1
|
Berner B, Daoutsali G, Melén E, Remper N, Weszelovszká E, Rothnie A, Hedfalk K. Successful strategies for expression and purification of ABC transporters. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1867:184401. [PMID: 39537006 DOI: 10.1016/j.bbamem.2024.184401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
ATP-binding cassette (ABC) transporters are proteins responsible for active transport of various compounds, from small ions to macromolecules, across membranes. Proteins from this superfamily also pump drugs out of the cell resulting in multidrug resistance. Based on the cellular functions of ABC-transporters they are commonly associated with diseases like cancer and cystic fibrosis. To understand the molecular mechanism of this critical family of integral membrane proteins, structural characterization is a powerful tool which in turn requires successful recombinant production of stable and functional protein in good yields. In this review we have used high resolution structures of ABC transporters as a measure of successful protein production and summarized strategies for prokaryotic and eukaryotic proteins, respectively. In general, Escherichia coli is the most frequently used host for production of prokaryotic ABC transporters while human embryonic kidney 293 (HEK293) cells are the preferred host system for eukaryotic proteins. Independent of origin, at least two-steps of purification were required after solubilization in the most used detergent DDM. The purification tag was frequently cleaved off before structural characterization using cryogenic electron microscopy, or crystallization and X-ray analysis for prokaryotic proteins.
Collapse
Affiliation(s)
- Bea Berner
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Georgia Daoutsali
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Emilia Melén
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Natália Remper
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Emma Weszelovszká
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Alice Rothnie
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| | - Kristina Hedfalk
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden.
| |
Collapse
|
2
|
Banerjee A, Pata J, Chaptal V, Boumendjel A, Falson P, Prasad R. Structure, function, and inhibition of catalytically asymmetric ABC transporters: Lessons from the PDR subfamily. Drug Resist Updat 2023; 71:100992. [PMID: 37567064 DOI: 10.1016/j.drup.2023.100992] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/20/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
ATP-binding cassette (ABC) superfamily comprises a large group of ubiquitous transmembrane proteins that play a crucial role in transporting a diverse spectrum of substrates across cellular membranes. They participate in a wide array of physiological and pathological processes including nutrient uptake, antigen presentation, toxin elimination, and drug resistance in cancer and microbial cells. ABC transporters couple ATP binding and hydrolysis to undergo conformational changes allowing substrate translocation. Within this superfamily, a set of ABC transporters has lost the capacity to hydrolyze ATP at one of their nucleotide-binding sites (NBS), called the non-catalytic NBS, whose importance became evident with extensive biochemistry carried out on yeast pleiotropic drug resistance (PDR) transporters. Recent single-particle cryogenic electron microscopy (cryo-EM) advances have further catapulted our understanding of the architecture of these pumps. We provide here a comprehensive overview of the structural and functional aspects of catalytically asymmetric ABC pumps with an emphasis on the PDR subfamily. Furthermore, given the increasing evidence of efflux-mediated antifungal resistance in clinical settings, we also discuss potential grounds to explore PDR transporters as therapeutic targets.
Collapse
Affiliation(s)
- Atanu Banerjee
- Amity Institute of Biotechnology and Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurugram, India.
| | - Jorgaq Pata
- Drug Resistance & Membrane Proteins group, CNRS-Lyon 1 University Laboratory 5086, IBCP, Lyon, France
| | - Vincent Chaptal
- Drug Resistance & Membrane Proteins group, CNRS-Lyon 1 University Laboratory 5086, IBCP, Lyon, France
| | | | - Pierre Falson
- Drug Resistance & Membrane Proteins group, CNRS-Lyon 1 University Laboratory 5086, IBCP, Lyon, France.
| | - Rajendra Prasad
- Amity Institute of Biotechnology and Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurugram, India.
| |
Collapse
|
3
|
Badiee SA, Isu UH, Khodadadi E, Moradi M. The Alternating Access Mechanism in Mammalian Multidrug Resistance Transporters and Their Bacterial Homologs. MEMBRANES 2023; 13:568. [PMID: 37367772 PMCID: PMC10305233 DOI: 10.3390/membranes13060568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023]
Abstract
Multidrug resistance (MDR) proteins belonging to the ATP-Binding Cassette (ABC) transporter group play a crucial role in the export of cytotoxic drugs across cell membranes. These proteins are particularly fascinating due to their ability to confer drug resistance, which subsequently leads to the failure of therapeutic interventions and hinders successful treatments. One key mechanism by which multidrug resistance (MDR) proteins carry out their transport function is through alternating access. This mechanism involves intricate conformational changes that enable the binding and transport of substrates across cellular membranes. In this extensive review, we provide an overview of ABC transporters, including their classifications and structural similarities. We focus specifically on well-known mammalian multidrug resistance proteins such as MRP1 and Pgp (MDR1), as well as bacterial counterparts such as Sav1866 and lipid flippase MsbA. By exploring the structural and functional features of these MDR proteins, we shed light on the roles of their nucleotide-binding domains (NBDs) and transmembrane domains (TMDs) in the transport process. Notably, while the structures of NBDs in prokaryotic ABC proteins, such as Sav1866, MsbA, and mammalian Pgp, are identical, MRP1 exhibits distinct characteristics in its NBDs. Our review also emphasizes the importance of two ATP molecules for the formation of an interface between the two binding sites of NBD domains across all these transporters. ATP hydrolysis occurs following substrate transport and is vital for recycling the transporters in subsequent cycles of substrate transportation. Specifically, among the studied transporters, only NBD2 in MRP1 possesses the ability to hydrolyze ATP, while both NBDs of Pgp, Sav1866, and MsbA are capable of carrying out this reaction. Furthermore, we highlight recent advancements in the study of MDR proteins and the alternating access mechanism. We discuss the experimental and computational approaches utilized to investigate the structure and dynamics of MDR proteins, providing valuable insights into their conformational changes and substrate transport. This review not only contributes to an enhanced understanding of multidrug resistance proteins but also holds immense potential for guiding future research and facilitating the development of effective strategies to overcome multidrug resistance, thus improving therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA; (S.A.B.); (U.H.I.); (E.K.)
| |
Collapse
|
4
|
Moosavi F, Damghani T, Ghazi S, Pirhadi S. In silico screening of c-Met tyrosine kinase inhibitors targeting nucleotide and drug-substrate binding sites of ABCB1 as potential MDR reversal agents. J Recept Signal Transduct Res 2022; 42:549-561. [PMID: 35704515 DOI: 10.1080/10799893.2022.2086988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 12/15/2022]
Abstract
PURPOSE Cancer is a significant public health problem and ranks as a leading cause of death globally. Multidrug resistance (MDR) affects the therapeutic potential of conventional chemotherapeutic agents in cancer chemotherapy. Receptor tyrosine kinases (RTKs) are enzymes whose aberrant activation contributes to the tumorigenesis of various types of cancers. The ability of several RTKs, such as c-Met, to reverse ABC transporters mediated MDR was shown before. We aimed to explore the ability of c-Met inhibitors to circumvent MDR in cancer by inhibiting the ABCB1 transporter using in silico studies. METHODS Docking virtual screening of several potent and structurally diverse c-Met inhibitors were applied to find repurposed candidates to target the ATP binding sites and drug-substrate binding pockets of the ABCB1 transporter. The selected candidate was subjected to molecular dynamics simulations. RESULTS Based on docking findings, among 19 clinical c-Met inhibitors, several drugs, particularly golvatinib, exerted the affinity to both ATP binding sites in the nucleotide-binding domains (NBDs) as well as the drug-substrate binding site in the transmembrane domains (TMDs). Moreover, several non-clinical c-Met inhibitors obtained from the ChEMBL database had strong interactions with TMDs and NBDs, among which CHEMBL1950194 and CHEMBL2385194 compounds showed the highest binding affinity, respectively. Additionally, as a potential repositioning drug, MD simulation studies of golvatinib, corroborated the docking results. CONCLUSION We applied docking and molecular dynamics simulations to screen the potential c-Met inhibitors as the MDR reversing agents targeting ATP and drug-substrate binding sites, and the results suggested several repurposed candidate drugs.
Collapse
Affiliation(s)
- Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Damghani
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Ghazi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Pirhadi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Maltbaek JH, Cambier S, Snyder JM, Stetson DB. ABCC1 transporter exports the immunostimulatory cyclic dinucleotide cGAMP. Immunity 2022; 55:1799-1812.e4. [PMID: 36070769 PMCID: PMC9561016 DOI: 10.1016/j.immuni.2022.08.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/06/2022] [Accepted: 08/10/2022] [Indexed: 11/05/2022]
Abstract
The DNA sensor cyclic GMP-AMP synthase (cGAS) is important for antiviral and anti-tumor immunity. cGAS generates cyclic GMP-AMP (cGAMP), a diffusible cyclic dinucleotide that activates the antiviral response through the adaptor protein stimulator of interferon genes (STING). cGAMP cannot passively cross cell membranes, but recent advances have established a role for extracellular cGAMP as an "immunotransmitter" that can be imported into cells. However, the mechanism by which cGAMP exits cells remains unknown. Here, we identifed ABCC1 as a direct, ATP-dependent cGAMP exporter in mouse and human cells. We show that ABCC1 overexpression enhanced cGAMP export and limited STING signaling and that loss of ABCC1 reduced cGAMP export and potentiated STING signaling. We demonstrate that ABCC1 deficiency exacerbated cGAS-dependent autoimmunity in the Trex1-/- mouse model of Aicardi-Goutières syndrome. Thus, ABCC1-mediated cGAMP export is a key regulatory mechanism that limits cell-intrinsic activation of STING and ameliorates STING-dependent autoimmune disease.
