1
|
Benzo Y, Prada JG, Dattilo MA, Bigi MM, Castillo AF, Mori Sequeiros Garcia MM, Poderoso C, Maloberti PM. Acyl-CoA synthetase 4 modulates mitochondrial function in breast cancer cells. Heliyon 2024; 10:e30639. [PMID: 38756582 PMCID: PMC11096749 DOI: 10.1016/j.heliyon.2024.e30639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
Mitochondria are dynamic organelles that respond to cellular stress through changes in global mass, interconnection, and subcellular location. As mitochondria play an important role in tumor development and progression, alterations in energy metabolism allow tumor cells to survive and spread even in challenging conditions. Alterations in mitochondrial bioenergetics have been recently proposed as a hallmark of cancer, and positive regulation of lipid metabolism constitutes one of the most common metabolic changes observed in tumor cells. Acyl-CoA synthetase 4 (ACSL4) is an enzyme catalyzing the activation of long chain polyunsaturated fatty acids with a strong substrate preference for arachidonic acid (AA). High ACSL4 expression has been related to aggressive cancer phenotypes, including breast cancer, and its overexpression has been shown to positively regulate the mammalian Target of Rapamycin (mTOR) pathway, involved in the regulation of mitochondrial metabolism genes. However, little is known about the role of ACSL4 in the regulation of mitochondrial function and metabolism in cancer cells. In this context, our objective was to study whether mitochondrial function and metabolism, processes usually altered in tumors, are modulated by ACSL4 in breast cancer cells. Using ACSL4 overexpression in MCF-7 cells, we demonstrate that this enzyme can increase the mRNA and protein levels of essential mitochondrial regulatory proteins such as nuclear respiratory factor 1 (NRF-1), voltage-dependent anion channel 1 (VDAC1) and respiratory chain Complex III. Furthermore, respiratory parameters analysis revealed an increase in oxygen consumption rate (OCR) and in spare respiratory capacity (SRC), among others. ACSL4 knockdown in MDA-MB-231 cells led to the decrease in OCR and in SCR, supporting the role of ACSL4 in the regulation of mitochondrial bioenergetics. Moreover, ACSL4 overexpression induced an increase in glycolytic function, in keeping with an increase in mitochondrial respiratory activity. Finally, there was a decrease in mitochondrial mass detected in cells that overexpressed ACSL4, while the knockdown of ACSL4 expression in MDA-MB-231 cells showed the opposite effect. Altogether, these results unveil the role of ACSL4 in mitochondrial function and metabolism and expand the knowledge of ACSL4 participation in pathological processes such as breast cancer.
Collapse
Affiliation(s)
- Yanina Benzo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
- CONICET – Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Jesica G. Prada
- CONICET – Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Melina A. Dattilo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
- CONICET – Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - María Mercedes Bigi
- CONICET – Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Ana F. Castillo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
- CONICET – Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - María Mercedes Mori Sequeiros Garcia
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
- CONICET – Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Cecilia Poderoso
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
- CONICET – Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Paula M. Maloberti
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
- CONICET – Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| |
Collapse
|
2
|
Wu S, Qiu C, Ni J, Guo W, Song J, Yang X, Sun Y, Chen Y, Zhu Y, Chang X, Sun P, Wang C, Li K, Han X. M2 macrophages independently promote beige adipogenesis via blocking adipocyte Ets1. Nat Commun 2024; 15:1646. [PMID: 38388532 PMCID: PMC10883921 DOI: 10.1038/s41467-024-45899-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Adipose tissue macrophages can promote beige adipose thermogenesis by altering local sympathetic activity. Here, we perform sympathectomy in mice and further eradicate subcutaneous adipose macrophages and discover that these macrophages have a direct beige-promoting function that is independent of sympathetic system. We further identify adipocyte Ets1 as a vital mediator in this process. The anti-inflammatory M2 macrophages suppress Ets1 expression in adipocytes, transcriptionally activate mitochondrial biogenesis, as well as suppress mitochondrial clearance, thereby increasing the mitochondrial numbers and promoting the beiging process. Male adipocyte Ets1 knock-in mice are completely cold intolerant, whereas male mice lacking Ets1 in adipocytes show enhanced energy expenditure and are resistant to metabolic disorders caused by high-fat-diet. Our findings elucidate a direct communication between M2 macrophages and adipocytes, and uncover a function for Ets1 in responding to macrophages and negatively governing mitochondrial content and beige adipocyte formation.
Collapse
Affiliation(s)
- Suyang Wu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Chen Qiu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
- Department of Endocrinology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, China
- Key Laboratory of the Model Animal Research, Animal Core Facility of Nanjing Medical University, Nanjing, 211166, China
| | - Jiahao Ni
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Wenli Guo
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Jiyuan Song
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Xingyin Yang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Yulin Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Yanjun Chen
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Yunxia Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaoai Chang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Peng Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Chunxia Wang
- Laboratory of Critical Care Translational Medicine, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
| | - Kai Li
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China.
- Department of Endocrinology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, China.
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
3
|
Nakano H, Nakano A. The role of metabolism in cardiac development. Curr Top Dev Biol 2024; 156:201-243. [PMID: 38556424 DOI: 10.1016/bs.ctdb.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Metabolism is the fundamental process that sustains life. The heart, in particular, is an organ of high energy demand, and its energy substrates have been studied for more than a century. In recent years, there has been a growing interest in understanding the role of metabolism in the early differentiation of pluripotent stem cells and in cancer research. Studies have revealed that metabolic intermediates from glycolysis and the tricarboxylic acid cycle act as co-factors for intracellular signal transduction, playing crucial roles in regulating cell behaviors. Mitochondria, as the central hub of metabolism, are also under intensive investigation regarding the regulation of their dynamics. The metabolic environment of the fetus is intricately linked to the maternal metabolic status, and the impact of the mother's nutrition and metabolic health on fetal development is significant. For instance, it is well known that maternal diabetes increases the risk of cardiac and nervous system malformations in the fetus. Another notable example is the decrease in the risk of neural tube defects when pregnant women are supplemented with folic acid. These examples highlight the profound influence of the maternal metabolic environment on the fetal organ development program. Therefore, gaining insights into the metabolic environment within developing fetal organs is critical for deepening our understanding of normal organ development. This review aims to summarize recent findings that build upon the historical recognition of the environmental and metabolic factors involved in the developing embryo.
Collapse
Affiliation(s)
- Haruko Nakano
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, CA, United States
| | - Atsushi Nakano
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, CA, United States; Cardiology Division, Department of Medicine, UCLA, Los Angeles, CA, United States; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, United States; Molecular Biology Institute, UCLA, Los Angeles, CA, United States; Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan.
| |
Collapse
|
4
|
Liu R, Yin C, Zhao P, Guo B, Ke W, Zheng X, Xie D, Wang Y, Wang G, Jia Y, Gao Y, Hu W, Liu GL, Song Z. Nuclear respiratory factor 1 drives hepatocellular carcinoma progression by activating LPCAT1-ERK1/2-CREB axis. Biol Direct 2023; 18:67. [PMID: 37875967 PMCID: PMC10594727 DOI: 10.1186/s13062-023-00428-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Nuclear respiratory factor 1 (NRF1) is a transcription factor that participates in several kinds of tumor, but its role in hepatocellular carcinoma (HCC) remains elusive. This study aims to explore the role of NRF1 in HCC progression and investigate the underlying mechanisms. RESULTS NRF1 was overexpressed and hyperactive in HCC tissue and cell lines and high expression of NRF1 indicated unfavorable prognosis of HCC patients. NRF1 promoted proliferation, migration and invasion of HCC cells both in vitro and in vivo. Mechanistically, NRF1 activated ERK1/2-CREB signaling pathway by transactivating lysophosphatidylcholine acyltransferase 1 (LPCAT1), thus promoting cell cycle progression and epithelial mesenchymal transition (EMT) of HCC cells. Meanwhile, LPCAT1 upregulated the expression of NRF1 by activating ERK1/2-CREB signaling pathway, forming a positive feedback loop. CONCLUSIONS NRF1 is overexpressed in HCC and promotes HCC progression by activating LPCAT1-ERK1/2-CREB axis. NRF1 is a promising therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Ran Liu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Chuanzheng Yin
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Peng Zhao
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Bing Guo
- Insitute for Genome Sciences, University of Maryland School of Medical, Baltimore, MD, 21201, USA
| | - Wenbo Ke
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Xichuan Zheng
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Dawei Xie
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yaofeng Wang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Gengqiao Wang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Yinzhao Jia
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Yang Gao
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Wenjun Hu
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Gang Logan Liu
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Zifang Song
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China.
