1
|
Hodapp SJ, Gravel N, Kannan N, Newton AC. Cancer-associated mutations in protein kinase C theta are loss-of-function. Biochem J 2024; 481:759-775. [PMID: 38752473 PMCID: PMC11346454 DOI: 10.1042/bcj20240148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 06/11/2024]
Abstract
The Ca2+-independent, but diacylglycerol-regulated, novel protein kinase C (PKC) theta (θ) is highly expressed in hematopoietic cells where it participates in immune signaling and platelet function. Mounting evidence suggests that PKCθ may be involved in cancer, particularly blood cancers, breast cancer, and gastrointestinal stromal tumors, yet how to target this kinase (as an oncogene or as a tumor suppressor) has not been established. Here, we examine the effect of four cancer-associated mutations, R145H/C in the autoinhibitory pseudosubstrate, E161K in the regulatory C1A domain, and R635W in the regulatory C-terminal tail, on the cellular activity and stability of PKCθ. Live-cell imaging studies using the genetically-encoded fluorescence resonance energy transfer-based reporter for PKC activity, C kinase activity reporter 2 (CKAR2), revealed that the pseudosubstrate and C1A domain mutations impaired autoinhibition to increase basal signaling. This impaired autoinhibition resulted in decreased stability of the protein, consistent with the well-characterized behavior of Ca2+-regulated PKC isozymes wherein mutations that impair autoinhibition are paradoxically loss-of-function because the mutant protein is degraded. In marked contrast, the C-terminal tail mutation resulted in enhanced autoinhibition and enhanced stability. Thus, the examined mutations were loss-of-function by different mechanisms: mutations that impaired autoinhibition promoted the degradation of PKC, and those that enhanced autoinhibition stabilized an inactive PKC. Supporting a general loss-of-function of PKCθ in cancer, bioinformatics analysis revealed that protein levels of PKCθ are reduced in diverse cancers, including lung, renal, head and neck, and pancreatic. Our results reveal that PKCθ function is lost in cancer.
Collapse
Affiliation(s)
- Stefanie J. Hodapp
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, U.S.A
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, U.S.A
| | - Nathan Gravel
- Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, U.S.A
| | - Natarajan Kannan
- Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, U.S.A
| | - Alexandra C. Newton
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, U.S.A
| |
Collapse
|
2
|
Yu J, Boehr DD. Regulatory mechanisms triggered by enzyme interactions with lipid membrane surfaces. Front Mol Biosci 2023; 10:1306483. [PMID: 38099197 PMCID: PMC10720463 DOI: 10.3389/fmolb.2023.1306483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
Recruitment of enzymes to intracellular membranes often modulates their catalytic activity, which can be important in cell signaling and membrane trafficking. Thus, re-localization is not only important for these enzymes to gain access to their substrates, but membrane interactions often allosterically regulate enzyme function by inducing conformational changes across different time and amplitude scales. Recent structural, biophysical and computational studies have revealed how key enzymes interact with lipid membrane surfaces, and how this membrane binding regulates protein structure and function. This review summarizes the recent progress in understanding regulatory mechanisms involved in enzyme-membrane interactions.
Collapse
Affiliation(s)
| | - David D. Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
3
|
Just-Borràs L, Cilleros-Mañé V, Polishchuk A, Balanyà-Segura M, Tomàs M, Garcia N, Tomàs J, Lanuza MA. TrkB signaling is correlated with muscular fatigue resistance and less vulnerability to neurodegeneration. Front Mol Neurosci 2022; 15:1069940. [PMID: 36618825 PMCID: PMC9813967 DOI: 10.3389/fnmol.2022.1069940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
At the neuromuscular junction (NMJ), motor neurons and myocytes maintain a bidirectional communication that guarantees adequate functionality. Thus, motor neurons' firing pattern, which is influenced by retrograde muscle-derived neurotrophic factors, modulates myocyte contractibility. Myocytes can be fast-twitch fibers and become easily fatigued or slow-twitch fibers and resistant to fatigue. Extraocular muscles (EOM) show mixed properties that guarantee fast contraction speed and resistance to fatigue and the degeneration caused by Amyotrophic lateral sclerosis (ALS) disease. The TrkB signaling is an activity-dependent pathway implicated in the NMJ well-functioning. Therefore, it could mediate the differences between fast and slow myocytes' resistance to fatigue. The present study elucidates a specific protein expression profile concerning the TrkB signaling that correlates with higher resistance to fatigue and better neuroprotective capacity through time. The results unveil that Extra-ocular muscles (EOM) express lower levels of NT-4 that extend TrkB signaling, differential PKC expression, and a higher abundance of phosphorylated synaptic proteins that correlate with continuous neurotransmission requirements. Furthermore, common molecular features between EOM and slow soleus muscles including higher neurotrophic consumption and classic and novel PKC isoforms balance correlate with better preservation of these two muscles in ALS. Altogether, higher resistance of Soleus and EOM to fatigue and ALS seems to be associated with specific protein levels concerning the TrkB neurotrophic signaling.
Collapse
|
4
|
Lordén G, Newton A. Conventional protein kinase C in the brain: repurposing cancer drugs for neurodegenerative treatment? Neuronal Signal 2021; 5:NS20210036. [PMID: 34737895 PMCID: PMC8536831 DOI: 10.1042/ns20210036] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/23/2022] Open
Abstract
Protein Kinase C (PKC) isozymes are tightly regulated kinases that transduce a myriad of signals from receptor-mediated hydrolysis of membrane phospholipids. They play an important role in brain physiology, and dysregulation of PKC activity is associated with neurodegeneration. Gain-of-function mutations in PKCα are associated with Alzheimer's disease (AD) and mutations in PKCγ cause spinocerebellar ataxia (SCA) type 14 (SCA14). This article presents an overview of the role of the conventional PKCα and PKCγ in neurodegeneration and proposes repurposing PKC inhibitors, which failed in clinical trials for cancer, for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Gema Lordén
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92037, U.S.A
| | - Alexandra C. Newton
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92037, U.S.A
| |
Collapse
|
5
|
Baffi TR, Lordén G, Wozniak JM, Feichtner A, Yeung W, Kornev AP, King CC, Del Rio JC, Limaye AJ, Bogomolovas J, Gould CM, Chen J, Kennedy EJ, Kannan N, Gonzalez DJ, Stefan E, Taylor SS, Newton AC. mTORC2 controls the activity of PKC and Akt by phosphorylating a conserved TOR interaction motif. Sci Signal 2021; 14:eabe4509. [PMID: 33850054 PMCID: PMC8208635 DOI: 10.1126/scisignal.abe4509] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The complex mTORC2 is accepted to be the kinase that controls the phosphorylation of the hydrophobic motif, a key regulatory switch for AGC kinases, although whether mTOR directly phosphorylates this motif remains controversial. Here, we identified an mTOR-mediated phosphorylation site that we termed the TOR interaction motif (TIM; F-x3-F-pT), which controls the phosphorylation of the hydrophobic motif of PKC and Akt and the activity of these kinases. The TIM is invariant in mTORC2-dependent AGC kinases, is evolutionarily conserved, and coevolved with mTORC2 components. Mutation of this motif in Akt1 and PKCβII abolished cellular kinase activity by impairing activation loop and hydrophobic motif phosphorylation. mTORC2 directly phosphorylated the PKC TIM in vitro, and this phosphorylation event was detected in mouse brain. Overexpression of PDK1 in mTORC2-deficient cells rescued hydrophobic motif phosphorylation of PKC and Akt by a mechanism dependent on their intrinsic catalytic activity, revealing that mTORC2 facilitates the PDK1 phosphorylation step, which, in turn, enables autophosphorylation. Structural analysis revealed that PKC homodimerization is driven by a TIM-containing helix, and biophysical proximity assays showed that newly synthesized, unphosphorylated PKC dimerizes in cells. Furthermore, disruption of the dimer interface by stapled peptides promoted hydrophobic motif phosphorylation. Our data support a model in which mTORC2 relieves nascent PKC dimerization through TIM phosphorylation, recruiting PDK1 to phosphorylate the activation loop and triggering intramolecular hydrophobic motif autophosphorylation. Identification of TIM phosphorylation and its role in the regulation of PKC provides the basis for AGC kinase regulation by mTORC2.
Collapse
Affiliation(s)
- Timothy R Baffi
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
- Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, CA 92093, USA
| | - Gema Lordén
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Jacob M Wozniak
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
- Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093, USA
| | - Andreas Feichtner
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck A-6020, Austria
| | - Wayland Yeung
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Alexandr P Kornev
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Charles C King
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Jason C Del Rio
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
- Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, CA 92093, USA
| | - Ameya J Limaye
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | - Julius Bogomolovas
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Christine M Gould
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
- Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, CA 92093, USA
| | - Ju Chen
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Eileen J Kennedy
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | - Natarajan Kannan
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - David J Gonzalez
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093, USA
| | - Eduard Stefan
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck A-6020, Austria
| | - Susan S Taylor
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093, USA
| | - Alexandra C Newton
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
6
|
Protein Kinase C Attenuates Insulin Signalling Cascade in Insulin-Sensitive and Insulin-Resistant Neuro-2a Cells. J Mol Neurosci 2019; 69:470-477. [DOI: 10.1007/s12031-019-01377-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/08/2019] [Indexed: 12/15/2022]
|
7
|
Baffi TR, Van AAN, Zhao W, Mills GB, Newton AC. Protein Kinase C Quality Control by Phosphatase PHLPP1 Unveils Loss-of-Function Mechanism in Cancer. Mol Cell 2019; 74:378-392.e5. [PMID: 30904392 DOI: 10.1016/j.molcel.2019.02.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 12/26/2018] [Accepted: 02/12/2019] [Indexed: 02/02/2023]
Abstract
Protein kinase C (PKC) isozymes function as tumor suppressors in increasing contexts. In contrast to oncogenic kinases, whose function is acutely regulated by transient phosphorylation, PKC is constitutively phosphorylated following biosynthesis to yield a stable, autoinhibited enzyme that is reversibly activated by second messengers. Here, we report that the phosphatase PHLPP1 opposes PKC phosphorylation during maturation, leading to the degradation of aberrantly active species that do not become autoinhibited. Cancer-associated hotspot mutations in the pseudosubstrate of PKCβ that impair autoinhibition result in dephosphorylated and unstable enzymes. Protein-level analysis reveals that PKCα is fully phosphorylated at the PHLPP site in over 5,000 patient tumors, with higher PKC levels correlating (1) inversely with PHLPP1 levels and (2) positively with improved survival in pancreatic adenocarcinoma. Thus, PHLPP1 provides a proofreading step that maintains the fidelity of PKC autoinhibition and reveals a prominent loss-of-function mechanism in cancer by suppressing the steady-state levels of PKC.