Collapse
Affiliation(s)
- Joanna H Maltbaek
- Departments of Immunology and Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Stephanie Cambier
- Departments of Immunology and Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Jessica M Snyder
- Department of Comparative Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Daniel B Stetson
- Departments of Immunology and Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA.
| |
Collapse
|
6
|
Brandt JN, Voss L, Rambo FM, Nicholson K, Thein JR, Fairchild L, Seabrook L, Lewis D, Guevara-Hernandez L, White ML, Sax L, Eichten V, Harper L, Hermann GJ. Asymmetric organelle positioning during epithelial polarization of C. elegans intestinal cells. Dev Biol 2022; 481:75-94. [PMID: 34597675 PMCID: PMC8665101 DOI: 10.1016/j.ydbio.2021.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/11/2021] [Accepted: 09/24/2021] [Indexed: 01/03/2023]
Abstract
While the epithelial cell cortex displays profound asymmetries in protein distribution and morphology along the apico-basal axis, the extent to which the cytoplasm is similarly polarized within epithelial cells remains relatively unexplored. We show that cytoplasmic organelles within C. elegans embryonic intestinal cells develop extensive apico-basal polarity at the time they establish cortical asymmetry. Nuclei and conventional endosomes, including early endosomes, late endosomes, and lysosomes, become polarized apically. Lysosome-related gut granules, yolk platelets, and lipid droplets become basally enriched. Removal of par-3 activity does not disrupt organelle positioning, indicating that cytoplasmic apico-basal asymmetry is independent of the PAR polarity pathway. Blocking the apical migration of nuclei leads to the apical positioning of gut granules and yolk platelets, whereas the asymmetric localization of conventional endosomes and lipid droplets is unaltered. This suggests that nuclear positioning organizes some, but not all, cytoplasmic asymmetries in this cell type. We show that gut granules become apically enriched when WHT-2 and WHT-7 function is disrupted, identifying a novel role for ABCG transporters in gut granule positioning during epithelial polarization. Analysis of WHT-2 and WHT-7 ATPase mutants is consistent with a WHT-2/WHT-7 heterodimer acting as a transporter in gut granule positioning. In wht-2(-) mutants, the polarized distribution of other organelles is not altered and gut granules do not take on characteristics of conventional endosomes that could have explained their apical mispositioning. During epithelial polarization wht-2(-) gut granules exhibit a loss of the Rab32/38 family member GLO-1 and ectopic expression of GLO-1 is sufficient to rescue the basal positioning of wht-2(-) and wht-7(-) gut granules. Furthermore, depletion of GLO-1 causes the mislocalization of the endolysosomal RAB-7 to gut granules and RAB-7 drives the apical mispositioning of gut granules when GLO-1, WHT-2, or WHT-7 function is disrupted. We suggest that ABC transporters residing on gut granules can regulate Rab dynamics to control organelle positioning during epithelial polarization.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Greg J. Hermann
- Corresponding author. Department of Biology, Lewis & Clark College, Portland, OR, USA, (G.J. Hermann)
| |
Collapse
|
7
|
Infield DT, Strickland KM, Gaggar A, McCarty NA. The molecular evolution of function in the CFTR chloride channel. J Gen Physiol 2021; 153:212705. [PMID: 34647973 PMCID: PMC8640958 DOI: 10.1085/jgp.202012625] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/11/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022] Open
Abstract
The ATP-binding cassette (ABC) transporter superfamily includes many proteins of clinical relevance, with genes expressed in all domains of life. Although most members use the energy of ATP binding and hydrolysis to accomplish the active import or export of various substrates across membranes, the cystic fibrosis transmembrane conductance regulator (CFTR) is the only known animal ABC transporter that functions primarily as an ion channel. Defects in CFTR, which is closely related to ABCC subfamily members that bear function as bona fide transporters, underlie the lethal genetic disease cystic fibrosis. This article seeks to integrate structural, functional, and genomic data to begin to answer the critical question of how the function of CFTR evolved to exhibit regulated channel activity. We highlight several examples wherein preexisting features in ABCC transporters were functionally leveraged as is, or altered by molecular evolution, to ultimately support channel function. This includes features that may underlie (1) construction of an anionic channel pore from an anionic substrate transport pathway, (2) establishment and tuning of phosphoregulation, and (3) optimization of channel function by specialized ligand–channel interactions. We also discuss how divergence and conservation may help elucidate the pharmacology of important CFTR modulators.
Collapse
Affiliation(s)
- Daniel T Infield
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA
| | | | - Amit Gaggar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL.,Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL.,Birmingham Veterans Administration Medical Center, Birmingham, AL
| | - Nael A McCarty
- Department of Pediatrics, Emory University, Atlanta, GA.,Children's Healthcare of Atlanta Center for Cystic Fibrosis and Airways Disease Research, Emory University, Atlanta, GA
| |
Collapse
|
8
|
Jeevitha Priya M, Vidyalakshmi S, Rajeswari M. Study on reversal of ABCB1 mediated multidrug resistance in Colon cancer by acetogenins: An in- silico approach. J Biomol Struct Dyn 2020; 40:4273-4284. [PMID: 33280531 DOI: 10.1080/07391102.2020.1855249] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Multi-Drug Resistance (MDR) exerted by tumor cells is majorly due to the overexpression of ATP Binding cassette transporters such as ABCB1/P-glycoprotein (P-gp). Annonaceous acetogenins (AGEs) exert anticancer activity by strongly inhibiting NADH oxidase of cancer cells. The present in silico study aims at screening a potent MDR inhibitor among acetogenins from the plant Annona muricata. Twenty-four AGEs were selected and screened for their pharmacokinetic properties. An inward facing conformation of P-gp is required for understanding the interaction of AGEs at the drug binding region and hence the human P-gp protein was modeled. The selected compounds were then docked with the ATP binding site and the drug binding site of modeled human P-gp. Annonacin A.1, Annohexocin.1 and Annomuricin E.1 docked better with high MM/GBSA dG binding in the drug binding region as compared with the conventional drugs. These compounds had a better docking score as compared with control inhibitor drugs at the ATP binding region. The complexes were subjected to MD simulation and Annonacin A was stable throughout the simulation period. Therefore, Annonacin A might act as a competitive inhibitor for the chemo drugs for binding at the drug binding region of P-gp. Hence it is capable of decreasing the efflux of chemo drugs out of the cells by P-Glycoprotein/ABCB1/MDR1. With this computational study, it is concluded that this compound might potentially reverse MDR, and hence can be taken forward for validation studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- M Jeevitha Priya
- Department of Biotechnology, PSG College of Technology, Coimbatore, Tamil Nadu, India
| | - S Vidyalakshmi
- Department of Biotechnology, PSG College of Technology, Coimbatore, Tamil Nadu, India
| | - M Rajeswari
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India
| |
Collapse
|
9
|
Banerjee A, Moreno A, Pata J, Falson P, Prasad R. ABCG: a new fold of ABC exporters and a whole new bag of riddles! ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 123:163-191. [PMID: 33485482 DOI: 10.1016/bs.apcsb.2020.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ATP-binding cassette (ABC) superfamily comprises membrane transporters that power the active transport of substrates across biological membranes. These proteins harness the energy of nucleotide binding and hydrolysis to fuel substrate translocation via an alternating-access mechanism. The primary structural blueprint is relatively conserved in all ABC transporters. A transport-competent ABC transporter is essentially made up of two nucleotide-binding domains (NBDs) and two transmembrane domains (TMDs). While the NBDs are conserved in their primary sequence and form at their interface two nucleotide-binding sites (NBSs) for ATP binding and hydrolysis, the TMDs are variable among different families and form the translocation channel. Transporters catalyzing the efflux of substrates from the cells are called exporters. In humans, they range from A to G subfamilies, with the B, C and G subfamilies being involved in chemoresistance. The recently elucidated structures of ABCG5/G8 followed by those of ABCG2 highlighted a novel structural fold that triggered extensive research. Notably, suppressor genetics in the orthologous yeast Pleiotropic Drug Resistance (PDR) subfamily proteins have pointed to a crosstalk between TMDs and NBDs modulating substrate export. Considering the structural information provided by their neighbors from the G subfamily, these studies provide mechanistic keys and posit a functional role for the non-hydrolytic NBS found in several ABC exporters. The present chapter provides an overview of structural and functional aspects of ABCG proteins with a special emphasis on the yeast PDR systems.
Collapse
Affiliation(s)
- Atanu Banerjee
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, Haryana, India
| | - Alexis Moreno
- Drug Resistance & Membrane Proteins Team, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS-Lyon 1 University UMR5086, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Jorgaq Pata
- Drug Resistance & Membrane Proteins Team, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS-Lyon 1 University UMR5086, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Pierre Falson
- Drug Resistance & Membrane Proteins Team, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS-Lyon 1 University UMR5086, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Rajendra Prasad
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, Haryana, India; Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurgaon, Haryana, India
| |
Collapse
|
10
|
Stockner T, Gradisch R, Schmitt L. The role of the degenerate nucleotide binding site in type I ABC exporters. FEBS Lett 2020; 594:3815-3838. [PMID: 33179257 PMCID: PMC7756269 DOI: 10.1002/1873-3468.13997] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/26/2020] [Accepted: 10/15/2020] [Indexed: 12/18/2022]
Abstract
ATP‐binding cassette (ABC) transporters are fascinating molecular machines that are capable of transporting a large variety of chemically diverse compounds. The energy required for translocation is derived from binding and hydrolysis of ATP. All ABC transporters share a basic architecture and are composed of two transmembrane domains and two nucleotide binding domains (NBDs). The latter harbor all conserved sequence motifs that hallmark the ABC transporter superfamily. The NBDs form the nucleotide binding sites (NBSs) in their interface. Transporters with two active NBSs are called canonical transporters, while ABC exporters from eukaryotic organisms, including humans, frequently have a degenerate NBS1 containing noncanonical residues that strongly impair ATP hydrolysis. Here, we summarize current knowledge on degenerate ABC transporters. By integrating structural information with biophysical and biochemical evidence of asymmetric function, we develop a model for the transport cycle of degenerate ABC transporters. We will elaborate on the unclear functional advantages of a degenerate NBS.
Collapse
Affiliation(s)
- Thomas Stockner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Ralph Gradisch
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
11
|
Banerjee A, Moreno A, Khan MF, Nair R, Sharma S, Sen S, Mondal AK, Pata J, Orelle C, Falson P, Prasad R. Cdr1p highlights the role of the non-hydrolytic ATP-binding site in driving drug translocation in asymmetric ABC pumps. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183131. [PMID: 31734312 DOI: 10.1016/j.bbamem.2019.183131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/02/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022]
Abstract
ATP-binding cassette (ABC) transporters couple ATP binding and hydrolysis to the translocation of allocrites across membranes. Two shared nucleotide-binding sites (NBS) participate in this cycle. In asymmetric ABC pumps, only one of them hydrolyzes ATP, and the functional role of the other remains unclear. Using a drug-based selection strategy on the transport-deficient mutant L529A in the transmembrane domain of the Candida albicans pump Cdr1p; we identified a spontaneous secondary mutation restoring drug-translocation. The compensatory mutation Q1005H was mapped 60 Å away, precisely in the ABC signature sequence of the non-hydrolytic NBS. The same was observed in the homolog Cdr2p. Both the mutant and suppressor proteins remained ATPase active, but remarkably, the single Q1005H mutant displayed a two-fold reduced ATPase activity and a two-fold increased drug-resistance as compared to the wild-type protein, pointing at a direct control of the non-hydrolytic NBS in substrate-translocation through ATP binding in asymmetric ABC pumps.
