animal Physiology, Nijmegen Institute for Neurosciences and Institute of Cellular Signaling, University of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands.
| | | | | |
Collapse
|
28
|
Cervia D, Zizzari P, Pavan B, Schuepbach E, Langenegger D, Hoyer D, Biondi C, Epelbaum J, Bagnoli P. Biological activity of somatostatin receptors in GC rat tumour somatotrophs: evidence with sst1-sst5 receptor-selective nonpeptidyl agonists. Neuropharmacology 2003; 44:672-85. [PMID: 12668053 DOI: 10.1016/s0028-3908(03)00031-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The physiological actions of somatostatin-14 (SRIF: somatotrophin release inhibitory factor) receptor subtypes (sst(1)-sst(5)), which are endogenously expressed in growth cells (GC cells), have not yet been elucidated, although there is evidence that sst(2) receptors are negatively coupled to cytosolic free Ca(2+) concentration ([Ca(2+)](i)) and adenosine 3,5'-cyclic monophosphate (cAMP) accumulation. In addition, both sst(1) and sst(2) receptors are negatively coupled to growth hormone (GH) secretion in GC cells. Here we report on studies concerning the expression, the pharmacology and the functional role of native SRIF receptors in GC cells with the use of five nonpeptidyl agonists, highly selective for each of the SRIF receptors. Radioligand binding studies show that sst(2) and sst(5) receptors are present at different relative densities, while the presence of sst(3) and sst(4) receptors appears to be negligible. The absence of sst(1) receptor binding was unexpected in view of sst(1) receptor functional effects on GH secretion. This suggests very efficient receptor-effector coupling of a low-density population of sst(1) receptors. Functionally, only sst(2) receptors are coupled to the inhibition of [Ca(2+)](i) and cAMP accumulation and the selective activation of sst(5) receptors facilitates the stimulation of adenylyl cyclase activity through G(i/o) proteins. This effect was not observed when sst(2) and sst(5) receptors were simultaneously activated, suggesting that there is a functional interaction between sst(2) and sst(5) receptors. In addition, sst(1), sst(2) and sst(5) receptor activation inhibits GH release, further indicating that SRIF can modulate GH secretion in GC cells through mechanisms both dependent and independent on [Ca(2+)](i) and cAMP-dependent pathways. The present data suggest SRIF-mediated functional effects in GC cells to be very diverse and provides compelling arguments to propose that multiple native SRIF receptors expressed in the same cells are not simply redundant, but contribute to marked signalling diversity.
Collapse
Affiliation(s)
- D Cervia
- Dipartimento di Fisiologia e Biochimica G. Moruzzi, Università di Pisa, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
T-type Ca2+ channels were originally called low-voltage-activated (LVA) channels because they can be activated by small depolarizations of the plasma membrane. In many neurons Ca2+ influx through LVA channels triggers low-threshold spikes, which in turn triggers a burst of action potentials mediated by Na+ channels. Burst firing is thought to play an important role in the synchronized activity of the thalamus observed in absence epilepsy, but may also underlie a wider range of thalamocortical dysrhythmias. In addition to a pacemaker role, Ca2+ entry via T-type channels can directly regulate intracellular Ca2+ concentrations, which is an important second messenger for a variety of cellular processes. Molecular cloning revealed the existence of three T-type channel genes. The deduced amino acid sequence shows a similar four-repeat structure to that found in high-voltage-activated (HVA) Ca2+ channels, and Na+ channels, indicating that they are evolutionarily related. Hence, the alpha1-subunits of T-type channels are now designated Cav3. Although mRNAs for all three Cav3 subtypes are expressed in brain, they vary in terms of their peripheral expression, with Cav3.2 showing the widest expression. The electrophysiological activities of recombinant Cav3 channels are very similar to native T-type currents and can be differentiated from HVA channels by their activation at lower voltages, faster inactivation, slower deactivation, and smaller conductance of Ba2+. The Cav3 subtypes can be differentiated by their kinetics and sensitivity to block by Ni2+. The goal of this review is to provide a comprehensive description of T-type currents, their distribution, regulation, pharmacology, and cloning.
