1
|
Harps LC, Jendretzki AL, Wolf CA, Girreser U, Wolber G, Parr MK. Development of an HPLC-MS/MS Method for Chiral Separation and Quantitation of ( R)- and ( S)-Salbutamol and Their Sulfoconjugated Metabolites in Urine to Investigate Stereoselective Sulfonation. Molecules 2023; 28:7206. [PMID: 37894685 PMCID: PMC10609612 DOI: 10.3390/molecules28207206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The aim of this study was to develop and optimize a chiral HPLC-MS/MS method for quantitative analysis of (R)-/(S)-salbutamol and (R)-/(S)-salbutamol-4'-O-sulfate in human urine to allow for bioanalytical quantitation of the targeted analytes and investigations of stereoselectivity in the sulfonation pathway of human phase Ⅱ metabolism. For analytical method development, a systematic screening of columns and mobile phases to develop a separation via enantiomerically selective high performance liquid chromatography was performed. Electrospray ionization settings were optimized via multiple-step screening and a full factorial design-of-experiment. Both approaches were performed matrix-assisted and the predicted values were compared. The full factorial design was superior in terms of prediction power and knowledge generation. Performing a longitudinal excretion study in one healthy volunteer allowed for the calculation of excretion rates for all four targeted analytes. For this proof-of-concept, either racemic salbutamol or enantiopure levosalbutamol was administered perorally or via inhalation, respectively. A strong preference for sulfonation of (R)-salbutamol for inhalation and peroral application was found in in vivo experiments. In previous studies phenol sulfotransferase 1A3 was described to be mainly responsible for salbutamol sulfonation in humans. Thus, in vitro and in silico investigations of the stereoselectivity of sulfotransferase 1A3 complemented the study and confirmed these findings.
Collapse
Affiliation(s)
- Lukas Corbinian Harps
- Pharmaceutical Analysis, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany; (L.C.H.); (A.L.J.)
| | - Annika Lisa Jendretzki
- Pharmaceutical Analysis, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany; (L.C.H.); (A.L.J.)
| | - Clemens Alexander Wolf
- Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany; (C.A.W.); (G.W.)
| | - Ulrich Girreser
- Institute of Pharmacy, Christian-Albrechts University Kiel, Gutenbergstr. 76, 24118 Kiel, Germany;
| | - Gerhard Wolber
- Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany; (C.A.W.); (G.W.)
| | - Maria Kristina Parr
- Pharmaceutical Analysis, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany; (L.C.H.); (A.L.J.)
| |
Collapse
|
2
|
Eisenhofer G, Pamporaki C, Lenders JWM. Biochemical Assessment of Pheochromocytoma and Paraganglioma. Endocr Rev 2023; 44:862-909. [PMID: 36996131 DOI: 10.1210/endrev/bnad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/24/2023] [Accepted: 03/29/2023] [Indexed: 03/31/2023]
Abstract
Pheochromocytoma and paraganglioma (PPGL) require prompt consideration and efficient diagnosis and treatment to minimize associated morbidity and mortality. Once considered, appropriate biochemical testing is key to diagnosis. Advances in understanding catecholamine metabolism have clarified why measurements of the O-methylated catecholamine metabolites rather than the catecholamines themselves are important for effective diagnosis. These metabolites, normetanephrine and metanephrine, produced respectively from norepinephrine and epinephrine, can be measured in plasma or urine, with choice according to available methods or presentation of patients. For patients with signs and symptoms of catecholamine excess, either test will invariably establish the diagnosis, whereas the plasma test provides higher sensitivity than urinary metanephrines for patients screened due to an incidentaloma or genetic predisposition, particularly for small tumors or in patients with an asymptomatic presentation. Additional measurements of plasma methoxytyramine can be important for some tumors, such as paragangliomas, and for surveillance of patients at risk of metastatic disease. Avoidance of false-positive test results is best achieved by plasma measurements with appropriate reference intervals and preanalytical precautions, including sampling blood in the fully supine position. Follow-up of positive results, including optimization of preanalytics for repeat tests or whether to proceed directly to anatomic imaging or confirmatory clonidine tests, depends on the test results, which can also suggest likely size, adrenal vs extra-adrenal location, underlying biology, or even metastatic involvement of a suspected tumor. Modern biochemical testing now makes diagnosis of PPGL relatively simple. Integration of artificial intelligence into the process should make it possible to fine-tune these advances.
Collapse
Affiliation(s)
- Graeme Eisenhofer
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Christina Pamporaki
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Jacques W M Lenders
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Department of Internal Medicine, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
3
|
Hayashi A, Terasaka S, Nukada Y, Kameyama A, Yamane M, Shioi R, Iwashita M, Hashizume K, Morita O. 4″-Sulfation Is the Major Metabolic Pathway of Epigallocatechin-3-gallate in Humans: Characterization of Metabolites, Enzymatic Analysis, and Pharmacokinetic Profiling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8264-8273. [PMID: 35786898 PMCID: PMC9284555 DOI: 10.1021/acs.jafc.2c02150] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Epigallocatechin-3-gallate (EGCG), a major green tea polyphenol, has beneficial effects on human health. This study aimed to elucidate the detailed EGCG sulfation process to better understand its phase II metabolism, a process required to maximize its health benefits. Results show that kinetic activity of sulfation in the human liver and intestinal cytosol is 2-fold and 60- to 300-fold higher than that of methylation and glucuronidation, respectively, suggesting sulfation as the key metabolic pathway. Moreover, SULT1A1 and SULT1A3 are responsible for sulfation in the liver and intestine, respectively. Additionally, our human ingestion study revealed that the concentration of EGCG-4″-sulfate in human plasma (Cmax: 177.9 nmol·L-1, AUC: 715.2 nmol·h·L-1) is equivalent to free EGCG (Cmax: 233.5 nmol·L-1, AUC: 664.1 nmol·h·L-1), suggesting that EGCG-4″-sulfate is the key metabolite. These findings indicate that sulfation is a crucial factor for improving EGCG bioavailability, while also advancing the understanding of the bioactivity and toxicity of EGCG.
Collapse
Affiliation(s)
- Akane Hayashi
- Safety
Science Laboratories, Kao Corporation, Tochigi 321-3497, Japan
- . Tel.: +81-285-68-7214
| | - Shimpei Terasaka
- Safety
Science Laboratories, Kao Corporation, Tochigi 321-3497, Japan
| | - Yuko Nukada
- Safety
Science Laboratories, Kao Corporation, Tochigi 321-3497, Japan
| | - Akiyo Kameyama
- Safety
Science Laboratories, Kao Corporation, Tochigi 321-3497, Japan
| | - Masayuki Yamane
- Safety
Science Laboratories, Kao Corporation, Tochigi 321-3497, Japan
| | - Ryuta Shioi
- Biological
Science Laboratories, Kao Corporation, Tochigi 321-3497, Japan
| | - Masazumi Iwashita
- Biological
Science Laboratories, Kao Corporation, Tochigi 321-3497, Japan
| | - Kohjiro Hashizume
- Biological
Science Laboratories, Kao Corporation, Tochigi 321-3497, Japan
| | - Osamu Morita
- Safety
Science Laboratories, Kao Corporation, Tochigi 321-3497, Japan
| |
Collapse
|
4
|
Zhu HQ, Hu WY, Tang XL, Zheng RC, Zheng YG. High-throughput assay of tyrosine phenol-lyase activity using a cascade of enzymatic reactions. Anal Biochem 2022; 640:114547. [PMID: 35026146 DOI: 10.1016/j.ab.2022.114547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 01/17/2023]
Abstract
Tyrosine phenol-lyase (TPL) exhibits great potential in industrial biosynthesis of l-tyrosine and its derivates. To uncover and screen TPLs with excellent catalytic properties, there is unmet demand for development of facile and reliable screening system for TPL. Here we presented a novel assay format for the detection of TPL activity based on catechol 2,3-dioxygenase (C23O)-catalyzed reaction. Catechol released from TPL-catalyzed cleavage of 3,4-dihydroxy-l-phenylalanine (l-DOPA) was further oxidized by C23O to form 2-hydroxymuconate semialdehyde, which could be readily detected by spectrophotometric measurements at 375 nm. The assay achieved a unique balance between the ease of operation and superiority of analytical performances including linearity, sensitivity and accuracy. In addition, this assay enabled real-time monitoring of TPL activity with high efficiency and reliability. As C23O is highly specific towards catechol, a non-natural product of microorganism, the assay was therefore accessible to both crude cell extracts and the whole-cell system without elaborate purification steps of enzymes, which could greatly expedite discovery and engineering of TPLs. This study provided fundamental principle for high-throughput screening of other enzymes consuming or producing catechol derivatives.
Collapse
Affiliation(s)
- Hang-Qin Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Wen-Ye Hu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xiao-Ling Tang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Ren-Chao Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
5
|
Jia RY, Zhang ZP, Qin GQ, Zhang W, Yang K, Liu YZ, Jiang C, Fang ZZ. Inhibition of hydroxylated polychlorinated biphenyls (OH-PCBs) on sulfotransferases (SULTs). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118214. [PMID: 34740292 DOI: 10.1016/j.envpol.2021.118214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Polychlorinated biphenyls (PCBs) have been demonstrated as a kind of the persistent organic pollutants (POPs) that could exert complicated influences towards metabolism in human bodies. Since hydroxylated polychlorinated biphenyls (OH-PCBs) are important metabolites of PCBs, our study focuses on investigating the potential inhibitory capability of OH-PCBs on four human sulfotransferase (SULT) isoforms. P-nitrophenol (PNP) was utilized as nonselective probe substrate for this study, and recombinant SULT isoforms were utilized as the enzyme resources. Ultra-performance liquid chromatography (UPLC)-UV detecting system was used to analyze PNP and its metabolite PNP-sulfate. As result, 100 μM of most tested OH-PCBs significantly inhibited the activity of four SULT isoforms. Concentration-dependent inhibition of OH-PCBs towards SULTs was found, and half inhibition concentration values (IC50) of some inhibition processes were determined. Inhibition kinetics (inhibition kinetic type and parameters) were determined using 4'-OH-PCB106 as the representative OH-PCB, SULT1B1 and SULT1E1 as representative SULT isoforms. The inhibition kinetic parameters (Ki) were 1.73 μM and 1.81 μM for the inhibition of 4'-OH-PCB106 towards SULT1B1 and SULT1E1, respectively. In silico docking simulation was utilized to analyze the inhibition capability of 2'-OH-PCB5, 4'-OH-PCB9, 2'-OH-PCB12 towards SULT1A3.All these results obtained in this study are helpful for further understanding the toxicity of PCBs.