Collapse
Affiliation(s)
- Atanu Banerjee
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, India; School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| | - Alexis Moreno
- Drug Resistance & Membrane Proteins Team, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS-Lyon 1 University UMR5086, Institut de Biologie et Chimie des Protéines, Lyon, France
| | | | - Remya Nair
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, India
| | - Suman Sharma
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, India
| | - Sobhan Sen
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Alok Kumar Mondal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Jorgaq Pata
- Drug Resistance & Membrane Proteins Team, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS-Lyon 1 University UMR5086, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Cédric Orelle
- Bacterial Nucleotide-binding Proteins: Resistance to Antibiotics and New Enzymes Team, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS-Lyon 1 University UMR5086, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Pierre Falson
- Bacterial Nucleotide-binding Proteins: Resistance to Antibiotics and New Enzymes Team, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS-Lyon 1 University UMR5086, Institut de Biologie et Chimie des Protéines, Lyon, France.
| | - Rajendra Prasad
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, India; Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurgaon, India.
| |
Collapse
|
12
|
Karasik A, Váradi A, Szeri F. In vitro transport of methotrexate by Drosophila Multidrug Resistance-associated Protein. PLoS One 2018; 13:e0205657. [PMID: 30312334 PMCID: PMC6185855 DOI: 10.1371/journal.pone.0205657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 09/30/2018] [Indexed: 01/10/2023] Open
Abstract
Methotrexate (MTX) is a widely used chemotherapeutic agent, immune suppressant and antimalarial drug. It is a substrate of several human ABC proteins that confer multidrug resistance to cancer cells and determine compartmentalization of a wide range of physiological metabolites and endo or xenobiotics, by their primary active transport across biological membranes. The substrate specificity and tissue distribution of these promiscuous human ABC transporters show a high degree of redundancy, providing robustness to these key physiological and pharmacological processes, such as the elimination of toxins, e.g. methotrexate from the body. A similar network of proteins capable of transporting methotrexate has been recently suggested to exist in Drosophila melanogaster. One of the key players of this putative network is Drosophila Multidrug-resistance Associated Protein (DMRP). DMRP has been shown to be a highly active and promiscuous ABC transporter, capable of transporting various organic anions. Here we provide the first direct evidence that DMRP, expressed alone in a heterologous system lacking other, potentially functionally overlapping D. melanogaster organic anion transporters, is indeed able to transport methotrexate. Our in vitro results support the hypothesized but debated role of DMRP in in vivo methotrexate excretion.
Collapse
Affiliation(s)
- Agnes Karasik
- Institute of Enzymology, Research Center for Natural Sciences—Hungarian Academy of Sciences, Budapest, Hungary
| | - András Váradi
- Institute of Enzymology, Research Center for Natural Sciences—Hungarian Academy of Sciences, Budapest, Hungary
| | - Flóra Szeri
- Institute of Enzymology, Research Center for Natural Sciences—Hungarian Academy of Sciences, Budapest, Hungary
- * E-mail:
| |
Collapse
|
13
|
Targeting Nucleotide Binding Domain of Multidrug Resistance-associated Protein-1 (MRP1) for the Reversal of Multi Drug Resistance in Cancer. Sci Rep 2018; 8:11973. [PMID: 30097643 PMCID: PMC6086895 DOI: 10.1038/s41598-018-30420-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/25/2018] [Indexed: 12/12/2022] Open
Abstract
Multidrug resistance (MDR) is the major cause, by which cancer cells expel the drugs out, developing a challenge against the current chemotherapeutic drugs regime. This mechanism is attributed to the over expression of ABC transporters like MRP1 on the surface of cells. Since nucleotide binding domains (NBD) of ABC transporters are the site of ATP binding and hydrolysis, thereby in this study we have targeted NBD1 of MRP1using molecular docking and molecular dynamic simulations (MDS). The compounds present in the FDA approved library were docked against NBD1 of the human multidrug resistance associated protein 1 (PDB ID: 2CBZ). For the docking studies, Standard Precision and Extra Precision methods were employed. After the EP docking studies, ligands showed an extremely low docking score that was indicative of very high binding affinity of the ligands to the NBD. Apart from the low docking score, another short listing criterion in simulation studies was the interaction of incoming ligand with the desired conserved residues of NDB involved in ATP binding and hydrolysis. Based on these measures, potassium citrate (DB09125) and technetium Tc-99m medronate (DB09138) were chosen and subjected to 100 ns simulation studies. From the MDS study we concluded that between these two compounds, potassium citrate is a better candidate for targeting MRP1.
Collapse
|
14
|
Weigl KE, Conseil G, Rothnie AJ, Arama M, Tsfadia Y, Cole SPC. An Outward-Facing Aromatic Amino Acid Is Crucial for Signaling between the Membrane-Spanning and Nucleotide-Binding Domains of Multidrug Resistance Protein 1 (MRP1; ABCC1). Mol Pharmacol 2018; 94:1069-1078. [PMID: 29976562 DOI: 10.1124/mol.118.112615] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/28/2018] [Indexed: 11/22/2022] Open
Abstract
The 190-kDa human MRP1 is an ATP-binding cassette multidrug and multiorganic anion efflux transporter. The 17 transmembrane helices of its three membrane-spanning domains, together with its two nucleotide binding domains (NBDs), form a stabilizing network of domain-domain interactions that ensure substrate binding in the cytoplasm is efficiently coupled to ATP binding and hydrolysis to effect solute efflux into the extracellular milieu. Here we show that Ala substitution of Phe583 in an outward-facing loop between the two halves of the transporter essentially eliminates the binding of multiple organic anions by MRP1. Conservative substitutions with Trp and Tyr had little or no effect. The F583A mutation also caused a substantial increase in orthovanadate-induced trapping of azidoADP by the cytoplasmic NBDs of MRP1, although the binding of ATP was unaffected. These observations indicate that the loss of the aromatic side chain at position 583 impairs the release of ADP and thus effectively locks the transporter in a low-affinity solute binding state. Phe583 is the first outward-facing amino acid in MRP1 found to be critical for its transport function. Our data provide evidence for long-range coupling, presumably via allosteric interaction, between this outward-facing region of MRP1 and both the solute binding and nucleotide binding regions of the transporter. Cryoelectron microscopy structural and homology models of MRP1 indicate that the orientation of the Phe583 side chain is altered by ATP binding but are currently unable to provide insights into the molecular mechanism by which this long-range signaling is propagated.
Collapse
Affiliation(s)
- Kevin E Weigl
- Department of Pathology and Molecular Medicine (K.E.W., S.P.C.C.) and Division of Cancer Biology and Genetics (G.C., A.J.R., S.P.C.C.), Queen's University Cancer Research Institute, Kingston, Ontario, Canada; and Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel (M.A., Y.T.)
| | - Gwenaëlle Conseil
- Department of Pathology and Molecular Medicine (K.E.W., S.P.C.C.) and Division of Cancer Biology and Genetics (G.C., A.J.R., S.P.C.C.), Queen's University Cancer Research Institute, Kingston, Ontario, Canada; and Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel (M.A., Y.T.)
| | - Alice J Rothnie
- Department of Pathology and Molecular Medicine (K.E.W., S.P.C.C.) and Division of Cancer Biology and Genetics (G.C., A.J.R., S.P.C.C.), Queen's University Cancer Research Institute, Kingston, Ontario, Canada; and Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel (M.A., Y.T.)
| | - May Arama
- Department of Pathology and Molecular Medicine (K.E.W., S.P.C.C.) and Division of Cancer Biology and Genetics (G.C., A.J.R., S.P.C.C.), Queen's University Cancer Research Institute, Kingston, Ontario, Canada; and Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel (M.A., Y.T.)
| | - Yossi Tsfadia
- Department of Pathology and Molecular Medicine (K.E.W., S.P.C.C.) and Division of Cancer Biology and Genetics (G.C., A.J.R., S.P.C.C.), Queen's University Cancer Research Institute, Kingston, Ontario, Canada; and Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel (M.A., Y.T.)
| | - Susan P C Cole
- Department of Pathology and Molecular Medicine (K.E.W., S.P.C.C.) and Division of Cancer Biology and Genetics (G.C., A.J.R., S.P.C.C.), Queen's University Cancer Research Institute, Kingston, Ontario, Canada; and Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel (M.A., Y.T.)
| |
Collapse
|
15
|
Structural basis for dual-mode inhibition of the ABC transporter MsbA. Nature 2018; 557:196-201. [PMID: 29720648 DOI: 10.1038/s41586-018-0083-5] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 03/20/2018] [Indexed: 11/08/2022]
Abstract
The movement of core-lipopolysaccharide across the inner membrane of Gram-negative bacteria is catalysed by an essential ATP-binding cassette transporter, MsbA. Recent structures of MsbA and related transporters have provided insights into the molecular basis of active lipid transport; however, structural information about their pharmacological modulation remains limited. Here we report the 2.9 Å resolution structure of MsbA in complex with G907, a selective small-molecule antagonist with bactericidal activity, revealing an unprecedented mechanism of ABC transporter inhibition. G907 traps MsbA in an inward-facing, lipopolysaccharide-bound conformation by wedging into an architecturally conserved transmembrane pocket. A second allosteric mechanism of antagonism occurs through structural and functional uncoupling of the nucleotide-binding domains. This study establishes a framework for the selective modulation of ABC transporters and provides rational avenues for the design of new antibiotics and other therapeutics targeting this protein family.
Collapse
|
16
|
Karasik A, Ledwitch KV, Arányi T, Váradi A, Roberts A, Szeri F. Boosted coupling of ATP hydrolysis to substrate transport upon cooperative estradiol-17-β-D-glucuronide binding in a Drosophila ATP binding cassette type-C transporter. FASEB J 2018; 32:669-680. [PMID: 28939593 DOI: 10.1096/fj.201700606r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
ATP binding cassette type-C (ABCC) transporters move molecules across cell membranes upon hydrolysis of ATP; however, their coupling of ATP hydrolysis to substrate transport remains elusive. Drosophila multidrug resistance-associated protein (DMRP) is the functional ortholog of human long ABCC transporters, with similar substrate and inhibitor specificity, but higher activity. Exploiting its high activity, we kinetically dissected the catalytic mechanism of DMRP by using E2-d-glucuronide (E2G), the physiologic substrate of human ABCC. We examined the DMRP-mediated interdependence of ATP and E2G in biochemical assays. We observed E2G-dependent ATPase activity to be biphasic at subsaturating ATP concentrations, which implies at least 2 E2G binding sites on DMRP. Furthermore, transport measurements indicated strong nonreciprocal cooperativity between ATP and E2G. In addition to confirming these findings, our kinetic modeling with the Complex Pathway Simulator indicated a 10-fold decrease in the E2G-mediated activation of ATP hydrolysis upon saturation of the second E2G binding site. Surprisingly, the binding of the second E2G allowed for substrate transport with a constant rate, which tightly coupled ATP hydrolysis to transport. In summary, we show that the second E2G binding-similar to human ABCC2-allosterically stimulates transport activity of DMRP. Our data suggest that this is achieved by a significant increase in the coupling of ATP hydrolysis to transport.-Karasik, A., Ledwitch, K. V., Arányi, T., Váradi, A., Roberts, A., Szeri, F. Boosted coupling of ATP hydrolysis to substrate transport upon cooperative estradiol-17-β-D-glucuronide binding in a Drosophila ATP binding cassette type-C transporter.