Collapse
Affiliation(s)
- Edward Perez-Reyes
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908-0735, USA.
| |
Collapse
|
30
|
Cervia D, Petrucci C, Bluet-Pajot MT, Epelbaum J, Bagnoli P. Inhibitory control of growth hormone secretion by somatostatin in rat pituitary GC cells: sst(2) but not sst(1) receptors are coupled to inhibition of single-cell intracellular free calcium concentrations. Neuroendocrinology 2002; 76:99-110. [PMID: 12169771 DOI: 10.1159/000064424] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Rat pituitary tumor cells (GC cells) exhibit spontaneous oscillations of intracellular free calcium concentration ([Ca(2+)](i)) that allow continuous release of growth hormone (GH). Of the somatostatin (SRIH) receptor subtypes (sst receptors) mediating SRIH action, sst(1) and sst(2) receptors are highly expressed by GC cell membranes. In the present study, the effects of sst(1) or sst(2) receptor activation on single-cell [Ca(2+)](i) were investigated in GC cells by confocal fluorescence microscopy. In addition, the effects of sst(1) or sst(2) receptor activation on GH secretion were also studied. Our results demonstrate that SRIH decreases [Ca(2+)](i) baseline and almost completely blocks Ca(2+) transients through activation of sst(2) but not of sst(1) receptors. In contrast, SRIH effectively inhibits GH secretion through activation of both sst(1) and sst(2) receptors. Blocking Ca(2+) transients is less efficient than SRIH to inhibit GH release. The cyclic octapeptide, CYN-154806, antagonizes sst(2) receptors at [Ca(2+)](i) since it abolishes the sst(2) receptor-mediated inhibition of [Ca(2+)](i) without affecting single-cell Ca(2+) signals. On the other hand, CYN-154806 alone potently inhibits GH secretion through the involvement of pertussis toxin-sensitive G proteins. In conclusion, the present results demonstrate that SRIH inhibition of GH release in GC cells involves mechanisms either dependent or independent on SRIH modulation of [Ca(2+)](i). The implications of CYN-154806 inhibition of GH secretion are discussed.
Collapse
Affiliation(s)
- Davide Cervia
- Department of Physiology and Biochemistry G. Moruzzi, University of Pisa, Italy
| | | | | | | | | |
Collapse
|
31
|
Abstract
Cyclic nucleotide-gated (CNG) channels are nonselective cation channels first identified in retinal photoreceptors and olfactory sensory neurons (OSNs). They are opened by the direct binding of cyclic nucleotides, cAMP and cGMP. Although their activity shows very little voltage dependence, CNG channels belong to the superfamily of voltage-gated ion channels. Like their cousins the voltage-gated K+ channels, CNG channels form heterotetrameric complexes consisting of two or three different types of subunits. Six different genes encoding CNG channels, four A subunits (A1 to A4) and two B subunits (B1 and B3), give rise to three different channels in rod and cone photoreceptors and in OSNs. Important functional features of these channels, i.e., ligand sensitivity and selectivity, ion permeation, and gating, are determined by the subunit composition of the respective channel complex. The function of CNG channels has been firmly established in retinal photoreceptors and in OSNs. Studies on their presence in other sensory and nonsensory cells have produced mixed results, and their purported roles in neuronal pathfinding or synaptic plasticity are not as well understood as their role in sensory neurons. Similarly, the function of invertebrate homologs found in Caenorhabditis elegans, Drosophila, and Limulus is largely unknown, except for two subunits of C. elegans that play a role in chemosensation. CNG channels are nonselective cation channels that do not discriminate well between alkali ions and even pass divalent cations, in particular Ca2+. Ca2+ entry through CNG channels is important for both excitation and adaptation of sensory cells. CNG channel activity is modulated by Ca2+/calmodulin and by phosphorylation. Other factors may also be involved in channel regulation. Mutations in CNG channel genes give rise to retinal degeneration and color blindness. In particular, mutations in the A and B subunits of the CNG channel expressed in human cones cause various forms of complete and incomplete achromatopsia.