Collapse
Affiliation(s)
- Timothy R Baffi
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, CA 92093, USA
| | - An-Angela N Van
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, CA 92093, USA
| | - Wei Zhao
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alexandra C Newton
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
8
|
Dowling CM, Phelan J, Callender JA, Cathcart MC, Mehigan B, McCormick P, Dalton T, Coffey JC, Newton AC, O'Sullivan J, Kiely PA. Protein kinase C beta II suppresses colorectal cancer by regulating IGF-1 mediated cell survival. Oncotarget 2018; 7:20919-33. [PMID: 26989024 PMCID: PMC4991501 DOI: 10.18632/oncotarget.8062] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/31/2016] [Indexed: 12/11/2022] Open
Abstract
Despite extensive efforts, cancer therapies directed at the Protein Kinase C (PKC) family of serine/threonine kinases have failed in clinical trials. These therapies have been directed at inhibiting PKC and have, in some cases, worsened disease outcome. Here we examine colon cancer patients and show not only that PKC Beta II is a tumour suppressor, but patients with low levels of this isozyme have significantly decreased disease free survival. Specifically, analysis of gene expression levels of all PKC genes in matched normal and cancer tissue samples from colon cancer patients revealed a striking down-regulation of the gene coding PKC Beta in the cancer tissue (n = 21). Tissue microarray analysis revealed a dramatic down-regulation of PKC Beta II protein levels in both the epithelial and stromal diseased tissue (n = 166). Of clinical significance, low levels of the protein in the normal tissue of patients is associated with a low (10%) 10 year survival compared with a much higher (60%) survival in patients with relatively high levels of the protein. Consistent with PKC Beta II levels protecting against colon cancer, overexpression of PKC Beta II in colon cancer cell lines reveals that PKC Beta II reverses transformation in cell based assays. Further to this, activation of PKC Beta II results in a dramatic downregulation of IGF-I-induced AKT, indicating a role for PKCs in regulating IGF-1 mediated cell survival. Thus, PKC Beta II is a tumour suppressor in colon cancer and low levels serve as a predictor for poor survival outcome.
Collapse
Affiliation(s)
- Catríona M Dowling
- Graduate Entry Medical School and Health Research Institute (HRI), University of Limerick, Limerick, Ireland.,Department of Life Sciences, and Materials and Surface Science Institute, University of Limerick, Limerick, Ireland.,Stokes Research Institute, University of Limerick, Limerick, Ireland
| | - James Phelan
- Department of Surgery, Trinity College Dublin, Dublin, Ireland
| | - Julia A Callender
- Department of Pharmacology, University of California at San Diego, La Jolla, CA, USA
| | | | | | | | - Tara Dalton
- Stokes Research Institute, University of Limerick, Limerick, Ireland
| | - John C Coffey
- 4i Centre for Interventions in Infection, Inflammation and Immunity, Graduate Entry Medical School, University of Limerick, Limerick, Ireland
| | - Alexandra C Newton
- Department of Pharmacology, University of California at San Diego, La Jolla, CA, USA
| | | | - Patrick A Kiely
- Graduate Entry Medical School and Health Research Institute (HRI), University of Limerick, Limerick, Ireland.,Department of Life Sciences, and Materials and Surface Science Institute, University of Limerick, Limerick, Ireland.,Stokes Research Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
9
|
Protein Kinase C Inhibition With Ruboxistaurin Increases Contractility and Reduces Heart Size in a Swine Model of Heart Failure With Reduced Ejection Fraction. JACC Basic Transl Sci 2017; 2:669-683. [PMID: 30062182 PMCID: PMC6058945 DOI: 10.1016/j.jacbts.2017.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/10/2017] [Accepted: 06/20/2017] [Indexed: 01/15/2023]
Abstract
Inotropic support is often required to stabilize the hemodynamics of patients with acute decompensated heart failure; while efficacious, it has a history of leading to lethal arrhythmias and/or exacerbating contractile and energetic insufficiencies. Novel therapeutics that can improve contractility independent of beta-adrenergic and protein kinase A-regulated signaling, should be therapeutically beneficial. This study demonstrates that acute protein kinase C-α/β inhibition, with ruboxistaurin at 3 months' post-myocardial infarction, significantly increases contractility and reduces the end-diastolic/end-systolic volumes, documenting beneficial remodeling. These data suggest that ruboxistaurin represents a potential novel therapeutic for heart failure patients, as a moderate inotrope or therapeutic, which leads to beneficial ventricular remodeling.
Collapse
Key Words
- ADHF, acute decompensated heart failure
- DIG, digitalis
- DOB, dobutamine
- ECG, electrocardiogram
- EDPVR, end-diastolic pressure-volume relationship
- EDV, end-diastolic volume
- ESPVR, end-systolic pressure-volume relationship
- ESV, end-systolic volume
- Ees, elastance end-systole
- HF, heart failure
- HFrEF, heart failure with reduced ejection fraction
- IR, ischemia–reperfusion
- LAD, left anterior descending coronary artery
- LV, left ventricle/ventricular
- LVEDV, left ventricular end-diastolic volume
- LVEF, left ventricular ejection fraction
- LVVPed10, left ventricular end-diastolic volume at a pressure of 10 mm Hg
- LVVPes80, left ventricular end- systolic volume at a pressure of 80 mm Hg
- MI, myocardial infarction
- PKA, protein kinase A
- PKC, protein kinase C
- PKCα/β inhibitor
- PLN, phospholamban
- PRSW, pre-load recruitable stroke work
- RBX, ruboxistaurin
- acute myocardial infarction
- heart failure with reduced ejection fraction
- invasive hemodynamics
- positive inotropy
Collapse
|
10
|
Hurtado E, Cilleros V, Just L, Simó A, Nadal L, Tomàs M, Garcia N, Lanuza MA, Tomàs J. Synaptic Activity and Muscle Contraction Increases PDK1 and PKCβI Phosphorylation in the Presynaptic Membrane of the Neuromuscular Junction. Front Mol Neurosci 2017; 10:270. [PMID: 28890686 PMCID: PMC5574929 DOI: 10.3389/fnmol.2017.00270] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/11/2017] [Indexed: 12/20/2022] Open
Abstract
Conventional protein kinase C βI (cPKCβI) is a conventional protein kinase C (PKC) isoform directly involved in the regulation of neurotransmitter release in the neuromuscular junction (NMJ). It is located exclusively at the nerve terminal and both synaptic activity and muscle contraction modulate its protein levels and phosphorylation. cPKCβI molecular maturation includes a series of phosphorylation steps, the first of which is mediated by phosphoinositide-dependent kinase 1 (PDK1). Here, we sought to localize PDK1 in the NMJ and investigate the hypothesis that synaptic activity and muscle contraction regulate in parallel PDK1 and cPKCβI phosphorylation in the membrane fraction. To differentiate the presynaptic and postsynaptic activities, we abolished muscle contraction with μ-conotoxin GIIIB (μ-CgTx-GIIIB) in some experiments before stimulation of the phrenic nerve (1 Hz, 30 min). Then, we analyzed total and membrane/cytosol fractions of skeletal muscle by Western blotting. Results showed that PDK1 is located exclusively in the nerve terminal of the NMJ. After nerve stimulation with and without coincident muscle contraction, total PDK1 and phosphorylated PDK1 (pPDK1) protein levels remained unaltered. However, synaptic activity specifically enhanced phosphorylation of PDK1 in the membrane, an important subcellular location for PDK1 function. This increase in pPDK1 coincides with a significant increase in the phosphorylation of its substrate cPKCβI also in the membrane fraction. Moreover, muscle contraction maintains PDK1 and pPDK1 but increases cPKCβI protein levels and its phosphorylation. Thus, even though PDK1 activity is maintained, pcPKCβI levels increase in concordance with total cPKCβI. Together, these results indicate that neuromuscular activity could induce the membrane targeting of pPDK1 in the nerve terminal of the NMJ to promote the phosphorylation of the cPKCβI, which is involved in ACh release.
Collapse
Affiliation(s)
- Erica Hurtado
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Víctor Cilleros
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Laia Just
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Anna Simó
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Laura Nadal
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Marta Tomàs
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Neus Garcia
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Maria A Lanuza
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Josep Tomàs
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| |
Collapse
|
11
|
Dowling CM, Hayes SL, Phelan JJ, Cathcart MC, Finn SP, Mehigan B, McCormick P, Coffey JC, O'sullivan J, Kiely PA. Expression of protein kinase C gamma promotes cell migration in colon cancer. Oncotarget 2017; 8:72096-72107. [PMID: 29069771 PMCID: PMC5641114 DOI: 10.18632/oncotarget.18916] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 06/13/2017] [Indexed: 12/24/2022] Open
Abstract
Despite extensive efforts, Protein Kinase Cs (PKCs) have proven to be an intractable target in cancer therapies. Traditionally it was accepted that PKCs act as tumour promoters, however new research suggests that PKCs may play an important role in the suppression of cancer. A challenge in targeting PKCs is the limited data available in patient samples. One of the PKC isozymes, PKC gamma, is thought to be present only in the brain and has been largely neglected in the context of cancer. Analysis of gene expression levels of PKC gamma in patient matched normal and colon cancer tissue samples revealed an up-regulation of the gene in the cancer tissue of 54% of the patients examined. Mechanistically we demonstrate that a reduction in the levels of PKC gamma in the colon cancer cells inhibits cell migration and foci formation. Further to this, we observe an increase in cell adhesion and proliferation following the reduction of PKC gamma levels in the cell. Thus, PKC gamma plays a key role in colon cancer; making it an important isozyme that needs to be reconsidered in the context of cancer therapies.