Collapse
Affiliation(s)
- Agnes Karasik
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | | | - Tamás Arányi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - András Váradi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Arthur Roberts
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia, USA
| | - Flóra Szeri
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
17
|
Johnson ZL, Chen J. ATP Binding Enables Substrate Release from Multidrug Resistance Protein 1. Cell 2017; 172:81-89.e10. [PMID: 29290467 DOI: 10.1016/j.cell.2017.12.005] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/02/2017] [Accepted: 11/30/2017] [Indexed: 10/18/2022]
Abstract
The multidrug resistance protein MRP1 is an ATP-driven pump that confers resistance to chemotherapy. Previously, we have shown that intracellular substrates are recruited to a bipartite binding site when the transporter rests in an inward-facing conformation. A key question remains: how are high-affinity substrates transferred across the membrane and released outside the cell? Using electron cryomicroscopy, we show here that ATP binding opens the transport pathway to the extracellular space and reconfigures the substrate-binding site such that it relinquishes its affinity for substrate. Thus, substrate is released prior to ATP hydrolysis. With this result, we now have a complete description of the conformational cycle that enables substrate transfer in a eukaryotic ABC exporter.
Collapse
Affiliation(s)
- Zachary Lee Johnson
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University and Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Jue Chen
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University and Howard Hughes Medical Institute, New York, NY 10065, USA.
| |
Collapse
|
18
|
Sorum B, Töröcsik B, Csanády L. Asymmetry of movements in CFTR's two ATP sites during pore opening serves their distinct functions. eLife 2017; 6:29013. [PMID: 28944753 PMCID: PMC5626490 DOI: 10.7554/elife.29013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/25/2017] [Indexed: 11/13/2022] Open
Abstract
CFTR, the chloride channel mutated in cystic fibrosis (CF) patients, is opened by ATP binding to two cytosolic nucleotide binding domains (NBDs), but pore-domain mutations may also impair gating. ATP-bound NBDs dimerize occluding two nucleotides at interfacial binding sites; one site hydrolyzes ATP, the other is inactive. The pore opens upon tightening, and closes upon disengagement, of the catalytic site following ATP hydrolysis. Extent, timing, and role of non-catalytic-site movements are unknown. Here we exploit equilibrium gating of a hydrolysis-deficient mutant and apply Φ value analysis to compare timing of opening-associated movements at multiple locations, from the cytoplasmic ATP sites to the extracellular surface. Marked asynchrony of motion in the two ATP sites reveals their distinct roles in channel gating. The results clarify the molecular mechanisms of functional cross-talk between canonical and degenerate ATP sites in asymmetric ABC proteins, and of the gating defects caused by two common CF mutations.
Collapse
Affiliation(s)
- Ben Sorum
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
| | - Beáta Töröcsik
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary.,MTA-SE Ion Channel Research Group, Semmelweis University, Budapest, Hungary
| | - László Csanády
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary.,MTA-SE Ion Channel Research Group, Semmelweis University, Budapest, Hungary
| |
Collapse
|
19
|
Laub KR, Marek M, Stanchev LD, Herrera SA, Kanashova T, Bourmaud A, Dittmar G, Günther Pomorski T. Purification and characterisation of the yeast plasma membrane ATP binding cassette transporter Pdr11p. PLoS One 2017; 12:e0184236. [PMID: 28922409 PMCID: PMC5602531 DOI: 10.1371/journal.pone.0184236] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/21/2017] [Indexed: 12/27/2022] Open
Abstract
The ATP binding cassette (ABC) transporters Pdr11p and its paralog Aus1p are expressed under anaerobic growth conditions at the plasma membrane of the yeast Saccharomyces cerevisiae and are required for sterol uptake. However, the precise mechanism by which these ABC transporters facilitate sterol movement is unknown. In this study, an overexpression and purification procedure was developed with the aim to characterise the Pdr11p transporter. Engineering of Pdr11p variants fused at the C terminus with green fluorescent protein (Pdr11p-GFP) and containing a FLAG tag at the N terminus facilitated expression analysis and one-step purification, respectively. The detergent-solubilised and purified protein displayed a stable ATPase activity with a broad pH optimum near 7.4. Mutagenesis of the conserved lysine to methionine (K788M) in the Walker A motif abolished ATP hydrolysis. Remarkably, and in contrast to Aus1p, ATPase activity of Pdr11p was insensitive to orthovanadate and not specifically stimulated by phosphatidylserine upon reconstitution into liposomes. Our results highlight distinct differences between Pdr11p and Aus1p and create an experimental basis for further biochemical studies of both ABC transporters to elucidate their function.
Collapse
Affiliation(s)
- Katrine Rude Laub
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Magdalena Marek
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Lyubomir Dimitrov Stanchev
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
- Department of Molecular Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Sara Abad Herrera
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
- Department of Molecular Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Tamara Kanashova
- Mass spectrometry core unit, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Adèle Bourmaud
- Proteome and Genome research laboratory, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Gunnar Dittmar
- Mass spectrometry core unit, Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Proteome and Genome research laboratory, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Thomas Günther Pomorski
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
- Department of Molecular Biochemistry, Ruhr University Bochum, Bochum, Germany
- * E-mail:
| |
Collapse
|
20
|
Hürlimann LM, Hohl M, Seeger MA. Split tasks of asymmetric nucleotide-binding sites in the heterodimeric ABC exporter EfrCD. FEBS J 2017; 284:1672-1687. [PMID: 28417533 DOI: 10.1111/febs.14065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 11/30/2022]
Abstract
Many heterodimeric ATP-binding cassette (ABC) exporters evolved asymmetric ATP-binding sites containing a degenerate site incapable of ATP hydrolysis due to noncanonical substitutions in conserved sequence motifs. Recent studies revealed that nucleotide binding to the degenerate site stabilizes contacts between the nucleotide-binding domains (NBDs) of the inward-facing transporter and regulates ATP hydrolysis at the consensus site via allosteric coupling mediated by the D-loops. However, it is unclear whether nucleotide binding to the degenerate site is strictly required for substrate transport. In this study, we examined the functional consequences of a systematic set of mutations introduced at the degenerate and consensus site of the multidrug efflux pump EfrCD of Enterococcus faecalis. Mutating motifs which differ among the two ATP-binding sites (Walker B, switch loop, and ABC signature) or which are involved in interdomain communication (D-loop and Q-loop) led to asymmetric results in the functional assays and were better tolerated at the degenerate site. This highlights the importance of the degenerate site to allosterically regulate the events at the consensus site. Mutating invariant motifs involved in ATP binding and NBD closure (A-loop and Walker A) resulted in equally reduced transport activities, regardless at which ATP-binding site they were introduced. In contrast to previously investigated heterodimeric ABC exporters, mutation of the degenerate site Walker A lysine completely inactivated ATPase activity and substrate transport, indicating that ATP binding to the degenerate site is essential for EfrCD. This study provides novel insights into the split tasks of asymmetric ATP-binding sites of heterodimeric ABC exporters.
Collapse
Affiliation(s)
- Lea M Hürlimann
- Institute of Medical Microbiology, University of Zurich, Switzerland
| | - Michael Hohl
- Institute of Medical Microbiology, University of Zurich, Switzerland
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zurich, Switzerland
| |
Collapse
|
21
|
Johnson ZL, Chen J. Structural Basis of Substrate Recognition by the Multidrug Resistance Protein MRP1. Cell 2017; 168:1075-1085.e9. [PMID: 28238471 DOI: 10.1016/j.cell.2017.01.041] [Citation(s) in RCA: 266] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/23/2017] [Accepted: 01/30/2017] [Indexed: 12/30/2022]
Abstract
The multidrug resistance protein MRP1 is an ATP-binding cassette (ABC) transporter that confers resistance to many anticancer drugs and plays a role in the disposition and efficacy of several opiates, antidepressants, statins, and antibiotics. In addition, MRP1 regulates redox homeostasis, inflammation, and hormone secretion. Using electron cryomicroscopy, we determined the molecular structures of bovine MRP1 in two conformations: an apo form at 3.5 Å without any added substrate and a complex form at 3.3 Å with one of its physiological substrates, leukotriene C4. These structures show that by forming a single bipartite binding site, MRP1 can recognize a spectrum of substrates with different chemical structures. We also observed large conformational changes induced by leukotriene C4, explaining how substrate binding primes the transporter for ATP hydrolysis. Structural comparison of MRP1 and P-glycoprotein advances our understanding of the common and unique properties of these two important molecules in multidrug resistance to chemotherapy.
Collapse
Affiliation(s)
- Zachary Lee Johnson
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University and the Howard Hughes Medical Institute, 1230 York Avenue, New York, NY 10065, USA
| | - Jue Chen
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University and the Howard Hughes Medical Institute, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
22
|
Esser L, Zhou F, Pluchino KM, Shiloach J, Ma J, Tang WK, Gutierrez C, Zhang A, Shukla S, Madigan JP, Zhou T, Kwong PD, Ambudkar SV, Gottesman MM, Xia D. Structures of the Multidrug Transporter P-glycoprotein Reveal Asymmetric ATP Binding and the Mechanism of Polyspecificity. J Biol Chem 2016; 292:446-461. [PMID: 27864369 DOI: 10.1074/jbc.m116.755884] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/15/2016] [Indexed: 12/25/2022] Open
Abstract
P-glycoprotein (P-gp) is a polyspecific ATP-dependent transporter linked to multidrug resistance in cancer; it plays important roles in determining the pharmacokinetics of many drugs. Understanding the structural basis of P-gp, substrate polyspecificity has been hampered by its intrinsic flexibility, which is facilitated by a 75-residue linker that connects the two halves of P-gp. Here we constructed a mutant murine P-gp with a shortened linker to facilitate structural determination. Despite dramatic reduction in rhodamine 123 and calcein-AM transport, the linker-shortened mutant P-gp possesses basal ATPase activity and binds ATP only in its N-terminal nucleotide-binding domain. Nine independently determined structures of wild type, the linker mutant, and a methylated P-gp at up to 3.3 Å resolution display significant movements of individual transmembrane domain helices, which correlated with the opening and closing motion of the two halves of P-gp. The open-and-close motion alters the surface topology of P-gp within the drug-binding pocket, providing a mechanistic explanation for the polyspecificity of P-gp in substrate interactions.