| |
Collapse
|
5
|
Vujovic F, Shepherd CE, Witting PK, Hunter N, Farahani RM. Redox-Mediated Rewiring of Signalling Pathways: The Role of a Cellular Clock in Brain Health and Disease. Antioxidants (Basel) 2023; 12:1873. [PMID: 37891951 PMCID: PMC10604469 DOI: 10.3390/antiox12101873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Metazoan signalling pathways can be rewired to dampen or amplify the rate of events, such as those that occur in development and aging. Given that a linear network topology restricts the capacity to rewire signalling pathways, such scalability of the pace of biological events suggests the existence of programmable non-linear elements in the underlying signalling pathways. Here, we review the network topology of key signalling pathways with a focus on redox-sensitive proteins, including PTEN and Ras GTPase, that reshape the connectivity profile of signalling pathways in response to an altered redox state. While this network-level impact of redox is achieved by the modulation of individual redox-sensitive proteins, it is the population by these proteins of critical nodes in a network topology of signal transduction pathways that amplifies the impact of redox-mediated reprogramming. We propose that redox-mediated rewiring is essential to regulate the rate of transmission of biological signals, giving rise to a programmable cellular clock that orchestrates the pace of biological phenomena such as development and aging. We further review the evidence that an aberrant redox-mediated modulation of output of the cellular clock contributes to the emergence of pathological conditions affecting the human brain.
Collapse
Affiliation(s)
- Filip Vujovic
- IDR/Westmead Institute for Medical Research, Sydney, NSW 2145, Australia; (F.V.); (N.H.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | | | - Paul K. Witting
- Redox Biology Group, Charles Perkins Centre, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Neil Hunter
- IDR/Westmead Institute for Medical Research, Sydney, NSW 2145, Australia; (F.V.); (N.H.)
| | - Ramin M. Farahani
- IDR/Westmead Institute for Medical Research, Sydney, NSW 2145, Australia; (F.V.); (N.H.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
6
|
Chang X, Liu J, Wang Y, Guan X, Liu R. Mitochondrial disorder and treatment of ischemic cardiomyopathy: Potential and advantages of Chinese herbal medicine. Biomed Pharmacother 2023; 159:114171. [PMID: 36641924 DOI: 10.1016/j.biopha.2022.114171] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
Mitochondrial dysfunction is the main cause of damage to the pathological mechanism of ischemic cardiomyopathy. In addition, mitochondrial dysfunction can also affect the homeostasis of cardiomyocytes or endothelial cell dysfunction, leading to a vicious cycle of mitochondrial oxidative stress. And mitochondrial dysfunction is also an important pathological basis for ischemic cardiomyopathy and reperfusion injury after myocardial infarction or end-stage coronary heart disease. Therefore, mitochondria can be used as therapeutic targets against myocardial ischemia injury, and the regulation of mitochondrial morphology, function and structure is a key and important way of targeting mitochondrial quality control therapeutic mechanisms. Mitochondrial quality control includes mechanisms such as mitophagy, mitochondrial dynamics (mitochondrial fusion/fission), mitochondrial biosynthesis, and mitochondrial unfolded protein responses. Among them, the increase of mitochondrial fragmentation caused by mitochondrial pathological fission is the initial factor. The protective mitochondrial fusion can strengthen the interaction and synthesis of paired mitochondria and promote mitochondrial biosynthesis. In ischemia or hypoxia, pathological mitochondrial fission can promote the formation of mitochondrial fragments, fragmented mitochondria can lead to damaged mitochondrial DNA production, which can lead to mitochondrial biosynthesis dysfunction, insufficient mitochondrial ATP production, and mitochondrial ROS. Burst growth or loss of mitochondrial membrane potential. This eventually leads to the accumulation of damaged mitochondria. Then, under the leadership of mitophagy, damaged mitochondria can complete the mitochondrial degradation process through mitophagy, and transport the morphologically and structurally damaged mitochondria to lysosomes for degradation. But once the pathological mitochondrial fission increases, the damaged mitochondria increases, which may activate the pathway of cardiomyocyte death. Although laboratory studies have found that a variety of mitochondrial-targeted drugs can reduce myocardial ischemia and protect cardiomyocytes, there are still few drugs that have successfully passed clinical trials. In this review, we describe the role of MQS in ischemia/hypoxia-induced cardiomyocyte physiopathology and elucidate the relevant mechanisms of mitochondrial dysfunction in ischemic cardiomyopathy. In addition, we also further explained the advantages of natural products in improving mitochondrial dysfunction and protecting myocardial cells from the perspective of pharmacological mechanism, and explained its related mechanisms. Potential targeted therapies that can be used to improve MQS under ischemia/hypoxia are discussed, aiming to accelerate the development of cardioprotective drugs targeting mitochondrial dysfunction.
Collapse
Affiliation(s)
- Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Jinfeng Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yanli Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xuanke Guan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Ruxiu Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
7
|
Signorile A, De Rasmo D. Mitochondrial Complex I, a Possible Sensible Site of cAMP Pathway in Aging. Antioxidants (Basel) 2023; 12:antiox12020221. [PMID: 36829783 PMCID: PMC9951957 DOI: 10.3390/antiox12020221] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
In mammals during aging, reactive oxygen species (ROS), produced by the mitochondrial respiratory chain, cause oxidative damage of macromolecules leading to respiratory chain dysfunction, which in turn increases ROS mitochondrial production. Many efforts have been made to understand the role of oxidative stress in aging and age-related diseases. The complex I of the mitochondrial respiratory chain is the major source of ROS production and its dysfunctions have been associated with several forms of neurodegeneration, other common human diseases and aging. Complex I-ROS production and complex I content have been proposed as the major determinants for longevity. The cAMP signal has a role in the regulation of complex I activity and the decrease of ROS production. In the last years, an increasing number of studies have attempted to activate cAMP signaling to treat age-related diseases associated with mitochondrial dysfunctions and ROS production. This idea comes from a long-line of studies showing a main role of cAMP signal in the memory consolidation mechanism and in the regulation of mitochondrial functions. Here, we discuss several evidences on the possible connection between complex I and cAMP pathway in the aging process.
Collapse
Affiliation(s)
- Anna Signorile
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Domenico De Rasmo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), National Research Council (CNR), 70126 Bari, Italy
- Correspondence: ; Tel.: +39-080-544-8516
| |
Collapse
|
8
|
Sabatier P, Beusch CM, Gencheva R, Cheng Q, Zubarev R, Arnér ESJ. Comprehensive chemical proteomics analyses reveal that the new TRi-1 and TRi-2 compounds are more specific thioredoxin reductase 1 inhibitors than auranofin. Redox Biol 2021; 48:102184. [PMID: 34788728 PMCID: PMC8591550 DOI: 10.1016/j.redox.2021.102184] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 12/16/2022] Open
Abstract
Anticancer drugs that target cellular antioxidant systems have recently attracted much attention. Auranofin (AF) is currently evaluated in several clinical trials as an anticancer agent that targets the cytosolic and mitochondrial forms of the selenoprotein thioredoxin reductase, TXNRD1 and TXNRD2. Recently, two novel TXNRD1 inhibitors (TRi-1 and TRi-2) have been developed that showed anticancer efficacy comparable to AF, but with lower mitochondrial toxicity. However, the cellular action mechanisms of these drugs have not yet been thoroughly studied. Here we used several proteomics approaches to determine the effects of AF, TRi-1 and TRi-2 when used at IC50 concentrations with the mouse B16 melanoma and LLC lung adenocarcinoma cells, as these are often used for preclinical mouse models in evaluation of anticancer drugs. The results demonstrate that TRi-1 and TRi-2 are more specific TXNRD1 inhibitors than AF and reveal additional AF-specific effects on the cellular proteome. Interestingly, AF triggered stronger Nrf2-driven antioxidant responses than the other two compounds. Furthermore, AF affected several additional proteins, including GSK3A, GSK3B, MCMBP and EEFSEC, implicating additional effects on glycogen metabolism, cellular differentiation, inflammatory pathways, DNA replication and selenoprotein synthesis processes. Our proteomics data provide a resource for researchers interested in the multidimensional analysis of proteome changes associated with oxidative stress in general, and the effects of TXNRD1 inhibitors and AF protein targets in particular.