Collapse
Affiliation(s)
- U Benjamin Kaupp
- Institut für Biologische Informationsverarbeitung, Forschungszentrum Jülich, Jülich, Germany.
| | | |
Collapse
|
32
|
Zivadinovic D, Tomić M, Yuan D, Stojilkovic SS. Cell-type specific messenger functions of extracellular calcium in the anterior pituitary. Endocrinology 2002; 143:445-55. [PMID: 11796497 DOI: 10.1210/endo.143.2.8637] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Calcium can serve not only as an intracellular messenger, but also as an extracellular messenger controlling the gating properties of plasma membrane channels and acting as an agonist for G protein-coupled Ca(2+)-sensing receptors. Here we studied the potential extracellular messenger functions of this ion in anterior pituitary cells. Depletion and repletion of the extracellular Ca(2+) concentration ([Ca(2+)]e) induced transient elevations in the intracellular Ca(2+) concentration ([Ca(2+)]i), and elevations in [Ca(2+)]e above physiological levels decreased [Ca(2+)]i in somatotrophs and lactotrophs, but not in gonadotrophs. The amplitudes and duration of [Ca(2+)]i responses depended on the [Ca(2+)]e and its rate of change, which resulted exclusively from modulation of spontaneous voltage-gated Ca(2+) influx. Changes in [Ca(2+)]e also affected GH and PRL secretion. The PRL secretory profiles paralleled the [Ca(2+)]i profiles in lactotrophs, whereas GH secretion was also stimulated by [Ca(2+)]e independently of the status of voltage-gated Ca(2+) influx. [Ca(2+)]e modulated GH secretion in a dose-dependent manner, with EC(50) values of 0.75 and 2.25 mM and minimum secretion at about 1.5 mM. In a parallel experiment, cAMP accumulation progressively increased with elevation of [Ca(2+)]e, whereas inositol phosphate levels were not affected. These results indicate the cell type-specific role of [Ca(2+)]e in the control of Ca(2+) signaling and secretion.
Collapse
Affiliation(s)
- Dragoslava Zivadinovic
- Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-4510, USA
| | | | | | | |
Collapse
|
33
|
Johnson JD, Chang JP. Agonist-specific and sexual stage-dependent inhibition of gonadotropin-releasing hormone-stimulated gonadotropin and growth hormone release by ryanodine: relationship to sexual stage-dependent caffeine-sensitive hormone release. J Neuroendocrinol 2002; 14:144-55. [PMID: 11849374 DOI: 10.1046/j.0007-1331.2001.00756.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Differential utilization of intracellular Ca2+ stores with specific functional characteristics could be a potential mechanism for coupling various stimuli to specific cellular responses. In the goldfish pituitary, both gonadotropes and somatotropes possess multiple intracellular Ca2+ stores that are differentially coupled to agonist-evoked exocytosis. We investigated the role of ryanodine receptor/Ca2+-release channels (RyR) in basal and gonadotropin-releasing hormone (GnRH)-evoked hormone secretion from cultured gonadotropes and somatotropes using radioimmunoassay for gonadotropin (GTH-II) and growth hormone (GH). As is the case in vivo, the basal and evoked secretion of both hormones varied with seasonal reproductive status. GnRH-stimulated hormone release was three-fold higher in cells from sexually mature animals compared to those in a sexually regressed state. Nanomolar doses of ryanodine evoked significant GTH-II and GH secretion, suggesting that ryanodine-sensitive Ca2+ stores can couple to exocytosis in both cell types. In gonadotropes, 10 microM ryanodine abolished cGnRH-II-evoked GTH-II release in both sexually mature and sexually regressed fish, while sGnRH signalling was mediated by ryanodine-sensitive Ca2+ stores in cells from sexually regressed fish only. Ryanodine-sensitive Ca2+ stores in somatotropes were only involved in cGnRH-II-stimulated GH release during gonadal regression. In contrast, sGnRH-stimulated, but not cGnRH-II-stimulated, GH release was significantly reduced by 1 microM xestospongin C. Although hormone release stimulated by mobilizing caffeine-sensitive Ca2+ pools was also markedly seasonal, it was largely independent of ryanodine-sensitive Ca2+ stores. Ryanodine-sensitive Ca2+ stores in both cell types are not active downstream of ionomycin, BayK 8644, protein kinase C or cyclic adenosine monophosphate signalling pathways, suggesting difference from a classical Ca2+-induced Ca2+ release system. Ours study is the first to suggest that RyR2 may be involved in the seasonal plasticity of pituitary function, which may be related to cyclic changes observed in reproduction and growth.
