1
|
Stevenson SR, Tzokov SB, Lahiri I, Ayscough KR, Bullough PA. Cryo-EM reconstruction of yeast ADP-actin filament at 2.5 Å resolution. A comparison with vertebrate F-actin. Structure 2025:S0969-2126(24)00543-4. [PMID: 39798573 DOI: 10.1016/j.str.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/19/2024] [Accepted: 12/12/2024] [Indexed: 01/15/2025]
Abstract
The core component of the actin cytoskeleton is the globular protein G-actin, which reversibly polymerizes into filaments (F-actin). Budding yeast possesses a single actin that shares 87%-89% sequence identity with vertebrate actin isoforms. Previous structural studies indicate very close overlap of main-chain backbones. Intriguingly, however, substitution of yeast ACT1 with vertebrate β-cytoplasmic actin severely disrupts cell function and the substitution with a skeletal muscle isoform is lethal. Here we report a 2.5 Å structure of budding yeast F-actin. Previously unresolved side-chain information allows us to highlight four main differences in the comparison of yeast and vertebrate ADP F-actins: a more open nucleotide binding pocket; a more solvent exposed C-terminus; a rearrangement of inter-subunit binding interactions in the vicinity of the D loop and changes in the hydrogen bonding network in the vicinity of histidine 73 (yeast actin) and methyl-histidine 73 (vertebrate actin).
Collapse
Affiliation(s)
- Sarah R Stevenson
- Molecular and Cell Biology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Svetomir B Tzokov
- Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Indrajit Lahiri
- Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK; Nucleic Acids Institute, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Kathryn R Ayscough
- Molecular and Cell Biology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK.
| | - Per A Bullough
- Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK.
| |
Collapse
|
2
|
Li T, Du J, Ren M. Structural Significance of His73 in F-Actin Dynamics: Insights from Ab Initio Study. Int J Mol Sci 2022; 23:ijms231810447. [PMID: 36142357 PMCID: PMC9499316 DOI: 10.3390/ijms231810447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 11/28/2022] Open
Abstract
F-actin dynamics (polymerization and depolymerization) are associated with nucleotide exchange, providing the driving forces for dynamic cellular activities. As an important residue in the nucleotide state-sensing region in actin, His73 is often found to be methylated in natural actin and directly participates in F-actin dynamics by regulating nucleotide exchange. The interaction between His73 and its neighboring residue, Gly158, has significance for F-actin dynamics. However, this weak chemical interaction is difficult to characterize using classic molecular modeling methods. In this study, ab initio modeling was employed to explore the binding energy between His73 and Gly158. The results confirm that the methyl group on the His73 side chain contributes to the structural stability of atomistic networks in the nucleotide state-sensing region of actin monomers and confines the material exchange (Pi release) pathway within F-actin dynamics. Further binding energy analyses of actin structures under different nucleotide states showed that the potential model of His73/Gly158 hydrogen bond breaking in the material exchange mechanism is not obligatory within F-actin dynamics.
Collapse
Affiliation(s)
- Tong Li
- Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Juan Du
- Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Mingfa Ren
- Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
- Correspondence: ; Tel.: +86-411-8479161
| |
Collapse
|
3
|
Jakobsson ME. Enzymology and significance of protein histidine methylation. J Biol Chem 2021; 297:101130. [PMID: 34461099 PMCID: PMC8446795 DOI: 10.1016/j.jbc.2021.101130] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 12/21/2022] Open
Abstract
Cells synthesize proteins using 20 standard amino acids and expand their biochemical repertoire through intricate enzyme-mediated post-translational modifications (PTMs). PTMs can either be static and represent protein editing events or be dynamically regulated as a part of a cellular response to specific stimuli. Protein histidine methylation (Hme) was an elusive PTM for over 5 decades and has only recently attracted considerable attention through discoveries concerning its enzymology, extent, and function. Here, we review the status of the Hme field and discuss the implications of Hme in physiological and cellular processes. We also review the experimental toolbox for analysis of Hme and discuss the strengths and weaknesses of different experimental approaches. The findings discussed in this review demonstrate that Hme is widespread across cells and tissues and functionally regulates key cellular processes such as cytoskeletal dynamics and protein translation. Collectively, the findings discussed here showcase Hme as a regulator of key cellular functions and highlight the regulation of this modification as an emerging field of biological research.
Collapse
|
4
|
MacTaggart B, Kashina A. Posttranslational modifications of the cytoskeleton. Cytoskeleton (Hoboken) 2021; 78:142-173. [PMID: 34152688 DOI: 10.1002/cm.21679] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
The cytoskeleton plays important roles in many essential processes at the cellular and organismal levels, including cell migration and motility, cell division, and the establishment and maintenance of cell and tissue architecture. In order to facilitate these varied functions, the main cytoskeletal components-microtubules, actin filaments, and intermediate filaments-must form highly diverse intracellular arrays in different subcellular areas and cell types. The question of how this diversity is conferred has been the focus of research for decades. One key mechanism is the addition of posttranslational modifications (PTMs) to the major cytoskeletal proteins. This posttranslational addition of various chemical groups dramatically increases the complexity of the cytoskeletal proteome and helps facilitate major global and local cytoskeletal functions. Cytoskeletal proteins undergo many PTMs, most of which are not well understood. Recent technological advances in proteomics and cell biology have allowed for the in-depth study of individual PTMs and their functions in the cytoskeleton. Here, we provide an overview of the major PTMs that occur on the main structural components of the three cytoskeletal systems-tubulin, actin, and intermediate filament proteins-and highlight the cellular function of these modifications.
Collapse
Affiliation(s)
- Brittany MacTaggart
- School of Veterinary Medicine, Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anna Kashina
- School of Veterinary Medicine, Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
A M, Latario CJ, Pickrell LE, Higgs HN. Lysine acetylation of cytoskeletal proteins: Emergence of an actin code. J Biophys Biochem Cytol 2020; 219:211455. [PMID: 33044556 PMCID: PMC7555357 DOI: 10.1083/jcb.202006151] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
Reversible lysine acetylation of nuclear proteins such as histones is a long-established important regulatory mechanism for chromatin remodeling and transcription. In the cytoplasm, acetylation of a number of cytoskeletal proteins, including tubulin, cortactin, and the formin mDia2, regulates both cytoskeletal assembly and stability. More recently, acetylation of actin itself was revealed to regulate cytoplasmic actin polymerization through the formin INF2, with downstream effects on ER-to-mitochondrial calcium transfer, mitochondrial fission, and vesicle transport. This finding raises the possibility that actin acetylation, along with other post-translational modifications to actin, might constitute an "actin code," similar to the "histone code" or "tubulin code," controlling functional shifts to these central cellular proteins. Given the multiple roles of actin in nuclear functions, its modifications might also have important roles in gene expression.