Collapse
Affiliation(s)
- Catríona M Dowling
- Graduate Entry Medical School, University of Limerick, Limerick, Ireland.,Health Research Institute University of Limerick, Limerick, Ireland
| | - Sheri L Hayes
- Graduate Entry Medical School, University of Limerick, Limerick, Ireland.,Health Research Institute University of Limerick, Limerick, Ireland
| | - James J Phelan
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - Mary Clare Cathcart
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - Stephen P Finn
- Department of Histopathology, St James's Hospital, Trinity College Dublin, Ireland
| | | | | | - John C Coffey
- Graduate Entry Medical School, University of Limerick, Limerick, Ireland
| | - Jacintha O'sullivan
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - Patrick A Kiely
- Graduate Entry Medical School, University of Limerick, Limerick, Ireland.,Health Research Institute University of Limerick, Limerick, Ireland
| |
Collapse
|
12
|
Human neural stem/progenitor cells derived from the olfactory epithelium express the TrkB receptor and migrate in response to BDNF. Neuroscience 2017; 355:84-100. [PMID: 28499977 DOI: 10.1016/j.neuroscience.2017.04.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 04/27/2017] [Accepted: 04/29/2017] [Indexed: 12/31/2022]
Abstract
Neurogenesis constitutively occurs in the olfactory epithelium of mammals, including humans. The fact that new neurons in the adult olfactory epithelium derive from resident neural stem/progenitor cells suggests a potential use for these cells in studies of neural diseases, as well as in neuronal cell replacement therapies. In this regard, some studies have proposed that the human olfactory epithelium is a source of neural stem/progenitor cells for autologous transplantation. Although these potential applications are interesting, it is important to understand the cell biology and/or whether human neural stem/progenitor cells in the olfactory epithelium sense external signals, such as brain-derived neurotrophic factor (BDNF), that is also found in other pro-neurogenic microenvironments. BDNF plays a key role in several biological processes, including cell migration. Thus, we characterized human neural stem/progenitor cells derived from the olfactory epithelium (hNS/PCs-OE) and studied their in vitro migratory response to BDNF. In the present study, we determined that hNS/PCs-OE express the protein markers Nestin, Sox2, Ki67 and βIII-tubulin. Moreover, the doubling time of hNS/PCs-OE was approximately 38h. Additionally, we found that hNS/PCs-OE express the BDNF receptor TrkB, and pharmacological approaches showed that the BDNF-induced (40ng/ml) migration of differentiated hNS/PCs-OE was affected by the compound K252a, which prevents TrkB activation. This observation was accompanied by changes in the number of vinculin adhesion contacts. Our results suggest that hNS/PCs-OE exhibit a migratory response to BDNF, accompanied by the turnover of adhesion contacts.
Collapse
|
13
|
Ortiz-López L, Vega-Rivera NM, Babu H, Ramírez-Rodríguez GB. Brain-Derived Neurotrophic Factor Induces Cell Survival and the Migration of Murine Adult Hippocampal Precursor Cells During Differentiation In Vitro. Neurotox Res 2016; 31:122-135. [DOI: 10.1007/s12640-016-9673-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/01/2016] [Accepted: 09/20/2016] [Indexed: 01/09/2023]
|
14
|
Protein kinase Cζ exhibits constitutive phosphorylation and phosphatidylinositol-3,4,5-triphosphate-independent regulation. Biochem J 2015; 473:509-23. [PMID: 26635352 DOI: 10.1042/bj20151013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/03/2015] [Indexed: 12/21/2022]
Abstract
Atypical protein kinase C (aPKC) isoenzymes are key modulators of insulin signalling, and their dysfunction correlates with insulin-resistant states in both mice and humans. Despite the engaged interest in the importance of aPKCs to type 2 diabetes, much less is known about the molecular mechanisms that govern their cellular functions than for the conventional and novel PKC isoenzymes and the functionally-related protein kinase B (Akt) family of kinases. Here we show that aPKC is constitutively phosphorylated and, using a genetically-encoded reporter for PKC activity, basally active in cells. Specifically, we show that phosphorylation at two key regulatory sites, the activation loop and turn motif, of the aPKC PKCζ in multiple cultured cell types is constitutive and independently regulated by separate kinases: ribosome-associated mammalian target of rapamycin complex 2 (mTORC2) mediates co-translational phosphorylation of the turn motif, followed by phosphorylation at the activation loop by phosphoinositide-dependent kinase-1 (PDK1). Live cell imaging reveals that global aPKC activity is constitutive and insulin unresponsive, in marked contrast to the insulin-dependent activation of Akt monitored by an Akt-specific reporter. Nor does forced recruitment to phosphoinositides by fusing the pleckstrin homology (PH) domain of Akt to the kinase domain of PKCζ alter either the phosphorylation or activity of PKCζ. Thus, insulin stimulation does not activate PKCζ through the canonical phosphatidylinositol-3,4,5-triphosphate-mediated pathway that activates Akt, contrasting with previous literature on PKCζ activation. These studies support a model wherein an alternative mechanism regulates PKCζ-mediated insulin signalling that does not utilize conventional activation via agonist-evoked phosphorylation at the activation loop. Rather, we propose that scaffolding near substrates drives the function of PKCζ.
Collapse
|
15
|
Antal CE, Callender JA, Kornev AP, Taylor SS, Newton AC. Intramolecular C2 Domain-Mediated Autoinhibition of Protein Kinase C βII. Cell Rep 2015; 12:1252-60. [PMID: 26279568 DOI: 10.1016/j.celrep.2015.07.039] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/23/2015] [Accepted: 07/17/2015] [Indexed: 11/26/2022] Open
Abstract
The signaling output of protein kinase C (PKC) is exquisitely controlled, with its disruption resulting in pathophysiologies. Identifying the structural basis for autoinhibition is central to developing effective therapies for cancer, where PKC activity needs to be enhanced, or neurodegenerative diseases, where PKC activity should be inhibited. Here, we reinterpret a previously reported crystal structure of PKCβII and use docking and functional analysis to propose an alternative structure that is consistent with previous literature on PKC regulation. Mutagenesis of predicted contact residues establishes that the Ca(2+)-sensing C2 domain interacts intramolecularly with the kinase domain and the carboxyl-terminal tail, locking PKC in an inactive conformation. Ca(2+)-dependent bridging of the C2 domain to membranes provides the first step in activating PKC via conformational selection. Although the placement of the C1 domains remains to be determined, elucidation of the structural basis for autoinhibition of PKCβII unveils a unique direction for therapeutically targeting PKC.
Collapse
Affiliation(s)
- Corina E Antal
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92037, USA; Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, CA 92037, USA
| | - Julia A Callender
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92037, USA; Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, CA 92037, USA
| | - Alexandr P Kornev
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92037, USA
| | - Susan S Taylor
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92037, USA
| | - Alexandra C Newton
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
16
|
Targeting Protein Kinase C Downstream of Growth Factor and Adhesion Signalling. Cancers (Basel) 2015; 7:1271-91. [PMID: 26184315 PMCID: PMC4586769 DOI: 10.3390/cancers7030836] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/25/2015] [Accepted: 07/03/2015] [Indexed: 12/11/2022] Open
Abstract
The signaling outputs of Receptor Tyrosine Kinases, G-protein coupled receptors and integrins converge to mediate key cell process such as cell adhesion, cell migration, cell invasion and cell proliferation. Once activated by their ligands, these cell surface proteins recruit and direct a diverse range of proteins to disseminate the appropriate response downstream of the specific environmental cues. One of the key groups of proteins required to regulate these activities is the family of serine/threonine intracellular kinases called Protein Kinase Cs. The activity and subcellular location of PKCs are mediated by a series of tightly regulated events and is dependent on several posttranslational modifications and the availability of second messengers. Protein Kinase Cs exhibit both pro- and anti-tumorigenic effects making them an interesting target for anti-cancer treatment.
Collapse
|
17
|
Abstract
The protein kinases C (PKCs) are a family of serine/threonine kinases involved in regulating multiple essential cellular processes such as survival, proliferation, and differentiation. Of particular interest is the novel, calcium-independent PKCθ which plays a central role in immune responses. PKCθ shares structural similarities with other PKC family members, mainly consisting of an N-terminal regulatory domain and a C-terminal catalytic domain tethered by a hinge region. This isozyme, however, is unique in that it translocates to the immunological synapse between a T cell and an antigen-presenting cell (APC) upon T cell receptor-peptide MHC recognition. Thereafter, PKCθ interacts physically and functionally with downstream effectors to mediate T cell activation and differentiation, subsequently leading to inflammation. PKCθ-specific perturbations have been identified in several diseases, most notably autoimmune disorders, and hence the modulation of its activity presents an attractive therapeutic intervention. To that end, many inhibitors of PKCs and PKCθ have been developed and tested in preclinical and clinical studies. And although selectivity remains a challenge, results are promising for the future development of effective PKCθ inhibitors that would greatly advance the treatment of several T-cell mediated diseases.
Collapse
|
18
|
Abstract
In this issue of Chemistry & Biology, Antal and colleagues describe how phosphorylation optimizes the signaling range of protein kinase C (PKC) isoforms. Priming of these enzymes regulates intramolecular conformational changes, which reduces access to their diacylglycerol (DAG) binding C1 domains.
Collapse
Affiliation(s)
- Robert V Stahelin
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine-South Bend, South Bend, IN 46617, USA; Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
19
|
Kunkel MT, Newton AC. Protein kinase d inhibitors uncouple phosphorylation from activity by promoting agonist-dependent activation loop phosphorylation. ACTA ACUST UNITED AC 2014; 22:98-106. [PMID: 25556943 DOI: 10.1016/j.chembiol.2014.11.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 10/18/2014] [Accepted: 11/13/2014] [Indexed: 12/19/2022]
Abstract
Protein kinase D (PKD) is acutely activated by two tightly coupled events: binding to the second messenger diacylglycerol (DAG) followed by novel protein kinase C (nPKC) phosphorylation at the activation loop and autophosphorylation at the C terminus. Thus, phosphorylation serves as a widely accepted measure of PKD activity. Here we show that treatment of cells with PKD inhibitors paradoxically promotes agonist-dependent activation loop phosphorylation, thus uncoupling phosphorylation from activation. This inhibitor-induced enhancement of phosphorylation differs mechanistically from that previously reported for PKC and Akt, for which active-site inhibitors stabilize a phosphatase-resistant conformation. Rather, a conformational reporter reveals that inhibitor binding induces a conformational change, resulting in relocalization of PKD to basal DAG pools, where it is more readily phosphorylated by nPKCs. These findings illustrate the diverse conformational effects that small molecules exert on their target proteins, underscoring the importance of using caution when interpreting kinase activity from phosphorylation state.