Collapse
Affiliation(s)
- Ruo-Yong Jia
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Zhi-Peng Zhang
- Department of Surgery, Peking University Third Hospital, Beijing, China
| | - Guo-Qiang Qin
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Wei Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Kun Yang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Yong-Zhe Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
| | - Zhong-Ze Fang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China; National Demonstration Center for Experimental Preventive Medicine Education, Tianjin Medical University, Tianjin, 300070, China; Tianjin Center for International Collaborative Research in Environment, Nutrition and Public Health, Tianjin, China.
| |
Collapse
|
6
|
Lessigiarska I, Peng Y, Tsakovska I, Alov P, Lagarde N, Jereva D, Villoutreix BO, Nicot AB, Pajeva I, Pencheva T, Miteva MA. Computational Analysis of Chemical Space of Natural Compounds Interacting with Sulfotransferases. Molecules 2021; 26:molecules26216360. [PMID: 34770768 PMCID: PMC8588419 DOI: 10.3390/molecules26216360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 01/04/2023] Open
Abstract
The aim of this study was to investigate the chemical space and interactions of natural compounds with sulfotransferases (SULTs) using ligand- and structure-based in silico methods. An in-house library of natural ligands (hormones, neurotransmitters, plant-derived compounds and their metabolites) reported to interact with SULTs was created. Their chemical structures and properties were compared to those of compounds of non-natural (synthetic) origin, known to interact with SULTs. The natural ligands interacting with SULTs were further compared to other natural products for which interactions with SULTs were not known. Various descriptors of the molecular structures were calculated and analyzed. Statistical methods (ANOVA, PCA, and clustering) were used to explore the chemical space of the studied compounds. Similarity search between the compounds in the different groups was performed with the ROCS software. The interactions with SULTs were additionally analyzed by docking into different experimental and modeled conformations of SULT1A1. Natural products with potentially strong interactions with SULTs were outlined. Our results contribute to a better understanding of chemical space and interactions of natural compounds with SULT enzymes and help to outline new potential ligands of these enzymes.
Collapse
Affiliation(s)
- Iglika Lessigiarska
- Department of QSAR and Molecular Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.L.); (I.T.); (P.A.); (D.J.); (I.P.)
| | - Yunhui Peng
- INSERM U1268 “Medicinal Chemistry and Translational Research”, CiTCoM UMR 8038 CNRS—Université de Paris, 75006 Paris, France;
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Ivanka Tsakovska
- Department of QSAR and Molecular Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.L.); (I.T.); (P.A.); (D.J.); (I.P.)
| | - Petko Alov
- Department of QSAR and Molecular Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.L.); (I.T.); (P.A.); (D.J.); (I.P.)
| | - Nathalie Lagarde
- Laboratoire GBCM, EA7528, Conservatoire National des Arts et Métiers, 2 Rue Conté, Hésam Université, 75003 Paris, France;
| | - Dessislava Jereva
- Department of QSAR and Molecular Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.L.); (I.T.); (P.A.); (D.J.); (I.P.)
| | | | - Arnaud B. Nicot
- INSERM, Nantes Université, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, F-44000 Nantes, France;
| | - Ilza Pajeva
- Department of QSAR and Molecular Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.L.); (I.T.); (P.A.); (D.J.); (I.P.)
| | - Tania Pencheva
- Department of QSAR and Molecular Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.L.); (I.T.); (P.A.); (D.J.); (I.P.)
- Correspondence: (T.P.); (M.A.M.)
| | - Maria A. Miteva
- INSERM U1268 “Medicinal Chemistry and Translational Research”, CiTCoM UMR 8038 CNRS—Université de Paris, 75006 Paris, France;
- Correspondence: (T.P.); (M.A.M.)
| |
Collapse
|
7
|
Kurogi K, Rasool MI, Alherz FA, El Daibani AA, Bairam AF, Abunnaja MS, Yasuda S, Wilson LJ, Hui Y, Liu MC. SULT genetic polymorphisms: physiological, pharmacological and clinical implications. Expert Opin Drug Metab Toxicol 2021; 17:767-784. [PMID: 34107842 DOI: 10.1080/17425255.2021.1940952] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Cytosolic sulfotransferases (SULTs)-mediated sulfation is critically involved in the metabolism of key endogenous compounds, such as catecholamines and thyroid/steroid hormones, as well as a variety of drugs and other xenobiotics. Studies performed in the past three decades have yielded a good understanding about the enzymology of the SULTs and their structural biology, phylogenetic relationships, tissue/organ-specific/developmental expression, as well as the regulation of the SULT gene expression. An emerging area is related to the functional impact of the SULT genetic polymorphisms. AREAS COVERED The current review aims to summarize our current knowledge about the above-mentioned aspects of the SULT research. An emphasis is on the information concerning the effects of the polymorphisms of the SULT genes on the functional activity of the SULT allozymes and the associated physiological, pharmacological, and clinical implications. EXPERT OPINION Elucidation of how SULT SNPs may influence the drug-sulfating activity of SULT allozymes will help understand the differential drug metabolism and eventually aid in formulating personalized drug regimens. Moreover, the information concerning the differential sulfating activities of SULT allozymes toward endogenous compounds may allow for the development of strategies for mitigating anomalies in the metabolism of these endogenous compounds in individuals with certain SULT genotypes.
Collapse
Affiliation(s)
- Katsuhisa Kurogi
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614 USA.,Department of Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Mohammed I Rasool
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614 USA.,Department of Pharmacology, College of Pharmacy, University of Karbala, Karbala, Iraq
| | - Fatemah A Alherz
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614 USA.,Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Amal A El Daibani
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614 USA
| | - Ahsan F Bairam
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614 USA.,Department of Pharmacology, College of Pharmacy, University of Kufa, Najaf, Iraq
| | - Maryam S Abunnaja
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614 USA
| | - Shin Yasuda
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614 USA.,Department of Bioscience, School of Agriculture, Tokai University, Kumamoto City, Kumamoto 862-8652, Japan
| | - Lauren J Wilson
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614 USA
| | - Ying Hui
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614 USA.,Department of Obstetrics and Gynecology, Beijing Hospital, Beijing, China
| | - Ming-Cheh Liu
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614 USA
| |
Collapse
|
8
|
Evaluation of a conserved tryptophanyl residue in donor substrate binding and catalysis by a phenol sulfotransferase (SULT1A1). Arch Biochem Biophys 2020; 695:108621. [PMID: 33049293 DOI: 10.1016/j.abb.2020.108621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/18/2020] [Accepted: 10/05/2020] [Indexed: 11/21/2022]
Abstract
Structural determinations of members of the sulfotransferase (SULT) family suggest a direct interaction between a conserved tryptophanyl side chain and bound 3'-phosphoadenosine-5'-phosphate (PAP). We have prepared and purified mutants of the bovine SULT1A1, a very conserved homolog to the human SULT1A1, in which tryptophanyl-53 was sequentially trimmed to tyrosine, leucine, and alanine. Differential scanning fluorimetry indicated structural stabilities of the mutant proteins comparable to the wild type SULT1A1; however, less thermal stabilizations by PAP plus pentachlorophenol were observed with the mutants, suggesting weakened ligand binding. Protein fluorescence of the wild type enzyme decreased 6.5% upon binding PAP, whereas no changes occurred with the mutant enzymes. This reveals that W53, or its positional counterpart, has been the source of emission intensity changes used in previous investigations of other SULTs. Fluorescence resonance energy transfer from excited tryptophans to bound 7-hydroxycoumarin, as induced by PAP, indicated weakened binding of ligands to the mutant SULTs. This was also encountered and quantified in initial rate kinetic analyses. Ablation of the PAPS adenine-to-W53 ring interaction, shown by the W53A mutant enzyme, resulted in a 6.4-fold increase in KPAPS and a 92% decrease in kcat/KPAPS. Measured KPAPS values reveal the W53 indole ring contribution to PAPS binding to be 1.1 kcal/mol (4.6 kJ/mol). These results verify the structurally-inferred role for the π-π stacking interaction between PAP(S) and the conserved tryptophanyl residue in SULT1A1 and other members of the SULT family.
Collapse
|
9
|
Biddle JF, Ragsdale EJ. Regulators of an ancient polyphenism evolved through episodic protein divergence and parallel gene radiations. Proc Biol Sci 2020; 287:20192595. [PMID: 32098612 PMCID: PMC7062019 DOI: 10.1098/rspb.2019.2595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/03/2020] [Indexed: 12/18/2022] Open
Abstract
Polyphenism is a form of developmental plasticity that transduces environmental cues into discontinuous, often disparate phenotypes. In some cases, polyphenism has been attributed to facilitating morphological diversification and even the evolution of novel traits. However, this process is predicated on the origins and evolutionary maintenance of genetic mechanisms that specify alternate developmental networks. When and how regulatory loci arise and change, specifically before and throughout the history of a polyphenism, is little understood. Here, we establish a phylogenetic and comparative molecular context for two dynamically evolving genes, eud-1 and seud-1, which regulate polyphenism in the nematode Pristionchus pacificus. This species is dimorphic in its adult feeding-structures, allowing individuals to become microbivores or facultative predators depending on the environment. Although polyphenism regulation is increasingly well understood in P. pacificus, the polyphenism is far older than this species and has diversified morphologically to enable an array of ecological functions across polyphenic lineages. To bring this taxonomic diversity into a comparative context, we reconstructed the histories of eud-1 and seud-1 relative to the origin and diversification of polyphenism, finding that homologues of both genes have undergone lineage-specific radiations across polyphenic taxa. Further, we detected signatures of episodic diversifying selection on eud-1, particularly in early diplogastrid lineages. Lastly, transgenic rescue experiments suggest that the gene's product has functionally diverged from its orthologue's in a non-polyphenic outgroup. In summary, we provide a comparative framework for the molecular components of a plasticity switch, enabling studies of how polyphenism, its regulation, and ultimately its targets evolve.
Collapse
Affiliation(s)
| | - Erik J. Ragsdale
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
10
|
Ji Y, Islam S, Cui H, Dhoke GV, Davari MD, Mertens AM, Schwaneberg U. Loop engineering of aryl sulfotransferase B for improving catalytic performance in regioselective sulfation. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00063a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Loop engineering of aryl sulfotransferase B improves catalytic performance in regioselective sulfation.