Collapse
|
6
|
Schroer CFE, Baldauf L, van Buren L, Wassenaar TA, Melo MN, Koenderink GH, Marrink SJ. Charge-dependent interactions of monomeric and filamentous actin with lipid bilayers. Proc Natl Acad Sci U S A 2020; 117:5861-5872. [PMID: 32123101 PMCID: PMC7084070 DOI: 10.1073/pnas.1914884117] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The cytoskeletal protein actin polymerizes into filaments that are essential for the mechanical stability of mammalian cells. In vitro experiments showed that direct interactions between actin filaments and lipid bilayers are possible and that the net charge of the bilayer as well as the presence of divalent ions in the buffer play an important role. In vivo, colocalization of actin filaments and divalent ions are suppressed, and cells rely on linker proteins to connect the plasma membrane to the actin network. Little is known, however, about why this is the case and what microscopic interactions are important. A deeper understanding is highly beneficial, first, to obtain understanding in the biological design of cells and, second, as a possible basis for the building of artificial cortices for the stabilization of synthetic cells. Here, we report the results of coarse-grained molecular dynamics simulations of monomeric and filamentous actin in the vicinity of differently charged lipid bilayers. We observe that charges on the lipid head groups strongly determine the ability of actin to adsorb to the bilayer. The inclusion of divalent ions leads to a reversal of the binding affinity. Our in silico results are validated experimentally by reconstitution assays with actin on lipid bilayer membranes and provide a molecular-level understanding of the actin-membrane interaction.
Collapse
Affiliation(s)
- Carsten F E Schroer
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Lucia Baldauf
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
- Living Matter Department, AMOLF, 1098 XG Amsterdam, The Netherlands
| | - Lennard van Buren
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
- Living Matter Department, AMOLF, 1098 XG Amsterdam, The Netherlands
| | - Tsjerk A Wassenaar
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Manuel N Melo
- Instituto de Tecnologia Química e Biológica, New University of Lisbon, 2780-157, Oeiras, Portugal
| | - Gijsje H Koenderink
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands;
- Living Matter Department, AMOLF, 1098 XG Amsterdam, The Netherlands
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands;
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
7
|
Kumpula EP, Lopez AJ, Tajedin L, Han H, Kursula I. Atomic view into Plasmodium actin polymerization, ATP hydrolysis, and fragmentation. PLoS Biol 2019; 17:e3000315. [PMID: 31199804 PMCID: PMC6599135 DOI: 10.1371/journal.pbio.3000315] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 06/28/2019] [Accepted: 05/23/2019] [Indexed: 11/18/2022] Open
Abstract
Plasmodium actins form very short filaments and have a noncanonical link between ATP hydrolysis and polymerization. Long filaments are detrimental to the parasites, but the structural factors constraining Plasmodium microfilament lengths have remained unknown. Using high-resolution crystallography, we show that magnesium binding causes a slight flattening of the Plasmodium actin I monomer, and subsequent phosphate release results in a more twisted conformation. Thus, the Mg-bound monomer is closer in conformation to filamentous (F) actin than the Ca form, and this likely facilitates polymerization. A coordinated potassium ion resides in the active site during hydrolysis and leaves together with the phosphate, a process governed by the position of the Arg178/Asp180-containing A loop. Asp180 interacts with either Lys270 or His74, depending on the protonation state of the histidine, while Arg178 links the inner and outer domains (ID and OD) of the actin protomer. Hence, the A loop acts as a switch between stable and unstable filament conformations, the latter leading to fragmentation. Our data provide a comprehensive model for polymerization, ATP hydrolysis and phosphate release, and fragmentation of parasite microfilaments. Similar mechanisms may well exist in canonical actins, although fragmentation is much less favorable due to several subtle sequence differences as well as the methylation of His73, which is absent on the corresponding His74 in Plasmodium actin I. A detailed mechanistic study of malaria parasite actins reveals at the atomic level how they polymerize, hydrolyze ATP, and are fragmented to keep actin filament lengths short enough for parasite survival.
Collapse
Affiliation(s)
- Esa-Pekka Kumpula
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Andrea J. Lopez
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Leila Tajedin
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Huijong Han
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- European XFEL GmbH, Schenefeld, Germany
| | - Inari Kursula
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- Department of Biomedicine, University of Bergen, Bergen, Norway
- European XFEL GmbH, Schenefeld, Germany
- * E-mail:
| |
Collapse
|
8
|
Umeki N, Shibata K, Noguchi TQP, Hirose K, Sako Y, Uyeda TQP. K336I mutant actin alters the structure of neighbouring protomers in filaments and reduces affinity for actin-binding proteins. Sci Rep 2019; 9:5353. [PMID: 30926871 PMCID: PMC6441083 DOI: 10.1038/s41598-019-41795-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/18/2019] [Indexed: 12/16/2022] Open
Abstract
Mutation of the Lys-336 residue of actin to Ile (K336I) or Asp (K336E) causes congenital myopathy. To understand the effect of this mutation on the function of actin filaments and gain insight into the mechanism of disease onset, we prepared and biochemically characterised K336I mutant actin from Dictyostelium discoideum. Subtilisin cleavage assays revealed that the structure of the DNase-I binding loop (D-loop) of monomeric K336I actin, which would face the adjacent actin-protomer in filaments, differed from that of wild type (WT) actin. Although K336I actin underwent normal salt-dependent reversible polymerisation and formed apparently normal filaments, interactions of K336I filaments with alpha-actinin, myosin II, and cofilin were disrupted. Furthermore, co-filaments of K336I and WT actins also exhibited abnormal interactions with cofilin, implying that K336I actin altered the structure of the neighbouring WT actin protomers such that interaction between cofilin and the WT actin protomers was prevented. We speculate that disruption of the interactions between co-filaments and actin-binding proteins is the primary reason why the K336I mutation induces muscle disease in a dominant fashion.
Collapse
Affiliation(s)
- Nobuhisa Umeki
- Cellular Informatics Lab., RIKEN, Wako, Saitama, 351-0198, Japan. .,Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8562, Japan.
| | - Keitaro Shibata
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8562, Japan.,Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Kobe, Hyogo, 651-2492, Japan
| | - Taro Q P Noguchi
- National Institute of Technology, Miyakonojo College, Miyakonojo, Miyazaki, 885-8567, Japan
| | - Keiko Hirose
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8562, Japan
| | - Yasushi Sako
- Cellular Informatics Lab., RIKEN, Wako, Saitama, 351-0198, Japan
| | - Taro Q P Uyeda
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8562, Japan.,Department of Physics, Waseda University, Shinjuku, Tokyo, 169-8555, Japan
| |
Collapse
|
9
|
|
10
|
Wilkinson AW, Diep J, Dai S, Liu S, Ooi YS, Song D, Li TM, Horton JR, Zhang X, Liu C, Trivedi DV, Ruppel KM, Vilches-Moure JG, Casey KM, Mak J, Cowan T, Elias JE, Nagamine CM, Spudich JA, Cheng X, Carette JE, Gozani O. SETD3 is an actin histidine methyltransferase that prevents primary dystocia. Nature 2018; 565:372-376. [PMID: 30626964 PMCID: PMC6511263 DOI: 10.1038/s41586-018-0821-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 11/30/2018] [Indexed: 01/17/2023]
Abstract
For over fifty years, the methylation of mammalian actin at histidine 73
(actin-H73me) has been known to exist1. Beyond mammals, we find that actin-H73me is conserved
in several additional model animal and plant organisms. Despite the
pervasiveness of H73me, its function is enigmatic, and the enzyme generating
this modification is unknown. Here, we identify SETD3 (SET
domain protein 3) as the physiologic
actin histidine 73 methyltransferase. Structural studies reveal that an
extensive network of interactions clamps the actin peptide on the SETD3 surface
to properly orient H73 within the catalytic pocket and facilitate methyl
transfer. H73me reduces the nucleotide exchange rate on actin monomers and
modestly accelerates actin filament assembly. Mice lacking SETD3 show complete
loss of actin-H73me in multiple tissues and quantitative proteomics singles out
actin-H73 as the principal physiologic SETD3 substrate. SETD3 deficient female
mice have severely decreased litter sizes due to primary maternal dystocia that
is refractory to ecbolic induction agents. Further, depletion of SETD3 impairs
signal-induced contraction in primary human uterine smooth muscle cells.