Collapse
Affiliation(s)
- Maya T Kunkel
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Alexandra C Newton
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
20
|
Swanson CJ, Ritt M, Wang W, Lang MJ, Narayan A, Tesmer JJ, Westfall M, Sivaramakrishnan S. Conserved modular domains team up to latch-open active protein kinase Cα. J Biol Chem 2014; 289:17812-29. [PMID: 24790081 DOI: 10.1074/jbc.m113.534750] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Signaling proteins comprised of modular domains have evolved along with multicellularity as a method to facilitate increasing intracellular bandwidth. The effects of intramolecular interactions between modular domains within the context of native proteins have been largely unexplored. Here we examine intra- and intermolecular interactions in the multidomain signaling protein, protein kinase Cα (PKCα). We identify three interactions between two activated PKC molecules that synergistically stabilize a nanomolar affinity homodimer. Disruption of the homodimer results in a loss of PKC-mediated ERK1/2 phosphorylation, whereas disruption of the auto-inhibited state promotes the homodimer and prolongs PKC membrane localization. These observations support a novel regulatory mechanism wherein homodimerization dictates the equilibrium between the auto-inhibited and active states of PKC by sequestering auto-inhibitory interactions. Our findings underscore the physiological importance of context-dependent modular domain interactions in cell signaling.
Collapse
Affiliation(s)
| | | | - William Wang
- Department of Cell and Developmental Biology, Department of Cardiac Surgery
| | | | - Arvind Narayan
- Department of Biomedical Engineering, Life Sciences Institute, and
| | - John J Tesmer
- From the Biophysics Program, the Departments of Pharmacology and Biological Sciences, University of Michigan, Ann Arbor, Michigan 48109
| | - Margaret Westfall
- Department of Cardiac Surgery, Department of Biomedical Engineering, Life Sciences Institute, and
| | - Sivaraj Sivaramakrishnan
- From the Biophysics Program, Department of Cell and Developmental Biology, Department of Biomedical Engineering, Life Sciences Institute, and
| |
Collapse
|
21
|
Antal CE, Violin JD, Kunkel MT, Skovsø S, Newton AC. Intramolecular conformational changes optimize protein kinase C signaling. ACTA ACUST UNITED AC 2014; 21:459-469. [PMID: 24631122 DOI: 10.1016/j.chembiol.2014.02.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 01/31/2014] [Accepted: 02/02/2014] [Indexed: 11/25/2022]
Abstract
Optimal tuning of enzyme signaling is critical for cellular homeostasis. We use fluorescence resonance energy transfer reporters in live cells to follow conformational transitions that tune the affinity of a multidomain signal transducer, protein kinase C (PKC), for optimal response to second messengers. This enzyme comprises two diacylglycerol sensors, the C1A and C1B domains, that have a sufficiently high intrinsic affinity for ligand so that the enzyme would be in a ligand-engaged, active state if not for mechanisms that mask its domains. We show that both diacylglycerol sensors are exposed in newly synthesized PKC and that conformational transitions following priming phosphorylations mask the domains so that the lower affinity sensor, the C1B domain, is the primary diacylglycerol binder. The conformational rearrangements of PKC serve as a paradigm for how multimodule transducers optimize their dynamic range of signaling.
Collapse
Affiliation(s)
- Corina E Antal
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, CA 92093, USA
| | - Jonathan D Violin
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, CA 92093, USA
| | - Maya T Kunkel
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Søs Skovsø
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA; Institute for Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Alexandra C Newton
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
22
|
Antal CE, Newton AC. Spatiotemporal dynamics of phosphorylation in lipid second messenger signaling. Mol Cell Proteomics 2013; 12:3498-508. [PMID: 23788531 DOI: 10.1074/mcp.r113.029819] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The plasma membrane serves as a dynamic interface that relays information received at the cell surface into the cell. Lipid second messengers coordinate signaling on this platform by recruiting and activating kinases and phosphatases. Specifically, diacylglycerol and phosphatidylinositol 3,4,5-trisphosphate activate protein kinase C and Akt, respectively, which then phosphorylate target proteins to transduce downstream signaling. This review addresses how the spatiotemporal dynamics of protein kinase C and Akt signaling can be monitored using genetically encoded reporters and provides information on how the coordination of signaling at protein scaffolds or membrane microdomains affords fidelity and specificity in phosphorylation events.
Collapse
Affiliation(s)
- Corina E Antal
- Department of Pharmacology, University of California at San Diego, La Jolla, California 92093-0721
| | | |
Collapse
|
23
|
Abstract
PKC (protein kinase C) has been in the limelight since the discovery three decades ago that it acts as a major receptor for the tumour-promoting phorbol esters. Phorbol esters, with their potent ability to activate two of the three classes of PKC isoenzymes, have remained the best pharmacological tool for directly modulating PKC activity. However, with the discovery of other phorbol ester-responsive proteins, the advent of various small-molecule and peptide modulators, and the need to distinguish isoenzyme-specific activity, the pharmacology of PKC has become increasingly complex. Not surprisingly, many of the compounds originally touted as direct modulators of PKC have subsequently been shown to hit many other cellular targets and, in some cases, not even directly modulate PKC. The complexities and reversals in PKC pharmacology have led to widespread confusion about the current status of the pharmacological tools available to control PKC activity. In the present review, we aim to clarify the cacophony in the literature regarding the current state of bona fide and discredited cellular PKC modulators, including activators, small-molecule inhibitors and peptides, and also address the use of genetically encoded reporters and of PKC mutants to measure the effects of these drugs on the spatiotemporal dynamics of signalling by specific isoenzymes.
Collapse
Affiliation(s)
- Alyssa X. Wu-Zhang
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093-0721, (858) 534-4527, Fax: (858) 822-5888
| | - Alexandra C. Newton
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093-0721, (858) 534-4527, Fax: (858) 822-5888
| |
Collapse
|
24
|
Zeng L, Webster SV, Newton PM. The biology of protein kinase C. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:639-61. [PMID: 22453963 DOI: 10.1007/978-94-007-2888-2_28] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review gives a basic introduction to the biology of protein kinase C, one of the first calcium-dependent kinases to be discovered. We review the structure and function of protein kinase C, along with some of the substrates of individual isoforms. We then review strategies for inhibiting PKC in experimental systems and finally discuss the therapeutic potential of targeting PKC. Each aspect is covered in summary, with links to detailed resources where appropriate.
Collapse
Affiliation(s)
- Lily Zeng
- School of Medicine, University of California, San Francisco, CA, USA
| | | | | |
Collapse
|
25
|
Miralem T, Lerner-Marmarosh N, Gibbs PEM, Tudor C, Hagen FK, Maines MD. The human biliverdin reductase-based peptide fragments and biliverdin regulate protein kinase Cδ activity: the peptides are inhibitors or substrate for the protein kinase C. J Biol Chem 2012; 287:24698-712. [PMID: 22584576 DOI: 10.1074/jbc.m111.326504] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
PKCδ, a Ser/Thr kinase, promotes cell growth, tumorigenesis, and apoptosis. Human biliverdin reductase (hBVR), a Ser/Thr/Tyr kinase, inhibits apoptosis by reducing biliverdin-IX to antioxidant bilirubin. The enzymes are activated by similar stimuli. Reportedly, hBVR is a kinase-independent activator of PKCδ and is transactivated by the PKC (Gibbs, P. E., Miralem, T., Lerner-Marmarosh, N., Tudor, C., and Maines, M. D. (2012) J. Biol. Chem. 287, 1066-1079). Presently, we examined interactions between the two proteins in the context of regulation of their activities and defining targets of hBVR phosphorylation by PKCδ. LC-MS/MS analysis of PKCδ-activated intact hBVR identified phosphorylated serine positions 21, 33, 230, and 237, corresponding to the hBVR Src homology-2 domain motif (Ser(230) and Ser(237)), flanking the ATP-binding motif (Ser(21)) and in PHPS sequence (Ser(33)) as targets of PKCδ. Ser(21) and Ser(230) were also phosphorylated in hBVR-based peptides. The Ser(230)-containing peptide was a high affinity substrate for PKCδ in vitro and in cells; the relative affinity was PKCδ > PKCβII > PKCζ. Two overlapping peptides spanning this substrate, KRNRYLSF and SFHFKSGSL, were effective inhibitors of PKCδ kinase activity and PKCδ-supported activation of transcription factors Elk1 and NF-κB. Only SFHFKSGSL, in PKCδ-transfected phorbol 12-myristate 13-acetate-stimulated cells, caused membrane blebbing and cell loss. Biliverdin noncovalently inhibited PKCδ, whereas PKCδ potentiated hBVR reductase activity and accelerated the rate of bilirubin formation. This study, together with previous findings, reveals an unexpected regulatory interplay between PKCδ and hBVR in modulating cell death/survival in response to various activating stimuli. In addition, this study has identified novel substrates for and inhibitors of PKCδ. We suggest that hBVR-based technology may have utility to modulate PKCδ-mediated functions in the cell.
Collapse
Affiliation(s)
- Tihomir Miralem
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | | | | | |
Collapse
|
26
|
Graybill C, Wee B, Atwood SX, Prehoda KE. Partitioning-defective protein 6 (Par-6) activates atypical protein kinase C (aPKC) by pseudosubstrate displacement. J Biol Chem 2012; 287:21003-11. [PMID: 22544755 DOI: 10.1074/jbc.m112.360495] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Atypical protein kinase C (aPKC) controls cell polarity by modulating substrate cortical localization. Aberrant aPKC activity disrupts polarity, yet the mechanisms that control aPKC remain poorly understood. We used a reconstituted system with purified components and a cultured cell cortical displacement assay to investigate aPKC regulation. We find that aPKC is autoinhibited by two domains within its NH(2)-terminal regulatory half, a pseudosubstrate motif that occupies the kinase active site, and a C1 domain that assists in this process. The Par complex member Par-6, previously thought to inhibit aPKC, is a potent activator of aPKC in our assays. Par-6 and aPKC interact via PB1 domain heterodimerization, and this interaction activates aPKC by displacing the pseudosubstrate, although full activity requires the Par-6 CRIB-PDZ domains. We propose that, along with its previously described roles in controlling aPKC localization, Par-6 allosterically activates aPKC to allow for high spatial and temporal control of substrate phosphorylation and polarization.