Collapse
Affiliation(s)
- Yu Ji
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Shohana Islam
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
- DWI – Leibniz-Institut für Interaktive Materialien e.V
| | - Haiyang Cui
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Gaurao V. Dhoke
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Mehdi D. Davari
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Alan M. Mertens
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
- DWI – Leibniz-Institut für Interaktive Materialien e.V
| |
Collapse
|
11
|
Dubaisi S, Caruso JA, Gaedigk R, Vyhlidal CA, Smith PC, Hines RN, Kocarek TA, Runge-Morris M. Developmental Expression of the Cytosolic Sulfotransferases in Human Liver. Drug Metab Dispos 2019; 47:592-600. [PMID: 30885913 PMCID: PMC6505379 DOI: 10.1124/dmd.119.086363] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/13/2019] [Indexed: 12/18/2022] Open
Abstract
The liver is the predominant organ of metabolism for many endogenous and foreign chemicals. Cytosolic sulfotransferases (SULTs) catalyze the sulfonation of drugs and other xenobiotics, as well as hormones, neurotransmitters, and sterols, with consequences that include enhanced drug elimination, hormone inactivation, and procarcinogen bioactivation. SULTs are classified into six gene families, but only SULT1 and SULT2 enzymes are expressed in human liver. We characterized the developmental expression patterns of SULT1 and SULT2 mRNAs and proteins in human liver samples using reverse transcription quantitative polymerase chain reaction (RT-qPCR), RNA sequencing, and targeted quantitative proteomics. Using a set of prenatal, infant, and adult liver specimens, RT-qPCR analysis demonstrated that SULT1A1 (transcript variant 1) expression did not vary appreciably during development; SULT1C2, 1C4, and 1E1 mRNA levels were highest in prenatal and/or infant liver, and 1A2, 1B1, and 2A1 mRNA levels were highest in infant and/or adult. Hepatic SULT1A1 (transcript variant 5), 1C3, and 2B1 mRNA levels were low regardless of developmental stage. Results obtained with RNA sequencing of a different set of liver specimens (prenatal and pediatric) were generally comparable results to those of the RT-qPCR analysis, with the additional finding that SULT1A3 expression was highest during gestation. Analysis of SULT protein content in a library of human liver cytosols demonstrated that protein levels generally corresponded to the mRNAs, with the major exception that SULT1C4 protein levels were much lower than expected based on mRNA levels. These findings further support the concept that hepatic SULTs play important metabolic roles throughout the human life course, including early development.
Collapse
Affiliation(s)
- Sarah Dubaisi
- Department of Pharmacology (S.D.) and Institute of Environmental Health Sciences (J.A.C., T.A.K., M.R.-M.), Wayne State University, Detroit, Michigan; Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri (R.G., C.A.V.); Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, North Carolina (P.C.S.); and Office of Research and Development, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina (R.N.H.)
| | - Joseph A Caruso
- Department of Pharmacology (S.D.) and Institute of Environmental Health Sciences (J.A.C., T.A.K., M.R.-M.), Wayne State University, Detroit, Michigan; Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri (R.G., C.A.V.); Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, North Carolina (P.C.S.); and Office of Research and Development, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina (R.N.H.)
| | - Roger Gaedigk
- Department of Pharmacology (S.D.) and Institute of Environmental Health Sciences (J.A.C., T.A.K., M.R.-M.), Wayne State University, Detroit, Michigan; Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri (R.G., C.A.V.); Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, North Carolina (P.C.S.); and Office of Research and Development, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina (R.N.H.)
| | - Carrie A Vyhlidal
- Department of Pharmacology (S.D.) and Institute of Environmental Health Sciences (J.A.C., T.A.K., M.R.-M.), Wayne State University, Detroit, Michigan; Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri (R.G., C.A.V.); Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, North Carolina (P.C.S.); and Office of Research and Development, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina (R.N.H.)
| | - Philip C Smith
- Department of Pharmacology (S.D.) and Institute of Environmental Health Sciences (J.A.C., T.A.K., M.R.-M.), Wayne State University, Detroit, Michigan; Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri (R.G., C.A.V.); Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, North Carolina (P.C.S.); and Office of Research and Development, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina (R.N.H.)
| | - Ronald N Hines
- Department of Pharmacology (S.D.) and Institute of Environmental Health Sciences (J.A.C., T.A.K., M.R.-M.), Wayne State University, Detroit, Michigan; Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri (R.G., C.A.V.); Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, North Carolina (P.C.S.); and Office of Research and Development, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina (R.N.H.)
| | - Thomas A Kocarek
- Department of Pharmacology (S.D.) and Institute of Environmental Health Sciences (J.A.C., T.A.K., M.R.-M.), Wayne State University, Detroit, Michigan; Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri (R.G., C.A.V.); Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, North Carolina (P.C.S.); and Office of Research and Development, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina (R.N.H.)
| | - Melissa Runge-Morris
- Department of Pharmacology (S.D.) and Institute of Environmental Health Sciences (J.A.C., T.A.K., M.R.-M.), Wayne State University, Detroit, Michigan; Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri (R.G., C.A.V.); Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, North Carolina (P.C.S.); and Office of Research and Development, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina (R.N.H.)
| |
Collapse
|
12
|
Foster PA, Mueller JW. SULFATION PATHWAYS: Insights into steroid sulfation and desulfation pathways. J Mol Endocrinol 2018; 61:T271-T283. [PMID: 29764919 DOI: 10.1530/jme-18-0086] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 12/18/2022]
Abstract
Sulfation and desulfation pathways represent highly dynamic ways of shuttling, repressing and re-activating steroid hormones, thus controlling their immense biological potency at the very heart of endocrinology. This theme currently experiences growing research interest from various sides, including, but not limited to, novel insights about phospho-adenosine-5'-phosphosulfate synthase and sulfotransferase function and regulation, novel analytics for steroid conjugate detection and quantification. Within this review, we will also define how sulfation pathways are ripe for drug development strategies, which have translational potential to treat a number of conditions, including chronic inflammatory diseases and steroid-dependent cancers.
Collapse
Affiliation(s)
- Paul A Foster
- Institute of Metabolism and Systems Research (IMSR)University of Birmingham, Birmingham, UK
- Centre for EndocrinologyDiabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham, UK
| | - Jonathan Wolf Mueller
- Institute of Metabolism and Systems Research (IMSR)University of Birmingham, Birmingham, UK
- Centre for EndocrinologyDiabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham, UK
| |
Collapse
|
13
|
Mueller JW, Idkowiak J, Gesteira TF, Vallet C, Hardman R, van den Boom J, Dhir V, Knauer SK, Rosta E, Arlt W. Human DHEA sulfation requires direct interaction between PAPS synthase 2 and DHEA sulfotransferase SULT2A1. J Biol Chem 2018; 293:9724-9735. [PMID: 29743239 PMCID: PMC6016456 DOI: 10.1074/jbc.ra118.002248] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/28/2018] [Indexed: 12/30/2022] Open
Abstract
The high-energy sulfate donor 3′-phosphoadenosine-5′-phosphosulfate (PAPS), generated by human PAPS synthase isoforms PAPSS1 and PAPSS2, is required for all human sulfation pathways. Sulfotransferase SULT2A1 uses PAPS for sulfation of the androgen precursor dehydroepiandrosterone (DHEA), thereby reducing downstream activation of DHEA to active androgens. Human PAPSS2 mutations manifest with undetectable DHEA sulfate, androgen excess, and metabolic disease, suggesting that ubiquitous PAPSS1 cannot compensate for deficient PAPSS2 in supporting DHEA sulfation. In knockdown studies in human adrenocortical NCI-H295R1 cells, we found that PAPSS2, but not PAPSS1, is required for efficient DHEA sulfation. Specific APS kinase activity, the rate-limiting step in PAPS biosynthesis, did not differ between PAPSS1 and PAPSS2. Co-expression of cytoplasmic SULT2A1 with a cytoplasmic PAPSS2 variant supported DHEA sulfation more efficiently than co-expression with nuclear PAPSS2 or nuclear/cytosolic PAPSS1. Proximity ligation assays revealed protein–protein interactions between SULT2A1 and PAPSS2 and, to a lesser extent, PAPSS1. Molecular docking studies showed a putative binding site for SULT2A1 within the PAPSS2 APS kinase domain. Energy-dependent scoring of docking solutions identified the interaction as specific for the PAPSS2 and SULT2A1 isoforms. These findings elucidate the mechanistic basis for the selective requirement for PAPSS2 in human DHEA sulfation.
Collapse
Affiliation(s)
- Jonathan W Mueller
- From the Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham B15 2TT, United Kingdom, .,the Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham B15 2TH, United Kingdom
| | - Jan Idkowiak
- From the Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham B15 2TT, United Kingdom.,the Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham B15 2TH, United Kingdom
| | - Tarsis F Gesteira
- the Department of Chemistry, King's College London, London SE1 1DB, United Kingdom, and
| | - Cecilia Vallet
- the Departments of Molecular Biology II, Centre for Medical Biotechnology (ZMB) and
| | - Rebecca Hardman
- From the Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Johannes van den Boom
- Molecular Biology I, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45141 Essen, Germany
| | - Vivek Dhir
- From the Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Shirley K Knauer
- the Departments of Molecular Biology II, Centre for Medical Biotechnology (ZMB) and
| | - Edina Rosta
- the Department of Chemistry, King's College London, London SE1 1DB, United Kingdom, and
| | - Wiebke Arlt
- From the Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham B15 2TT, United Kingdom.,the Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham B15 2TH, United Kingdom
| |
Collapse
|
14
|
Bairam AF, Rasool MI, Alherz FA, Abunnaja MS, El Daibani AA, Kurogi K, Liu MC. Effects of human SULT1A3/SULT1A4 genetic polymorphisms on the sulfation of acetaminophen and opioid drugs by the cytosolic sulfotransferase SULT1A3. Arch Biochem Biophys 2018; 648:44-52. [PMID: 29705271 DOI: 10.1016/j.abb.2018.04.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/21/2018] [Accepted: 04/25/2018] [Indexed: 11/16/2022]
Abstract
Sulfoconjugation has been shown to be critically involved in the metabolism of acetaminophen (APAP), morphine, tapentadol and O-desmethyl tramadol (O-DMT). The objective of this study was to investigate the effects of single nucleotide polymorphisms (SNPs) of human SULT1A3 and SULT1A4 genes on the sulfating activity of SULT1A3 allozymes toward these analgesic compounds. Twelve non-synonymous coding SNPs (cSNPs) of SULT1A3/SULT1A4 were investigated, and the corresponding cDNAs were generated by site-directed mutagenesis. SULT1A3 allozymes, bacterially expressed and purified, exhibited differential sulfating activity toward each of the four analgesic compounds tested as substrates. Kinetic analyses of SULT1A3 allozymes further revealed significant differences in binding affinity and catalytic activity toward the four analgesic compounds. Collectively, the results derived from the current study showed clearly the impact of cSNPs of the coding genes, SULT1A3 and SULT1A4, on the sulfating activity of the coded SULT1A3 allozymes toward the tested analgesic compounds. These findings may have implications in the pharmacokinetics as well as the toxicity profiles of these analgesics administered in individuals with distinct SULT1A3 and/or SULT1A4 genotypes.