Collapse
Affiliation(s)
- Lothar Esser
- From the Laboratory of Cell Biology, Center for Cancer Research, NCI
| | - Fei Zhou
- From the Laboratory of Cell Biology, Center for Cancer Research, NCI
| | | | | | - Jichun Ma
- From the Laboratory of Cell Biology, Center for Cancer Research, NCI
| | - Wai-Kwan Tang
- From the Laboratory of Cell Biology, Center for Cancer Research, NCI
| | - Camilo Gutierrez
- From the Laboratory of Cell Biology, Center for Cancer Research, NCI
| | - Alex Zhang
- From the Laboratory of Cell Biology, Center for Cancer Research, NCI
| | - Suneet Shukla
- From the Laboratory of Cell Biology, Center for Cancer Research, NCI
| | - James P Madigan
- From the Laboratory of Cell Biology, Center for Cancer Research, NCI
| | - Tongqing Zhou
- the Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - Peter D Kwong
- the Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - Suresh V Ambudkar
- From the Laboratory of Cell Biology, Center for Cancer Research, NCI
| | | | - Di Xia
- From the Laboratory of Cell Biology, Center for Cancer Research, NCI,
| |
Collapse
|
23
|
Chaves LAP, Gadsby DC. Cysteine accessibility probes timing and extent of NBD separation along the dimer interface in gating CFTR channels. ACTA ACUST UNITED AC 2015; 145:261-83. [PMID: 25825169 PMCID: PMC4380215 DOI: 10.1085/jgp.201411347] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) channel opening and closing are driven by cycles of adenosine triphosphate (ATP) binding-induced formation and hydrolysis-triggered disruption of a heterodimer of its cytoplasmic nucleotide-binding domains (NBDs). Although both composite sites enclosed within the heterodimer interface contain ATP in an open CFTR channel, ATP hydrolysis in the sole catalytically competent site causes channel closure. Opening of the NBD interface at that site then allows ADP-ATP exchange. But how frequently, and how far, the NBD surfaces separate at the other, inactive composite site remains unclear. We assessed separation at each composite site by monitoring access of nucleotide-sized hydrophilic, thiol-specific methanothiosulfonate (MTS) reagents to interfacial target cysteines introduced into either LSGGQ-like ATP-binding cassette signature sequence (replacing equivalent conserved serines: S549 and S1347). Covalent MTS-dependent modification of either cysteine while channels were kept closed by the absence of ATP impaired subsequent opening upon ATP readdition. Modification while channels were opening and closing in the presence of ATP caused macroscopic CFTR current to decline at the same speed as when the unmodified channels shut upon sudden ATP withdrawal. These results suggest that the target cysteines can be modified only in closed channels; that after modification the attached MTS adduct interferes with ATP-mediated opening; and that modification in the presence of ATP occurs rapidly once channels close, before they can reopen. This interpretation was corroborated by the finding that, for either cysteine target, the addition of the hydrolysis-impairing mutation K1250R (catalytic site Walker A Lys) similarly slowed, by an order of magnitude, channel closing on ATP removal and the speed of modification by MTS reagent in ATP. We conclude that, in every CFTR channel gating cycle, the NBD dimer interface separates simultaneously at both composite sites sufficiently to allow MTS reagents to access both signature-sequence serines. Relatively rapid modification of S1347C channels by larger reagents-MTS-glucose, MTS-biotin, and MTS-rhodamine-demonstrates that, at the noncatalytic composite site, this separation must exceed 8 Å.
Collapse
Affiliation(s)
- Luiz A Poletto Chaves
- The Laboratory of Cardiac/Membrane Physiology, The Rockefeller University, New York, NY 10065
| | - David C Gadsby
- The Laboratory of Cardiac/Membrane Physiology, The Rockefeller University, New York, NY 10065
| |
Collapse
|
24
|
Arlanov R, Lang T, Jedlitschky G, Schaeffeler E, Ishikawa T, Schwab M, Nies AT. Functional characterization of common protein variants in the efflux transporter ABCC11 and identification of T546M as functionally damaging variant. THE PHARMACOGENOMICS JOURNAL 2015; 16:193-201. [PMID: 25896536 DOI: 10.1038/tpj.2015.27] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 02/23/2015] [Accepted: 03/02/2015] [Indexed: 11/09/2022]
Abstract
Multidrug resistance protein 8 (ABCC11) is an efflux transporter for anionic lipophilic compounds, conferring resistance to antiviral and anticancer agents like 5-fluorouracil (5-FU). ABCC11 missense variants may contribute to variability in drug response but functional consequences, except for the 'earwax variant' c.538G>A, are unknown. Using the 'Screen and Insert' technology, we generated human embryonic kidney 293 cells stably expressing ABCC11 missense variants frequently occurring in different ethnic populations: c.57G>A, c.538G>A, c.950C>A, c.1637C>T, c.1942G>A, c.4032A>G. A series of in silico prediction analyses and in vitro plasma membrane vesicle uptake, immunoblotting and immunolocalization experiments were undertaken to investigate functional consequences. We identified c.1637C>T (T546M), previously associated with 5-FU-related toxicity, as a novel functionally damaging ABCC11 variant exhibiting markedly reduced transport function of 5-FdUMP, the active cytotoxic metabolite of 5-FU. Detailed analysis of 14 subpopulations revealed highest allele frequencies of c.1637C>T in Europeans and Americans (up to 11%) compared with Africans and Asians (up to 3%).
Collapse
Affiliation(s)
- R Arlanov
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart and University of Tübingen, Stuttgart, Germany
| | - T Lang
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart and University of Tübingen, Stuttgart, Germany
| | - G Jedlitschky
- Department of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine of Greifswald, Greifswald, Germany
| | - E Schaeffeler
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart and University of Tübingen, Stuttgart, Germany
| | - T Ishikawa
- RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - M Schwab
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart and University of Tübingen, Stuttgart, Germany.,Department of Clinical Pharmacology, Institute of Experimental and Clinical Pharmacology and Toxicology, University Hospital of Tübingen, Tübingen, Germany
| | - A T Nies
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart and University of Tübingen, Stuttgart, Germany
| |
Collapse
|
25
|
Marek M, Silvestro D, Fredslund MD, Andersen TG, Pomorski TG. Serum albumin promotes ATP-binding cassette transporter-dependent sterol uptake in yeast. FEMS Yeast Res 2014; 14:1223-33. [DOI: 10.1111/1567-1364.12219] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/21/2014] [Accepted: 10/08/2014] [Indexed: 12/23/2022] Open
Affiliation(s)
- Magdalena Marek
- Centre for Membrane Pumps in Cells and Disease - PUMPKIN; Department of Plant and Environmental Sciences; University of Copenhagen; Frederiksberg C Denmark
| | - Daniele Silvestro
- Copenhagen Plant Science Center and the VILLUM Research Center ‘Plant Plasticity’; Department of Plant and Environmental Sciences; University of Copenhagen; Frederiksberg C, Copenhagen Denmark
| | - Maria D. Fredslund
- Centre for Membrane Pumps in Cells and Disease - PUMPKIN; Department of Plant and Environmental Sciences; University of Copenhagen; Frederiksberg C Denmark
| | - Tonni G. Andersen
- Department of Plant Molecular Biology, Biophore, UNIL-Sorge; University of Lausanne; Lausanne Switzerland
| | - Thomas G. Pomorski
- Centre for Membrane Pumps in Cells and Disease - PUMPKIN; Department of Plant and Environmental Sciences; University of Copenhagen; Frederiksberg C Denmark
| |
Collapse
|
26
|
Kunická T, Václavíková R, Hlaváč V, Vrána D, Pecha V, Rauš K, Trnková M, Kubáčková K, Ambruš M, Vodičková L, Vodička P, Souček P. Non-coding polymorphisms in nucleotide binding domain 1 in ABCC1 gene associate with transcript level and survival of patients with breast cancer. PLoS One 2014; 9:e101740. [PMID: 25078270 PMCID: PMC4117604 DOI: 10.1371/journal.pone.0101740] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 06/10/2014] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES ATP-Binding Cassette (ABC) transporters may cause treatment failure by transporting of anticancer drugs outside of the tumor cells. Multidrug resistance-associated protein 1 coded by the ABCC1 gene has recently been suggested as a potential prognostic marker in breast cancer patients. This study aimed to explore tagged haplotype covering nucleotide binding domain 1 of ABCC1 in relation with corresponding transcript levels in tissues and clinical phenotype of breast cancer patients. METHODS The distribution of twelve ABCC1 polymorphisms was assessed by direct sequencing in peripheral blood DNA (n = 540). RESULTS Tumors from carriers of the wild type genotype in rs35623 or rs35628 exhibited significantly lower levels of ABCC1 transcript than those from carriers of the minor allele (p = 0.003 and p = 0.004, respectively). The ABCC1 transcript levels significantly increased in the order CT-GT>CC-GT>CC-GG for the predicted rs35626-rs4148351 diplotype. Chemotherapy-treated patients carrying the T allele in rs4148353 had longer disease-free survival than those with the GG genotype (p = 0.043). On the other hand, hormonal therapy-treated patients with the AA genotype in rs35628 had significantly longer disease-free survival than carriers of the G allele (p = 0.012). CONCLUSIONS Taken together, our study shows that genetic variability in the nucleotide binding domain 1 has a significant impact on the ABCC1 transcript level in the target tissue and may modify survival of breast cancer patients.
Collapse
Affiliation(s)
- Tereza Kunická
- Department of Toxicogenomics, National Institute of Public Health, Prague, Czech Republic
- 3rd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Radka Václavíková
- Department of Toxicogenomics, National Institute of Public Health, Prague, Czech Republic
| | - Viktor Hlaváč
- Department of Toxicogenomics, National Institute of Public Health, Prague, Czech Republic
- 3rd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - David Vrána
- Department of Toxicogenomics, National Institute of Public Health, Prague, Czech Republic
- Department of Oncology, Palacky University Medical School and Teaching Hospital, Olomouc, Czech Republic
| | - Václav Pecha
- Institute for the Care for Mother and Child, Prague, Czech Republic
| | - Karel Rauš
- Institute for the Care for Mother and Child, Prague, Czech Republic
| | | | - Kateřina Kubáčková
- Department of Oncology, Motol University Hospital, Prague, Czech Republic
| | - Miloslav Ambruš
- Department of Radiotherapy and Oncology, Faculty Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Ludmila Vodičková
- Department of Toxicogenomics, National Institute of Public Health, Prague, Czech Republic
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Pavel Vodička
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pavel Souček
- Department of Toxicogenomics, National Institute of Public Health, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
27
|
Mishra S, Verhalen B, Stein RA, Wen PC, Tajkhorshid E, Mchaourab HS. Conformational dynamics of the nucleotide binding domains and the power stroke of a heterodimeric ABC transporter. eLife 2014; 3:e02740. [PMID: 24837547 PMCID: PMC4046567 DOI: 10.7554/elife.02740] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Multidrug ATP binding cassette (ABC) exporters are ubiquitous ABC transporters that extrude cytotoxic molecules across cell membranes. Despite recent progress in structure determination of these transporters, the conformational motion that transduces the energy of ATP hydrolysis to the work of substrate translocation remains undefined. Here, we have investigated the conformational cycle of BmrCD, a representative of the heterodimer family of ABC exporters that have an intrinsically impaired nucleotide binding site. We measured distances between pairs of spin labels monitoring the movement of the nucleotide binding (NBD) and transmembrane domains (TMD). The results expose previously unobserved structural intermediates of the NBDs arising from asymmetric configuration of catalytically inequivalent nucleotide binding sites. The two-state transition of the TMD, from an inward- to an outward-facing conformation, is driven exclusively by ATP hydrolysis. These findings provide direct evidence of divergence in the mechanism of ABC exporters.DOI: http://dx.doi.org/10.7554/eLife.02740.001.