Collapse
Affiliation(s)
- Chiharu Graybill
- Institute of Molecular Biology and Department of Chemistry, University of Oregon, Eugene, Oregon 97403, USA
| | | | | | | |
Collapse
|
27
|
Abrahamsen H, O'Neill AK, Kannan N, Kruse N, Taylor SS, Jennings PA, Newton AC. Peptidyl-prolyl isomerase Pin1 controls down-regulation of conventional protein kinase C isozymes. J Biol Chem 2012; 287:13262-78. [PMID: 22318721 DOI: 10.1074/jbc.m112.349753] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The down-regulation or cellular depletion of protein kinase C (PKC) attendant to prolonged activation by phorbol esters is a widely described property of this key family of signaling enzymes. However, neither the mechanism of down-regulation nor whether this mechanism occurs following stimulation by physiological agonists is known. Here we show that the peptidyl-prolyl isomerase Pin1 provides a timer for the lifetime of conventional PKC isozymes, converting the enzymes into a species that can be dephosphorylated and ubiquitinated following activation induced by either phorbol esters or natural agonists. The regulation by Pin1 requires both the catalytic activity of the isomerase and the presence of a Pro immediately following the phosphorylated Thr of the turn motif phosphorylation site, one of two C-terminal sites that is phosphorylated during the maturation of PKC isozymes. Furthermore, the second C-terminal phosphorylation site, the hydrophobic motif, docks Pin1 to PKC. Our data are consistent with a model in which Pin1 binds the hydrophobic motif of conventional PKC isozymes to catalyze the isomerization of the phospho-Thr-Pro peptide bond at the turn motif, thus converting these PKC isozymes into species that can be efficiently down-regulated following activation.
Collapse
Affiliation(s)
- Hilde Abrahamsen
- Department of Pharmacology, Graduate Program, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Bononi A, Agnoletto C, De Marchi E, Marchi S, Patergnani S, Bonora M, Giorgi C, Missiroli S, Poletti F, Rimessi A, Pinton P. Protein kinases and phosphatases in the control of cell fate. Enzyme Res 2011; 2011:329098. [PMID: 21904669 PMCID: PMC3166778 DOI: 10.4061/2011/329098] [Citation(s) in RCA: 209] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/06/2011] [Accepted: 06/08/2011] [Indexed: 12/19/2022] Open
Abstract
Protein phosphorylation controls many aspects of cell fate and is often deregulated in pathological conditions. Several recent findings have provided an intriguing insight into the spatial regulation of protein phosphorylation across different subcellular compartments and how this can be finely orchestrated by specific kinases and phosphatases. In this review, the focus will be placed on (i) the phosphoinositide 3-kinase (PI3K) pathway, specifically on the kinases Akt and mTOR and on the phosphatases PP2a and PTEN, and on (ii) the PKC family of serine/threonine kinases. We will look at general aspects of cell physiology controlled by these kinases and phosphatases, highlighting the signalling pathways that drive cell division, proliferation, and apoptosis.
Collapse
Affiliation(s)
- Angela Bononi
- Section of General Pathology, Department of Experimental and Diagnostic Medicine, Interdisciplinary Center for the Study of Inflammation (ICSI) and LTTA Center, University of Ferrara, 44100 Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Tobío A, Alfonso A, Botana LM. C-kit mutations and PKC crosstalks: PKC translocates to nucleous only in cells HMC560,816. J Cell Biochem 2011; 112:2637-51. [DOI: 10.1002/jcb.23191] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Gould CM, Antal CE, Reyes G, Kunkel MT, Adams RA, Ziyar A, Riveros T, Newton AC. Active site inhibitors protect protein kinase C from dephosphorylation and stabilize its mature form. J Biol Chem 2011; 286:28922-28930. [PMID: 21715334 DOI: 10.1074/jbc.m111.272526] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Conformational changes acutely control protein kinase C (PKC). We have previously shown that the autoinhibitory pseudosubstrate must be removed from the active site in order for 1) PKC to be phosphorylated by its upstream kinase phosphoinositide-dependent kinase 1 (PDK-1), 2) the mature enzyme to bind and phosphorylate substrates, and 3) the mature enzyme to be dephosphorylated by phosphatases. Here we show an additional level of conformational control; binding of active site inhibitors locks PKC in a conformation in which the priming phosphorylation sites are resistant to dephosphorylation. Using homogeneously pure PKC, we show that the active site inhibitor Gö 6983 prevents the dephosphorylation by pure protein phosphatase 1 (PP1) or the hydrophobic motif phosphatase, pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP). Consistent with results using pure proteins, treatment of cells with the competitive inhibitors Gö 6983 or bisindolylmaleimide I, but not the uncompetitive inhibitor bisindolylmaleimide IV, prevents the dephosphorylation and down-regulation of PKC induced by phorbol esters. Pulse-chase analyses reveal that active site inhibitors do not affect the net rate of priming phosphorylations of PKC; rather, they inhibit the dephosphorylation triggered by phorbol esters. These data provide a molecular explanation for the recent studies showing that active site inhibitors stabilize the phosphorylation state of protein kinases B/Akt and C.
Collapse
Affiliation(s)
- Christine M Gould
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0721; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California 92093-0721
| | - Corina E Antal
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0721; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California 92093-0721
| | - Gloria Reyes
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0721
| | - Maya T Kunkel
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0721
| | - Ryan A Adams
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0721
| | - Ahdad Ziyar
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0721
| | - Tania Riveros
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0721; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California 92093-0721
| | - Alexandra C Newton
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0721.
| |
Collapse
|
31
|
Samluk Ł, Czeredys M, Nałęcz KA. Regulation of amino acid/carnitine transporter B 0,+ (ATB 0,+) in astrocytes by protein kinase C: independent effects on raft and non-raft transporter subpopulations. J Neurochem 2010; 115:1386-97. [PMID: 20977479 DOI: 10.1111/j.1471-4159.2010.07040.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Neutral and basic amino acid transporter B(0,+) belongs to a Na,Cl-dependent superfamily of proteins transporting neurotransmitters, amino acids and osmolytes, known to be regulated by protein kinase C (PKC). The present study demonstrates an increased phosphorylation of B(0,+) on serine moiety after treatment of rat astrocytes with phorbol 12-myristate 13-acetate, a process correlated with an augmented activity of l-leucine transport and an enhanced presence of the transporter at the cell surface. After solubilization with Triton X-100 and sucrose gradient centrifugation, B(0,+) was detected in non-raft as well as in detergent-resistant raft fractions under control conditions, while phorbol 12-myristate 13-acetate treatment resulted in a complete disappearance of the transporter from the raft fraction. B(0,+) was observed to interact with caveolin-1 and flotillin-1 (reggie-2) proteins, the markers of detergent-resistant microdomains of plasma membrane. As verified in immunocytochemistry and immunoprecipitation experiments, modification of PKC activity did not affect these interactions. It is proposed that PKC reveals different effects on raft and non-raft subpopulations of B(0,+). Phorbol ester treatment results in trafficking of the transporter from the intracellular pool to non-raft microdomains and increased activity, while B(0,+) present in raft microdomains undergoes either internalization or is transferred laterally to non-raft domains.
Collapse
Affiliation(s)
- Łukasz Samluk
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | |
Collapse
|
32
|
Freeley M, Kelleher D, Long A. Regulation of Protein Kinase C function by phosphorylation on conserved and non-conserved sites. Cell Signal 2010; 23:753-62. [PMID: 20946954 DOI: 10.1016/j.cellsig.2010.10.013] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 10/01/2010] [Indexed: 01/14/2023]
Abstract
Protein Kinase C (PKC) is a family of serine/threonine kinases whose function is influenced by phosphorylation. In particular, three conserved phosphorylation sites known as the activation-loop, the turn-motif and the hydrophobic-motif play important roles in controlling the catalytic activity, stability and intracellular localisation of the enzyme. Prevailing models of PKC phosphorylation suggest that phosphorylation of these sites occurs shortly following synthesis and that these modifications are required for the processing of newly-transcribed PKC to the mature (but still inactive) form; phosphorylation is therefore a priming event that enables catalytic activation in response to lipid second messengers. However, many studies have also demonstrated inducible phosphorylation of PKC isoforms at these sites following stimulation, highlighting that our understanding of PKC phosphorylation and its impact on enzymatic function is incomplete. Furthermore, inducible phosphorylation at these sites is often interpreted as catalytic activation, which could be misleading for some isoforms. Recent studies that include systems-wide phosphoproteomic profiling of cells has revealed a host of additional (and in many cases non-conserved) phosphorylation sites on PKC family members that influence their function. Many of these may in fact be more suitable than previously described sites as surrogate markers of catalytic activation. Here we discuss the role of phosphorylation in controlling PKC function and outline our current understanding of the mechanisms that regulate these phosphorylation sites.
Collapse
Affiliation(s)
- Michael Freeley
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College, Dublin, Ireland.
| | | | | |
Collapse
|
33
|
Abstract
Nestled at the tip of a branch of the kinome, protein kinase C (PKC) family members are poised to transduce signals emanating from the cell surface. Cell membranes provide the platform for PKC function, supporting the maturation of PKC through phosphorylation, its allosteric activation by binding specific lipids, and, ultimately, promoting the downregulation of the enzyme. These regulatory mechanisms precisely control the level of signaling-competent PKC in the cell. Disruption of this regulation results in pathophysiological states, most notably cancer, where PKC levels are often grossly altered. This review introduces the PKC family and then focuses on recent advances in understanding the cellular regulation of its diacylglycerol-regulated members.
Collapse
Affiliation(s)
- Alexandra C Newton
- Dept. of Pharmacology, Univ. of California at San Diego, La Jolla, 92093, USA.
| |
Collapse
|
34
|
Gould CM, Kannan N, Taylor SS, Newton AC. The chaperones Hsp90 and Cdc37 mediate the maturation and stabilization of protein kinase C through a conserved PXXP motif in the C-terminal tail. J Biol Chem 2009; 284:4921-35. [PMID: 19091746 PMCID: PMC2643500 DOI: 10.1074/jbc.m808436200] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 12/16/2008] [Indexed: 12/29/2022] Open
Abstract
The life cycle of protein kinase C (PKC) is tightly controlled by mechanisms that mature the enzyme, sustain the activation-competent enzyme, and degrade the enzyme. Here we show that a conserved PXXP motif (Kannan, N., Haste, N., Taylor, S. S., and Neuwald, A. F. (2007) Proc. Natl. Acad. Sci. U. S. A. 104, 1272-1277), in the C-terminal tail of AGC (c-AMP-dependent protein kinase/protein kinase G/protein kinase C) kinases, controls the processing phosphorylation of conventional and novel PKC isozymes, a required step in the maturation of the enzyme into a signaling-competent species. Mutation of both Pro-616 and Pro-619 to Ala in the conventional PKC betaII abolishes the phosphorylation and activity of the kinase. Co-immunoprecipitation studies reveal that conventional and novel, but not atypical, PKC isozymes bind the chaperones Hsp90 and Cdc37 through a PXXP-dependent mechanism. Inhibitors of Hsp90 and Cdc37 significantly reduce the rate of processing phosphorylation of PKC. Of the two C-terminal sites processed by phosphorylation, the hydrophobic motif, but not the turn motif, is regulated by Hsp90. Overlay of purified Hsp90 onto a peptide array containing peptides covering the catalytic domain of PKC betaII identified regions surrounding the PXXP segment, but not the PXXP motif itself, as major binding determinants for Hsp90. These Hsp90-binding regions, however, are tethered to the C-terminal tail via a "molecular clamp" formed between the PXXP motif and a conserved Tyr (Tyr-446) in the alphaE-helix. Disruption of the clamp by mutation of the Tyr to Ala recapitulates the phosphorylation defect of mutating the PXXP motif. These data are consistent with a model in which a molecular clamp created by the PXXP motif in the C-terminal tail and determinants in the alphaE-helix of the catalytic domain allows the chaperones Hsp90 and Cdc37 to bind newly synthesized PKC, a required event in the processing of PKC by phosphorylation.