Collapse
Affiliation(s)
- Pierre Sabatier
- Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Christian M Beusch
- Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Radosveta Gencheva
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Qing Cheng
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Roman Zubarev
- Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden; Department of Pharmacological & Technological Chemistry, I.M. Sechenov First Moscow State Medical University, Moscow, 119146, Russia; The National Medical Research Center for Endocrinology, 115478, Moscow, Russia.
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden; Department of Selenoprotein Research, National Institute of Oncology, 1122, Budapest, Hungary.
| |
Collapse
|
9
|
Hyttinen J, Blasiak J, Tavi P, Kaarniranta K. Therapeutic potential of PGC-1α in age-related macular degeneration (AMD) - the involvement of mitochondrial quality control, autophagy, and antioxidant response. Expert Opin Ther Targets 2021; 25:773-785. [PMID: 34637373 DOI: 10.1080/14728222.2021.1991913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Age-related macular degeneration (AMD) is the leading, cause of sight loss in the elderly in the Western world. Most patients remain still without any treatment options. The targeting of Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), a transcription co-factor, is a putative therapy against AMD. AREAS COVERED The characteristics of AMD and their possible connection with PGC-1α as well as the transcriptional and post-transcriptional control of PGC-1α are discussed. The PGC-1α-driven control of mitochondrial functions, and its involvement in autophagy and antioxidant responses are also examined. Therapeutic possibilities via drugs and epigenetic approaches to enhance PGC-1α expression are discussed. Authors conducted a search of literature mainly from the recent decade from the PubMed database. EXPERT OPINION Therapy options in AMD could include PGC-1α activation or stabilization. This could be achieved by a direct elevation of PGC-1α activity, a stabilization or modification of its upstream activators and inhibitors by chemical compounds, like 5-Aminoimidazole-4-carboxamide riboside, metformin, and resveratrol. Furthermore, manipulations with epigenetic modifiers of PGC-1α expression, including miRNAs, e.g. miR-204, are considered. A therapy aimed at PGC-1α up-regulation may be possible in other disorders besides AMD, if they are associated with disturbances in the mitochondria-antioxidant response-autophagy axis.
Collapse
Affiliation(s)
- Juha Hyttinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Sciences, University of Lodz, Lodz, Poland
| | - Pasi Tavi
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.,Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
10
|
Cole SL, Chandra R, Harris M, Patel I, Wang T, Kim H, Jensen L, Russo SJ, Turecki G, Gancarz-Kausch AM, Dietz DM, Lobo MK. Cocaine-induced neuron subtype mitochondrial dynamics through Egr3 transcriptional regulation. Mol Brain 2021; 14:101. [PMID: 34187517 PMCID: PMC8240292 DOI: 10.1186/s13041-021-00800-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/01/2021] [Indexed: 11/12/2022] Open
Abstract
Mitochondrial function is required for brain energy homeostasis and neuroadaptation. Recent studies demonstrate that cocaine affects mitochondrial dynamics and morphological characteristics within the nucleus accumbens (NAc). Further, mitochondria are differentially regulated by cocaine in dopamine receptor-1 containing medium spiny neurons (D1-MSNs) vs dopamine receptor-2 (D2)-MSNs. However, there is little understanding into cocaine-induced transcriptional mechanisms and their role in regulating mitochondrial processes. Here, we demonstrate that cocaine enhances binding of the transcription factor, early growth response factor 3 (Egr3), to nuclear genes involved in mitochondrial function and dynamics. Moreover, cocaine exposure regulates mRNA of these mitochondria-associated nuclear genes in both contingent or noncontingent cocaine administration and in both rodent models and human postmortem tissue. Interestingly, several mitochondrial nuclear genes showed distinct profiles of expression in D1-MSNs vs D2-MSNs, with cocaine exposure generally increasing mitochondrial-associated nuclear gene expression in D1-MSNs vs suppression in D2-MSNs. Further, blunting Egr3 expression in D1-MSNs blocks cocaine-enhancement of the mitochondrial-associated transcriptional coactivator, peroxisome proliferator-activated receptor gamma coactivator (PGC1α), and the mitochondrial fission molecule, dynamin related protein 1 (Drp1). Finally, reduction of D1-MSN Egr3 expression attenuates cocaine-induced enhancement of small-sized mitochondria, causally demonstrating that Egr3 regulates mitochondrial morphological adaptations. Collectively, these studies demonstrate cocaine exposure impacts mitochondrial dynamics and morphology by Egr3 transcriptional regulation of mitochondria-related nuclear gene transcripts; indicating roles for these molecular mechanisms in neuronal function and plasticity occurring with cocaine exposure.
Collapse
Affiliation(s)
- Shannon L Cole
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, HSF II Rm S265, 20 Penn Street, Baltimore, MD, 21201, USA
| | - Ramesh Chandra
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, HSF II Rm S265, 20 Penn Street, Baltimore, MD, 21201, USA
| | - Maya Harris
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, HSF II Rm S265, 20 Penn Street, Baltimore, MD, 21201, USA
| | - Ishan Patel
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, HSF II Rm S265, 20 Penn Street, Baltimore, MD, 21201, USA
| | - Torrance Wang
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, HSF II Rm S265, 20 Penn Street, Baltimore, MD, 21201, USA
| | - Hyunjae Kim
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, HSF II Rm S265, 20 Penn Street, Baltimore, MD, 21201, USA
| | - Leah Jensen
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, HSF II Rm S265, 20 Penn Street, Baltimore, MD, 21201, USA
| | - Scott J Russo
- Fishberg Department of Neuroscience and Friedman Brain Institute, Graduate School of Biomedical Sciences At the Icahn School of Medicine At Mount Sinai, New York, NY, USA
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montréal, QC, Canada
| | - Amy M Gancarz-Kausch
- Department of Pharmacology and Toxicology, The Research Institution On Addictions, State University of New York At Buffalo, Buffalo, NY, USA
- Department of Psychology, California State University, Bakersfield, Bakersfield, CA, USA
| | - David M Dietz
- Department of Pharmacology and Toxicology, The Research Institution On Addictions, State University of New York At Buffalo, Buffalo, NY, USA
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, HSF II Rm S265, 20 Penn Street, Baltimore, MD, 21201, USA.
| |
Collapse
|
11
|
Maldonado E, Rojas DA, Urbina F, Solari A. The Use of Antioxidants as Potential Co-Adjuvants to Treat Chronic Chagas Disease. Antioxidants (Basel) 2021; 10:antiox10071022. [PMID: 34202043 PMCID: PMC8300663 DOI: 10.3390/antiox10071022] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/30/2022] Open
Abstract
Chagas disease is a neglected tropical disease caused by the flagellated protozoa Trypanosome cruzi. This illness affects to almost 8–12 million people worldwide, however, is endemic to Latin American countries. It is mainly vectorially transmitted by insects of the Triatominae family, although other transmission routes also exist. T. cruzi-infected cardiomyocytes at the chronic stage of the disease display severe mitochondrial dysfunction and high ROS production, leading to chronic myocardial inflammation and heart failure. Under cellular stress, cells usually can launch mitochondrial biogenesis in order to restore energy loss. Key players to begin mitochondrial biogenesis are the PGC-1 (PPARγ coactivator 1) family of transcriptional coactivators, which are activated in response to several stimuli, either by deacetylation or dephosphorylation, and in turn can serve as coactivators for the NRF (nuclear respiratory factor) family of transcription factors. The NRF family of transcriptional activators, namely NRF1 and NRF2, can activate gene expression of oxidative phosphorylation (OXPHOS) components, mitochondrial transcriptional factor (Tfam) and nuclear encoded mitochondrial proteins, leading to mitochondrial biogenesis. On the other hand, NRF2 can activate gene expression of antioxidant enzymes in response to antioxidants, oxidants, electrophile compounds, pharmaceutical and dietary compounds in a mechanism dependent on KEAP1 (Kelch-like ECH-associated protein 1). Since a definitive cure to treat Chagas disease has not been found yet; the use of antioxidants a co-adjuvant therapy has been proposed in an effort to improve mitochondrial functions, biogenesis, and the antioxidant defenses response. Those antioxidants could activate different pathways to begin mitochondrial biogenesis and/or cytoprotective antioxidant defenses. In this review we discuss the main mechanisms of mitochondrial biogenesis and the NRF2-KEAP1 activation pathway. We also reviewed the antioxidants used as co-adjuvant therapy to treat experimental Chagas disease and their action mechanisms and finish with the discussion of antioxidant therapy used in Chagas disease patients.