Collapse
Affiliation(s)
- Ahsan F Bairam
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH, 43614, USA; Department of Pharmacology, College of Pharmacy, University of Kufa, Najaf, Iraq
| | - Mohammed I Rasool
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH, 43614, USA; Department of Pharmacology, College of Pharmacy, University of Karbala, Karbala, Iraq
| | - Fatemah A Alherz
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH, 43614, USA
| | - Maryam S Abunnaja
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH, 43614, USA
| | - Amal A El Daibani
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH, 43614, USA
| | - Katsuhisa Kurogi
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH, 43614, USA; Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Ming-Cheh Liu
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH, 43614, USA.
| |
Collapse
|
15
|
Bairam AF, Rasool MI, Alherz FA, Abunnaja MS, El Daibani AA, Gohal SA, Kurogi K, Sakakibara Y, Suiko M, Liu MC. Sulfation of catecholamines and serotonin by SULT1A3 allozymes. Biochem Pharmacol 2018. [PMID: 29524394 DOI: 10.1016/j.bcp.2018.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Previous studies have demonstrated the involvement of sulfoconjugation in the metabolism of catecholamines and serotonin. The current study aimed to clarify the effects of single nucleotide polymorphisms (SNPs) of human SULT1A3 and SULT1A4 genes on the enzymatic characteristics of the sulfation of dopamine, epinephrine, norepinephrine and serotonin by SULT1A3 allozymes. Following a comprehensive search of different SULT1A3 and SULT1A4 genotypes, twelve non-synonymous (missense) coding SNPs (cSNPs) of SULT1A3/SULT1A4 were identified. cDNAs encoding the corresponding SULT1A3 allozymes, packaged in pGEX-2T vector were generated by site-directed mutagenesis. SULT1A3 allozymes were expressed, and purified. Purified SULT1A3 allozymes exhibited differential sulfating activity toward catecholamines and serotonin. Kinetic analyses demonstrated differences in both substrate affinity and catalytic efficiency of the SULT1A3 allozymes. Collectively, these findings provide useful information relevant to the differential metabolism of dopamine, epinephrine, norepinephrine and serotonin through sulfoconjugation in individuals having different SULT1A3/SULT1A4 genotypes.
Collapse
Affiliation(s)
- Ahsan F Bairam
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614, USA; Department of Pharmacology, College of Pharmacy, University of Kufa, Najaf, Iraq
| | - Mohammed I Rasool
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614, USA; Department of Pharmacology, College of Pharmacy, University of Karbala, Karbala, Iraq
| | - Fatemah A Alherz
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614, USA
| | - Maryam S Abunnaja
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614, USA
| | - Amal A El Daibani
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614, USA
| | - Saud A Gohal
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614, USA
| | - Katsuhisa Kurogi
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614, USA; Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Yoichi Sakakibara
- Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Masahito Suiko
- Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Ming-Cheh Liu
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614, USA.
| |
Collapse
|
16
|
Dixit VA, Lal LA, Agrawal SR. Recent advances in the prediction of non‐
CYP450
‐mediated drug metabolism. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1323] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Vaibhav A. Dixit
- Department of Pharmaceutical Chemistry, School of Pharmacy & Technology Management (SPTM)Shri Vile Parle Kelavani Mandal's (SVKM's), Narsee Monjee Institute of Management Studies (NMIMS)ShirpurIndia
| | - L. Arun Lal
- Department of Pharmaceutical Chemistry, School of Pharmacy & Technology Management (SPTM)Shri Vile Parle Kelavani Mandal's (SVKM's), Narsee Monjee Institute of Management Studies (NMIMS)ShirpurIndia
| | - Simran R. Agrawal
- Department of Pharmaceutical Chemistry, School of Pharmacy & Technology Management (SPTM)Shri Vile Parle Kelavani Mandal's (SVKM's), Narsee Monjee Institute of Management Studies (NMIMS)ShirpurIndia
| |
Collapse
|
17
|
Butcher NJ, Horne MK, Mellick GD, Fowler CJ, Masters CL, Minchin RF. Sulfotransferase 1A3/4 copy number variation is associated with neurodegenerative disease. THE PHARMACOGENOMICS JOURNAL 2017; 18:209-214. [DOI: 10.1038/tpj.2017.4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 12/12/2016] [Accepted: 01/17/2017] [Indexed: 12/14/2022]
|
18
|
Rasool MI, Bairam AF, Kurogi K, Liu MC. On the sulfation of O-desmethyltramadol by human cytosolic sulfotransferases. Pharmacol Rep 2017; 69:953-958. [PMID: 28802998 DOI: 10.1016/j.pharep.2017.02.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/01/2017] [Accepted: 02/14/2017] [Indexed: 01/20/2023]
Abstract
BACKGROUND Previous studies have demonstrated that sulfate conjugation is involved in the metabolism of the active metabolite of tramadol, O-desmethyltramadol (O-DMT). The current study aimed to systematically identify the human cytosolic sulfotransferases (SULTs) that are capable of mediating the sulfation of O-DMT. METHODS The sulfation of O-DMT under metabolic conditions was demonstrated using HepG2 hepatoma cells and Caco-2 human colon carcinoma cells. O-DMT-sulfating activity of thirteen known human SULTs and four human organ specimens was examined using an established sulfotransferase assay. pH-Dependency and kinetic parameters were also analyzed using, respectively, buffers at different pHs and varying O-DMT concentrations in the assays. RESULTS Of the thirteen human SULTs tested, only SULT1A3 and SULT1C4 were found to display O-DMT-sulfating activity, with different pH-dependency profiles. Kinetic analysis revealed that SULT1C4 was 60 times more catalytically efficient in mediating the sulfation of O-DMT than SULT1A3 at respective optimal pH. Of the four human organ specimens tested, the cytosol prepared from the small intestine showed much higher O-DMT-sulfating activity than cytosols prepared from liver, lung, and kidney. Both cultured HepG2 and Caco-2 cells were shown to be capable of sulfating O-DMT and releasing sulfated O-DMT into cultured media. CONCLUSION SULT1A3 and SULT1C4 were the major SULTs responsible for the sulfation of O-DMT. Collectively, the results obtained provided a molecular basis underlying the sulfation of O-DMT and contributed to a better understanding about the pharmacokinetics and pharmacodynamics of tramadol in humans.
Collapse
Affiliation(s)
- Mohammed I Rasool
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, USA; Department of Pharmacology and Toxicology, College of Pharmacy, University of Karbala, Karbala, Iraq
| | - Ahsan F Bairam
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, USA; Department of Pharmacology and Toxicology, College of Pharmacy, University of Kufa, Kufa, Iraq
| | - Katsuhisa Kurogi
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, USA; Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki, Japan
| | - Ming-Cheh Liu
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, USA.
| |
Collapse
|
19
|
Coughtrie MWH. Function and organization of the human cytosolic sulfotransferase (SULT) family. Chem Biol Interact 2016; 259:2-7. [PMID: 27174136 DOI: 10.1016/j.cbi.2016.05.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/02/2016] [Indexed: 12/29/2022]
Abstract
The sulfuryl transfer reaction is of fundamental biological importance. One of the most important manifestations of this process are the reactions catalyzed by members of the cytosolic sulfotransferase (SULT) superfamily. These enzymes transfer the sulfuryl moiety from the universal donor PAPS (3'-phosphoadenosine 5'-phosphosulfate) to a wide variety of substrates with hydroxyl- or amino-groups. Normally a detoxification reaction this facilitates the elimination of a multitude of xenobiotics, although for some molecules sulfation is a bioactivation step. In addition, sulfation plays a key role in endocrine and other signalling pathways since many steroids, sterols, thyroid hormones and catecholamines exist primarily as sulfate conjugates in humans. This article summarizes much of our current knowledge of the organization and function of the human cytosolic sulfotransferases and highlights some of the important interspecies differences that have implications for, among other things, drug development and chemical safety analysis.
Collapse
Affiliation(s)
- Michael W H Coughtrie
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
20
|
Perryman AL, Stratton TP, Ekins S, Freundlich JS. Predicting Mouse Liver Microsomal Stability with "Pruned" Machine Learning Models and Public Data. Pharm Res 2016; 33:433-49. [PMID: 26415647 PMCID: PMC4712113 DOI: 10.1007/s11095-015-1800-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/22/2015] [Indexed: 02/07/2023]
Abstract
PURPOSE Mouse efficacy studies are a critical hurdle to advance translational research of potential therapeutic compounds for many diseases. Although mouse liver microsomal (MLM) stability studies are not a perfect surrogate for in vivo studies of metabolic clearance, they are the initial model system used to assess metabolic stability. Consequently, we explored the development of machine learning models that can enhance the probability of identifying compounds possessing MLM stability. METHODS Published assays on MLM half-life values were identified in PubChem, reformatted, and curated to create a training set with 894 unique small molecules. These data were used to construct machine learning models assessed with internal cross-validation, external tests with a published set of antitubercular compounds, and independent validation with an additional diverse set of 571 compounds (PubChem data on percent metabolism). RESULTS "Pruning" out the moderately unstable / moderately stable compounds from the training set produced models with superior predictive power. Bayesian models displayed the best predictive power for identifying compounds with a half-life ≥1 h. CONCLUSIONS Our results suggest the pruning strategy may be of general benefit to improve test set enrichment and provide machine learning models with enhanced predictive value for the MLM stability of small organic molecules. This study represents the most exhaustive study to date of using machine learning approaches with MLM data from public sources.
Collapse
Affiliation(s)
- Alexander L Perryman
- Division of Infectious Disease, Department of Medicine, and the Ruy V. Lourenço Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University-New Jersey Medical School, Newark, New Jersey, 07103, USA
| | - Thomas P Stratton
- Department of Pharmacology & Physiology, Rutgers University-New Jersey Medical School, Medical Sciences Building, I-503, 185 South Orange Ave., Newark, New Jersey, 07103, USA
| | - Sean Ekins
- Collaborations in Chemistry, 5616 Hilltop Needmore Road, Fuquay-Varina, NC, 27526, USA
- Collaborative Drug Discovery, 1633 Bayshore Highway, Suite 342, Burlingame, CA, 94010, USA
| | - Joel S Freundlich
- Division of Infectious Disease, Department of Medicine, and the Ruy V. Lourenço Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University-New Jersey Medical School, Newark, New Jersey, 07103, USA.