Collapse
Affiliation(s)
- Christine M Gould
- Pharmacology Department, University of California, San Diego, La Jolla, California 92039-0721, USA
| | | | | | | |
Collapse
|
35
|
Colón-González F, Leskow FC, Kazanietz MG. Identification of an autoinhibitory mechanism that restricts C1 domain-mediated activation of the Rac-GAP alpha2-chimaerin. J Biol Chem 2008; 283:35247-57. [PMID: 18826946 DOI: 10.1074/jbc.m806264200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Chimaerins are a family of GTPase activating proteins (GAPs) for the small G-protein Rac that have gained recent attention due to their important roles in development, cancer, neuritogenesis, and T-cell function. Like protein kinase C isozymes, chimaerins possess a C1 domain capable of binding phorbol esters and the lipid second messenger diacylglycerol (DAG) in vitro. Here we identified an autoinhibitory mechanism in alpha2-chimaerin that restricts access of phorbol esters and DAG, thereby limiting its activation. Although phorbol 12-myristate 13-acetate (PMA) caused limited translocation of wild-type alpha2-chimaerin to the plasma membrane, deletion of either N- or C-terminal regions greatly sensitize alpha2-chimaerin for intracellular redistribution and activation. Based on modeling analysis that revealed an occlusion of the ligand binding site in the alpha2-chimaerin C1 domain, we identified key amino acids that stabilize the inactive conformation. Mutation of these sites renders alpha2-chimaerin hypersensitive to C1 ligands, as reflected by its enhanced ability to translocate in response to PMA and to inhibit Rac activity and cell migration. Notably, in contrast to PMA, epidermal growth factor promotes full translocation of alpha2-chimaerin in a phospholipase C-dependent manner, but not of a C1 domain mutant with reduced affinity for DAG (P216A-alpha2-chimaerin). Therefore, DAG generation and binding to the C1 domain are required but not sufficient for epidermal growth factor-induced alpha2-chimaerin membrane association. Our studies suggest a role for DAG in anchoring rather than activation of alpha2-chimaerin. Like other DAG/phorbol ester receptors, including protein kinase C isozymes, alpha2-chimaerin is subject to autoinhibition by intramolecular contacts, suggesting a highly regulated mechanism for the activation of this Rac-GAP.
Collapse
Affiliation(s)
- Francheska Colón-González
- Department of Pharmacology and Institute for Translational Medicine and Therapeutics (ITMAT), University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6160, USA
| | | | | |
Collapse
|
36
|
Abstract
Protein kinase C (PKC) is a family of kinases that plays diverse roles in many cellular functions, notably proliferation, differentiation, and cell survival. PKC is processed by phosphorylation and regulated by cofactor binding and subcellular localization. Extensive detail is available on the molecular mechanisms that regulate the maturation, activation, and signaling of PKC. However, less information is available on how signaling is terminated both from a global perspective and isozyme-specific differences. To target PKC therapeutically, various ATP-competitive inhibitors have been developed, but this method has problems with specificity. One possible new approach to developing novel, specific therapeutics for PKC would be to target the signaling termination pathways of the enzyme. This review focuses on the new developments in understanding how PKC signaling is terminated and how current drug therapies as well as information obtained from the recent elucidation of various PKC structures and down-regulation pathways could be used to develop novel and specific therapeutics for PKC.
Collapse
Affiliation(s)
- Christine M. Gould
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093-0721
| | - Alexandra C. Newton
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093-0721
| |
Collapse
|
37
|
House SL, Melhorn SJ, Newman G, Doetschman T, Schultz JEJ. The protein kinase C pathway mediates cardioprotection induced by cardiac-specific overexpression of fibroblast growth factor-2. Am J Physiol Heart Circ Physiol 2007; 293:H354-65. [PMID: 17337596 DOI: 10.1152/ajpheart.00804.2006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Elucidation of protective mechanisms against ischemia-reperfusion injury is vital to the advancement of therapeutics for ischemic heart disease. Our laboratory has previously shown that cardiac-specific overexpression of fibroblast growth factor-2 (FGF2) results in increased recovery of contractile function and decreased infarct size following ischemia-reperfusion injury and has established a role for the mitogen-activated protein kinase (MAPK) signaling cascade in the cardioprotective effect of FGF2. We now show an additional role for the protein kinase C (PKC) signaling cascade in the mediation of FGF2-induced cardioprotection. Overexpression of FGF2 (FGF2 Tg) in the heart resulted in decreased translocation of PKC-delta but had no effect on PKC-alpha, -epsilon, or -zeta. In addition, multiple alterations in PKC isoform translocation occur during ischemia-reperfusion injury in FGF2 Tg hearts as assessed by Western blot analysis and confocal immunofluorescent microscopy. Treatment of FGF2 Tg and nontransgenic (NTg) hearts with the PKC inhibitor bisindolylmaleimide (1 micromol/l) revealed the necessity of PKC signaling for FGF2-induced reduction of contractile dysfunction and myocardial infarct size following ischemia-reperfusion injury. Western blot analysis of FGF2 Tg and NTg hearts subjected to ischemia-reperfusion injury in the presence of a PKC pathway inhibitor (bisindolylmaleimide, 1 micromol/l), an mitogen/extracellular signal-regulated kinase/extracellular signal-regulated kinase (MEK/ERK) pathway inhibitor (U-0126, 2.5 micromol/l), or a p38 pathway inhibitor (SB-203580, 2 micromol/l) revealed a complicated signaling network between the PKC and MAPK signaling cascades that may participate in FGF2-induced cardioprotection. Together, these data suggest that FGF2-induced cardioprotection is mediated via a PKC-dependent pathway and that the PKC and MAPK signaling cascades are integrally connected downstream of FGF2.
Collapse
Affiliation(s)
- Stacey L House
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, 231 Albert Sabin Way, ML 0575, Cincinnati, OH 45267, USA
| | | | | | | | | |
Collapse
|
38
|
Abstract
Protein kinase C (PKC) comprises a superfamily of isoenzymes, many of which are activated by cofactors such as diacylglycerol and phosphatidylserine. In order to be capable of activation, PKC must first undergo a series of phosphorylations. In turn, activated PKC phosphorylates a wide variety of intracellular target proteins and has multiple functions in signal transduced cellular regulation. A role for PKC activation had been noted in several renal diseases, but two that have had most investigation are diabetic nephropathy and kidney cancer. In diabetic nephropathy, an elevation in diacylglycerol and/or other cofactor stimulants leads to an increase in activity of certain PKC isoforms, changes that are linked to the development of dysfunctional vasculature. The ability of isoform-specific PKC inhibitors to antagonize diabetes-induced vascular disease is a new avenue for treatment of this disorder. In the development and progressive invasiveness of kidney cancer, increased activity of several specific isoforms of PKC has been noted. It is thought that this may promote the kidney cancer's inherent resistance to apoptosis, in natural regression or after treatments, or it may promote the invasiveness of renal cancers via cellular differentiation pathways. In general, however, a more complete understanding of the functions of individual PKC isoforms in the kidney, and development or recognition of specific inhibitors or promoters of their activation, will be necessary to apply this knowledge for treatment of cellular dysregulation in renal disease.
Collapse
Affiliation(s)
- Jun Li
- Discipline of Molecular and Cellular Pathology, School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | | |
Collapse
|
39
|
Gao T, Newton AC. Invariant Leu preceding turn motif phosphorylation site controls the interaction of protein kinase C with Hsp70. J Biol Chem 2006; 281:32461-8. [PMID: 16954220 DOI: 10.1074/jbc.m604076200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heat shock proteins play important roles in regulating signal transduction in cells by associating with, and stabilizing, diverse signaling molecules, including protein kinases. Previously, we have shown that heat shock protein Hsp70 associates with protein kinase C (PKC) via an interaction that is triggered by dephosphorylation at the turn phosphorylation motif. Here we have identified an invariant residue in the carboxyl terminus of PKC that mediates the binding to Hsp70. Specifically, we show that Hsp70 binds to Leu (Leu-640) immediately preceding the conserved turn motif autophosphorylation site (Thr-641) in PKC betaII. Co-immunoprecipitation experiments reveal that mutation of Leu-640 to Gly decreases the interaction of Hsp70 with PKC betaII. This weakened interaction between Hsp70 and the mutant PKCs results in accumulation of dephosphorylated PKC in the detergent-insoluble fraction of cells. In addition, the Hsp70-binding mutant is considerably more sensitive to down-regulation compared with WT PKC: disruption of Hsp70 binding leads to accelerated dephosphorylation and enhanced ubiquitination of mutant PKC upon phorbol ester treatment. Last, pulse-chase experiments demonstrate that Hsp70 preferentially binds the species of mature PKC that has become dephosphorylated compared with the newly synthesized protein that has yet to be phosphorylated. Thus, Hsp70 binds a hydrophobic residue preceding the turn motif, protecting PKC from down-regulation and sustaining the signaling lifetime of the kinase.