Collapse
Affiliation(s)
- Edio Maldonado
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile;
- Correspondence: (E.M.); (A.S.)
| | - Diego A. Rojas
- Instituto de Ciencias Biomédicas (ICB), Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8380453, Chile;
| | - Fabiola Urbina
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile;
| | - Aldo Solari
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile;
- Correspondence: (E.M.); (A.S.)
| |
Collapse
|
12
|
Li H, Niu N, Yang J, Dong F, Zhang T, Li S, Zhao W. Nuclear respiratory factor 1 protects H9C2 cells against hypoxia-induced apoptosis via the death receptor pathway and mitochondrial pathway. Cell Biol Int 2021; 45:1784-1796. [PMID: 33913583 DOI: 10.1002/cbin.11619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/06/2021] [Accepted: 04/18/2021] [Indexed: 12/22/2022]
Abstract
Hypoxia-induced cardiomyocyte apoptosis is one of the leading causes of heart failure. Nuclear respiratory factor 1 (NRF-1) was suggested as a protector against cell apoptosis; However, the mechanism is not clear. Therefore, the aim of this study was to elucidate the role of NRF-1 in hypoxia-induced H9C2 cardiomyocyte apoptosis and to explore its effect on regulating the death receptor pathway and mitochondrial pathway. NRF-1 was overexpressed or knocked down in H9C2 cells, which were then exposed to a hypoxia condition for 0, 3, 6, 12, and 24 h. Changes in cell proliferation, cell viability, reactive oxygen species (ROS) generation, and mitochondrial membrane potential (MMP) were investigated. The activities of caspase-3, -8, and -9, apoptosis rate, and the gene and protein expression levels of the death receptor pathway and mitochondrial pathway were analyzed. Under hypoxia exposure, NRF-1 overexpression improved the proliferation and viability of H9C2 cells and decreased ROS generation, MMP loss, caspase activities, and the apoptosis rate. However, the NRF-1 knockdown group showed the opposite results. Additionally, NRF-1 upregulated the expression of antiapoptotic molecules involved in the death receptor and mitochondrial pathways, such as CASP8 and FADD-like apoptosis regulator, B-cell lymphoma 2, B-cell lymphoma-extra-large, and cytochrome C. Conversely, the expression of proapoptotic molecules, such as caspase-8, BH3-interacting domain death agonist, Bcl-2-associated X protein, caspase-9, and caspase-3 was downregulated by NRF-1 overexpression in hypoxia-induced H9C2 cells. These results suggest that NRF-1 functions as an antiapoptotic factor in the death receptor and mitochondrial pathways to mitigate hypoxia-induced apoptosis in H9C2 cardiomyocytes.
Collapse
Affiliation(s)
- Hui Li
- College of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Nan Niu
- College of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Jihui Yang
- College of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Fei Dong
- College of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Tingrui Zhang
- College of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Shasha Li
- College of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Wei Zhao
- College of Basic Medicine, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
13
|
Mitochondrial biogenesis in organismal senescence and neurodegeneration. Mech Ageing Dev 2020; 191:111345. [DOI: 10.1016/j.mad.2020.111345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 12/19/2022]
|
14
|
Lin C, Tu C, Ma Y, Ye P, Shao X, Yang Z, Fang Y. Nobiletin inhibits cell growth through restraining aerobic glycolysis via PKA-CREB pathway in oral squamous cell carcinoma. Food Sci Nutr 2020; 8:3515-3524. [PMID: 32724614 PMCID: PMC7382131 DOI: 10.1002/fsn3.1634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND/AIM Nobiletin is a polymethoxylated flavone enriched in Citrus and is used as an important drug in traditional Chinese medicine for various kinds of diseases. Among its multiple functions, it has shown that nobiletin inhibits proliferation of various cancer cells. However, it is unclear whether nobiletin inhibits the growth of oral squamous cell carcinoma (OSCC) cells. MATERIALS AND METHODS We explored the antitumor effects of nobiletin in TCA-8113 and CAL-27 oral squamous cells. The Cell Counting Kit-8 (CCK8) assay was used to measure cell vitality. Flow cytometry was performed to measure the number of cells in the various phases of the cell cycle. PCR and Western blot were applied to determine mRNA and protein expression, respectively. RESULTS Nobiletin inhibited proliferation of TCA-8113 and CAL-27 cells via inducing cell cycle arrest at the G1 phase. In addition, the levels of phosphorylated-PKA and phosphorylated-CREB were reduced in nobiletin-treated TCA-8113 and CAL-27 cells. Importantly, our results showed that nobiletin treatment resulted in impaired mitochondrial function and altered glucose consumption, and pyruvate and lactate production. Lastly, nobiletin was found to inhibit the generation of xenografts in vivo. Interestingly, administration of 50 μmol/L Sp-cAMP, a potent PKA activator, rescued all phenotypes caused by nobiletin. CONCLUSIONS Nobiletin inhibits OSCC cell proliferation in a mitochondria-dependent manner, indicating that it may have a promising role in cancer treatment and attenuation of drug resistance.
Collapse
Affiliation(s)
- Chong‐Xiang Lin
- Department of StomatologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Cheng‐Wei Tu
- Department of StomatologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yi‐Ke Ma
- Department of StomatologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Peng‐Cheng Ye
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhouChina
| | - Xia Shao
- Department of StomatologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Zhao‐An Yang
- Department of StomatologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yi‐Ming Fang
- Department of StomatologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
15
|
Li L, Yao Y, Zhao J, Cao J, Ma H. Dehydroepiandrosterone protects against hepatic glycolipid metabolic disorder and insulin resistance induced by high fat via activation of AMPK-PGC-1α-NRF-1 and IRS1-AKT-GLUT2 signaling pathways. Int J Obes (Lond) 2020; 44:1075-1086. [PMID: 31911660 DOI: 10.1038/s41366-019-0508-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 11/13/2019] [Accepted: 12/11/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND/OBJECTIVES Mitochondrial dysfunction, oxidative stress, or fatty liver are the key pathophysiological features for insulin resistance and obesity. Dehydroepiandrosterone (DHEA) can ameliorate obesity and insulin resistance; however, the mechanisms of these actions are poorly understood. The present study aimed to investigate the effect and possible mechanism of DHEA against glycolipid metabolic disorder and insulin resistance. SUBJECTS/METHODS Rats fed a high-fat diet (HFD) and palmitic acid (PA)-induced BRL-3A cells were employed to analyze the effect of DHEA on factors related to metabolic disorder and insulin resistance in vivo and in vitro. RESULTS DHEA prevented lipid metabolism disorders by enhancing phospho (p)-protein kinase AMP-activated catalytic subunit alpha (AMPKα) (Thr172) protein level and its downstream lipid metabolism-related factors in liver of rats fed an HFD or in PA-induced BRL-3A cells. Meanwhile, DHEA ameliorated mitochondrial dysfunction through activation of the AMPK-peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α)-nuclear respiratory factor-1 (NRF-1) pathway, which represented as the enhancing of the mtDNA copy number, ATP level, and membrane potential, and decreasing of reactive oxygen species production. Moreover, DHEA alleviated insulin resistance via increasing the phosphorylated insulin receptor substrate 1 (p-IRS1) (Tyr612) level and decreasing that of p-IRS1 (Ser307) level in liver of rats fed an HFD or in PA-induced BRL-3A cells, which subsequently enhanced p-protein kinase B (AKT) (Ser473) and membrane glucose transporter type 2 (GLUT2) expression levels. CONCLUSIONS The protective effect of DHEA on high-fat-induced hepatic glycolipid metabolic disorder and insulin resistance are achieved through activation of the AMPK-PGC-1α-NRF-1 and IRS1-AKT-GLUT2 signaling pathways. The results provide compelling evidence for the mechanism by which DHEA prevents glycolipid metabolic disorder, and suggest its potential applications for controlling diabetes and obesity in animals and humans.