- Department of Pharmacology & Physiology, Rutgers University-New Jersey Medical School, Medical Sciences Building, I-503, 185 South Orange Ave., Newark, New Jersey, 07103, USA.
| |
Collapse
|
21
|
Usarek E, Graboń W, Kaźmierczak B, Barańczyk-Kuźma A. Targeting the expression of glutathione- and sulfate-dependent detoxification enzymes in HepG2 cells by oxygen in minimal and amino acid enriched medium. Exp Mol Pathol 2015; 100:82-6. [PMID: 26599691 DOI: 10.1016/j.yexmp.2015.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 11/11/2015] [Indexed: 11/18/2022]
Abstract
Cancer cells exhibit specific metabolism allowing them to survive and proliferate in various oxygen conditions and nutrients' availability. Hepatocytes are highly active metabolically and thus very sensitive to hypoxia. The purpose of the study was to investigate the effect of oxygen on the expression of phase II detoxification enzymes in hepatocellular carcinoma cells (HepG2) cultured in minimal and rich media (with nonessential amino acids and GSH). The cells were cultured at 1% hypoxia, 10% tissue normoxia, and 21% atmospheric normoxia. The total cell count was determined by trypan blue exclusion dye and the expression on mRNA level by RT-PCR. The result indicated that the expression of glutathione-dependent enzymes (GSTA, M, P, and GPX2) was sensitive to oxygen and medium type. At 1% hypoxia the enzyme expression (with the exception of GSTA) was higher in minimal compared to rich medium, whereas at 10% normoxia it was higher in the rich medium. The expression was oxygen-dependent in both types of medium. Among phenol sulfotransferase SULT1A1 was not sensitive to studied factors, whereas the expression of SULT1A3 was depended on oxygen only in minimal medium. It can be concluded that in HepG2 cells, the detoxification by conjugation with glutathione and, to a lower extent with sulfate, may be affected by hypoxia and/or limited nutrients' availability. Besides, because the data obtained at 10% oxygen significantly differ from those at 21%, the comparative studies on hypoxia should be performed in relation to 10% but not 21% oxygen.
Collapse
Affiliation(s)
- Ewa Usarek
- Chair and Department of Biochemistry, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Wojciech Graboń
- Chair and Department of Biochemistry, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Beata Kaźmierczak
- Chair and Department of Biochemistry, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Anna Barańczyk-Kuźma
- Chair and Department of Biochemistry, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland.
| |
Collapse
|
22
|
Borcherding DC, Tong W, Hugo ER, Barnard DF, Fox S, LaSance K, Shaughnessy E, Ben-Jonathan N. Expression and therapeutic targeting of dopamine receptor-1 (D1R) in breast cancer. Oncogene 2015; 35:3103-13. [PMID: 26477316 DOI: 10.1038/onc.2015.369] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/31/2015] [Accepted: 08/28/2015] [Indexed: 12/21/2022]
Abstract
Patients with advanced breast cancer often fail to respond to treatment, creating a need to develop novel biomarkers and effective therapeutics. Dopamine (DA) is a catecholamine that binds to five G protein-coupled receptors. We discovered expression of DA type-1 receptors (D1Rs) in breast cancer, thereby identifying these receptors as novel therapeutic targets in this disease. Strong to moderate immunoreactive D1R expression was found in 30% of 751 primary breast carcinomas, and was associated with larger tumors, higher tumor grades, node metastasis and shorter patient survival. DA and D1R agonists, signaling through the cGMP/protein kinase G (PKG) pathway, suppressed cell viability, inhibited invasion and induced apoptosis in multiple breast cancer cell lines. Fenoldopam, a peripheral D1R agonist that does not penetrate the brain, dramatically suppressed tumor growth in two mouse models with D1R-expressing xenografts by increasing both necrosis and apoptosis. D1R-expressing primary tumors and metastases in mice were detected by fluorescence imaging. In conclusion, D1R overexpression is associated with advanced breast cancer and poor prognosis. Activation of the D1R/cGMP/PKG pathway induces apoptosis in vitro and causes tumor shrinkage in vivo. Fenoldopam, which is FDA (Food and Drug Administration) approved to treat renal hypertension, could be repurposed as a novel therapeutic agent for patients with D1R-expressing tumors.
Collapse
Affiliation(s)
- D C Borcherding
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - W Tong
- Department of Pathology, University of Cincinnati, Cincinnati, OH, USA
| | - E R Hugo
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - D F Barnard
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - S Fox
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - K LaSance
- Department of Radiology, University of Cincinnati, Cincinnati, OH, USA
| | - E Shaughnessy
- Department of Surgery, University of Cincinnati, Cincinnati, OH, USA
| | - N Ben-Jonathan
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
23
|
Bigler DJ, Peterson LW, Cafiero M. DFT and MP2 study of the effects of mutations on the binding of ligands within the SULT1A3 active site. COMPUT THEOR CHEM 2015. [DOI: 10.1016/j.comptc.2015.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Chen BH, Wang CC, Hou YH, Mao YC, Yang YS. Mechanism of sulfotransferase pharmacogenetics in altered xenobiotic metabolism. Expert Opin Drug Metab Toxicol 2015; 11:1053-71. [DOI: 10.1517/17425255.2015.1045486] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
25
|
Tibbs ZE, Rohn-Glowacki KJ, Crittenden F, Guidry AL, Falany CN. Structural plasticity in the human cytosolic sulfotransferase dimer and its role in substrate selectivity and catalysis. Drug Metab Pharmacokinet 2015; 30:3-20. [DOI: 10.1016/j.dmpk.2014.10.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/02/2014] [Accepted: 10/08/2014] [Indexed: 10/24/2022]
|
26
|
Callear SK, Johnston A, McLain SE, Imberti S. Conformation and interactions of dopamine hydrochloride in solution. J Chem Phys 2015; 142:014502. [DOI: 10.1063/1.4904291] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Samantha K. Callear
- ISIS Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX, United Kingdom
| | - Andrew Johnston
- Biochemistry Department, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Sylvia E. McLain
- Biochemistry Department, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Silvia Imberti
- ISIS Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX, United Kingdom
| |
Collapse
|
27
|
Bigler DJ, Peterson LW, Cafiero M. Effects of implicit solvent and relaxed amino acid side chains on the MP2 and DFT calculations of ligand–protein structure and electronic interaction energies of dopaminergic ligands in the SULT1A3 enzyme active site. COMPUT THEOR CHEM 2015. [DOI: 10.1016/j.comptc.2014.10.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
Hirschmann F, Krause F, Papenbrock J. The multi-protein family of sulfotransferases in plants: composition, occurrence, substrate specificity, and functions. FRONTIERS IN PLANT SCIENCE 2014; 5:556. [PMID: 25360143 PMCID: PMC4199319 DOI: 10.3389/fpls.2014.00556] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 09/28/2014] [Indexed: 05/20/2023]
Abstract
All members of the sulfotransferase (SOT, EC 2.8.2.-) protein family transfer a sulfuryl group from the donor 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to an appropriate hydroxyl group of several classes of substrates. The primary structure of these enzymes is characterized by a histidine residue in the active site, defined PAPS binding sites and a longer SOT domain. Proteins with this SOT domain occur in all organisms from all three domains, usually as a multi-protein family. Arabidopsis thaliana SOTs, the best characterized SOT multi-protein family, contains 21 members. The substrates for several plant enzymes have already been identified, such as glucosinolates, brassinosteroids, jasmonates, flavonoids, and salicylic acid. Much information has been gathered on desulfo-glucosinolate (dsGl) SOTs in A. thaliana. The three cytosolic dsGl SOTs show slightly different expression patterns. The recombinant proteins reveal differences in their affinity to indolic and aliphatic dsGls. Also the respective recombinant dsGl SOTs from different A. thaliana ecotypes differ in their kinetic properties. However, determinants of substrate specificity and the exact reaction mechanism still need to be clarified. Probably, the three-dimensional structures of more plant proteins need to be solved to analyze the mode of action and the responsible amino acids for substrate binding. In addition to A. thaliana, more plant species from several families need to be investigated to fully elucidate the diversity of sulfated molecules and the way of biosynthesis catalyzed by SOT enzymes.
Collapse
Affiliation(s)
| | | | - Jutta Papenbrock
- Institute of Botany, Leibniz University HannoverHannover, Germany
| |
Collapse
|
29
|
Jiang H, Lai Y, Hu K, Wei Q, Liu Y. Human CYP2E1-dependent and human sulfotransferase 1A1-modulated induction of micronuclei by benzene and its hydroxylated metabolites in Chinese hamster V79-derived cells. Mutat Res 2014; 770:37-44. [PMID: 25771868 DOI: 10.1016/j.mrfmmm.2014.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 09/08/2014] [Accepted: 09/16/2014] [Indexed: 01/29/2023]
Abstract
Benzene is a ubiquitous environmental pollutant and a confirmed human carcinogen, which requires metabolic activation, primarily by CYP2E1, for most of its biological actions. Chromosome damages in benzene-exposed workers and rodents have been observed, and in their urine sulfo- and glucuronide-conjugates of phenol and hydroquinone were present. Yet, direct evidence for human CYP2E1-activated mutagenicity of benzene and the exact significance of phase II metabolism for inactivating benzene metabolites are still missing. In the present study, benzene and its oxidized metabolites (phenol, hydroquinone, catechol, 1,2,4-trihydroxybenzene and 1,4-benzoquinone) were investigated for induction of micronuclei in a V79-derived cell line genetically engineered for expression of both human CYP2E1 and human sulfotransferase (SULT) 1A1 (indicated by active micronuclei induction by 1-hydroxymethylpyrene). The results demonstrated concentration-dependent induction of micronuclei by benzene and phenol, though with lower potency or efficacy than the other metabolites. Inhibition of CYP2E1 by 1-aminobenzotriazole did not change the effect of benzoquinone, but completely abolished that of benzene and phenol, and attenuated that of the other compounds. Moreover, inhibition of SULT1A1 by pentachlorophenol potentiated the effects of benzene, hydroquinone, catechol and trihydroxybenzene. Ascorbic acid, a reducing and free radical-scavenging agent, significantly lowered the effects of hydroquinone, catechol, trihydroxybenzene as well as N-nitrosodimethylamine (a known CYP2E1-dependent promutagen), with that of benzoquinone unaffected. These results suggest that in addition to activating benzene and phenol, human CYP2E1 may further convert hydroquinone, catechol and trihydroxybenzene to more genotoxic metabolites, and sulfo-conjugation of the multi-hydroxylated metabolites of benzene by human SULT1A1 may represent an important detoxifying pathway.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Toxicology, School of Public Health and Tropical Medicine, Southern Medical University, 1023 South Shatai Road, Guangzhou 510515, China
| | - Yanmei Lai
- Department of Toxicology, School of Public Health and Tropical Medicine, Southern Medical University, 1023 South Shatai Road, Guangzhou 510515, China
| | - Keqi Hu
- Department of Toxicology, School of Public Health and Tropical Medicine, Southern Medical University, 1023 South Shatai Road, Guangzhou 510515, China
| | - Qinzhi Wei
- Department of Toxicology, School of Public Health and Tropical Medicine, Southern Medical University, 1023 South Shatai Road, Guangzhou 510515, China
| | - Yungang Liu
- Department of Toxicology, School of Public Health and Tropical Medicine, Southern Medical University, 1023 South Shatai Road, Guangzhou 510515, China.
| |
Collapse
|
30
|
James MO, Ambadapadi S. Interactions of cytosolic sulfotransferases with xenobiotics. Drug Metab Rev 2014; 45:401-14. [PMID: 24188364 DOI: 10.3109/03602532.2013.835613] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cytosolic sulfotransferases are a superfamily of enzymes that catalyze the transfer of the sulfonic group from 3'-phosphoadenosine-5'-phosphosulfate to hydroxy or amine groups in substrate molecules. The human cytosolic sulfotransferases that have been most studied, namely SULT1A1, SULT1A3, SULT1B1, SULT1E1 and SULT2A1, are expressed in different tissues of the body, including liver, intestine, adrenal, brain and skin. These sulfotransferases play important roles in the sulfonation of endogenous molecules such as steroid hormones and neurotransmitters, and in the elimination of xenobiotic molecules such as drugs, environmental chemicals and natural products. There is often overlapping substrate selectivity among the sulfotransferases, although one isoform may exhibit greater enzyme efficiency than other isoforms. Similarly, inhibitors or enhancers of one isoform often affect other isoforms, but typically with different potency. This means that if the activity of one form of sulfotransferase is altered (either inhibited or enhanced) by the presence of a xenobiotic, the sulfonation of endogenous and xenobiotic substrates for other isoforms may well be affected. There are more examples of inhibitors than enhancers of sulfonation. Modulators of sulfotransferase enzymes include natural products ingested as part of the human diet as well as environmental chemicals and drugs. This review will discuss recent work on such interactions.