Together, our results identify the first mammalian protein histidine
methyltransferase and uncover a pivotal role for SETD3 and actin-H73me in the
regulation of smooth muscle contractility. Our data also support the broader
hypothesis where protein histidine methylation acts as a common regulatory
mechanism.
Collapse
Affiliation(s)
| | - Jonathan Diep
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Shaobo Dai
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shuo Liu
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Yaw Shin Ooi
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Dan Song
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Tie-Mei Li
- Department of Biology, Stanford University, Stanford, CA, USA
| | - John R Horton
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xing Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chao Liu
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Darshan V Trivedi
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Katherine M Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - José G Vilches-Moure
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Kerriann M Casey
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Tina Cowan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Joshua E Elias
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Claude M Nagamine
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - James A Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Xiaodong Cheng
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Or Gozani
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
11
|
Structural evidence for the roles of divalent cations in actin polymerization and activation of ATP hydrolysis. Proc Natl Acad Sci U S A 2018; 115:10345-10350. [PMID: 30254171 PMCID: PMC6187199 DOI: 10.1073/pnas.1806394115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Actin polymerization is a divalent cation-dependent process. Here we identify a cation binding site on the surface of actin in a 2.0-Å resolution X-ray structure of actin and find evidence of three additional sites in published high-resolution structures. These cations are stable in molecular dynamics (MD) simulations of the filament, suggesting a functional role in polymerization or filament rigidity. Polymerization activates the ATPase activity of the incorporating actin protomers. Careful analysis of water molecules that approach the ATP in the MD simulations revealed Gln137-activated water to be in a suitable position in F-actin, to initiate attack for ATP hydrolysis, and its occupancy was dependent on bound cations. The structure of the actin filament is known at a resolution that has allowed the architecture of protein components to be unambiguously assigned. However, fully understanding the chemistry of the system requires higher resolution to identify the ions and water molecules involved in polymerization and ATP hydrolysis. Here, we find experimental evidence for the association of cations with the surfaces of G-actin in a 2.0-Å resolution X-ray structure of actin bound to a Cordon-Bleu WH2 motif and in previously determined high-resolution X-ray structures. Three of four reoccurring divalent cation sites were stable during molecular dynamics (MD) simulations of the filament, suggesting that these sites may play a functional role in stabilizing the filament. We modeled the water coordination at the ATP-bound Mg2+, which also proved to be stable during the MD simulations. Using this model of the filament with a hydrated ATP-bound Mg2+, we compared the cumulative probability of an activated hydrolytic water molecule approaching the γ-phosphorous of ATP, in comparison with G-actin, in the MD simulations. The cumulative probability increased in F-actin in line with the activation of actin’s ATPase activity on polymerization. However, inclusion of the cations in the filament lowered cumulative probability, suggesting the rate of hydrolysis may be linked to filament flexibility. Together, these data extend the possible roles of Mg2+ in polymerization and the mechanism of polymerization-induced activation of actin’s ATPase activity.
Collapse
|
12
|
Clarke SG. The ribosome: A hot spot for the identification of new types of protein methyltransferases. J Biol Chem 2018; 293:10438-10446. [PMID: 29743234 DOI: 10.1074/jbc.aw118.003235] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cellular physiology depends on the alteration of protein structures by covalent modification reactions. Using a combination of bioinformatic, genetic, biochemical, and mass spectrometric approaches, it has been possible to probe ribosomal proteins from the yeast Saccharomyces cerevisiae for post-translationally methylated amino acid residues and for the enzymes that catalyze these modifications. These efforts have resulted in the identification and characterization of the first protein histidine methyltransferase, the first N-terminal protein methyltransferase, two unusual types of protein arginine methyltransferases, and a new type of cysteine methylation. Two of these enzymes may modify their substrates during ribosomal assembly because the final methylated histidine and arginine residues are buried deep within the ribosome with contacts only with RNA. Two of these modifications occur broadly in eukaryotes, including humans, whereas the others demonstrate a more limited phylogenetic range. Analysis of strains where the methyltransferase genes are deleted has given insight into the physiological roles of these modifications. These reactions described here add diversity to the modifications that generate the typical methylated lysine and arginine residues previously described in histones and other proteins.
Collapse
Affiliation(s)
- Steven G Clarke
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, California 90095
| |
Collapse
|
13
|
Tikhomirova TS, Ievlev RS, Suvorina MY, Bobyleva LG, Vikhlyantsev IM, Surin AK, Galzitskaya OV. Search for Functionally Significant Motifs and Amino Acid Residues of Actin. Mol Biol 2018. [DOI: 10.1134/s0026893318010193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Jepsen L, Kruth KA, Rubenstein PA, Sept D. Two Deafness-Causing Actin Mutations (DFNA20/26) Have Allosteric Effects on the Actin Structure. Biophys J 2016; 111:323-332. [PMID: 27463135 PMCID: PMC4968419 DOI: 10.1016/j.bpj.2016.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/03/2016] [Accepted: 06/09/2016] [Indexed: 12/21/2022] Open
Abstract
Point mutations in γ-cytoplasmic actin have been shown to result in autosomal-dominant, nonsyndromic, early-onset deafness. Two mutations at the same site, K118M and K118N, provide a unique opportunity to compare the effects of two dissimilar amino acid substitutions that produce a similar phenotype in humans. K118 resides in a helix that runs from K113 to T126, and mutations that alter the position, dynamics, and/or biochemistry of this helix can result in a wide range of pathologies. Using a combination of computational and experimental studies, both employing yeast actin, we find that these mutations at K118 result in changes in the structure and dynamics of the DNase-I loop, alterations in the structure of the H73 loop as well as the side-chain orientations of W79 and W86, changes in nucleotide exchange rates, and significant shifts in the twist of the actin monomer. Interestingly, in the case of K118N, the twist of the monomer is nearly identical to that of the F-actin protomer, and in vitro polymerization assays show that this mutation results in faster polymerization. Taken together, these results indicate that mutations at this site give rise to a series of small changes that can be tolerated in vivo but result in misregulation of actin assembly and dynamics.