Collapse
Affiliation(s)
- Longlong Li
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yao Yao
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinlong Zhao
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ji Cao
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China. .,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
16
|
Ferro F, Spelat R, Shaw G, Duffy N, Islam MN, O'Shea PM, O'Toole D, Howard L, Murphy JM. Survival/Adaptation of Bone Marrow-Derived Mesenchymal Stem Cells After Long-Term Starvation Through Selective Processes. Stem Cells 2019; 37:813-827. [PMID: 30835892 DOI: 10.1002/stem.2998] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/04/2019] [Accepted: 02/17/2019] [Indexed: 12/25/2022]
Abstract
After in vivo transplantation, mesenchymal stem cells (MSC) face an ischemic microenvironment, characterized by nutrient deprivation and reduced oxygen tension, which reduces their viability and thus their therapeutic potential. Therefore, MSC response to models of in vitro ischemia is of relevance for improving their survival and therapeutic efficacy. The aim of this study was to understand the survival/adaptive response mechanism that MSC use to respond to extreme culture conditions. Specifically, the effect of a long-term starvation on human bone marrow (hBM)-derived MSC cultured in a chemically defined medium (fetal bovine serum-free [SF] and human SF), either in hypoxic or normoxic conditions. We observed that hBM-MSC that were isolated and cultured in SF medium and subjected to a complete starvation for up to 75 days transiently changed their behavior and phenotype. However, at the end of that period, hBM-MSC retained their characteristics as determined by their morphology, DNA damage resistance, proliferation kinetic, and differentiation potential. This survival mode involved a quiescent state, confirmed by increased expression of cell cycle regulators p16, p27, and p57 and decreased expression of proliferating cell nuclear antigen (PCNA), Ki-67, mTOR, and Nanog. In addition, Jak/STAT (STAT6) antiapoptotic activity selected which cells conserved stemness and that supported metabolic, bioenergetic, and scavenging requirements. We also demonstrated that hBM-MSC exploited an autophagic process which induced lipid β-oxidation as an alternative energy source. Priming MSC by concomitant starvation and culture in hypoxic conditions to induce their quiescence would be of benefit to increase MSC survival when transplanted in vivo. Stem Cells 2019;37:813-827.
Collapse
Affiliation(s)
- Federico Ferro
- Regenerative Medicine Institute (REMEDI), School of Medicine, National University of Ireland Galway (NUIG), Galway, Ireland
| | - Renza Spelat
- Neuroscience Area, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Georgina Shaw
- Regenerative Medicine Institute (REMEDI), School of Medicine, National University of Ireland Galway (NUIG), Galway, Ireland
| | - Niamh Duffy
- Regenerative Medicine Institute (REMEDI), School of Medicine, National University of Ireland Galway (NUIG), Galway, Ireland
| | - Md Nahidul Islam
- Regenerative Medicine Institute (REMEDI), School of Medicine, National University of Ireland Galway (NUIG), Galway, Ireland.,Department of Clinical Biochemistry, Saolta University Health Care Group (SUHCG), Galway University Hospitals, Galway, Ireland
| | - Paula M O'Shea
- Department of Clinical Biochemistry, Saolta University Health Care Group (SUHCG), Galway University Hospitals, Galway, Ireland
| | - Daniel O'Toole
- Regenerative Medicine Institute (REMEDI), School of Medicine, National University of Ireland Galway (NUIG), Galway, Ireland
| | - Linda Howard
- Regenerative Medicine Institute (REMEDI), School of Medicine, National University of Ireland Galway (NUIG), Galway, Ireland
| | - J Mary Murphy
- Regenerative Medicine Institute (REMEDI), School of Medicine, National University of Ireland Galway (NUIG), Galway, Ireland
| |
Collapse
|
17
|
Li L, Zhang H, Yao Y, Yang Z, Ma H. (-)-Hydroxycitric Acid Suppresses Lipid Droplet Accumulation and Accelerates Energy Metabolism via Activation of the Adiponectin-AMPK Signaling Pathway in Broiler Chickens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3188-3197. [PMID: 30827101 DOI: 10.1021/acs.jafc.8b07287] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
(-)-Hydroxycitric acid (HCA) inhibits the deposition of fat in animals and humans, while the molecular mechanism is still unclear. The present study investigated the effect and mechanism of (-)-HCA's regulation of lipid, glucose, and energy metabolism in broiler chickens. The current results showed that (-)-HCA decreased the accumulation of lipid droplets and triglyceride content by reducing fatty acid synthase protein level and enhancing phosphorylation of acetyl-CoA carboxylase protein level. (-)-HCA accelerated carbohydrate aerobic metabolisms by increasing the activities of phosphofructokinase-1, pyruvate dehydrogenase, succinate dehydrogenase, and malate dehydrogenase. Furthermore, (-)-HCA increased adiponectin receptor 1 mRNA level and enhanced phospho-AMPKα, peroxisome proliferator-activated receptor gamma coactivator-1α, nuclear respiratory factor-1, and mitochondrial transcription factor A protein levels in broiler chickens. These data indicated that (-)-HCA reduced lipid droplet accumulation, improved glucose catabolism, and accelerated energy metabolism in broiler chickens, possibly via activation of adiponectin-AMPK signaling pathway. These results revealed the biochemical mechanism of (-)-HCA-mediated fat accumulation and the prevention of metabolic disorder-related diseases in broiler chickens.
Collapse
Affiliation(s)
- Longlong Li
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , China
| | - Huihui Zhang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , China
| | - Yao Yao
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , China
| | - Zhongmiao Yang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , China
| |
Collapse
|
18
|
Metabolic aspects in NAFLD, NASH and hepatocellular carcinoma: the role of PGC1 coactivators. Nat Rev Gastroenterol Hepatol 2019; 16:160-174. [PMID: 30518830 DOI: 10.1038/s41575-018-0089-3] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alterations of hepatic metabolism are critical to the development of liver disease. The peroxisome proliferator-activated receptor-γ coactivators (PGC1s) are able to orchestrate, on a transcriptional level, different aspects of liver metabolism, such as mitochondrial oxidative phosphorylation, gluconeogenesis and fatty acid synthesis. As modifications affecting both mitochondrial and lipid metabolism contribute to the initiation and/or progression of liver steatosis, nonalcoholic fatty liver disease (NAFLD), nonalcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC), a link between disrupted PGC1 pathways and onset of these pathological conditions has been postulated. However, despite the large quantity of studies, the scenario is still not completely understood, and some issues remain controversial. Here, we discuss the roles of PGC1s in healthy liver and explore their contribution to the pathogenesis and future therapy of NASH and HCC.
Collapse
|
19
|
Patton MG, Gillum TL, Szymanski MC, Gould LM, Lauterbach CJ, Vaughan RA, Kuennen MR. Heat acclimation increases mitochondrial respiration capacity of C2C12 myotubes and protects against LPS-mediated energy deficit. Cell Stress Chaperones 2018; 23:871-883. [PMID: 29644563 PMCID: PMC6111082 DOI: 10.1007/s12192-018-0894-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 12/22/2022] Open
Abstract
This work investigated the effect of a 6-day heat acclimation (HA) protocol on myotube metabolic responses at baseline and in response to a subsequent lipopolysaccharide (LPS) challenge. C2C12 myotubes were incubated for 2 h/day at 40 °C for 6 days (HA) or maintained at 37 °C (C). Following 24-h recovery, myotubes were challenged with 500 ng/ml LPS for 2 h, then collected for analysis of protein markers of mitochondrial biogenesis and macronutrient storage. Functional significance of these changes was confirmed with mitochondrial respiration and glycolytic measurements on a Seahorse XF-96 analyzer. HA stimulated mitochondrial biogenesis and increased indicators of mitochondrial content [SIRT1 (+ 62%); PGC-1α (+ 57%); NRF-1 (+ 40%); TFAM (+ 141%); CS (+ 25%); CytC (+ 38%); all p < 0.05]. Altered lipid biosynthesis enzymes [p-ACCa:ACC (+ 59%; p = 0.04) and FAS (- 86%; p < 0.01)] suggest fatty acid generation may have been downregulated, whereas increased GLUT4 (+ 69%; p < 0.01) and LDH-B (+ 366%; p < 0.01) suggest aerobic glycolytic capacity may have been improved. Mitochondrial biogenesis signaling in HA myotubes was suppressed by 500 ng/ml LPS (PGC-1α, NRF-1, TFAM; all p > 0.05) but increased LDH-B (+ 30%; p = 0.02) and CPT-1 (+ 55%; p < 0.01) suggesting improved catabolic function. Basal respiration was increased in HA myotubes (+ 8%; p < 0.01) and HA myotubes maintained elevated basal respiration during LPS challenge (+ 8%; p < 0.01). LPS reduced peak respiration in C myotubes (- 6%; p < 0.01) but did not impair peak respiration in HA myotubes (p > 0.05). Oxidative reliance was elevated in HA over that in control (+ 25%; p < 0.01) and in HA + LPS over C + LPS (+ 30%; p < 0.01). In summary, HA stimulated mitochondrial biogenesis in C2C12 myotubes. HA myotubes exhibited (1) elevated basal/peak mitochondrial respiration capacities; (2) greater oxidative reliance; and (3) protection against LPS-mediated respiration impairment. Collectively, these data suggest HA may improve aerobic metabolism in skeletal muscle and protect against LPS-mediated energy deficit.