Collapse
Affiliation(s)
- J D Johnson
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
34
|
Paradoxical role of large-conductance calcium-activated K+ (BK) channels in controlling action potential-driven Ca2+ entry in anterior pituitary cells. J Neurosci 2001. [PMID: 11487613 DOI: 10.1523/jneurosci.21-16-05902.2001] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Activation of high-conductance Ca(2+)-activated K(+) (BK) channels normally limits action potential duration and the associated voltage-gated Ca(2+) entry by facilitating membrane repolarization. Here we report that BK channel activation in rat pituitary somatotrophs prolongs membrane depolarization, leading to the generation of plateau-bursting activity and facilitated Ca(2+) entry. Such a paradoxical role of BK channels is determined by their rapid activation by domain Ca(2+), which truncates the action potential amplitude and thereby limits the participation of delayed rectifying K(+) channels during membrane repolarization. Conversely, pituitary gonadotrophs express relatively few BK channels and fire single spikes with a low capacity to promote Ca(2+) entry, whereas an elevation in BK current expression in a gonadotroph model system leads to the generation of plateau-bursting activity and high-amplitude Ca(2+) transients.
Collapse
|
35
|
Kostic TS, Andric SA, Stojilkovic SS. Spontaneous and receptor-controlled soluble guanylyl cyclase activity in anterior pituitary cells. Mol Endocrinol 2001; 15:1010-22. [PMID: 11376118 DOI: 10.1210/mend.15.6.0648] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Nitric oxide (NO)-dependent soluble guanylyl cyclase (sGC) is operative in mammalian cells, but its presence and the role in cGMP production in pituitary cells have been incompletely characterized. Here we show that sGC is expressed in pituitary tissue and dispersed cells, enriched lactotrophs and somatotrophs, and GH(3) immortalized cells, and that this enzyme is exclusively responsible for cGMP production in unstimulated cells. Basal sGC activity was partially dependent on voltage-gated calcium influx, and both calcium-sensitive NO synthases (NOS), neuronal and endothelial, were expressed in pituitary tissue and mixed cells, enriched lactotrophs and somatotrophs, and GH(3) cells. Calcium-independent inducible NOS was transiently expressed in cultured lactotrophs and somatotrophs after the dispersion of cells, but not in GH(3) cells and pituitary tissue. This enzyme participated in the control of basal sGC activity in cultured pituitary cells. The overexpression of inducible NOS by lipopolysaccharide + interferon-gamma further increased NO and cGMP levels, and the majority of de novo produced cGMP was rapidly released. Addition of an NO donor to perifused pituitary cells also led to a rapid cGMP release. Calcium-mobilizing agonists TRH and GnRH slightly increased basal cGMP production, but only when added in high concentrations. In contrast, adenylyl cyclase agonists GHRH and CRF induced a robust increase in cGMP production, with EC(50)s in the physiological concentration range. As in cells overexpressing inducible NOS, the stimulatory action of GHRH and CRF was preserved in cells bathed in calcium-deficient medium, but was not associated with a measurable increase in NO production. These results indicate that sGC is present in secretory anterior pituitary cells and is regulated in an NO-dependent manner through constitutively expressed neuronal and endothelial NOS and transiently expressed inducible NOS, as well as independently of NO by adenylyl cyclase coupled-receptors.