Collapse
Affiliation(s)
- Lauren Jepsen
- Bioinformatics Graduate Program, University of Michigan, Ann Arbor, Michigan; Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan; Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Karina A Kruth
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Peter A Rubenstein
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - David Sept
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan; Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
15
|
Kudryashov DS, Reisler E. ATP and ADP actin states. Biopolymers 2016; 99:245-56. [PMID: 23348672 DOI: 10.1002/bip.22155] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 09/07/2012] [Indexed: 11/06/2022]
Abstract
This minireview is dedicated to the memory of Henryk Eisenberg and honors his major contributions to many areas of biophysics and to the analysis of macromolecular states and interactions in particular. This work reviews the ATP and ADP states of a ubiquitous protein, actins, and considers the present evidence for and against unique, nucleotide-dependent conformations of this protein. The effects of ATP and ADP on specific structural elements of actins, its loops and clefts, as revealed by mutational, crosslinking, spectroscopic, and EPR methods are discussed. It is concluded that the existing evidence points to dynamic equilibria of these structural elements among various conformational states in both ATP- and ADP-actins, with the nucleotides impacting the equilibria distributions.
Collapse
Affiliation(s)
- Dmitri S Kudryashov
- Department of Chemistry and Biochemistry, the Ohio State University, Columbus, OH 43210.
| | | |
Collapse
|
16
|
Structure of the F-actin-tropomyosin complex. Nature 2014; 519:114-7. [PMID: 25470062 DOI: 10.1038/nature14033] [Citation(s) in RCA: 295] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 11/07/2014] [Indexed: 12/11/2022]
Abstract
Filamentous actin (F-actin) is the major protein of muscle thin filaments, and actin microfilaments are the main component of the eukaryotic cytoskeleton. Mutations in different actin isoforms lead to early-onset autosomal dominant non-syndromic hearing loss, familial thoracic aortic aneurysms and dissections, and multiple variations of myopathies. In striated muscle fibres, the binding of myosin motors to actin filaments is mainly regulated by tropomyosin and troponin. Tropomyosin also binds to F-actin in smooth muscle and in non-muscle cells and stabilizes and regulates the filaments there in the absence of troponin. Although crystal structures for monomeric actin (G-actin) are available, a high-resolution structure of F-actin is still missing, hampering our understanding of how disease-causing mutations affect the function of thin muscle filaments and microfilaments. Here we report the three-dimensional structure of F-actin at a resolution of 3.7 Å in complex with tropomyosin at a resolution of 6.5 Å, determined by electron cryomicroscopy. The structure reveals that the D-loop is ordered and acts as a central region for hydrophobic and electrostatic interactions that stabilize the F-actin filament. We clearly identify map density corresponding to ADP and Mg(2+) and explain the possible effect of prominent disease-causing mutants. A comparison of F-actin with G-actin reveals the conformational changes during filament formation and identifies the D-loop as their key mediator. We also confirm that negatively charged tropomyosin interacts with a positively charged groove on F-actin. Comparison of the position of tropomyosin in F-actin-tropomyosin with its position in our previously determined F-actin-tropomyosin-myosin structure reveals a myosin-induced transition of tropomyosin. Our results allow us to understand the role of individual mutations in the genesis of actin- and tropomyosin-related diseases and will serve as a strong foundation for the targeted development of drugs.
Collapse
|
17
|
The other side of the coin: functional and structural versatility of ADF/cofilins. Eur J Cell Biol 2014; 93:238-51. [PMID: 24836399 DOI: 10.1016/j.ejcb.2013.12.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/29/2013] [Accepted: 12/03/2013] [Indexed: 01/20/2023] Open
Abstract
Several cellular processes rely on the fine tuning of actin cytoskeleton. A central component in the regulation of this cellular machinery is the ADF-H domain proteins. Despite sharing the same domain, ADF-H domain proteins produce a diverse functional landscape in the regulation of the actin cytoskeleton. Recent findings emphasize that the functional and structural features of these proteins can differ not only between ADF-H families but even within the same family. The structural and evolutional background of this functional diversity is poorly understood. This review focuses on the specific functional characteristics of ADF-H domain proteins and how these features can be linked to structural differences in the ADF-H domain and also to different conformational transitions in actin. In the light of recent discoveries we pay special attention to the ADF/cofilin proteins to find tendencies along which the functional and structural diversification is governed through the evolution.
Collapse
|
18
|
Kim JH, Lee YG, Yoo S, Oh J, Jeong D, Song WK, Yoo BC, Rhee MH, Park J, Cha SH, Hong S, Cho JY. Involvement of Src and the actin cytoskeleton in the antitumorigenic action of adenosine dialdehyde. Biochem Pharmacol 2013; 85:1042-56. [DOI: 10.1016/j.bcp.2013.01.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 12/28/2012] [Accepted: 01/18/2013] [Indexed: 01/06/2023]
|
19
|
Splettstoesser T, Holmes KC, Noé F, Smith JC. Structural modeling and molecular dynamics simulation of the actin filament. Proteins 2011; 79:2033-43. [PMID: 21557314 DOI: 10.1002/prot.23017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 01/19/2011] [Accepted: 01/28/2011] [Indexed: 11/12/2022]
Abstract
Actin is a major structural protein of the eukaryotic cytoskeleton and enables cell motility. Here, we present a model of the actin filament (F-actin) that not only incorporates the global structure of the recently published model by Oda et al. but also conserves internal stereochemistry. A comparison is made using molecular dynamics simulation of the model with other recent F-actin models. A number of structural determents such as the protomer propeller angle, the number of hydrogen bonds, and the structural variation among the protomers are analyzed. The MD comparison is found to reflect the evolution in quality of actin models over the last 6 years. In addition, simulations of the model are carried out in states with both ADP or ATP bound and local hydrogen-bonding differences characterized.
Collapse
Affiliation(s)
- Thomas Splettstoesser
- Interdisciplinary Center for Scientific Computing, University of Heidelberg, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
20
|
Hild G, Bugyi B, Nyitrai M. Conformational dynamics of actin: effectors and implications for biological function. Cytoskeleton (Hoboken) 2010; 67:609-29. [PMID: 20672362 PMCID: PMC3038201 DOI: 10.1002/cm.20473] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Accepted: 07/15/2010] [Indexed: 12/30/2022]
Abstract
Actin is a protein abundant in many cell types. Decades of investigations have provided evidence that it has many functions in living cells. The diverse morphology and dynamics of actin structures adapted to versatile cellular functions is established by a large repertoire of actin-binding proteins. The proper interactions with these proteins assume effective molecular adaptations from actin, in which its conformational transitions play essential role. This review attempts to summarise our current knowledge regarding the coupling between the conformational states of actin and its biological function.