Collapse
Affiliation(s)
- Meghan G Patton
- Department of Exercise Science, High Point University, One University Parkway, High Point, NC, 27268, USA
| | - Trevor L Gillum
- Department of Kinesiology, California Baptist University, Riverside, 92504, CA, USA
| | - Mandy C Szymanski
- Department of Exercise Science, High Point University, One University Parkway, High Point, NC, 27268, USA
| | - Lacey M Gould
- Department of Exercise Science, High Point University, One University Parkway, High Point, NC, 27268, USA
| | - Claire J Lauterbach
- Department of Exercise Science, High Point University, One University Parkway, High Point, NC, 27268, USA
| | - Roger A Vaughan
- Department of Exercise Science, High Point University, One University Parkway, High Point, NC, 27268, USA
| | - Matthew R Kuennen
- Department of Exercise Science, High Point University, One University Parkway, High Point, NC, 27268, USA.
| |
Collapse
|
20
|
Agerholm M, Dall M, Jensen BAH, Prats C, Madsen S, Basse AL, Graae AS, Risis S, Goldenbaum J, Quistorff B, Larsen S, Vienberg SG, Treebak JT. Perturbations of NAD + salvage systems impact mitochondrial function and energy homeostasis in mouse myoblasts and intact skeletal muscle. Am J Physiol Endocrinol Metab 2018; 314:E377-E395. [PMID: 29208611 DOI: 10.1152/ajpendo.00213.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+) can be synthesized by nicotinamide phosphoribosyltransferase (NAMPT). We aimed to determine the role of NAMPT in maintaining NAD+ levels, mitochondrial function, and metabolic homeostasis in skeletal muscle cells. We generated stable Nampt knockdown (sh Nampt KD) C2C12 cells using a shRNA lentiviral approach. Moreover, we applied gene electrotransfer to express Cre recombinase in tibialis anterior muscle of floxed Nampt mice. In sh Nampt KD C2C12 myoblasts, Nampt and NAD+ levels were reduced by 70% and 50%, respectively, and maximal respiratory capacity was reduced by 25%. Moreover, anaerobic glycolytic flux increased by 55%, and 2-deoxyglucose uptake increased by 25% in sh Nampt KD cells. Treatment with the NAD+ precursor nicotinamide riboside restored NAD+ levels in sh Nampt cells and increased maximal respiratory capacity by 18% and 32% in control and sh Nampt KD cells, respectively. Expression of Cre recombinase in muscle of floxed Nampt mice reduced NAMPT and NAD+ levels by 38% and 43%, respectively. Glucose uptake increased by 40%, and mitochondrial complex IV respiration was compromised by 20%. Hypoxia-inducible factor (HIF)-1α-regulated genes and histone H3 lysine 9 (H3K9) acetylation, a known sirtuin 6 (SIRT6) target, were increased in shNampt KD cells. Thus, we propose that the shift toward glycolytic metabolism observed, at least in part, is mediated by the SIRT6/HIF1α axis. Our findings suggest that NAMPT plays a key role for maintaining NAD+ levels in skeletal muscle and that NAMPT deficiency compromises oxidative phosphorylation capacity and alters energy homeostasis in this tissue.
Collapse
Affiliation(s)
- Marianne Agerholm
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen , Copenhagen , Denmark
| | - Morten Dall
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen , Copenhagen , Denmark
| | - Benjamin A H Jensen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen , Copenhagen , Denmark
| | - Clara Prats
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Søren Madsen
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen , Copenhagen , Denmark
| | - Astrid L Basse
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen , Copenhagen , Denmark
| | - Anne-Sofie Graae
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen , Copenhagen , Denmark
| | - Steve Risis
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen , Copenhagen , Denmark
| | - Julie Goldenbaum
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen , Copenhagen , Denmark
| | - Bjørn Quistorff
- Section for Translational Metabolic Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, and Department of Biomedical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Steen Larsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Sara G Vienberg
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen , Copenhagen , Denmark
| | - Jonas T Treebak
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
21
|
Ong L, McDonald KO, Ledgerwood EC. Differentiation and cell density upregulate cytochrome c levels in megakaryoblastic cell lines: Implications for analysis of CYCS-associated thrombocytopenia. PLoS One 2017; 12:e0190433. [PMID: 29287084 PMCID: PMC5747465 DOI: 10.1371/journal.pone.0190433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 12/14/2017] [Indexed: 11/21/2022] Open
Abstract
Mutations in the cytochrome c gene (CYCS) cause autosomal dominant thrombocytopenia by an unknown mechanism. While attempting to generate megakaryoblastic cell lines exogenously expressing cytochrome c variants, we discovered that endogenous cytochrome c expression increased both upon induction of differentiation with the phorbol ester phorbol 12-myristate 13-acetate (PMA), and as cell density increased. A concomitant increase in cytochrome c oxidase subunit II in response to PMA, but not cell higher cell density, suggests upregulation of the mitochondrial respiratory chain may be a specific feature of differentiation. These results highlight the likely importance of cytochrome c in both differentiating and proliferating cells, and illustrate the unsuitability of megakaryoblastic lines for modeling CYCS-associated thrombocytopenia.
Collapse
Affiliation(s)
- Lily Ong
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Kirstin O. McDonald
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Elizabeth C. Ledgerwood
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- * E-mail:
| |
Collapse
|
22
|
Tanwar M, Khera L, Haokip N, Kaul R, Naorem A, Kateriya S. Modulation of cyclic nucleotide-mediated cellular signaling and gene expression using photoactivated adenylyl cyclase as an optogenetic tool. Sci Rep 2017; 7:12048. [PMID: 28935957 PMCID: PMC5608697 DOI: 10.1038/s41598-017-12162-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/01/2017] [Indexed: 11/09/2022] Open
Abstract
Cyclic nucleotide signaling pathway plays a significant role in various biological processes such as cell growth, transcription, inflammation, in microbial pathogenesis, etc. Modulation of cyclic nucleotide levels by optogenetic tools has overcome certain limitations of studying transduction cascade by pharmacological agents and has allowed several ways to modulate biological processes in a spatiotemporal manner. Here, we have shown the optogenetic modulation of the cyclooxygenase 2 (Cox-2) gene expression and their downstream effector molecule (PGE2) in HEK-293T cells and the development process of Dictyostelium discoideum via modulating the cyclic nucleotide (cAMP) signaling pathway utilizing photoactivated adenylyl cyclases (PACs) as an optogenetic tool. Light-induced activation of PACs in HEK-293T cells increases the cAMP level that leads to activation of cAMP response element-binding protein (CREB) transcription factor and further upregulates downstream Cox-2 gene expression and their downstream effector molecule prostaglandin E2. In D. discoideum, the light-regulated increase in cAMP level affects the starvation-induced developmental process. These PACs could modulate the cAMP levels in a light-dependent manner and have a potential to control gene expression and their downstream effector molecules with varying magnitude. It would enable one to utilize PAC as a tool to decipher cyclic nucleotide mediated signaling pathway regulations and their mechanism.