Collapse
Affiliation(s)
- Smriti Mishra
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, United States
| | - Brandy Verhalen
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, United States
| | - Richard A Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, United States
| | - Po-Chao Wen
- Department of Biochemistry, College of Medicine, University of Illinois, Urbana, United States Center for Biophysics and Computational Biology, University of Illinois, Urbana, United States The Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Unites States
| | - Emad Tajkhorshid
- Department of Biochemistry, College of Medicine, University of Illinois, Urbana, United States Center for Biophysics and Computational Biology, University of Illinois, Urbana, United States The Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Unites States
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, United States
| |
Collapse
|
28
|
Abstract
Multidrug resistance presents one of the most important causes of cancer treatment failure. Numerous in vitro and in vivo data have made it clear that multidrug resistance is frequently caused by enhanced expression of ATP-binding cassette (ABC) transporters. ABC transporters are membrane-bound proteins involved in cellular defense mechanisms, namely, in outward transport of xenobiotics and physiological substrates. Their function thus prevents toxicity as carcinogenesis on one hand but may contribute to the resistance of tumor cells to a number of drugs including chemotherapeutics on the other. Within 48 members of the human ABC superfamily there are several multidrug resistance-associated transporters. Due to the well documented susceptibility of numerous drugs to efflux via ABC transporters it is highly desirable to assess the status of ABC transporters for individualization of treatment by their substrates. The multidrug resistance associated protein 1 (MRP1) encoded by ABCC1 gene is one of the most studied ABC transporters. Despite the fact that its structure and functions have already been explored in detail, there are significant gaps in knowledge which preclude clinical applications. Tissue-specific patterns of expression and broad genetic variability make ABCC1/MRP1 an optimal candidate for use as a marker or member of multi-marker panel for prediction of chemotherapy resistance. The purpose of this review was to summarize investigations about associations of gene and protein expression and genetic variability with prognosis and therapy outcome of major cancers. Major advances in the knowledge have been identified and future research directions are highlighted.
Collapse
Affiliation(s)
- Tereza Kunická
- Department of Toxicogenomics, National Institute of Public Health , Prague , Czech Republic
| | | |
Collapse
|
29
|
Iram SH, Cole SPC. Differential functional rescue of Lys(513) and Lys(516) processing mutants of MRP1 (ABCC1) by chemical chaperones reveals different domain-domain interactions of the transporter. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:756-65. [PMID: 24231430 DOI: 10.1016/j.bbamem.2013.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/24/2013] [Accepted: 11/04/2013] [Indexed: 12/15/2022]
Abstract
Multidrug resistance protein 1 (MRP1) extrudes drugs as well as pharmacologically and physiologically important organic anions across the plasma membrane in an ATP-dependent manner. We previously showed that Ala substitutions of Lys(513) and Lys(516) in the cytoplasmic loop (CL5) connecting transmembrane helix 9 (TM9) to TM10 cause misfolding of MRP1, abrogating its expression at the plasma membrane in transfected human embryonic kidney (HEK) cells. Exposure of HEK cells to the chemical chaperones glycerol, DMSO, polyethylene glycol (PEG) and 4-aminobutyric acid (4-PBA) improved levels of K513A to wild-type MRP1 levels but transport activity was only fully restored by 4-PBA or DMSO treatments. Tryptic fragmentation patterns and conformation-dependent antibody immunoreactivity of the transport-deficient PEG- and glycerol-rescued K513A proteins indicated that the second nucleotide binding domain (NBD2) had adopted a more open conformation than in wild-type MRP1. This structural change was accompanied by differences in ATP binding and hydrolysis but no changes in substrate Km. In contrast to K513A, K516A levels in HEK cells were not significantly enhanced by chemical chaperones. In more permissive insect cells, however, K516A levels were comparable to wild-type MRP1. Nevertheless, organic anion transport by K516A in insect cell membranes was reduced by >80% due to reduced substrate Km. Tryptic fragmentation patterns indicated a more open conformation of the third membrane spanning domain of MRP1. Thus, despite their close proximity to one another in CL5, Lys(513) and Lys(516) participate in different interdomain interactions crucial for the proper folding and assembly of MRP1.
Collapse
Affiliation(s)
- Surtaj H Iram
- Division of Cancer Biology and Genetics, Queen's University, Kingston, ON K7L 3N6, Canada; Department of Pathology & Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Susan P C Cole
- Division of Cancer Biology and Genetics, Queen's University, Kingston, ON K7L 3N6, Canada; Department of Pathology & Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
30
|
Abstract
Malfunction of cystic fibrosis transmembrane conductance regulator (CFTR), a member of the ABC protein superfamily that functions as an ATP-gated chloride channel, causes the lethal genetic disease, cystic fibrosis. This review focuses on the most recent findings on the gating mechanism of CFTR. Potential clinical relevance and implications to ABC transporter function are also discussed.
Collapse
Affiliation(s)
- Kang-Yang Jih
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri, USA
| | | |
Collapse
|
31
|
Sokolenko S, George S, Wagner A, Tuladhar A, Andrich JMS, Aucoin MG. Co-expression vs. co-infection using baculovirus expression vectors in insect cell culture: Benefits and drawbacks. Biotechnol Adv 2012; 30:766-81. [PMID: 22297133 PMCID: PMC7132753 DOI: 10.1016/j.biotechadv.2012.01.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 01/13/2012] [Accepted: 01/17/2012] [Indexed: 12/12/2022]
Abstract
The baculovirus expression vector system (BEVS) is a versatile and powerful platform for protein expression in insect cells. With the ability to approach similar post-translational modifications as in mammalian cells, the BEVS offers a number of advantages including high levels of expression as well as an inherent safety during manufacture and of the final product. Many BEVS products include proteins and protein complexes that require expression from more than one gene. This review examines the expression strategies that have been used to this end and focuses on the distinguishing features between those that make use of single polycistronic baculovirus (co-expression) and those that use multiple monocistronic baculoviruses (co-infection). Three major areas in which researchers have been able to take advantage of co-expression/co-infection are addressed, including compound structure-function studies, insect cell functionality augmentation, and VLP production. The core of the review discusses the parameters of interest for co-infection and co-expression with time of infection (TOI) and multiplicity of infection (MOI) highlighted for the former and the choice of promoter for the latter. In addition, an overview of modeling approaches is presented, with a suggested trajectory for future exploration. The review concludes with an examination of the gaps that still remain in co-expression/co-infection knowledge and practice.
Collapse
Affiliation(s)
- Stanislav Sokolenko
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | | | | | | | | |
Collapse
|
32
|
Functional analysis of nonsynonymous single nucleotide polymorphisms of multidrug resistance-associated protein 2 (ABCC2). Pharmacogenet Genomics 2011; 21:506-15. [PMID: 21691255 DOI: 10.1097/fpc.0b013e328348c786] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Multidrug resistance-associated protein 2 (MRP2; ABCC2) mediates the biliary excretion of glutathione, glucuronide, and sulfate conjugates of endobiotics and xenobiotics. Single nucleotide polymorphisms (SNPs) of MRP2 contribute to interindividual variability in drug disposition and ultimately in drug response. OBJECTIVES To characterize the transport function of human wild-type (WT) MRP2 and four SNP variants, S789F, A1450T, V417I, and T1477M. METHODS The four SNP variants were expressed in Sf9 cells using recombinant baculovirus infection. The kinetic parameters [Km, (μmol/l); V(max), (pmol/mg/min); the Hill coefficient] of ATP-dependent transport of leukotriene C(4) (LTC(4)), estradiol-3-glucuronide (E(2)3G), estradiol-17β-glucuronide (E(2)17G), and tauroursodeoxycholic acid (TUDC) were determined in Sf9-derived plasma membrane vesicles. Transport activity was normalized for expression level. RESULTS The V(max) for transport activity was decreased for all substrates for S789F, and for all substrates except E(2)17G for A1450T. V417I showed decreased apparent affinity for LTC(4), E(2)3G, and E(2)17G, whereas transport was similar between wild-type (WT) and T1477M, except for a modest increase in TUDC transport. Examination of substrate-stimulated MRP2-dependent ATPase activity of S789F and A1450T, SNPs located in MRP2 nucleotide-binding domains (NBDs), demonstrated significantly decreased ATPase activity and only modestly decreased affinity for ATP compared with WT. CONCLUSION SNPs in the NBDs (S789F in the D-loop of NBD1, or A1450T near the ABC signature motif of NBD2) variably decreased the transport of all substrates. V417I in membrane spanning domain 1 selectively decreased the apparent affinity for the glutathione and glucuronide conjugated substrates, whereas the T1477M SNP in the carboxyl terminus altered only TUDC transport.
Collapse
|
33
|
Nagao K, Takahashi K, Azuma Y, Takada M, Kimura Y, Matsuo M, Kioka N, Ueda K. ATP hydrolysis-dependent conformational changes in the extracellular domain of ABCA1 are associated with apoA-I binding. J Lipid Res 2011; 53:126-36. [PMID: 22028339 DOI: 10.1194/jlr.m019976] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
ATP-binding cassette protein A1 (ABCA1) plays a major role in cholesterol homeostasis and high-density lipoprotein (HDL) metabolism. Although it is predicted that apolipoprotein A-I (apoA-I) directly binds to ABCA1, the physiological importance of this interaction is still controversial and the conformation required for apoA-I binding is unclear. In this study, the role of the two nucleotide-binding domains (NBD) of ABCA1 in apoA-I binding was determined by inserting a TEV protease recognition sequence in the linker region of ABCA1. Analyses of ATP binding and occlusion to wild-type ABCA1 and various NBD mutants revealed that ATP binds equally to both NBDs and is hydrolyzed at both NBDs. The interaction with apoA-I and the apoA-I-dependent cholesterol efflux required not only ATP binding but also hydrolysis in both NBDs. NBD mutations and cellular ATP depletion decreased the accessibility of antibodies to a hemagglutinin (HA) epitope that was inserted at position 443 in the extracellular domain (ECD), suggesting that the conformation of ECDs is altered by ATP hydrolysis at both NBDs. These results suggest that ATP hydrolysis at both NBDs induces conformational changes in the ECDs, which are associated with apoA-I binding and cholesterol efflux.