Collapse
Affiliation(s)
- Gábor Hild
- Department of Biophysics, University of Pécs, Faculty of Medicine, Pécs, Szigeti str. 12, H-7624, Hungary
| | | | | |
Collapse
|
21
|
Webb KJ, Zurita-Lopez CI, Al-Hadid Q, Laganowsky A, Young BD, Lipson RS, Souda P, Faull KF, Whitelegge JP, Clarke SG. A novel 3-methylhistidine modification of yeast ribosomal protein Rpl3 is dependent upon the YIL110W methyltransferase. J Biol Chem 2010; 285:37598-606. [PMID: 20864530 DOI: 10.1074/jbc.m110.170787] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have shown that Rpl3, a protein of the large ribosomal subunit from baker's yeast (Saccharomyces cerevisiae), is stoichiometrically monomethylated at position 243, producing a 3-methylhistidine residue. This conclusion is supported by top-down and bottom-up mass spectrometry of Rpl3, as well as by biochemical analysis of Rpl3 radiolabeled in vivo with S-adenosyl-l-[methyl-(3)H]methionine. The results show that a +14-Da modification occurs within the GTKKLPRKTHRGLRKVAC sequence of Rpl3. Using high-resolution cation-exchange chromatography and thin layer chromatography, we demonstrate that neither lysine nor arginine residues are methylated and that a 3-methylhistidine residue is present. Analysis of 37 deletion strains of known and putative methyltransferases revealed that only the deletion of the YIL110W gene, encoding a seven β-strand methyltransferase, results in the loss of the +14-Da modification of Rpl3. We suggest that YIL110W encodes a protein histidine methyltransferase responsible for the modification of Rpl3 and potentially other yeast proteins, and now designate it Hpm1 (Histidine protein methyltransferase 1). Deletion of the YIL110W/HPM1 gene results in numerous phenotypes including some that may result from abnormal interactions between Rpl3 and the 25 S ribosomal RNA. This is the first report of a methylated histidine residue in yeast cells, and the first example of a gene required for protein histidine methylation in nature.
Collapse
Affiliation(s)
- Kristofor J Webb
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California Los Angeles, Los Angeles, California 90095-1569, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Fedorova M, Kuleva N, Hoffmann R. Identification of cysteine, methionine and tryptophan residues of actin oxidized in vivo during oxidative stress. J Proteome Res 2010; 9:1598-609. [PMID: 20063901 DOI: 10.1021/pr901099e] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Increased levels of reactive oxygen species (ROS) cause oxidative stress and are believed to play a key role in the development of age-related diseases and mammalian aging in general by oxidizing proteins, lipids, and DNA. In this study, we have investigated the effects of ROS on actin in an established rat model of acute oxidative stress using short-term X-ray irradiation. Relative to the control, the actin functions studied in vitro were reduced for (i) actin polymerization to a minimum of 33% after 9 h and (ii) actin activated Mg(2+)-ATPase activity of myosin to 55% after 9 h. At 24 h, the activities had partially recovered to 64 and 80% of the control sample, respectively. The underlying oxidative modifications were also studied at the molecular level. The content of reactive carbonyl-groups increased 4-fold within the studied 24 h period. Among the five cysteine residues of actin, Cys(239) and Cys(259) were oxidized to sulfenic (Cys-SOH), sulfinic (Cys-SO(2)H), or sulfonic (Cys-SO(3)H) acids by increasing amounts over the time periods studied. The content of methionine sulfoxides also increased for 15 of the 16 methionine residues, with Met(44), Met(47), and Met(355) having the highest sulfoxide contents. Met(82) was also further oxidized to the sulfone. Among the four tryptophan residues present in actin, only Trp(79) and Trp(86) appeared to undergo oxidation. The relative contents of hydroxy-tryptophan, N-formyl-kynurenine, and kynurenine increased after irradiation, reaching a maximum in the 9 h sample.
Collapse
Affiliation(s)
- Maria Fedorova
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Faculty of Chemistry and Mineralogy, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany
| | | | | |
Collapse
|
23
|
Wen KK, McKane M, Stokasimov E, Fields J, Rubenstein PA. A potential yeast actin allosteric conduit dependent on hydrophobic core residues val-76 and trp-79. J Biol Chem 2010; 285:21185-94. [PMID: 20442407 DOI: 10.1074/jbc.m110.121426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intramolecular allosteric interactions responsible for actin conformational regulation are largely unknown. Previous work demonstrated that replacing yeast actin Val-76 with muscle actin Ile caused decreased nucleotide exchange. Residue 76 abuts Trp-79 in a six-residue linear array beginning with Lys-118 on the surface and ending with His-73 in the nucleotide cleft. To test if altering the degree of packing of these two residues would affect actin dynamics, we constructed V76I, W79F, and W79Y single mutants as well as the Ile-76/Phe-79 and Ile-76/Tyr-79 double mutants. Tyr or Phe should decrease crowding and increase protein flexibility. Subsequent introduction of Ile should restore packing and dampen changes. All mutants showed decreased growth in liquid medium. W79Y alone was severely osmosensitive and exhibited vacuole abnormalities. Both properties were rescued by Ile-76. Phe-79 or Tyr decreased the thermostability of actin and increased its nucleotide exchange rate. These effects, generally greater for Tyr than for Phe, were reversed by introduction of Ile-76. HD exchange showed that the mutations caused propagated conformational changes to all four subdomains. Based on results from phosphate release and light-scattering assays, single mutations affected polymerization in the order of Ile, Phe, and Tyr from least to most. Introduction of Ile-76 partially rescued the polymerization defects caused by either Tyr-79 or Phe-79. Thus, alterations in crowding of the 76-79 residue pair can strongly affect actin conformation and behavior, and these results support the theory that the amino acid array in which they are located may play a central role in actin regulation.
Collapse
Affiliation(s)
- Kuo-Kuang Wen
- Department of Biochemistry, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
24
|
Splettstoesser T, Noé F, Oda T, Smith JC. Nucleotide-dependence of G-actin conformation from multiple molecular dynamics simulations and observation of a putatively polymerization-competent superclosed state. Proteins 2010; 76:353-64. [PMID: 19156817 DOI: 10.1002/prot.22350] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The assembly of monomeric G-actin into filamentous F-actin is nucleotide dependent: ATP-G-actin is favored for filament growth at the "barbed end" of F-actin, whereas ADP-G-actin tends to dissociate from the "pointed end." Structural differences between ATP- and ADP-G-actin are examined here using multiple molecular dynamics simulations. The "open" and "closed" conformational states of G-actin in aqueous solution are characterized, with either ATP or ADP in the nucleotide binding pocket. With both ATP and ADP bound, the open state closes in the absence of actin-bound profilin. The position of the nucleotide in the protein is found to be correlated with the degree of opening of the active site cleft. Further, the simulations reveal the existence of a structurally well-defined, compact, "superclosed" state of ATP-G-actin, as yet unseen crystallographically and absent in the ADP-G-actin simulations. The superclosed state resembles structurally the actin monomer in filament models derived from fiber diffraction and is putatively the polymerization competent conformation of ATP-G-actin.