Collapse
Affiliation(s)
- Meenakshi Tanwar
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Lohit Khera
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Nemneineng Haokip
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Rajeev Kaul
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Aruna Naorem
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Suneel Kateriya
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India. .,School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
23
|
Mulder H. Transcribing β-cell mitochondria in health and disease. Mol Metab 2017; 6:1040-1051. [PMID: 28951827 PMCID: PMC5605719 DOI: 10.1016/j.molmet.2017.05.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/13/2017] [Accepted: 05/22/2017] [Indexed: 12/17/2022] Open
Abstract
Background The recent genome-wide association studies (GWAS) of Type 2 Diabetes (T2D) have identified the pancreatic β-cell as the culprit in the pathogenesis of the disease. Mitochondrial metabolism plays a crucial role in the processes controlling release of insulin and β-cell mass. This notion implies that mechanisms controlling mitochondrial function have the potential to play a decisive pathogenetic role in T2D. Scope of the review This article reviews studies demonstrating that there is indeed mitochondrial dysfunction in islets in T2D, and that GWAS have identified a variant in the gene encoding transcription factor B1 mitochondrial (TFB1M), predisposing to T2D due to mitochondrial dysfunction and impaired insulin secretion. Mechanistic studies of the nature of this pathogenetic link, as well as of other mitochondrial transcription factors, are described. Major conclusions Based on this, it is argued that transcription and translation in mitochondria are critical processes determining mitochondrial function in β-cells in health and disease.
Collapse
Key Words
- AMPK, AMP-dependent protein kinase
- ATGL, adipocyte triglyceride lipase
- COX, Cytochrome c oxidase
- CYTB, Cytochrome b
- ERR-α, Estrogen-related receptor-α
- Expression quantitative trait locus (eQTL)
- GDH, Glutamate dehydrogenase
- GSIS, Glucose-stimulated insulin secretion
- GWAS, Genome-wide association study
- Genome-wide association study (GWAS)
- HSL, Hormone-sensitive lipase
- ICDc, Cytosolic isocitrate dehydrogenase
- Insulin secretion
- Islets
- KATP, ATP-dependent K+-channel
- MTERF, Mitochondrial transcription termination factor
- Mitochondria
- ND, NADH dehydrogenase
- NRF, Nuclear respiratory factor
- NSUN4, NOP2/Sun RNA methyltransferase family member 4
- OXPHOS, Oxidative phosphorylation
- PC, Pyruvate carboxylase
- PDH, pyruvate dehydrogenase
- PGC, Peroxisome proliferator-activated receptor-γ co-activator
- POLRMT, Mitochondrial RNA polymerase
- POLγ, DNA polymerase-γ
- PPARγ, Peroxisome proliferator-activated receptor-γ
- PRC, PGC1-related coactivator
- SENP1, Sentrin/SUMO-specific protease-1
- SNP, Single Nucleotide Polymorphism
- SUR1, Sulphonylurea receptor-1
- T2D, Type 2 Diabetes
- TCA, Tricarboxylic acid
- TEFM, Mitochondrial transcription elongation factor
- TFAM, Transcription factor A mitochondrial
- TFB1M, Transcription factor B1 mitochondrial
- TFB2M, Transcription factor B2 mitochondrial
- eQTL, Expression quantitative trait locus
- β-Cell
Collapse
Affiliation(s)
- Hindrik Mulder
- Unit of Molecular Metabolism, Lund University Diabetes Centre, Malmö, Sweden
| |
Collapse
|
24
|
Müller TD, Finan B, Clemmensen C, DiMarchi RD, Tschöp MH. The New Biology and Pharmacology of Glucagon. Physiol Rev 2017; 97:721-766. [PMID: 28275047 DOI: 10.1152/physrev.00025.2016] [Citation(s) in RCA: 230] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the last two decades we have witnessed sizable progress in defining the role of gastrointestinal signals in the control of glucose and energy homeostasis. Specifically, the molecular basis of the huge metabolic benefits in bariatric surgery is emerging while novel incretin-based medicines based on endogenous hormones such as glucagon-like peptide 1 and pancreas-derived amylin are improving diabetes management. These and related developments have fostered the discovery of novel insights into endocrine control of systemic metabolism, and in particular a deeper understanding of the importance of communication across vital organs, and specifically the gut-brain-pancreas-liver network. Paradoxically, the pancreatic peptide glucagon has reemerged in this period among a plethora of newly identified metabolic macromolecules, and new data complement and challenge its historical position as a gut hormone involved in metabolic control. The synthesis of glucagon analogs that are biophysically stable and soluble in aqueous solutions has promoted biological study that has enriched our understanding of glucagon biology and ironically recruited glucagon agonism as a central element to lower body weight in the treatment of metabolic disease. This review summarizes the extensive historical record and the more recent provocative direction that integrates the prominent role of glucagon in glucose elevation with its under-acknowledged effects on lipids, body weight, and vascular health that have implications for the pathophysiology of metabolic diseases, and the emergence of precision medicines to treat metabolic diseases.
Collapse
Affiliation(s)
- T D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany; Department of Chemistry, Indiana University, Bloomington, Indiana; Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - B Finan
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany; Department of Chemistry, Indiana University, Bloomington, Indiana; Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - C Clemmensen
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany; Department of Chemistry, Indiana University, Bloomington, Indiana; Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - R D DiMarchi
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany; Department of Chemistry, Indiana University, Bloomington, Indiana; Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - M H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany; Department of Chemistry, Indiana University, Bloomington, Indiana; Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| |
Collapse
|
25
|
Dvořák A, Zelenka J, Smolková K, Vítek L, JeŽek P. Background levels of neomorphic 2-hydroxyglutarate facilitate proliferation of primary fibroblasts. Physiol Res 2016; 66:293-304. [PMID: 27982681 DOI: 10.33549/physiolres.933249] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Each cell types or tissues contain certain "physiological" levels of R-2-hydroxyglutarate (2HG), as well as enzymes for its synthesis and degradation. 2HG accumulates in certain tumors, possessing heterozygous point mutations of isocitrate dehydrogenases IDH1 (cytosolic) or IDH2 (mitochondrial) and contributes to strengthening their malignancy by inhibiting 2-oxoglutarate-dependent dioxygenases. By blocking histone de-methylation and 5-methyl-cytosine hydroxylation, 2HG maintains cancer cells de-differentiated and promotes their proliferation. However, physiological 2HG formation and formation by non-mutant IDH1/2 in cancer cells were neglected. Consequently, low levels of 2HG might play certain physiological roles. We aimed to elucidate this issue and found that compared to highest 2HG levels in hepatocellular carcinoma HepG2 cells and moderate levels in neuroblastoma SH-SY5Y cells, rat primary fibroblast contained low basal 2HG levels at early passages. These levels increased at late passage and likewise 2HG/2OG ratios dropped without growth factors and enormously increased at hypoxia, reaching levels compared to cancer HepG2 cells. Responses in SH-SY5Y cells were opposite. Moreover, external 2HG supplementation enhanced fibroblast growth. Hence, we conclude that low 2HG levels facilitate cell proliferation in primary fibroblasts, acting via hypoxia-induced factor regulations and epigenetic changes.
Collapse
Affiliation(s)
- A Dvořák
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
26
|
Ekim Üstünel B, Friedrich K, Maida A, Wang X, Krones-Herzig A, Seibert O, Sommerfeld A, Jones A, Sijmonsma TP, Sticht C, Gretz N, Fleming T, Nawroth PP, Stremmel W, Rose AJ, Berriel-Diaz M, Blüher M, Herzig S. Control of diabetic hyperglycaemia and insulin resistance through TSC22D4. Nat Commun 2016; 7:13267. [PMID: 27827363 PMCID: PMC5105165 DOI: 10.1038/ncomms13267] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/15/2016] [Indexed: 12/29/2022] Open
Abstract
Obesity-related insulin resistance represents the core component of the metabolic syndrome, promoting glucose intolerance, pancreatic beta cell failure and type 2 diabetes. Efficient and safe insulin sensitization and glucose control remain critical therapeutic aims to prevent diabetic late complications Here, we identify transforming growth factor beta-like stimulated clone (TSC) 22 D4 as a molecular determinant of insulin signalling and glucose handling. Hepatic TSC22D4 inhibition both prevents and reverses hyperglycaemia, glucose intolerance and insulin resistance in diabetes mouse models. TSC22D4 exerts its effects on systemic glucose homeostasis—at least in part—through the direct transcriptional regulation of the small secretory protein lipocalin 13 (LCN13). Human diabetic patients display elevated hepatic TSC22D4 expression, which correlates with decreased insulin sensitivity, hyperglycaemia and LCN13 serum levels. Our results establish TSC22D4 as a checkpoint in systemic glucose metabolism in both mice and humans, and propose TSC22D4 inhibition as an insulin sensitizing option in diabetes therapy. TSC22D4 regulates hepatic lipoprotein production, but has so far mainly been studied in the context of cancer cachexia. Here, the authors show TSC22D4 inhibition improves insulin sensitivity in several mouse models of diabetes, which they attribute at least in part to the induction of secreted LCN13.