Collapse
Affiliation(s)
- Tianyan Gao
- Department of Pharmacology, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | |
Collapse
|
40
|
Bokhari SM, Zhou L, Karasek MA, Paturi SG, Chaudhuri V. Regulation of skin microvasculature angiogenesis, cell migration, and permeability by a specific inhibitor of PKCalpha. J Invest Dermatol 2006; 126:460-7. [PMID: 16374459 DOI: 10.1038/sj.jid.5700071] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Activation of protein kinase C (PKC) induces phenotypic changes in the morphology of microvascular endothelial cells that affect major functions of the microvasculature. These functions include the first stages of sprouting in angiogenesis, cell migration following wounding, and vascular permeability. The specific isoform(s) of PKC responsible for each of these changes has not been previously identified. In this study, we used two inflammatory agents, IL-1beta and phorbol myristic acetate, to activate PKC isozymes and specific inhibitors of PKCalpha (Gö6976) and PKCbeta (hispidin) to distinguish how each of these isoform(s) controls angiogenesis, wound healing, and permeability. In all cases, only inhibition of PKCalpha inhibited each of these functions when compared to the inhibition of PKCbeta. Additional analysis of the mechanism of action of Gö6976 (RT-PCR, Western blots, and immunohistochemistry) of the changes in the phosphorylated and nonphosphorylated forms of PKCalpha in the cell membrane and cytoplasm confirmed the specificity of PKCalpha inhibition by Gö6976. These studies therefore indicate a specific and a regulatory role of the PKCalpha isoform in three major endothelial cell functions that are important in the maintenance of microvascular homeostasis.
Collapse
Affiliation(s)
- Sirosh M Bokhari
- Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | |
Collapse
|
41
|
Joy SV, Scates AC, Bearelly S, Dar M, Taulien CA, Goebel JA, Cooney MJ. Ruboxistaurin, a protein kinase C beta inhibitor, as an emerging treatment for diabetes microvascular complications. Ann Pharmacother 2005; 39:1693-9. [PMID: 16160002 DOI: 10.1345/aph.1e572] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE To review current clinical data regarding the pharmacologic actions of ruboxistaurin (LY333531) mesylate, an inhibitor of protein kinase C (PKC) beta, and its role to potentially reduce the development and/or the progression of diabetic microvascular complications. DATA SOURCES Primary literature was obtained via a MEDLINE search (1966-August 2004) and through review of pertinent abstracts and presentations at major medical meetings. STUDY SELECTION AND DATA EXTRACTION Literature relevant to PKC physiology, the pharmacokinetics of ruboxistaurin, and data evaluating the use of ruboxistaurin in treating diabetic microvascular complications in human and relevant animal models was reviewed. DATA SYNTHESIS PKC is part of a group of intracellular signaling molecules activated in response to various specific hormonal, neuronal, and growth factor stimuli. Hyperglycemia leads to PKC beta 1 and 2 isoform activation, which experimentally has been shown to contribute to the development and progression of diabetic microvascular complications (retinopathy, nephropathy, neuropathy) through various biochemical mechanisms. Animal and/or human studies using ruboxistaurin mesylate, a novel, highly selective inhibitor of PKC beta, have shown delay in the progression and, in some cases, reversal of diabetic retinopathy, nephropathy, and neuropathy. CONCLUSIONS Ruboxistaurin mesylate, by inhibiting excessive activation of certain PKC isoforms, has the potential to reduce the burden of microvascular complications for patients with diabetes.
Collapse
Affiliation(s)
- Scott V Joy
- Department of Medicine, Duke University Medical Center, Durham, NC 27705-0493, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Sieczkarski SB, Whittaker GR. Characterization of the host cell entry of filamentous influenza virus. Arch Virol 2005; 150:1783-96. [PMID: 15959836 DOI: 10.1007/s00705-005-0558-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2003] [Accepted: 04/11/2005] [Indexed: 10/25/2022]
Abstract
Most laboratory-adapted strains of influenza virus exist as spheres of approximately 100 nm in diameter, which are well established to enter cells by endocytosis in a pH-dependent manner. However, influenza virus isolated from the lungs of infected individuals is believed to exist as predominantly filamentous particles, up to several micrometers in length. Here, we have attempted an initial characterization of the entry of purified influenza virus filaments into host cells--in comparison to more commonly studied spherical forms of the virus. We demonstrate that the internalization of filamentous influenza virus particles is delayed, relative to spherical particles, and that this delay is a result of morphological rather than strain differences. The filamentous influenza particles appear to retain their dependence on low-pH for entry, as demonstrated by a vacuolar-ATPase inhibitor, and viral trafficking to late endosomes, as demonstrated by the requirement for protein kinase C function. However, our data suggest that the endocytic uptake of the filamentous virus particles may be dynamin-independent, unlike spherical virions. Overall, these data provide a view of the entry of influenza virus in its filamentous morphology, demonstrating potential differences between the endocytosis of spherical virions in vitro and filamentous virions in vivo.
Collapse
Affiliation(s)
- S B Sieczkarski
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
43
|
Chen YW, Lang ML, Wade WF. Protein kinase C-alpha and -delta are required for FcalphaR (CD89) trafficking to MHC class II compartments and FcalphaR-mediated antigen presentation. Traffic 2004; 5:577-94. [PMID: 15260828 DOI: 10.1111/j.1600-0854.2004.00202.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Studies have demonstrated that receptor-mediated signaling, receptor/antigen complex trafficking, and major histocompatibility complex class II compartments (MIIC) are critically related to antigen presentation to CD4+ T cells. In this study, we investigated the role of protein kinase C (PKC) in FcalphaR/gammagamma (CD89, human IgA receptor)-mediated internalization of immune complexes and subsequent antigen presentation. The classical and novel PKC inhibitor, Calphostin C, inhibits FcalphaR-mediated antigen presentation and interaction of MIIC and cargo vesicle (receptor and antigen). PKC-alpha, PKC-delta, and PKC-epsilon were recruited to lipid rafts following FcalphaR crosslinking, the extent of which was determined by the phenotype of the gamma chain. Mutant gamma chain with an FcgammaRIIA ITAM (immunoreceptor tyrosine-based activation motif) insert was less able to recruit PKC and trigger antigen presentation. Both PKC isoform-specific peptide inhibitors and short interfering RNA (siRNA) showed that PKC-alpha and PKC-delta, but not PKC-epsilon, were required for association of cargo vesicle and MIIC and for FcalphaR-mediated and soluble antigen presentation. Inhibition of PKC (classical and novel) did not alter major histocompatibility class II biosynthesis, assembly, transport, or plasma membrane stability. PKC's role in facilitating interaction of cargo vesicle and MIIC is likely due to regulation of vesicle biology required for fusion of cargo vesicles to MIIC.
Collapse
Affiliation(s)
- Yih-Wen Chen
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, NH 03756, USA
| | | | | |
Collapse
|
44
|
Johnson JA. Differential inhibition by alpha and epsilonPKC pseudosubstrate sequences: a putative mechanism for preferential PKC activation in neonatal cardiac myocytes. Life Sci 2004; 74:3153-72. [PMID: 15081580 DOI: 10.1016/j.lfs.2003.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2003] [Accepted: 11/19/2003] [Indexed: 10/26/2022]
Abstract
The aims of the current study were: 1) to determine if the epsilonPKC pseudosubstrate peptide (epsilonphi) (NH(2)-RKRQGAVRRRVHQVNG-COOH) could be used as an epsilonPKC-selective inhibitor in neonatal cardiac myocytes (NCMs) and 2) to determine if differences in the alpha and epsilonPKC autoinhibitory pseudosubstrate mechanisms could play roles in alpha and epsilonPKC-selective functions. Introduction of the epsilonphi into NCMs by transient permeabilization modestly attenuated 3 nM 4-beta PMA-induced slowing of contraction rate, an epsilonPKC mediated response (Circ Res. 76:654-663; J. Biol. Chem. 271:24962-24966). In contrast, the alphaPKC pseudosubstrate peptide (alphaphi) (NH(2)-RFARKGALRQKNVHEVK-COOH) was 6- to 10-fold more potent at antagonizing the 3 nM 4-beta PMA-induced slowing of contraction rate. Addition of purified PKC to the particulate cell fraction of NCMs promoted (32)P incorporation into 3 proteins of approximately 18, approximately 46 and approximately 97 kDa. The alphaphi antagonized these phosphorylations with IC(50) values of 1 - 5 microM. These IC(50) values were 1.8 - 4.7-fold lower than those observed for the epsilonphi. In in vitro phosphorylation assays with recombinant alpha or epsilon PKC isozymes the phi failed to inhibit the PKC isozyme as potently as the alphaphi peptide but both the alphaphi and the epsilonphi were equally effective inhibitors of the recombinant alphaPKC isozyme. In addition, in vitro cleavage of the epsilonphi by the protease Arg-C in lysates from NCMs treated with 3 nM 4-beta PMA was greatly enhanced when compared to that of the alphaPKC isozyme. Our studies suggest that the epsilonphi cannot be used as a selective inhibitor of the epsilonPKC isozyme in NCMs and that there are differences in the epsilonPKC and alphaPKC autoinhibitory pseudosubstrate mechanisms.
Collapse
Affiliation(s)
- John A Johnson
- The Department of Pharmacology and Toxicology, School of Medicine and The Program in Cell Signaling, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912-2300, USA.
| |
Collapse
|
45
|
Leontieva OV, Black JD. Identification of Two Distinct Pathways of Protein Kinase Cα Down-regulation in Intestinal Epithelial Cells. J Biol Chem 2004; 279:5788-801. [PMID: 14638691 DOI: 10.1074/jbc.m308375200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signal transduction pathways are controlled by desensitization mechanisms, which can affect receptors and/or downstream signal transducers. It has long been recognized that members of the protein kinase C (PKC) family of signal transduction molecules undergo down-regulation in response to activation. Previous reports have indicated that key steps in PKCalpha desensitization include caveolar internalization, priming site dephosphorylation, ubiquitination of the dephosphorylated protein, and degradation by the proteasome. In the current study, comparative analysis of PKCalpha processing induced by the PKC agonists phorbol 12-myristate 13-acetate and bryostatin 1 in IEC-18 rat intestinal epithelial cells demonstrates that: (a) at least two pathways of PKCalpha down-regulation can co-exist within cells, and (b) a single PKC agonist can activate both pathways at the same time. Using a combined biochemical and morphological approach, we identify a novel pathway of PKCalpha desensitization that involves ubiquitination of mature, fully phosphorylated activated enzyme at the plasma membrane and subsequent down-regulation by the proteasome. The phosphatase inhibitors okadaic acid and calyculin A accelerated PKCalpha down-regulation and inhibitors of vesicular trafficking did not prevent degradation of the protein, indicating that neither internalization nor priming site dephosphorylation are requisite intermediate steps in this ubiquitin/proteasome dependent pathway of PKCalpha down-regulation. Instead, caveolar trafficking and dephosphorylation are involved in a second, proteasome-independent mechanism of PKCalpha desensitization in this system. Our findings highlight subcellular distribution and phosphorylation state as critical determinants of PKCalpha desensitization pathways.