Collapse
Affiliation(s)
- Thomas Splettstoesser
- Interdisciplinary Center for Scientific Computing, University of Heidelberg, Germany.
| | | | | | | |
Collapse
|
25
|
Src-mediated regulation of inflammatory responses by actin polymerization. Biochem Pharmacol 2010; 79:431-43. [DOI: 10.1016/j.bcp.2009.09.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 09/11/2009] [Accepted: 09/14/2009] [Indexed: 11/19/2022]
|
26
|
Liu X, Shu S, Hong MSS, Yu B, Korn ED. Mutation of actin Tyr-53 alters the conformations of the DNase I-binding loop and the nucleotide-binding cleft. J Biol Chem 2010; 285:9729-9739. [PMID: 20100837 DOI: 10.1074/jbc.m109.073452] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
All but 11 of the 323 known actin sequences have Tyr at position 53, and the 11 exceptions have the conservative substitution Phe, which raises the following questions. What is the critical role(s) of Tyr-53, and, if it can be replaced by Phe, why has this happened so infrequently? We compared the properties of purified endogenous Dictyostelium actin and mutant constructs with Tyr-53 replaced by Phe, Ala, Glu, Trp, and Leu. The Y53F mutant did not differ significantly from endogenous actin in any of the properties assayed, but the Y53A and Y53E mutants differed substantially; affinity for DNase I was reduced, the rate of nucleotide exchange was increased, the critical concentration for polymerization was increased, filament elongation was inhibited, and polymerized actin was in the form of small oligomers and imperfect filaments. Growth and/or development of cells expressing these actin mutants were also inhibited. The Trp and Leu mutations had lesser but still significant effects on cell phenotype and the biochemical properties of the purified actins. We conclude that either Tyr or Phe is required to maintain the functional conformations of the DNase I-binding loop (D-loop) in both G- and F-actin, and that the conformation of the D-loop affects not only the properties that directly involve the D-loop (binding to DNase I and polymerization) but also allosterically modifies the conformation of the nucleotide-binding cleft, thus increasing the rate of nucleotide exchange. The apparent evolutionary "preference" for Tyr at position 53 may be the result of Tyr allowing dynamic modification of the D-loop conformation by phosphorylation (Baek, K., Liu, X., Ferron, F., Shu, S., Korn, E. D., and Dominguez, R. (2008) Proc. Natl. Acad. Sci. U.S.A. 105, 11748-11753) with effects similar, but not identical, to those of the Ala and Glu mutations.
Collapse
Affiliation(s)
- Xiong Liu
- Laboratory of Cell Biology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Shi Shu
- Laboratory of Cell Biology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Myoung-Soon S Hong
- Laboratory of Cell Biology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Bin Yu
- Laboratory of Cell Biology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Edward D Korn
- Laboratory of Cell Biology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892.
| |
Collapse
|
27
|
Stokasimov E, Rubenstein PA. Actin isoform-specific conformational differences observed with hydrogen/deuterium exchange and mass spectrometry. J Biol Chem 2009; 284:25421-30. [PMID: 19605362 DOI: 10.1074/jbc.m109.013078] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Actin can exist in multiple conformations necessary for normal function. Actin isoforms, although highly conserved in sequence, exhibit different biochemical properties and cellular roles. We used amide proton hydrogen/deuterium (HD) exchange detected by mass spectrometry to analyze conformational differences between Saccharomyces cerevisiae and muscle actins in the G and F forms to gain insight into these differences. We also utilized HD exchange to study interdomain and allosteric communication in yeast-muscle hybrid actins to better understand the conformational dynamics of actin. Areas showing differences in HD exchange between G- and F-actins are areas of intermonomer contacts, consistent with the current filament models. Our results showed greater exchange for yeast G-actin compared with muscle actin in the barbed end pivot region and areas in subdomains 1 and 2 and for F-actin in monomer-monomer contact areas. These results suggest greater flexibility of the yeast actin monomer and filament compared with muscle actin. For hybrid G-actins, the muscle-like and yeastlike parts of the molecule generally showed exchange characteristics resembling their parent actins. A few exceptions were a peptide on top of subdomain 2 and the pivot region between subdomains 1 and 3 with muscle actin-like exchange characteristics although the areas were yeastlike. These results demonstrate that there is cross-talk between subdomains 1 and 2 and the large and small domains. Hybrid F-actin data showing greater exchange compared with both yeast and muscle actins are consistent with mismatched yeast-muscle interfaces resulting in decreased stability of the hybrid filament contacts.
Collapse
Affiliation(s)
- Ema Stokasimov
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
28
|
Feng JJ, Marston S. Genotype–phenotype correlations in ACTA1 mutations that cause congenital myopathies. Neuromuscul Disord 2009; 19:6-16. [DOI: 10.1016/j.nmd.2008.09.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 09/08/2008] [Accepted: 09/09/2008] [Indexed: 12/01/2022]
|
29
|
Meany DL, Xie H, Thompson LV, Arriaga EA, Griffin TJ. Identification of carbonylated proteins from enriched rat skeletal muscle mitochondria using affinity chromatography-stable isotope labeling and tandem mass spectrometry. Proteomics 2007; 7:1150-63. [PMID: 17390297 DOI: 10.1002/pmic.200600450] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We describe a strategy for the identification of carbonylated proteins from complex protein mixtures that combines biotin hydrazide labeling of protein carbonyl groups, avidin affinity chromatography, multiplexed iTRAQ reagent stable isotope labeling, and analysis using pulsed Q dissociation (PQD) operation on an LTQ linear ion trap mass spectrometer. This strategy provided the ability to distinguish biotin hydrazide labeled, avidin purified, carbonylated proteins from non-carbonylated background proteins with affinity for the avidin column, derived from a control sample. Applying this strategy to the identification of crudely enriched rat skeletal muscle mitochondrial protein isolates, we generated a catalogue of over 200 carbonylated proteins by virtue of their quantitative enrichment compared to the control sample. The catalogue contains many mitochondrial localized proteins shown to be susceptible to carbonyl modification for the first time, including numerous transmembrane proteins involved in oxidative phosphorylation. Other oxidative modifications (e.g. nitrosylation, hydroxylation) were also identified on many of the carbonylated proteins, providing further evidence of the susceptibility of these proteins to oxidative damage. The results also demonstrate the utility of PQD operation on the LTQ instrument for quantitative analysis of iTRAQ reagent-labeled peptide mixtures, as well as the quantitative reproducibility of the avidin-affinity enrichment method.
Collapse
Affiliation(s)
- Danni L Meany
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA
| | | | | | | | | |
Collapse
|
30
|
|
31
|
Carroll J, Fearnley IM, Skehel JM, Runswick MJ, Shannon RJ, Hirst J, Walker JE. The Post-translational Modifications of the Nuclear Encoded Subunits of Complex I from Bovine Heart Mitochondria. Mol Cell Proteomics 2005; 4:693-9. [PMID: 15728260 DOI: 10.1074/mcp.m500014-mcp200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bovine complex I is an assembly of 46 different proteins. Seven of them are encoded in mitochondrial DNA, and the rest are nuclear gene products that are imported into the organelle. Fourteen of the nuclear encoded subunits have modified N termini. Many of these post-translational modifications have been deduced previously from intact protein masses. These assignments have been verified by mass spectrometric analysis of peptides. Thirteen of them are N-alpha-acetylated, and a 14th, subunit B18, is N-alpha-myristoylated. Subunit B18 forms part of the membrane arm of the complex, and the myristoyl group may attach subunit B18 to the membrane. One subunit, B12, has a particularly complex pattern of post-translational modification that has not been analyzed before. It is a mixture of the N-alpha-acetylated form and the form with a free N terminus. In addition, it has one, two, or three methyl groups attached to histidine residues at positions 4, 6, and 8 in various combinations. The predominant form is methylated on residues 4 and 6. There is no evidence for the methylation of histidine 2. Subunit B12 is also part of the membrane arm of complex I, and it probably spans the membrane once, but as its orientation is not known, the methylation sites could be in either the matrix or the intermembrane space. These experiments represent another significant step toward establishing the precise chemical composition of mammalian complex I.