Collapse
Affiliation(s)
- Kohjiro Nagao
- Laboratory of Cellular Biochemistry, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University , Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Szollosi A, Muallem DR, Csanády L, Vergani P. Mutant cycles at CFTR's non-canonical ATP-binding site support little interface separation during gating. ACTA ACUST UNITED AC 2011; 137:549-62. [PMID: 21576373 PMCID: PMC3105517 DOI: 10.1085/jgp.201110608] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel belonging to the adenosine triphosphate (ATP)-binding cassette (ABC) superfamily. ABC proteins share a common molecular mechanism that couples ATP binding and hydrolysis at two nucleotide-binding domains (NBDs) to diverse functions. This involves formation of NBD dimers, with ATP bound at two composite interfacial sites. In CFTR, intramolecular NBD dimerization is coupled to channel opening. Channel closing is triggered by hydrolysis of the ATP molecule bound at composite site 2. Site 1, which is non-canonical, binds nucleotide tightly but is not hydrolytic. Recently, based on kinetic arguments, it was suggested that this site remains closed for several gating cycles. To investigate movements at site 1 by an independent technique, we studied changes in thermodynamic coupling between pairs of residues on opposite sides of this site. The chosen targets are likely to interact based on both phylogenetic analysis and closeness on structural models. First, we mutated T460 in NBD1 and L1353 in NBD2 (the corresponding site-2 residues become energetically coupled as channels open). Mutation T460S accelerated closure in hydrolytic conditions and in the nonhydrolytic K1250R background; mutation L1353M did not affect these rates. Analysis of the double mutant showed additive effects of mutations, suggesting that energetic coupling between the two residues remains unchanged during the gating cycle. We next investigated pairs 460–1348 and 460–1375. Although both mutations H1348A and H1375A produced dramatic changes in hydrolytic and nonhydrolytic channel closing rates, in the corresponding double mutants these changes proved mostly additive with those caused by mutation T460S, suggesting little change in energetic coupling between either positions 460–1348 or positions 460–1375 during gating. These results provide independent support for a gating model in which ATP-bound composite site 1 remains closed throughout the gating cycle.
Collapse
Affiliation(s)
- Andras Szollosi
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
| | | | | | | |
Collapse
|
35
|
Marek M, Milles S, Schreiber G, Daleke DL, Dittmar G, Herrmann A, Müller P, Pomorski TG. The yeast plasma membrane ATP binding cassette (ABC) transporter Aus1: purification, characterization, and the effect of lipids on its activity. J Biol Chem 2011; 286:21835-43. [PMID: 21521689 DOI: 10.1074/jbc.m111.244525] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The ATP binding cassette (ABC) transporter Aus1 is expressed under anaerobic growth conditions at the plasma membrane of the yeast Saccharomyces cerevisiae and is required for sterol uptake. These observations suggest that Aus1 promotes the translocation of sterols across membranes, but the precise transport mechanism has yet to be identified. In this study, an extraction and purification procedure was developed to characterize the Aus1 transporter. The detergent-solubilized protein was able to bind and hydrolyze ATP. Mutagenesis of the conserved lysine to methionine in the Walker A motif abolished ATP hydrolysis. Likewise, ATP hydrolysis was inhibited by classical inhibitors of ABC transporters. Upon reconstitution into proteoliposomes, the ATPase activity of Aus1 was specifically stimulated by phosphatidylserine (PS) in a stereoselective manner. We also found that Aus1-dependent sterol uptake, but not Aus1 expression and trafficking to the plasma membrane, was affected by changes in cellular PS levels. These results suggest a direct interaction between Aus1 and PS that is critical for the activity of the transporter.
Collapse
Affiliation(s)
- Magdalena Marek
- Institute of Biology, Humboldt University of Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Iram SH, Cole SPC. Expression and function of human MRP1 (ABCC1) is dependent on amino acids in cytoplasmic loop 5 and its interface with nucleotide binding domain 2. J Biol Chem 2010; 286:7202-13. [PMID: 21177244 DOI: 10.1074/jbc.m110.166959] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multidrug resistance protein 1 (MRP1) is an ATP-binding cassette transporter that effluxes drugs and organic anions across the plasma membrane. The 17 transmembrane helices of MRP1 are linked by extracellular and cytoplasmic loops (CLs), but their role in coupling the ATPase activity of MRP1 to the translocation of its substrates is poorly understood. Here we have examined the importance of CL5 by mutating eight conserved charged residues and the helix-disrupting Gly(511) in this region. Ala substitution of Lys(513), Lys(516), Glu(521), and Glu(535) markedly reduced MRP1 levels. Because three of these residues are predicted to lie at the interface of CL5 and the second nucleotide binding domain (NBD2), a critical role is indicated for this region in the plasma membrane expression of MRP1. Further support for this idea was obtained by mutating NBD2 amino acids His(1364) and Arg(1367) at the CL5 interface, which also resulted in reduced MRP1 levels. In contrast, mutation of Arg(501), Lys(503), Glu(507), Arg(532), and Gly(511) had no effect on MRP1 levels. Except for K503A, however, transport by these mutants was reduced by 50 to 75%, an effect largely attributable to reduced substrate binding and affinity. Studies with (32)P-labeled azido-ATP also indicated that whereas ATP binding by the G511I mutant was unchanged, vanadate-induced trapping of azido-ADP was reduced, indicating changes in the catalytic activity of MRP1. Together, these data demonstrate the multiple roles for CL5 in the membrane expression and function of MRP1.
Collapse
Affiliation(s)
- Surtaj H Iram
- Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Kingston, Ontario K7L 3N6, Canada
| | | |
Collapse
|
37
|
Abstract
We used a spin-labeled ATP analog, SL-ATP, to study nucleotide binding to highly purified human multidrug resistance protein 3, MRP3, which had been expressed in the yeast Pichia pastoris. SL-ATP was shown to be a good substrate analog and is hydrolyzed by MRP3 at about 10% of the Vmax for normal ATP. ESR titrations showed that 2 mol of SL-ATP readily bound per mole of MRP3 with a dissociation constant of about 100 microM in the presence of Mg(2+) ions. The binding curve was easily fitted for a hyperbolic binding relationship. SL-ATP also bound readily to MRP3 in the absence of divalent ions and presence of EDTA. The resulting binding curve, however, could not be satisfactorily fitted using the equation for hyperbola. Analysis showed that a good fit was only obtained with the Hill equation using a Hill coefficient of 4 or close to 4. Lower Hill coefficients resulted in lower goodness of the fit. Such cooperative binding may be explained by a dimerization event triggered in the absence of divalent ions and a close communication of nucleotide binding sites of the interacting dimers. These findings may be of great importance for the overall mechanism and regulation of multidrug resistance proteins.
Collapse
|
38
|
Tsai MF, Li M, Hwang TC. Stable ATP binding mediated by a partial NBD dimer of the CFTR chloride channel. ACTA ACUST UNITED AC 2010; 135:399-414. [PMID: 20421370 PMCID: PMC2860585 DOI: 10.1085/jgp.201010399] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR), a member of the adenosine triphosphate (ATP) binding cassette (ABC) superfamily, is an ATP-gated chloride channel. Like other ABC proteins, CFTR encompasses two nucleotide binding domains (NBDs), NBD1 and NBD2, each accommodating an ATP binding site. It is generally accepted that CFTR's opening-closing cycles, each completed within 1 s, are driven by rapid ATP binding and hydrolysis events in NBD2. Here, by recording CFTR currents in real time with a ligand exchange protocol, we demonstrated that during many of these gating cycles, NBD1 is constantly occupied by a stably bound ATP or 8-N(3)-ATP molecule for tens of seconds. We provided evidence that this tightly bound ATP or 8-N(3)-ATP also interacts with residues in the signature sequence of NBD2, a telltale sign for an event occurring at the NBD1-NBD2 interface. The open state of CFTR has been shown to represent a two-ATP-bound NBD dimer. Our results indicate that upon ATP hydrolysis in NBD2, the channel closes into a "partial NBD dimer" state where the NBD interface remains partially closed, preventing ATP dissociation from NBD1 but allowing the release of hydrolytic products and binding of the next ATP to occur in NBD2. Opening and closing of CFTR can then be coupled to the formation and "partial" separation of the NBD dimer. The tightly bound ATP molecule in NBD1 can occasionally dissociate from the partial dimer state, resulting in a nucleotide-free monomeric state of NBDs. Our data, together with other structural/functional studies of CFTR's NBDs, suggest that this process is poorly reversible, implying that the channel in the partial dimer state or monomeric state enters the open state through different pathways. We therefore proposed a gating model for CFTR with two distinct cycles. The structural and functional significance of our results to other ABC proteins is discussed.
Collapse
Affiliation(s)
- Ming-Feng Tsai
- Department of Medical Pharmacology and Physiology and 2 Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| | | | | |
Collapse
|
39
|
Csanády L. Degenerate ABC composite site is stably glued together by trapped ATP. ACTA ACUST UNITED AC 2010; 135:395-8. [PMID: 20421369 PMCID: PMC2860590 DOI: 10.1085/jgp.201010443] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- László Csanády
- Department of Medical Biochemistry, Semmelweis University, Budapest H-1094, Hungary.
| |
Collapse
|
40
|
Ford RC, Kamis AB, Kerr ID, Callaghan R. The ABC Transporters: Structural Insights into Drug Transport. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/9783527627424.ch1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
41
|
Lamping E, Baret PV, Holmes AR, Monk BC, Goffeau A, Cannon RD. Fungal PDR transporters: Phylogeny, topology, motifs and function. Fungal Genet Biol 2010; 47:127-42. [PMID: 19857594 PMCID: PMC2814995 DOI: 10.1016/j.fgb.2009.10.007] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 10/15/2009] [Indexed: 10/20/2022]
Abstract
The overexpression of pleiotropic drug resistance (PDR) efflux pumps of the ATP-binding cassette (ABC) transporter superfamily frequently correlates with multidrug resistance. Phylogenetic analysis of 349 full-size ( approximately 160kDa) PDR proteins (Pdrps) from 55 fungal species, including major fungal pathogens, identified nine separate protein clusters (A-G, H1a/H1b and H2). Fungal, plant and human ABCG-family Pdrps possess a nucleotide-binding domain [NBD] and a transmembrane domain [TMD] in a family-defining 'reverse' ABC transporter topology [NBD-TMD] that is duplicated [NBD-TMD](2) in full-size fungal and plant Pdrps. Although full-size Pdrps have similar halves indicating early gene duplication/fusion, they show asymmetry of their NBDs and extracellular loops (ELs). Members of cluster F are most symmetric and may be closely related to the evolutionary ancestor of Pdrps. Unique structural elements are predicted, new PDR-specific motifs identified, and the significance of these and other structural features discussed.
Collapse
Affiliation(s)
- Erwin Lamping
- Department of Oral Sciences, University of Otago, Dunedin, New Zealand
| | | | - Ann R. Holmes
- Department of Oral Sciences, University of Otago, Dunedin, New Zealand
| | - Brian C. Monk
- Department of Oral Sciences, University of Otago, Dunedin, New Zealand
| | - Andre Goffeau
- Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Richard D. Cannon
- Department of Oral Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
42
|
Rosenberg MF, Oleschuk CJ, Wu P, Mao Q, Deeley RG, Cole SPC, Ford RC. Structure of a human multidrug transporter in an inward-facing conformation. J Struct Biol 2010; 170:540-7. [PMID: 20109555 DOI: 10.1016/j.jsb.2010.01.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 01/07/2010] [Accepted: 01/20/2010] [Indexed: 11/25/2022]
Abstract
Multidrug resistance protein 1 (ABCC1) is a member of the 'C' class of ATP-binding cassette transporters, which can give rise to resistance to chemotherapy via drug export from cells. It also acts as a leukotriene C4 transporter, and hence has a role in adaptive immune response. Most C-class members have an additional NH(2)-terminal transmembrane domain versus other ATP-binding cassette transporters, but little is known about the structure and role of this domain. Using electron cryomicroscopy of 2D crystals, data at 1/6per A(-1) resolution was generated for the full-length ABCC1 protein in the absence of ATP. Analysis using homologous structures from bacteria and mammals allowed the core transmembrane domains to be localised in the map. These display an inward-facing conformation and there is a noteworthy separation of the cytoplasmic nucleotide-binding domains. Examination of non-core features in the map suggests that the additional NH(2)-terminal domain has extensive contacts on one side of both core domains, and mirrors their inward-facing configuration in the absence of nucleotide.