Collapse
Affiliation(s)
- T S Kostic
- Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4510, USA
| | | | | |
Collapse
|
36
|
Van Goor F, Zivadinovic D, Stojilkovic SS. Differential expression of ionic channels in rat anterior pituitary cells. Mol Endocrinol 2001; 15:1222-36. [PMID: 11435620 DOI: 10.1210/mend.15.7.0668] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Secretory anterior pituitary cells are of the same origin, but exhibit cell type-specific patterns of spontaneous intracellular Ca2+ signaling and basal hormone secretion. To understand the underlying ionic mechanisms mediating these differences, we compared the ionic channels expressed in somatotrophs, lactotrophs, and gonadotrophs from randomly cycling female rats under identical cell culture and recording conditions. Our results indicate that a similar group of ionic channels are expressed in each cell type, including transient and sustained voltage-gated Ca2+ channels, tetrodotoxin-sensitive Na+ channels, transient and delayed rectifying K+ channels, and multiple Ca2+ -sensitive K+ channel subtypes. However, there were marked differences in the expression levels of some of the ionic channels. Specifically, lactotrophs and somatotrophs exhibited low expression levels of tetrodotoxin-sensitive Na+ channels and high expression levels of the large-conductance, Ca2+ -activated K+ channel compared with those observed in gonadotrophs. In addition, functional expression of the transient K+ channel was much higher in lactotrophs and gonadotrophs than in somatotrophs. Finally, the expression of the transient voltage-gated Ca2+ channels was higher in somatotrophs than in lactotrophs and gonadotrophs. These results indicate that there are cell type-specific patterns of ionic channel expression, which may be of physiological significance for the control of Ca2+ homeostasis and secretion in unstimulated and receptor-stimulated anterior pituitary cells.
Collapse
Affiliation(s)
- F Van Goor
- Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health Bethesda, Maryland 20892-4510, USA
| | | | | |
Collapse
|
37
|
Wong CJ, Johnson JD, Yunker WK, Chang JP. Caffeine stores and dopamine differentially require Ca(2+) channels in goldfish somatotropes. Am J Physiol Regul Integr Comp Physiol 2001; 280:R494-503. [PMID: 11208580 DOI: 10.1152/ajpregu.2001.280.2.r494] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The regulation of growth hormone (GH) secretion by intracellular Ca(2+) stores was studied in dissociated goldfish somatotropes. We characterized a caffeine-activated intracellular store that had been shown to mediate GH release in response to gonadotropin-releasing hormone. The peak response of caffeine stimulation was reduced by approximately 28% by 100 microM ryanodine in a use-dependent manner suggesting that the first 10 min of GH release is partially mediated by a caffeine-activated ryanodine receptor. The temporal sensitivities of caffeine- and dopamine-evoked GH release to blockade of Cd(2+)-sensitive Ca(2+) channels were compared. We demonstrated that the initial phase of dopamine-evoked release was dependent on Ca(2+) channels, whereas the initial phase of caffeine-evoked release was sensitive only to pretreatment blockade. This would suggest that the maintenance of one class of caffeine-activated intracellular stores requires entry of Ca(2+) through Cd(2+)-sensitive Ca(2+) channels. This differential temporal requirement for Ca(2+) channels in Ca(2+) signaling may be a mechanism to segregate intracellular signaling pathways of multiple neuroendocrine regulators in the teleost pituitary.