Collapse
Affiliation(s)
- Margaret O James
- Department of Medicinal Chemistry, University of Florida, Gainesville , FL , USA
| | | |
Collapse
|
31
|
Sidharthan NP, Minchin RF, Butcher NJ. Cytosolic sulfotransferase 1A3 is induced by dopamine and protects neuronal cells from dopamine toxicity: role of D1 receptor-N-methyl-D-aspartate receptor coupling. J Biol Chem 2013; 288:34364-74. [PMID: 24136195 DOI: 10.1074/jbc.m113.493239] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Dopamine neurotoxicity is associated with several neurodegenerative diseases, and neurons utilize several mechanisms, including uptake and metabolism, to protect them from injury. Metabolism of dopamine involves three enzymes: monoamine oxidase, catechol O-methyltransferase, and sulfotransferase. In primates but not lower order animals, a sulfotransferase (SULT1A3) is present that can rapidly metabolize dopamine to dopamine sulfate. Here, we show that SULT1A3 and a closely related protein SULT1A1 are highly inducible by dopamine. This involves activation of the D1 and NMDA receptors. Both ERK1/2 phosphorylation and calcineurin activation are required for induction. Pharmacological agents that inhibited induction or siRNA targeting SULT1A3 significantly increased the susceptibility of cells to dopamine toxicity. Taken together, these results show that dopamine can induce its own metabolism and protect neuron-like cells from damage, suggesting that SULT1A3 activity may be a risk factor for dopamine-dependent neurodegenerative diseases.
Collapse
Affiliation(s)
- Neelima P Sidharthan
- From the School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia 4072
| | | | | |
Collapse
|
32
|
Pamporaki C, Därr R, Bursztyn M, Glöckner S, Bornstein SR, Lenders JWM, Pacak K, Krinner A, Eisenhofer G. Plasma-free vs deconjugated metanephrines for diagnosis of phaeochromocytoma. Clin Endocrinol (Oxf) 2013; 79:476-83. [PMID: 23461656 PMCID: PMC3762922 DOI: 10.1111/cen.12191] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/13/2013] [Accepted: 02/09/2013] [Indexed: 11/30/2022]
Abstract
BACKGROUND The diagnosis of phaeochromocytoma is commonly performed by the measurements of plasma-free normetanephrine and metanephrine. Plasma-deconjugated normetanephrine and metanephrine have been proposed as alternative, equivalent, but easier to measure biomarkers. OBJECTIVE The aim of this study was to compare the diagnostic performance of plasma-free vs deconjugated normetanephrine and metanephrine in patients tested for phaeochromocytoma. METHODS The study population included a reference group of 262 normotensive and hypertensive volunteers, 198 patients with phaeochromocytoma and 528 patients initially suspected of having the tumour, but with negative investigations after at least 2 years of follow-up. Measurements were performed using liquid chromatography with electrochemical detection. RESULTS Plasma concentrations of free normetanephrine were 17-fold higher in patients with phaeochromocytoma than in the reference population, a 72% larger (P < 0·001) difference than that for the 10-fold higher levels of plasma-deconjugated normetanephrine. In contrast, relative increases in plasma concentrations of free and deconjugated metanephrine were similar. Using upper cut-offs established in the reference population, measurements of plasma-free metabolites provided superior diagnostic performance than deconjugated metabolites according to measures of both sensitivity (97% vs 92%, P = 0·002) and specificity (93% vs 89%, P = 0·012). The area under the receiver operating characteristic curve for the free metabolites was larger than that for the deconjugated metabolites (0·986 vs 0·965, P < 0·001). CONCLUSION Measurements of plasma-free normetanephrine and metanephrine are superior to the deconjugated metabolites for diagnosis of phaeochromocytoma.
Collapse
Affiliation(s)
- Christina Pamporaki
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus at the TU Dresden, Fetscherstrasse 74, Dresden, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kurogi K, Liu TA, Sakakibara Y, Suiko M, Liu MC. The use of zebrafish as a model system for investigating the role of the SULTs in the metabolism of endogenous compounds and xenobiotics. Drug Metab Rev 2013; 45:431-40. [DOI: 10.3109/03602532.2013.835629] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
34
|
Kurogi K, Alazizi A, Liu MY, Sakakibara Y, Suiko M, Sugahara T, Liu MC. Concerted actions of the catechol O-methyltransferase and the cytosolic sulfotransferase SULT1A3 in the metabolism of catecholic drugs. Biochem Pharmacol 2012; 84:1186-95. [PMID: 22917559 DOI: 10.1016/j.bcp.2012.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 08/09/2012] [Accepted: 08/10/2012] [Indexed: 10/28/2022]
Abstract
Catecholic drugs had been reported to be metabolized through conjugation reactions, particularly methylation and sulfation. Whether and how these two Phase II conjugation reactions may occur in a concerted manner, however, remained unclear. The current study was designed to investigate the methylation and/or sulfation of five catecholic drugs. Analysis of the spent media of HepG2 cells metabolically labeled with [(35)S]sulfate in the presence of individual catecholic drugs revealed the presence of two [(35)S]sulfated metabolites for dopamine, epinephrine, isoproterenol, and isoetharine, but only one [(35)S]sulfated metabolite for apomorphine. Further analyses using tropolone, a catechol O-methyltransferase (COMT) inhibitor, indicated that one of the two [(35)S]sulfated metabolites of dopamine, epinephrine, isoproterenol, and isoetharine was a doubly conjugated (methylated and sulfated) product, since its level decreased proportionately with increasing concentrations of tropolone added to the labeling media. Moreover, while the inhibition of methylation resulted in a decrease of the total amount of [(35)S]sulfated metabolites, sulfation appeared to be capable of compensating the suppressed methylation in the metabolism of these four catecholic drugs. A two-stage enzymatic assay showed the sequential methylation and sulfation of dopamine, epinephrine, isoproterenol, and isoetharine mediated by, respectively, the COMT and the cytosolic sulfotransferase SULT1A3. Collectively, the results from the present study implied the concerted actions of the COMT and SULT1A3 in the metabolism of catecholic drugs.
Collapse
Affiliation(s)
- Katsuhisa Kurogi
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, 3000 Arlington Avenue, Toledo, OH 43614, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Ko K, Kurogi K, Davidson G, Liu MY, Sakakibara Y, Suiko M, Liu MC. Sulfation of ractopamine and salbutamol by the human cytosolic sulfotransferases. J Biochem 2012; 152:275-83. [PMID: 22763752 DOI: 10.1093/jb/mvs073] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Feed additives such as ractopamine and salbutamol are pharmacologically active compounds, acting primarily as β-adrenergic agonists. This study was designed to investigate whether the sulfation of ractopamine and salbutamol may occur under the metabolic conditions and to identify the human cytosolic sulfotransferases (SULTs) that are capable of sulfating two major feed additive compounds, ractopamine and salbutamol. A metabolic labelling study showed the generation and release of [(35)S]sulfated ractopamine and salbutamol by HepG2 human hepatoma cells labelled with [(35)S]sulfate in the presence of these two compounds. A systematic analysis using 11 purified human SULTs revealed SULT1A3 as the major SULT responsible for the sulfation of ractopamine and salbutamol. The pH dependence and kinetic parameters were analyzed. Moreover, the inhibitory effects of ractopamine and salbutamol on SULT1A3-mediated dopamine sulfation were investigated. Cytosol or S9 fractions of human lung, liver, kidney and small intestine were examined to verify the presence of ractopamine-/salbutamol-sulfating activity in vivo. Of the four human organs, the small intestine displayed the highest activity towards both compounds. Collectively, these results imply that the sulfation mediated by SULT1A3 may play an important role in the metabolism and detoxification of ractopamine and salbutamol.
Collapse
Affiliation(s)
- Kyounga Ko
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Dong D, Ako R, Wu B. Crystal structures of human sulfotransferases: insights into the mechanisms of action and substrate selectivity. Expert Opin Drug Metab Toxicol 2012; 8:635-46. [PMID: 22512672 DOI: 10.1517/17425255.2012.677027] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Cytosolic sulfotransferases (SULTs) are the enzymes that catalyze the sulfonation reaction, an important metabolic pathway for numerous endogenous and exogenous compounds. Human SULTs exhibit complex patterns of broad, differential and overlapping substrate selectivity. Moreover, these enzymes often display substrate inhibition kinetics (i.e., inhibition of the enzyme activity at high substrate concentrations). AREAS COVERED At present, the crystal structures for 12 human SULTs (i.e., SULT1A1, 1A2, 1A3, 1B1, 1C1, 1C2, 1C3, 1E1, 2A1, 2B1a, 2B1b and 4A1) are available, many of which are in complex with a substrate. This review describes the similarities and differences in these structures (particularly the active-site structures) of SULT enzymes. The authors also discuss the structural basis for understanding the catalytic mechanism, the substrate inhibition mechanisms, the cofactor (3'-phosphoadenosine 5'-phosphosulfate or PAPS) binding and the substrate recognition. EXPERT OPINION Correlations of the structural features (including conformational flexibility) in the active sites with the substrate profiles of several SULTs have been well established. One is encouraged to closely integrate in silico approaches with the structural knowledge of the active sites for development of a rationalized and accurate tool that is able to predict metabolism of SULTs toward chemicals and drug candidates.