Collapse
Affiliation(s)
- Joe Carroll
- The Medical Research Council Dunn Human Nutrition Unit, Hills Road, Cambridge CB2 2XY, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
32
|
Wen KK, Rubenstein PA. Acceleration of yeast actin polymerization by yeast Arp2/3 complex does not require an Arp2/3-activating protein. J Biol Chem 2005; 280:24168-74. [PMID: 15857833 DOI: 10.1074/jbc.m502024200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Arp2/3 complex creates filament branches leading to an enhancement in the rate of actin polymerization. Work with Arp complexes from different sources indicated that it was inactive by itself, required an activating factor such as the Wiskott-Aldrich syndrome protein (WASP), and might exhibit a preference for ATP or ADP-P(i) actin. However, with yeast actin, P(i) release is almost concurrent with polymerization, eliminating the presence of an ADP-P(i) cap. We thus investigated the ability of the yeast Arp2/3 complex (yArp2/3) to facilitate yeast actin polymerization in the presence and absence of the Arp2/3-activating factor Las17p WA. yArp2/3 significantly accelerates yeast actin but not muscle actin polymerization in the absence of Las17p WA. The addition of Las17p WA further enhances yeast actin polymerization by yArp2/3 and allows the complex to now assist muscle actin polymerization. This actin isoform difference is not observed with bovine Arp2/3 complex, because the neural WASP VCA fragment is required for polymerization of both actins. Observation of individual branching filaments showed that Las17p WA increased the persistence of filament branches. Compared with wild type actin, the V159N mutant actin, proposed to be more ATP-like in behavior, exhibited an enhanced rate of polymerization in the presence of the yArp2/3 complex. yArp2/3 caused a significant rate of P(i) release prior to observation of an increase in filament mass but while branched structures were present. Thus, yeast F-actin can serve as a primary yArp2/3-activating factor, indicating that a newly formed yeast actin filament has a topology, unlike that of muscle actin, that is recognized specifically by yArp2/3.
Collapse
Affiliation(s)
- Kuo-Kuang Wen
- Department of Biochemistry, Roy A., and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
33
|
Graceffa P, Dominguez R. Crystal structure of monomeric actin in the ATP state. Structural basis of nucleotide-dependent actin dynamics. J Biol Chem 2003; 278:34172-80. [PMID: 12813032 DOI: 10.1074/jbc.m303689200] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A nucleotide-dependent conformational change regulates actin filament dynamics. Yet, the structural basis of this mechanism remains controversial. The x-ray crystal structure of tetramethylrhodamine-5-maleimide-actin with bound AMPPNP, a non-hydrolyzable ATP analog, was determined to 1.85-A resolution. A comparison of this structure to that of tetramethylrhodamine-5-maleimide-actin with bound ADP, determined previously under similar conditions, reveals how the release of the nucleotide gamma-phosphate sets in motion a sequence of events leading to a conformational change in subdomain 2. The side chain of Ser-14 in the catalytic site rotates upon Pi release, triggering the rearrangement of the loop containing the methylated His-73, referred to as the sensor loop. This in turn causes a transition in the DNase I-binding loop in subdomain 2 from a disordered loop in ATP-actin to an ordered alpha-helix in ADP-actin. Despite this conformational change, the nucleotide cleft remains closed in ADP-actin, similar to ATP-actin. An analysis of the existing structures of members of the actin superfamily suggests that the cleft is open in the nucleotide-free state.
Collapse
Affiliation(s)
- Philip Graceffa
- Boston Biomedical Research Institute, Watertown, Massachusetts 02472, USA
| | | |
Collapse
|
34
|
Abstract
Because of the apparently greater conformational flexibility of yeast versus muscle actin and the ability of other members in the actin protein superfamily to efficiently use both ATP and GTP, we assessed the ability of yeast actin to function with GTP. Etheno-ATP exchange studies showed that the binding of GTP to yeast actin is about 1/9 as tight as that of ATP in contrast to the 1/1,240 ratio for muscle actin. Proteolysis of GTP-bound G-yeast actin suggests that the conformation of subdomain 2 is very much like that of ATP-bound actin, but CD studies show that GTP-bound actin is less thermostable than ATP-bound actin. GTP-actin polymerizes with an apparent critical concentration of 1.5 microm, higher than that of ATP-actin (0.3 microm) although filament structures observed by electron microscopy were similar. Yeast actin hydrolyzes GTP in a polymerization-dependent manner, and GTP-bound F-actin decorates with the myosin S1. Conversion of Phe(306) in the nucleotide binding site to the Tyr found in muscle actin raised the nucleotide discrimination ratio from the 1/9 of wild-type actin to 1/125. This result agrees with modeling that predicts that removal of the Tyr hydroxyl will create a space for the C2 amino group of the GTP guanine.
Collapse
Affiliation(s)
- Kuo-Kuang Wen
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
35
|
Yao X, Nguyen V, Wriggers W, Rubenstein PA. Regulation of yeast actin behavior by interaction of charged residues across the interdomain cleft. J Biol Chem 2002; 277:22875-82. [PMID: 11940592 DOI: 10.1074/jbc.m201685200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
His(73) participates in the regulation of the nucleotide binding cleft conformation in yeast actin. Earlier molecular dynamics studies suggested that Asp(184) interacts with His(73) thereby stabilizing a "closed-cleft" G-actin. However, beta-actin in the open-cleft state shows a closer interaction of His(73) with Asp(179) than with Asp(184). We have thus assessed the relative importance of Asp(184) and Asp(179) on yeast actin stability and function. Neutral substitutions at 184 or 179 alone had little adverse effect on the monomer and polymerization behavior of actin. Arg or His at 184 in H73E actin partially rescued the monomeric properties of H73E actin, as demonstrated by near-normal thermostability and wild-type (WT)-like protease digestion patterns. ATP exchange was still considerably faster than with WT-actin although slower than that of H73E alone. However, polymerization of H73E/D184R and H73E/D184H is worse than with H73E alone. Conversely, D179R rescued all monomeric properties of H73E to near WT values and largely restored polymerization rate and filament thermostability. These results and new simulations of G-actin in the "open" state underscore the importance of the His(73)-Asp(179) interaction and suggest that the open and not the closed state of yeast actin may be favored in the absence of the methyl group of His(73).