Collapse
Affiliation(s)
- C J Wong
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | | | | | | |
Collapse
|
38
|
Andric SA, Kostic TS, Koshimizu T, Stojilkovic SS. Dependence of soluble guanylyl cyclase activity on calcium signaling in pituitary cells. J Biol Chem 2001; 276:844-9. [PMID: 11031255 DOI: 10.1074/jbc.m004406200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of nitric oxide (NO) in the stimulation of soluble guanylyl cyclase (sGC) is well established, but the mechanism by which the enzyme is inactivated during the prolonged NO stimulation has not been characterized. In this paper we studied the interactions between NO and intracellular Ca(2+) in the control of sGC in rat anterior pituitary cells. Experiments were done in cultured cells, which expressed neuronal and endothelial NO synthases, and in cells with elevated NO levels induced by the expression of inducible NO synthase and by the addition of several NO donors. Basal sGC-dependent cGMP production was stimulated by the increase in NO levels in a time-dependent manner. In contrast, depolarization of cells by high K(+) and Bay K 8644, an L-type Ca(2+) channel agonist, inhibited sGC activity. Depolarization-induced down-regulation of sGC activity was also observed in cells with inhibited cGMP-dependent phosphodiesterases but not in cells bathed in Ca(2+)-deficient medium. This inhibition was independent from the pattern of Ca(2+) signaling (oscillatory versus nonoscillatory) and NO levels, and was determined by averaged concentration of intracellular Ca(2+). These results indicate that inactivation of sGC by intracellular Ca(2+) serves as a negative feedback to break the stimulatory action of NO on enzyme activity in intact pituitary cells.
Collapse
MESH Headings
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology
- Animals
- Calcium/metabolism
- Calcium Channel Blockers/pharmacology
- Calcium Signaling/drug effects
- Cells, Cultured
- Cyclic AMP/metabolism
- Cyclic GMP/metabolism
- Dose-Response Relationship, Drug
- Female
- Guanidines/pharmacology
- Guanylate Cyclase/metabolism
- Isoenzymes/metabolism
- Nitric Oxide/metabolism
- Nitric Oxide Donors/pharmacology
- Nitric Oxide Synthase/antagonists & inhibitors
- Nitric Oxide Synthase/metabolism
- Nitroprusside/pharmacology
- Pituitary Gland, Anterior/cytology
- Pituitary Gland, Anterior/drug effects
- Pituitary Gland, Anterior/enzymology
- Pituitary Gland, Anterior/metabolism
- Potassium/pharmacology
- Rats
- Rats, Sprague-Dawley
- Solubility
- Vinca Alkaloids/pharmacology
Collapse
Affiliation(s)
- S A Andric
- Endocrinology and Reproduction Research Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892-4510, USA
| | | | | | | |
Collapse
|
39
|
Zimber MP, Simasko SM. Recruitment of calcium from intracellular stores does not occur during the expression of large spontaneous calcium oscillations in GH(3) cells and lactotropic cells in primary culture. Neuroendocrinology 2000; 72:242-51. [PMID: 11070428 DOI: 10.1159/000054593] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We used simultaneous electrophysiological and intracellular calcium microfluorometry recordings to directly test for the presence of a calcium-induced calcium release mechanism in individual GH(3) cells and cells of a lactotrope-enriched primary culture. In voltage-pulse experiments, extending the duration of a depolarizing voltage-pulse increased intracellular calcium concentration ([Ca(2+)](i)), but we did not observe any evidence for recruitment of intracellular calcium stores. Furthermore, depletion of intracellular calcium stores with thapsigargin or caffeine did not change the calculated calcium buffer capacity of the cells. In current-clamp experiments, we observed elevations in [Ca(2+)](i) in response to spontaneous action potentials. These [Ca(2+)](i) responses were not inhibited by thapsigargin or caffeine. We did find a significant correlation between the magnitude of spontaneous [Ca(2+)](i) increases and action potential duration. We conclude that intracellular calcium stores are not released during the spontaneous [Ca(2+)](i) oscillations observed in these cells, and that the magnitude of [Ca(2+)](i) oscillations is a direct result of extracellular calcium influx that is determined in part by action potential duration.
Collapse
Affiliation(s)
- M P Zimber
- Program in Neuroscience, Department of VCAPP, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6520, USA
| | | |
Collapse
|