Collapse
Affiliation(s)
- Dong Dong
- University of Houston, College of Pharmacy, Department of Pharmacological and Pharmaceutical Sciences, Houston, TX 77030, USA
| | | | | |
Collapse
|
37
|
Meng S, Wu B, Singh R, Yin T, Morrow JK, Zhang S, Hu M. SULT1A3-mediated regiospecific 7-O-sulfation of flavonoids in Caco-2 cells can be explained by the relevant molecular docking studies. Mol Pharm 2012; 9:862-73. [PMID: 22352375 DOI: 10.1021/mp200400s] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Flavonoids are polyphenolic compounds with various claimed health benefits, but the extensive metabolism by uridine-5'-diphospho-glucuronosyltransferases (UGTs) and sulfotransferases (SULTs) in liver and intestine led to poor oral bioavailabilities. The effects of structural changes on the sulfonation of flavonoids have not been systemically determined, although relevant effects of structural changes on the glucuronidation of flavonoids had. We performed the regiospecific sulfonation of sixteen flavonoids from five different subclasses of flavonoids, which are represented by apigenin (flavone), genistein (isoflavone), naringenin (flavanone), kaempherol (flavonol), and phloretin (chalcone). Additional studies were performed using 4 monohydroxyl flavonoids with a -OH group at the 3, 4', 5 or 7 position, followed by 5 dihydroxyl flavonoids, and 2 trihydroxyl flavonoids by using expressed human SULT1A3 and Caco-2 cell lysates. We found that these compounds were exclusively sulfated at the 7-OH position by SULT1A3 and primarily sulfated at the 7-OH position in Caco-2 cell lysates with minor amounts of 4'-O-sulfates formed as well. Sulfonation rates measured using SULT1A3 and Caco-2 cell lysates were highly correlated at substrate concentrations of 2.5 and 10 μM. Molecular docking studies provided structural explanations as to why sulfonation only occurred at the 7-OH position of flavones, flavonols and flavanones. In conclusion, molecular docking studies explain why SULT1A3 exclusively mediates sulfonation at the 7-OH position of flavones/flavonols, and correlation studies indicate that SULT1A3 is the main isoform responsible for flavonoid sulfonation in the Caco-2 cells.
Collapse
Affiliation(s)
- Shengnan Meng
- Department of Pharmaceutics, School of Pharmaceutical Sciences, China Medical University, Shenyang, Liaoning 110001, China
| | | | | | | | | | | | | |
Collapse
|
38
|
Ah receptor- and Nrf2-gene battery members: modulators of quinone-mediated oxidative and endoplasmic reticulum stress. Biochem Pharmacol 2011; 83:833-8. [PMID: 22192820 DOI: 10.1016/j.bcp.2011.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 12/06/2011] [Accepted: 12/06/2011] [Indexed: 12/19/2022]
Abstract
Quinones are ubiquitously present in mammals and their environment. They are involved in physiologic functions such as electron transport but are also toxic compounds. In particular, quinone-quinol redox cycles may lead to oxidative stress, and arylating quinones have been demonstrated to activate endoplasmic reticulum (ER) stress. To detoxify quinones coordinately regulated Ah receptor and Nrf2 gene batteries evolved. Two pathways are emphasized: (i) glutathione S-transferases, and (ii) NAD(P)H:quinone oxidoreductases NQO1 and NQO2 acting together with UDP-glucuronosyltransferases and sulfotransferases. Coupling between these enzymes may prevent oxidative and ER stress in a tissue-dependent manner, as discussed using benzo[a]pyrene detoxification in enterocytes, catecholestrogen metabolism in breast tissue and endometrium, and aminochromes in neurones and astrocytes. Possible consequences of chronic ER stress such as apoptosis and inflammation as well as therapeutic possibilities of modulating Ah receptor and Nrf2 are discussed. In conclusion, tight coupling of Ah receptor- and Nrf2-regulated enzymes may prevent quinone-mediated oxidative and ER stress.
Collapse
|
39
|
Berger I, Guttman C, Amar D, Zarivach R, Aharoni A. The molecular basis for the broad substrate specificity of human sulfotransferase 1A1. PLoS One 2011; 6:e26794. [PMID: 22069470 PMCID: PMC3206062 DOI: 10.1371/journal.pone.0026794] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 10/04/2011] [Indexed: 12/03/2022] Open
Abstract
Cytosolic sulfotransferases (SULTs) are mammalian enzymes that detoxify a wide variety of chemicals through the addition of a sulfate group. Despite extensive research, the molecular basis for the broad specificity of SULTs is still not understood. Here, structural, protein engineering and kinetic approaches were employed to obtain deep understanding of the molecular basis for the broad specificity, catalytic activity and substrate inhibition of SULT1A1. We have determined five new structures of SULT1A1 in complex with different acceptors, and utilized a directed evolution approach to generate SULT1A1 mutants with enhanced thermostability and increased catalytic activity. We found that active site plasticity enables binding of different acceptors and identified dramatic structural changes in the SULT1A1 active site leading to the binding of a second acceptor molecule in a conserved yet non-productive manner. Our combined approach highlights the dominant role of SULT1A1 structural flexibility in controlling the specificity and activity of this enzyme.
Collapse
Affiliation(s)
- Ilana Berger
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Chen Guttman
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Dotan Amar
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Raz Zarivach
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- * E-mail: (RZ); (AA)
| | - Amir Aharoni
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- * E-mail: (RZ); (AA)
| |
Collapse
|
40
|
Crystal structure of sulfotransferase STF9 from Mycobacterium avium. Mol Cell Biochem 2011; 361:97-104. [PMID: 21959978 DOI: 10.1007/s11010-011-1093-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 09/16/2011] [Indexed: 10/17/2022]
Abstract
Sulfotransferases catalyze the sulfate conjugation of a wide variety of endogenous and exogenous molecules. Human pathogenic mycobacteria produce numerous sulfated molecules including sulfolipids which are well related to the virulence of several strains. The genome of Mycobacterium avium encodes eight putative sulfotransferases (stf1, stf4-stf10). Among them, STF9 shows higher similarity to human heparan sulfate 3-O-sulfotransferase isoforms than to the bacterial STs. Here, we determined the crystal structure of sulfotransferase STF9 in complex with a sulfate ion and palmitic acid at a resolution of 2.6 Å. STF9 has a spherical structure utilizing the classical sulfotransferase fold. STF9 exclusively possesses three N-terminal α-helices (α1, α2, α3) parallel to the 3'-phosphoadenosine-5'-phosphosulfate (PAPS) binding motif. The sulfate ion binds to the PAPS binding structural motif and the palmitic acid molecule binds in the deep cleft of the predicted substrate binding site suggesting the nature of endogenous acceptor substrate of STF9 resembles palmitic acid. The substrate binding site is covered by a flexible loop which may have involvement in endogenous substrate recognition. Based on the mutational study (Hossain et al., Mol Cell Biochem 350:155-162; 2011) and structural resemblance of STF9-sulfate ion-palmitic acid complex to the hHS3OST3 complex with PAP (3'-phosphoadenosine-5'-phosphate) and an acceptor sugar chain, Glu170 and Arg96 are appeared to be catalytic residues in STF9 sulfuryl transfer mechanism.
Collapse
|
41
|
Borcherding DC, Hugo ER, Idelman G, De Silva A, Richtand NW, Loftus J, Ben-Jonathan N. Dopamine receptors in human adipocytes: expression and functions. PLoS One 2011; 6:e25537. [PMID: 21966540 PMCID: PMC3180449 DOI: 10.1371/journal.pone.0025537] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 09/06/2011] [Indexed: 12/28/2022] Open
Abstract
Introduction Dopamine (DA) binds to five receptors (DAR), classified by their ability to increase (D1R-like) or decrease (D2R-like) cAMP. In humans, most DA circulates as dopamine sulfate (DA-S), which can be de-conjugated to bioactive DA by arylsulfatase A (ARSA). The objective was to examine expression of DAR and ARSA in human adipose tissue and determine whether DA regulates prolactin (PRL) and adipokine expression and release. Methods DAR were analyzed by RT-PCR and Western blotting in explants, primary adipocytes and two human adipocyte cell lines, LS14 and SW872. ARSA expression and activity were determined by qPCR and enzymatic assay. PRL expression and release were determined by luciferase reporter and Nb2 bioassay. Analysis of cAMP, cGMP, leptin, adiponectin and interleukin 6 (IL-6) was done by ELISA. Activation of MAPK and PI3 kinase/Akt was determined by Western blotting. Results DAR are variably expressed at the mRNA and protein levels in adipose tissue and adipocytes during adipogenesis. ARSA activity in adipocyte increases after differentiation. DA at nM concentrations suppresses cAMP, stimulates cGMP, and activates MAPK in adipocytes. Acting via D2R-like receptors, DA and DA-S inhibit PRL gene expression and release. Acting via D1R/D5R receptors, DA suppresses leptin and stimulates adiponectin and IL-6 release. Conclusions This is the first report that human adipocytes express functional DAR and ARSA, suggesting a regulatory role for peripheral DA in adipose functions. We speculate that the propensity of some DAR-activating antipsychotics to increase weight and alter metabolic homeostasis is due, in part, to their direct action on adipose tissue.
Collapse
Affiliation(s)
- Dana C. Borcherding
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Eric R. Hugo
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Gila Idelman
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Anuradha De Silva
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Nathan W. Richtand
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Jean Loftus
- The Christ Hospital, Cincinnati, Ohio, United States of America
| | - Nira Ben-Jonathan
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
42
|
Si H, Zhao J, Cui L, Lian N, Feng H, Duan YB, Hu Z. Study of Human Dopamine Sulfotransferases Based on Gene Expression Programming. Chem Biol Drug Des 2011; 78:370-7. [DOI: 10.1111/j.1747-0285.2011.01155.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Schwaninger AE, Meyer MR, Maurer HH. Investigation on the Enantioselectivity of the Sulfation of the Methylenedioxymethamphetamine Metabolites 3,4-Dihydroxymethamphetamine and 4-Hydroxy-3-Methoxymethamphetamine using the Substrate-Depletion Approach. Drug Metab Dispos 2011; 39:1998-2002. [DOI: 10.1124/dmd.111.041129] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
44
|
Jancova P, Anzenbacher P, Anzenbacherova E. Phase II drug metabolizing enzymes. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2010; 154:103-16. [PMID: 20668491 DOI: 10.5507/bp.2010.017] [Citation(s) in RCA: 352] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Phase II biotransformation reactions (also 'conjugation reactions') generally serve as a detoxifying step in drug metabolism. Phase II drug metabolising enzymes are mainly transferases. This review covers the major phase II enzymes: UDP-glucuronosyltransferases, sulfotransferases, N-acetyltransferases, glutathione S-transferases and methyltransferases (mainly thiopurine S-methyl transferase and catechol O-methyl transferase). The focus is on the presence of various forms, on tissue and cellular distribution, on the respective substrates, on genetic polymorphism and finally on the interspecies differences in these enzymes. METHODS AND RESULTS A literature search using the following databases PubMed, Science Direct and EBSCO for the years, 1969-2010. CONCLUSIONS Phase II drug metabolizing enzymes play an important role in biotransformation of endogenous compounds and xenobiotics to more easily excretable forms as well as in the metabolic inactivation of pharmacologically active compounds. Reduced metabolising capacity of Phase II enzymes can lead to toxic effects of clinically used drugs. Gene polymorphism/ lack of these enzymes may often play a role in several forms of cancer.