Collapse
Affiliation(s)
- Olga V Leontieva
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | |
Collapse
|
46
|
Parmentier JH, Gandhi GK, Wiggins MT, Saeed AE, Bourgoin SG, Malik KU. Protein kinase Czeta regulates phospholipase D activity in rat-1 fibroblasts expressing the alpha1A adrenergic receptor. BMC Cell Biol 2004; 5:4. [PMID: 14736339 PMCID: PMC324395 DOI: 10.1186/1471-2121-5-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2003] [Accepted: 01/21/2004] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Phenylephrine (PHE), an alpha1 adrenergic receptor agonist, increases phospholipase D (PLD) activity, independent of classical and novel protein kinase C (PKC) isoforms, in rat-1 fibroblasts expressing alpha1A adrenergic receptors. The aim of this study was to determine the contribution of atypical PKCzeta to PLD activation in response to PHE in these cells. RESULTS PHE stimulated a PLD activity as demonstrated by phosphatidylethanol production. PHE increased PKCzeta translocation to the particulate cell fraction in parallel with a time-dependent decrease in its activity. PKCzeta activity was reduced at 2 and 5 min and returned to a sub-basal level within 10-15 min. Ectopic expression of kinase-dead PKCzeta, but not constitutively active PKCzeta, potentiated PLD activation elicited by PHE. A cell-permeable pseudosubstrate inhibitor of PKCzeta reduced basal PKCzeta activity and abolished PHE-induced PLD activation. CONCLUSION alpha1A adrenergic receptor stimulation promotes the activation of a PLD activity by a mechanism dependent on PKCzeta; Our data also suggest that catalytic activation of PKCzeta is not required for PLD stimulation.
Collapse
Affiliation(s)
- Jean-Hugues Parmentier
- Department of Pharmacology and Center for Connective Tissue Diseases and Vascular Biology, College of Medicine, The University of Tennessee Health Science Center, 874 Union Avenue, Memphis, TN 38163, USA
| | - Gautam K Gandhi
- Department of Pharmacology and Center for Connective Tissue Diseases and Vascular Biology, College of Medicine, The University of Tennessee Health Science Center, 874 Union Avenue, Memphis, TN 38163, USA
| | - Monique T Wiggins
- Department of Pharmacology and Center for Connective Tissue Diseases and Vascular Biology, College of Medicine, The University of Tennessee Health Science Center, 874 Union Avenue, Memphis, TN 38163, USA
| | - Abdelwahab E Saeed
- Department of Pharmacology and Center for Connective Tissue Diseases and Vascular Biology, College of Medicine, The University of Tennessee Health Science Center, 874 Union Avenue, Memphis, TN 38163, USA
| | - Sylvain G Bourgoin
- Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHUQ, Universite Laval, Sainte-Foy, QC, Canada
| | - Kafait U Malik
- Department of Pharmacology and Center for Connective Tissue Diseases and Vascular Biology, College of Medicine, The University of Tennessee Health Science Center, 874 Union Avenue, Memphis, TN 38163, USA
| |
Collapse
|
47
|
Tisdale EJ, Wang J, Silver RB, Artalejo CR. Atypical protein kinase C plays a critical role in protein transport from pre-Golgi intermediates. J Biol Chem 2003; 278:38015-21. [PMID: 12871960 DOI: 10.1074/jbc.m305381200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The small GTPase Rab2 requires atypical protein kinase C iota/lambda (PKCiota/lambda) kinase activity to promote vesicle budding from normal rat kidney cell microsomes (Tisdale, E. J. (2000) Traffic 1, 702-712). The released vesicles lack anterograde-directed cargo but contain coat protein I (COPI) and the recycling protein p53/p58, suggesting that the vesicles traffic in the retrograde pathway. In this study, we have directly characterized the role of PKCiota/lambda in the early secretory pathway. A peptide corresponding to the unique PKCiota/lambda pseudosubstrate domain was introduced into an in vitro assay that efficiently reconstitutes transport of vesicular stomatitis virus glycoprotein from the endoplasmic reticulum to the cis-medial Golgi compartments. This peptide blocked transport in a dose-dependent manner. Moreover, normal rat kidney cells incubated with Rab2 and the pseudosubstrate peptide displayed abundant swollen or dilated vesicles that contained Rab2, PKCiota/lambda, beta-COP, and p53/p58. Because Rab2, beta-COP, and p53/p58 are marker proteins for pre-Golgi intermediates (vesicular tubular clusters,VTCs), most probably the swollen vesicles are derived from VTCs. Similar results were obtained when the assays were supplemented with kinase-dead PKCiota/lambda (W274K). Both the pseudosubstrate peptide and kinase-dead PKCiota/lambda in tandem with Rab2 caused sustained membrane association of PKCiota/lambda, suggesting that reverse translocation was inhibited. Importantly, the inhibitory phenotype of kinase-dead PKCiota/lambda was reversed by PKCiota/lambda wild type. These combined results indicate that PKCiota/lambda is essential for protein transport in the early secretory pathway and suggest that PKCiota/lambda kinase activity is required to promote Rab2-mediated vesicle budding at a VTC subcompartment enriched in recycling cargo.
Collapse
Affiliation(s)
- Ellen J Tisdale
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | | | |
Collapse
|
48
|
Hauger RL, Olivares-Reyes JA, Braun S, Catt KJ, Dautzenberg FM. Mediation of corticotropin releasing factor type 1 receptor phosphorylation and desensitization by protein kinase C: a possible role in stress adaptation. J Pharmacol Exp Ther 2003; 306:794-803. [PMID: 12734388 DOI: 10.1124/jpet.103.050088] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Protein kinase C (PKC)-mediated desensitization of the corticotropin releasing factor type 1 (CRF1) receptor was investigated in human retinoblastoma Y79 and transfected COS-7 cells. Because stimulation of Y79 cells with CRF resulted in large ( approximately 30-fold) increases in intracellular cAMP accumulation without changing inositol phosphate levels, the CRF1 receptor expressed in retinoblastoma cells couples to Gs, but not to Gq, and predominantly signals via the protein kinase A cascade. Direct activation of PKC by treatment with the phorbol ester phorbol 12-myristate 13-acetate (PMA) or 1,2-dioctanoyl-sn-glycerol (DOG) desensitized CRF1 receptors in Y79 cells, reducing the maximum for CRF- (but not forskolin)-stimulated cAMP accumulation by 56.3 +/- 1.2% and 40.4 +/- 2.1%, respectively (p < 0.001). Pretreating Y79 cells with the PKC inhibitor bisindolylmaleimide I (BIM) markedly inhibited PMA's desensitizing action on CRF-stimulated cAMP accumulation, but did not affect homologous CRF1 receptor desensitization. Retinoblastoma cells were found to express PKCalpha, betaI, betaII, delta, lambda, and RACK1. When alpha and beta isoforms of PKC were down-regulated 80 to 90% by a 48-h PMA exposure, PMA-induced CRF1 receptor desensitization was abolished. In transfected COS-7 cells the magnitude of CRF1 receptor phosphorylation after a 5-min exposure to PMA was 2.32 +/- 0.21-fold greater compared with the basal level. Pretreating COS-7 cells with BIM abolished PMA-induced CRF1 receptor phosphorylation. These studies demonstrate that protein kinase C (possibly alpha and beta isoforms) has an important role in the phosphorylation and heterologous desensitization of the CRF1 receptor.
Collapse
Affiliation(s)
- Richard L Hauger
- Department of Veternas Affairs Healthcare System and Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093-0603, USA.
| | | | | | | | | |
Collapse
|
49
|
Miki T, Miura T, Tanno M, Sakamoto J, Kuno A, Genda S, Matsumoto T, Ichikawa Y, Shimamoto K. Interruption of signal transduction between G protein and PKC-epsilon underlies the impaired myocardial response to ischemic preconditioning in postinfarct remodeled hearts. Mol Cell Biochem 2003; 247:185-93. [PMID: 12841647 DOI: 10.1023/a:1024124016053] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have recently shown that the protective mechanism of ischemic preconditioning (PC) is impaired in the myocardium that survived infarction and underwent postinfarct ventricular remodeling. In this study, we examined the hypothesis that failure of PC to activate PKC-epsilon underlies the refractoriness of the remodeling heart to PC. Circumflex coronary arteries were ligated in rabbits to induce infarction and subsequent ventricular remodeling, and only sham operations were performed in controls. Hearts were isolated before (i.e. 4 days later) or after (i.e. 2 weeks later) remodeling of the left ventricle and used for isolated buffer-perfused heart experiments. Myocardial infarction was induced in isolated hearts by 30 min global ischemia/2 h reperfusion, and its size was measured by tetrazolium staining. Using separate groups of hearts, tissue biopsies were taken before and after PC, and PKC translocation was assessed by Western blotting. Areas infarcted in vivo by coronary ligation (CL) were excluded from subsequent infarct size/PKC analyses. In the hearts 4 days after CL, PC with 2 cycles of 5 min ischemia/5 min reperfusion induced PKC-epsilon translocation from cytosol to particulate fractions and limited infarct size to 40% of control value. In the hearts remodeled 2 weeks after CL, PC failed to induce PKC-epsilon translocation and infarct size limitation. In this group, PKC activity and hemodynamic responses to adenosine were similar to those in sham-operated controls. When remodeling after CL was prevented by valsartan infusion (10 mg/kg/day), an angiotensin II type 1 (AT1) receptor blocker, PC could induce both infarct limitation and PKC-epsilon translocation. The present results suggest that persistent activation of AT1 receptors during remodeling disturbed the PC signaling between G proteins and PKC-epsilon, which underlies the refractoriness of the remodeled myocardium to PC.
Collapse
Affiliation(s)
- Takayuki Miki
- Second Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Newton AC. Regulation of the ABC kinases by phosphorylation: protein kinase C as a paradigm. Biochem J 2003; 370:361-71. [PMID: 12495431 PMCID: PMC1223206 DOI: 10.1042/bj20021626] [Citation(s) in RCA: 596] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2002] [Revised: 12/13/2002] [Accepted: 12/20/2002] [Indexed: 01/02/2023]
Abstract
Phosphorylation plays a central role in regulating the activation and signalling lifetime of protein kinases A, B (also known as Akt) and C. These kinases share three conserved phosphorylation motifs: the activation loop segment, the turn motif and the hydrophobic motif. This review focuses on how phosphorylation at each of these sites regulates the maturation, signalling and down-regulation of PKC as a paradigm for how these sites control the function of the ABC kinases.
Collapse
Affiliation(s)
- Alexandra C Newton
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093-0640, USA.
| |
Collapse
|