Collapse
Affiliation(s)
- Mark F Rosenberg
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | | | | | | | | | | | | |
Collapse
|
43
|
Nault LFA, Girardot C, Leydier A, Coleman AW, Perrotton T, Magnard S, Baubichon-Cortay H. Magnesium dependent complexation of tri-anionic calix[4]arene detergents by the nucleotide binding domain 1 (NBD1) of multidrug resistance protein MRP1. NEW J CHEM 2010. [DOI: 10.1039/c0nj00323a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Chang XB. Molecular mechanism of ATP-dependent solute transport by multidrug resistance-associated protein 1. Methods Mol Biol 2010; 596:223-49. [PMID: 19949927 DOI: 10.1007/978-1-60761-416-6_11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Millions of new cancer patients are diagnosed each year and over half of these patients die from this devastating disease. Thus, cancer causes a major public health problem worldwide. Chemotherapy remains the principal mode to treat many metastatic cancers. However, occurrence of cellular multidrug resistance (MDR) prevents efficient killing of cancer cells, leading to chemotherapeutic treatment failure. Over-expression of ATP-binding cassette transporters, such as P-glycoprotein, breast cancer resistance protein and/or multidrug resistance-associated protein 1 (MRP1), confers an acquired MDR due to their capabilities of transporting a broad range of chemically diverse anticancer drugs across the cell membrane barrier. In this review, the molecular mechanism of ATP-dependent solute transport by MRP1 will be addressed.
Collapse
Affiliation(s)
- Xiu-bao Chang
- Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA.
| |
Collapse
|
45
|
Hou YX, Li CZ, Palaniyandi K, Magtibay PM, Homolya L, Sarkadi B, Chang XB. Effects of putative catalytic base mutation E211Q on ABCG2-mediated methotrexate transport. Biochemistry 2009; 48:9122-31. [PMID: 19691360 DOI: 10.1021/bi900675v] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
ABCG2 is a half-ATP binding cassette (ABC) drug transporter that consists of a nucleotide binding domain (NBD) followed by a transmembrane domain. This half-ABC transporter is thought to form a homodimer in the plasma membrane where it transports anticancer drugs across the biological membranes in an ATP-dependent manner. Substitution of the putative catalytic residue E211 with a nonacidic amino acid glutamine (E211Q) completely abolished its ATPase activity and ATP-dependent methotrexate transport, suggesting that ATP hydrolysis is required for the ATP-dependent solute transport. However, whether one ATP hydrolysis or two ATP hydrolyses in the homodimer of ABCG2 with the NBD.ATP.ATP.NBD sandwich structure is/are required for the ATP-dependent solute transport is not known yet. To address this question, we have made an YFP/ABCG2 fusion protein and expressed this 99 kDa fusion protein alone or along with the 70 kDa E211Q-mutated ABCG2 in BHK cells. Although membrane vesicles prepared from BHK cells expressing YFP/ABCG2 exert higher ATPase activity than that of wt ABCG2, the dATP-dependent methotrexate transport activities of these two proteins are the same. Interestingly, membrane vesicles prepared from BHK cells expressing both YFP/ABCG2 and E211Q-mutated ABCG2 (with a ratio of 1:1) form homodimers and heterodimer and exert 55% of wt ABCG2 ATPase activity that can be further enhanced by anticancer drugs, suggesting that the wt NBD in the heterodimer of YFP/ABCG2 and E211Q may be able to hydrolyze ATP. Furthermore, the membrane vesicles containing both YFP/ABCG2 and E211Q exert approximately 79% of wt ABCG2-mediated methotrexate transport activity, implying that the heterodimer harboring YFP/ABCG2 and E211Q may be able to transport the anticancer drug methotrexate across the biological membranes.
Collapse
Affiliation(s)
- Yue-xian Hou
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 13400 East Shea Boulevard, Scottsdale, Arizona 85259, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
AbstractIn order to fulfill their function, membrane transport proteins have to cycle through a number of conformational and/or energetic states. Thus, understanding the role of conformational dynamics seems to be the key for elucidation of the functional mechanism of these proteins. However, membrane proteins in general are often difficult to express heterologously and in sufficient amounts for structural studies. It is especially challenging to trap a stable energy minimum, e.g., for crystallographic analysis. Furthermore, crystallization is often only possible by subjecting the protein to conditions that do not resemble its native environment and crystals can only be snapshots of selected conformational states. Nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopy are complementary methods that offer unique possibilities for studying membrane proteins in their natural membrane environment and for investigating functional conformational changes, lipid interactions, substrate-lipid and substrate-protein interactions, oligomerization states and overall dynamics of membrane transporters. Here, we review recent progress in the field including studies from primary and secondary active transporters.
Collapse
|
47
|
Procko E, O'Mara ML, Bennett WFD, Tieleman DP, Gaudet R. The mechanism of ABC transporters: general lessons from structural and functional studies of an antigenic peptide transporter. FASEB J 2009; 23:1287-302. [PMID: 19174475 DOI: 10.1096/fj.08-121855] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The shuttling of substrates across a cellular membrane frequently requires a specialized ATP-binding cassette (ABC) transporter, which couples the energy of ATP binding and hydrolysis to substrate transport. Due to its importance in immunity, the ABC transporter associated with antigen processing (TAP) has been studied extensively and is an excellent model for other ABC transporters. The TAP protein pumps cytosolic peptides into the endoplasmic reticulum for loading onto class I major histocompatibility complex (MHC) for subsequent immune surveillance. Here, we outline a potential mechanism for the TAP protein with supporting evidence from bacterial transporter structures. The similarities and differences between TAP and other transporters support the notion that ABC transporters in general have adapted around a universal transport mechanism.
Collapse
Affiliation(s)
- Erik Procko
- Department of Molecular and Cellular Biology, Harvard University 7 Divinity Ave., Cambridge, MA 02138, USA
| | | | | | | | | |
Collapse
|
48
|
Qin L, Zheng J, Grant CE, Jia Z, Cole SPC, Deeley RG. Residues responsible for the asymmetric function of the nucleotide binding domains of multidrug resistance protein 1. Biochemistry 2009; 47:13952-65. [PMID: 19063607 DOI: 10.1021/bi801532g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The two nucleotide binding domains (NBDs) of ATP binding cassette (ABC) transporters dimerize to form composite nucleotide binding sites (NBSs) each containing Walker A and B motifs from one domain and the ABC "C" signature from the other. In many ABC proteins, the NBSs are thought to be functionally equivalent. However, this is not the case for ABCC proteins, such as MRP1, in which NBS1 containing the Walker A and B motifs from the N-proximal NBD1 typically binds ATP with high affinity but has low hydrolytic activity, while the reverse is true of NBS2. A notable feature of NBD1 of the ABCC proteins is the lack of a catalytic Glu residue following the core Walker B motif. In multidrug resistance protein (MRP) 1, this residue is Asp (D793). Previously, we demonstrated that mutation of D793 to Glu was sufficient to increase ATP hydrolysis at NBS1, but paradoxically, transport activity decreased by 50-70% as a result of tight binding of ADP at the mutated NBS1. Here, we identify two atypical amino acids in NBD1 that contribute to the retention of ADP. We found that conversion of Trp653 to Tyr and/or Pro794 to Ala enhanced transport activity of the D793E mutant and the release of ADP from NBS1. Moreover, introduction of the P794A mutation into wild-type MRP1 increased transport of leukotriene C(4) approximately 2-fold. Molecular dynamic simulations revealed that, while the D793E mutation increased hydrolysis of ATP, the presence of the adjacent Pro794, rather than the more typical Ala, decreased flexibility of the region linking Walker B and the D-loop, markedly diminishing the rate of release of Mg(2+) and ADP. Overall, these results suggest that the rate of release of ADP by NBD1 in the D793E background may be the rate-limiting step in the transport cycle of MRP1.
Collapse
Affiliation(s)
- Lei Qin
- Division of Cancer Biology and Genetics, Cancer Research Institute, Departments of Biochemistry, Pathology and Molecular Medicine, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | | | | | |
Collapse
|
49
|
Dietrich D, Schmuths H, De Marcos Lousa C, Baldwin JM, Baldwin SA, Baker A, Theodoulou FL, Holdsworth MJ. Mutations in the Arabidopsis peroxisomal ABC transporter COMATOSE allow differentiation between multiple functions in planta: insights from an allelic series. Mol Biol Cell 2008; 20:530-43. [PMID: 19019987 DOI: 10.1091/mbc.e08-07-0745] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
COMATOSE (CTS), the Arabidopsis homologue of human Adrenoleukodystrophy protein (ALDP), is required for import of substrates for peroxisomal beta-oxidation. A new allelic series and a homology model based on the bacterial ABC transporter, Sav1866, provide novel insights into structure-function relations of ABC subfamily D proteins. In contrast to ALDP, where the majority of mutations result in protein absence from the peroxisomal membrane, all CTS mutants produced stable protein. Mutation of conserved residues in the Walker A and B motifs in CTS nucleotide-binding domain (NBD) 1 resulted in a null phenotype but had little effect in NBD2, indicating that the NBDs are functionally distinct in vivo. Two alleles containing mutations in NBD1 outside the Walker motifs (E617K and C631Y) exhibited resistance to auxin precursors 2,4-dichlorophenoxybutyric acid (2,4-DB) and indole butyric acid (IBA) but were wild type in all other tests. The homology model predicted that the transmission interfaces are domain-swapped in CTS, and the differential effects of mutations in the conserved "EAA motif" of coupling helix 2 supported this prediction, consistent with distinct roles for each NBD. Our findings demonstrate that CTS functions can be separated by mutagenesis and the structural model provides a framework for interpretation of phenotypic data.
Collapse
Affiliation(s)
- Daniela Dietrich
- Department of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Grant CE, Gao M, DeGorter MK, Cole SPC, Deeley RG. Structural Determinants of Substrate Specificity Differences between Human Multidrug Resistance Protein (MRP) 1 (ABCC1) and MRP3 (ABCC3). Drug Metab Dispos 2008; 36:2571-81. [DOI: 10.1124/dmd.108.022491] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|