Collapse
Affiliation(s)
- Petra Jancova
- Department of Medical Chemistry and Biochemistry, Palacky University, Olomouc, Czech Republic.
| | | | | |
Collapse
|
45
|
Lu J, Li H, Zhang J, Li M, Liu MY, An X, Liu MC, Chang W. Crystal structures of SULT1A2 and SULT1A1 *3: insights into the substrate inhibition and the role of Tyr149 in SULT1A2. Biochem Biophys Res Commun 2010; 396:429-34. [PMID: 20417180 DOI: 10.1016/j.bbrc.2010.04.109] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 04/19/2010] [Indexed: 11/29/2022]
Abstract
The cytosolic sulfotransferases (SULTs) in vertebrates catalyze the sulfonation of endogenous thyroid/steroid hormones and catecholamine neurotransmitters, as well as a variety of xenobiotics, using 3'-phosphoadenosine 5'-phosphosulfate (PAPS) as the sulfonate donor. In this study, we determined the structures of SULT1A2 and an allozyme of SULT1A1, SULT1A1 *3, bound with 3'-phosphoadenosine 5'-phosphate (PAP), at 2.4 and 2.3A resolution, respectively. The conformational differences between the two structures revealed a plastic substrate-binding pocket with two channels and a switch-like substrate selectivity residue Phe247, providing clearly a structural basis for the substrate inhibition. In SULT1A2, Tyr149 extends approximately 2.1A further to the inside of the substrate-binding pocket, compared with the corresponding His149 residue in SULT1A1 *3. Site-directed mutagenesis study showed that, compared with the wild-type SULT1A2, mutant Tyr149Phe SULT1A2 exhibited a 40 times higher K(m) and two times lower V(max) with p-nitrophenol as substrate. These latter data imply a significant role of Tyr149 in the catalytic mechanism of SULT1A2.
Collapse
Affiliation(s)
- Jinghua Lu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Liu Y, Glatt H. Human cytochrome P450 2E1 and sulfotransferase 1A1 coexpressed in Chinese hamster V79 cells enhance spontaneous mutagenesis. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:23-30. [PMID: 19484729 DOI: 10.1002/em.20503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Genetic engineering of target cells for investigating the genotoxicity associated with specific xenobiotic-metabolizing enzymes is useful for elucidating metabolic activation and inactivation processes. We constructed a V79-derived cell line expressing both human cytochrome P450 (CYP) 2E1 and human sulfotransferase (SULT) 1A1. We previously reported that this cell line (V79-hCYP2E1-hSULT1A1) efficiently activates various important pro-genotoxicants. Here we present data on the expression level and stability of the heterologous enzymes, measured by immunoblotting, enzyme activities, and mutagenic responses to CYP2E1- and SULT1A1-dependent promutagens. Unexpectedly, these cells demonstrated greatly elevated spontaneous gene mutation frequencies (determined at the Hprt locus), and elevated frequencies of sister chromatid exchange, as compared with control V79 cells and V79-derived lines engineered for other enzymes. Therefore, V79-hCYP2E1-hSULT1A1 cells require regular cleansing in aminopterin-containing medium when used for Hprt gene mutation assays. In a 4-week time course without such selection, V79-hCYP2E1-hSULT1A1 demonstrated a progressive increase in the spontaneous mutant frequency from 2.9 to 155 x 10(-6). This phenomenon was moderately, strongly, and completely prohibited in the presence of CYP2E1 inhibitor 1-aminobenzotriazole, SULT1A1 inhibitor pentachlorophenol and both in combination, respectively. This protection indicates that the enhanced spontaneous mutagenicity involves the activity of the expressed enzymes rather than being caused by an accidental genetic alteration that might have occurred during transfection. We postulate that human CYP2E1 and SULT1A1 activate an endogenous cellular molecule or a medium component to become mutagenic. It will be challenging to identify this compound and to see whether it is involved in spontaneous mutagenesis and carcinogenesis in vivo.
Collapse
Affiliation(s)
- Yungang Liu
- Department of Nutritional Toxicology, German Institute of Human Nutrition (DIfE) Potsdam Rehbruecke, 14558 Nuthetal, Germany.
| | | |
Collapse
|
47
|
Yasuda S, Yasuda T, Hui Y, Liu MY, Suiko M, Sakakibara Y, Liu MC. Concerted action of the cytosolic sulfotransferase, SULT1A3, and catechol-O-methyltransferase in the metabolism of dopamine in SK-N-MC human neuroblastoma cells. Neurosci Res 2009; 64:273-9. [PMID: 19447296 DOI: 10.1016/j.neures.2009.03.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 03/06/2009] [Accepted: 03/19/2009] [Indexed: 11/27/2022]
Abstract
Conjugation reactions catalyzed by the cytosolic sulfotransferase, SULT1A3, or catechol-O-methyltransferase (COMT) are known to be involved in the regulation and homeostasis of dopamine and other monoamine neurotransmitters. Whether different conjugation reactions may act in a concerted manner, however, remains unclear. The current study aimed to investigate the concerted action of SULT1A3 and COMT in dopamine metabolism. Analysis of the medium of SK-N-MC cells, metabolically labeled with [(35)S]sulfate in the presence of dopamine, revealed the generation and release of predominantly [(35)S]sulfated 3-methyldopamine and, to a lesser extent [(35)S]sulfated dopamine. Addition to the labeling medium of tropolone, a COMT inhibitor, enhanced the production of [(35)S]sulfated dopamine, with a concomitant decrease of [(35)S]sulfated 3-methyldopamine. Enzymatic assays using the eleven known human cytosolic SULTs revealed SULT1A3 as the major enzyme responsible for the sulfation of both dopamine and 3-methyldopamine. Kinetic analysis showed that the catalytic efficiency of SULT1A3 with 3-methyldopamine was 1.6 times than that with dopamine. Using subcellular fractions prepared from SK-N-MC cells, the majority of COMT dopamine-methylating activity was found to be present in the cytosol. Collectively, these results imply a concerted action of sulfation and methylation in the irreversible inactivation and disposal of excess dopamine in SK-N-MC cells.
Collapse
Affiliation(s)
- Shin Yasuda
- Department of Pharmacology, College of Pharmacy, The University of Toledo, Toledo, OH 43606, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Czodrowski P, Kriegl JM, Scheuerer S, Fox T. Computational approaches to predict drug metabolism. Expert Opin Drug Metab Toxicol 2009; 5:15-27. [DOI: 10.1517/17425250802568009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
49
|
Riches Z, Bloomer JC, Coughtrie MWH. Comparison of 2-aminophenol and 4-nitrophenol as in vitro probe substrates for the major human hepatic sulfotransferase, SULT1A1, demonstrates improved selectivity with 2-aminophenol. Biochem Pharmacol 2007; 74:352-8. [PMID: 17506995 DOI: 10.1016/j.bcp.2007.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 04/03/2007] [Accepted: 04/04/2007] [Indexed: 10/23/2022]
Abstract
Sulfation, catalysed by members of the cytosolic sulfotransferase (SULT) enzyme family, is important in xenobiotic detoxification and in the biosynthesis and homeostasis of many hormones and neurotransmitters. The major human phenol sulfotransferase SULT1A1 plays a key role in chemical defence, is widely expressed in the body and is subject to a common polymorphism that results in reduced protein levels. Study of these enzymes in vitro requires robust probe substrates, and we have previously shown measurement of activity with the widely used SULT1A1 substrate, 4-nitrophenol, does not accurately reflect protein expression. Additionally, the high degree of substrate inhibition observed with this compound further reduces its value as a probe for SULT1A1. Here we show that 2-aminophenol is a more suitable probe substrate for quantifying SULT1A1 activity in human liver. This compound is sulfated at a high rate (V(max) with purified recombinant SULT1A1=121nmol/(minmg) and shows strong affinity for the enzyme (K(m) with purified recombinant SULT1A1=9microM) and, importantly, is a very poor substrate for the other major SULT1 enzyme expressed in liver, SULT1B1 (with V(max) and K(m) values of 17nmol/(minmg) and 114microM, respectively). Experiments with purified recombinant human SULTs and a panel of 28 human liver cytosols demonstrated that 2-aminophenol shows limited substrate inhibition with SULT1A1, and V(max) values measured in liver cytosols correlated strongly with SULT1A1 enzyme protein levels measured by a quantitative immunoblot method. We therefore suggest that 2-aminophenol is a suitable substrate to use for quantifying SULT1A1 enzyme activity.
Collapse
Affiliation(s)
- Zoe Riches
- Division of Pathology & Neuroscience, University of Dundee, Ninewells Hospital & Medical School, Dundee DD1 9SY, Scotland, UK
| | | | | |
Collapse
|
50
|
Ekins S, Mestres J, Testa B. In silico pharmacology for drug discovery: applications to targets and beyond. Br J Pharmacol 2007; 152:21-37. [PMID: 17549046 PMCID: PMC1978280 DOI: 10.1038/sj.bjp.0707306] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Computational (in silico) methods have been developed and widely applied to pharmacology hypothesis development and testing. These in silico methods include databases, quantitative structure-activity relationships, similarity searching, pharmacophores, homology models and other molecular modeling, machine learning, data mining, network analysis tools and data analysis tools that use a computer. Such methods have seen frequent use in the discovery and optimization of novel molecules with affinity to a target, the clarification of absorption, distribution, metabolism, excretion and toxicity properties as well as physicochemical characterization. The first part of this review discussed the methods that have been used for virtual ligand and target-based screening and profiling to predict biological activity. The aim of this second part of the review is to illustrate some of the varied applications of in silico methods for pharmacology in terms of the targets addressed. We will also discuss some of the advantages and disadvantages of in silico methods with respect to in vitro and in vivo methods for pharmacology research. Our conclusion is that the in silico pharmacology paradigm is ongoing and presents a rich array of opportunities that will assist in expediating the discovery of new targets, and ultimately lead to compounds with predicted biological activity for these novel targets.
Collapse
Affiliation(s)
- S Ekins
- ACT LLC, 1 Penn Plaza, New York, NY 10119, USA.
| | | | | |
Collapse
|