Collapse
Affiliation(s)
- Xiaoyi Yao
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
36
|
Nyman T, Schüler H, Korenbaum E, Schutt CE, Karlsson R, Lindberg U. The role of MeH73 in actin polymerization and ATP hydrolysis. J Mol Biol 2002; 317:577-89. [PMID: 11955010 DOI: 10.1006/jmbi.2002.5436] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In actin from many species H73 is methylated, but the function of this rare post-translational modification is unknown. Although not within bonding distance, it is located close to the gamma-phosphate of the actin-bound ATP. In most crystal structures of actin, the delta1-nitrogen of the methylated H73 forms a hydrogen bond with the carbonyl of G158. This hydrogen bond spans the gap separating subdomains 2 and 4, thereby contributing to the forces that close the interdomain cleft around the ATP polyphosphate tail. A second hydrogen bond stabilizing interdomain closure exists between R183 and Y69. In the closed-to-open transition in beta-actin, both of these hydrogen bonds are broken as the phosphate tail is exposed to solvent. Here we describe the isolation and characterization of a mutant beta-actin (H73A) expressed in the yeast Saccharomyces cerevisiae. The properties of the mutant are compared to those of wild-type beta-actin, also expressed in yeast. Yeast does not have the methyl transferase necessary to methylate recombinant beta-actin. Thus, the polymerization properties of yeast-expressed wild-type beta-actin can be compared with normally methylated beta-actin isolated from calf thymus. Since earlier studies of the actin ATPase almost invariably employed rabbit skeletal alpha-actin, this isoform was included in these comparative studies on the polymerization, ATP hydrolysis, and phosphate release of actin. It was found that H73A-actin exchanged ATP at an increased rate, and was less stable than yeast-expressed wild-type actin, indicating that the mutation affects the spatial relationship between the two domains of actin which embrace the nucleotide. At physiological concentrations of Mg(2+), the kinetics of ATP hydrolysis of the mutant actin were unaffected, but polymer formation was delayed. The comparison of methylated and unmethylated beta-actin revealed that in the absence of a methyl group on H73, ATP hydrolysis and phosphate release occurred prior to, and seemingly independently of, filament formation. The comparison of beta and alpha-actin revealed differences in the timing and relative rates of ATP hydrolysis and P(i)-release.
Collapse
Affiliation(s)
- Tomas Nyman
- Department of Cell Biology The Wenner-Gren Institute, Stockholm University, Stockholm, S-106 91, Sweden
| | | | | | | | | | | |
Collapse
|
37
|
Rommelaere H, De Neve M, Neirynck K, Peelaers D, Waterschoot D, Goethals M, Fraeyman N, Vandekerckhove J, Ampe C. Prefoldin recognition motifs in the nonhomologous proteins of the actin and tubulin families. J Biol Chem 2001; 276:41023-8. [PMID: 11535601 DOI: 10.1074/jbc.m106591200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nascent actin and tubulin molecules undergo a series of complex interactions with chaperones and are thereby guided to their native conformation. These cytoskeletal proteins have the initial part of the pathway in common: both interact with prefoldin and with the cytosolic chaperonin containing tailless complex polypeptide 1. Little is understood with regard to how these chaperones and, in particular, prefoldin recognize the non-native forms of these target proteins. Using mutagenesis, we provide evidence that beta-actin and alpha-tubulin each have two prefoldin interaction sites. The most amino-terminally located site of both proteins shows striking sequence similarity, although these proteins are nonhomologous. Very similar motifs are present in beta- and gamma-tubulin and in the newly identified prefoldin target protein actin-related protein 1. Actin-related proteins 2 and 3 have related motifs, but these have altered charge properties. The latter two proteins do not bind prefoldin, although we identify them here as target proteins for the cytosolic chaperonin. Actin fragments containing the two prefoldin interaction regions compete efficiently with actin for prefoldin binding. In addition, they also compete with tubulins, suggesting that these target proteins contact similar prefoldin subunits.
Collapse
Affiliation(s)
- H Rommelaere
- Flanders Interuniversity Institute for Biotechnology and Department of Biochemistry, Faculty of Medicine, Ghent University, K. L. Ledeganckstraat 35, B-9000 Gent, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Schüler H. ATPase activity and conformational changes in the regulation of actin. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1549:137-47. [PMID: 11690650 DOI: 10.1016/s0167-4838(01)00255-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The eukaryotic microfilament system is regulated in part through the nucleotide- and cation-dependent conformation of the actin molecule. In this review, recent literature on the crystal and solution structures of actin and other actin-superfamily proteins is summarized. Furthermore, the structure of the nucleotide binding cleft is discussed in terms of the mechanism of ATP hydrolysis and P(i) release. Two distinct domain movements are suggested to participate in the regulation of actin. (1) High-affinity binding of Mg(2+) to actin induces a rearrangement of side chains in the nucleotide binding site leading to an increased ATPase activity and polymerizability, as well as a rotation of subdomain 2 which is mediated by the hydroxyl of serine-14. (2) Hydrolysis of ATP and subsequent release of inorganic phosphate lead to a butterfly-like opening of the actin molecule brought about by a shearing in the interdomain helix 135-150. These domain rearrangements modulate the interaction of actin with a variety of different proteins, and conversely, protein binding to actin can restrict these conformational changes, with ultimate effects on the assembly state of the microfilament system.
Collapse
Affiliation(s)
- H Schüler
- Department of Cell Biology, Wenner-Gren Institute, Stockholm University, S-106 91, Stockholm, Sweden.
| |
Collapse
|
39
|
Yao X, Rubenstein PA. F-actin-like ATPase activity in a polymerization-defective mutant yeast actin (V266G/L267G). J Biol Chem 2001; 276:25598-604. [PMID: 11328808 DOI: 10.1074/jbc.m011797200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polymerization increases a low level G-actin ATPase activity yielding ADP-P(i) F-actin and then ADP F-actin following release of P(i). By monitoring P(i) release, we explored the relationship between the ATPase activity and polymerization characteristics of a mutant yeast actin, GG. In this mutant, two hydrophobic residues at the tip of a proposed hydrophobic plug between actin subdomains 3 and 4, Val(266) and Leu(267), were mutated to Gly. Although GG-actin does not polymerize by itself in vitro, GG cells are viable. We show that GG-actin ATPase activity increases under normal polymerization conditions, although stable filaments do not form. A plot of P(i) release rate versus actin concentration yields an apparent critical concentration, like that seen for actin polymerization, of approximately 8 microm for Mg(2+) GG-actin and 11 microm for Ca(2+) GG-actin. In contrast to WT-actin, P(i) release from GG-actin is cold-sensitive, reflecting the temperature sensitivity associated with mutations that decrease hydrophobicity in this region. Thus, under polymerization conditions, GG-actin exhibits a continuous F-actin-like ATPase activity resulting from the temperature-sensitive formation of unstable cycling F-actin oligomers. Tropomyosin limits the extent and rate of this activity and restores polymerization by capturing and stabilizing these oligomers rather than enhancing filament nucleation.
Collapse
Affiliation(s)
- X Yao
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | | |
Collapse
|
40
|
The Chemistry of Movement. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50022-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|