Collapse
Affiliation(s)
- Bilgen Ekim Üstünel
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, and Joint Heidelberg-IDC Translational Diabetes Program, Internal Medicine I, 85764 Neuherberg, Germany
| | - Kilian Friedrich
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, and Joint Heidelberg-IDC Translational Diabetes Program, Internal Medicine I, 85764 Neuherberg, Germany.,Department of Internal Medicine IV, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Adriano Maida
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, and Joint Heidelberg-IDC Translational Diabetes Program, Internal Medicine I, 85764 Neuherberg, Germany
| | - Xiaoyue Wang
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, and Joint Heidelberg-IDC Translational Diabetes Program, Internal Medicine I, 85764 Neuherberg, Germany
| | - Anja Krones-Herzig
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, and Joint Heidelberg-IDC Translational Diabetes Program, Internal Medicine I, 85764 Neuherberg, Germany
| | - Oksana Seibert
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, and Joint Heidelberg-IDC Translational Diabetes Program, Internal Medicine I, 85764 Neuherberg, Germany
| | - Anke Sommerfeld
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, and Joint Heidelberg-IDC Translational Diabetes Program, Internal Medicine I, 85764 Neuherberg, Germany
| | - Allan Jones
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, and Joint Heidelberg-IDC Translational Diabetes Program, Internal Medicine I, 85764 Neuherberg, Germany
| | - Tjeerd P Sijmonsma
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, and Joint Heidelberg-IDC Translational Diabetes Program, Internal Medicine I, 85764 Neuherberg, Germany
| | - Carsten Sticht
- Center for Clinical Research, Medical Faculty Mannheim, 68167 Mannheim, Germany
| | - Norbert Gretz
- Center for Clinical Research, Medical Faculty Mannheim, 68167 Mannheim, Germany
| | - Thomas Fleming
- Department of Medicine I and Clinical Chemistry, Heidelberg University, 69120 Heidelberg, Germany
| | - Peter P Nawroth
- Department of Medicine I and Clinical Chemistry, Heidelberg University, 69120 Heidelberg, Germany
| | - Wolfgang Stremmel
- Department of Internal Medicine IV, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Adam J Rose
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, and Joint Heidelberg-IDC Translational Diabetes Program, Internal Medicine I, 85764 Neuherberg, Germany
| | - Mauricio Berriel-Diaz
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, and Joint Heidelberg-IDC Translational Diabetes Program, Internal Medicine I, 85764 Neuherberg, Germany
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Stephan Herzig
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, and Joint Heidelberg-IDC Translational Diabetes Program, Internal Medicine I, 85764 Neuherberg, Germany
| |
Collapse
|
27
|
Fueling the Cell Division Cycle. Trends Cell Biol 2016; 27:69-81. [PMID: 27746095 DOI: 10.1016/j.tcb.2016.08.009] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 08/08/2016] [Accepted: 08/25/2016] [Indexed: 11/21/2022]
Abstract
Cell division is a complex process with high energy demands. However, how cells regulate the generation of energy required for DNA synthesis and chromosome segregation is not well understood. Recent data suggest that changes in mitochondrial dynamics and metabolic pathways such as oxidative phosphorylation (OXPHOS) and glycolysis crosstalk with, and are tightly regulated by, the cell division machinery. Alterations in energy availability trigger cell-cycle checkpoints, suggesting a bidirectional connection between cell division and general metabolism. Some of these connections are altered in human disease, and their manipulation may help in designing therapeutic strategies for specific diseases including cancer. We review here recent studies describing the control of metabolism by the cell-cycle machinery.
Collapse
|
28
|
Khalifeh S, Oryan S, Khodagholi F, Digaleh H, Shaerzadeh F, Maghsoudi N, Zarrindast MR. Complexity of Compensatory Effects in Nrf1 Knockdown: Linking Undeveloped Anxiety-Like Behavior to Prevented Mitochondrial Dysfunction and Oxidative Stress. Cell Mol Neurobiol 2016; 36:553-63. [PMID: 26202310 DOI: 10.1007/s10571-015-0236-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 07/03/2015] [Indexed: 01/17/2023]
Abstract
Anxiety-related disorders are complex illnesses that underlying molecular mechanisms need to be understood. Mitochondria stand as an important link between energy metabolism, oxidative stress, and anxiety. The nuclear factor, erythroid-derived 2,-like 1(Nrf1) is a member of the cap "n" collar subfamily of basic region leucine zipper transcription factors and plays the major role in regulating the adaptive response to oxidants and electrophiles within the cell. Here, we injected small interfering RNA (siRNA) targeting Nrf1 in dorsal third ventricle of adult male albino Wistar rats and subsequently examined the effect of this silencing on anxiety-related behavior. We also evaluated apoptotic markers and mitochondrial biogenesis factors, along with electron transport chain activity in three brain regions: hippocampus, amygdala, and prefrontal cortex. Our data revealed that in the group that received Nrf1-siRNA, anxiety-related behavior did not show any significant changes compared to the control group. Caspase-3 did not increase in Nrf1-siRNA-injected rats even though Bax/Bcl2 ratio markedly elevated in Nrf1-knockdown rats in all three mentioned regions compared to control rats. Also, Nrf1 silencing of complex I and II-III did not alter, generally. In addition, Nrf1-knockdown affected mitochondrial biogenesis markers. The level of peroxisome proliferator-activated receptor gamma coactivator-1α and cytochrome-c increased, which indicates a possible role for mitochondrial biogenesis in anxiety.
Collapse
Affiliation(s)
- Solmaz Khalifeh
- Department of Animal Physiology, Faculty of Biology, Kharazmi University, P.O. Box: 15614, Tehran, Iran.
- Medical Genomics Research Center and School of Advanced Sciences in Medicine, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran.
| | - Shahrbanoo Oryan
- Department of Animal Physiology, Faculty of Biology, Kharazmi University, P.O. Box: 15614, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hadi Digaleh
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Shaerzadeh
- Department of Physiology, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Nader Maghsoudi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Medical Genomics Research Center and School of Advanced Sciences in Medicine, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Institute for Cognitive Science Studies (ICSS), Tehran, Iran
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| |
Collapse
|
29
|
WU JING, WANG YANING, WO DA, ZHANG LIJUAN, LI JUE. Nuclear respiratory factor 1 overexpression attenuates anti-benzopyrene-7,8-diol-9,10-epoxide-induced S-phase arrest of bronchial epithelial cells. Mol Med Rep 2016; 13:4372-8. [DOI: 10.3892/mmr.2016.5065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 01/11/2016] [Indexed: 11/06/2022] Open
|
30
|
Gabrielson M, Reizer E, Stål O, Tina E. Mitochondrial regulation of cell cycle progression through SLC25A43. Biochem Biophys Res Commun 2016; 469:1090-6. [DOI: 10.1016/j.bbrc.2015.12.088] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 12/20/2015] [Indexed: 12/29/2022]
|
31
|
Cascajo MV, Abdelmohsen K, Noh JH, Fernández-Ayala DJM, Willers IM, Brea G, López-Lluch G, Valenzuela-Villatoro M, Cuezva JM, Gorospe M, Siendones E, Navas P. RNA-binding proteins regulate cell respiration and coenzyme Q biosynthesis by post-transcriptional regulation of COQ7. RNA Biol 2015; 13:622-34. [PMID: 26690054 PMCID: PMC7609068 DOI: 10.1080/15476286.2015.1119366] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Coenzyme Q (CoQ) is a key component of the mitochondrial respiratory chain carrying electrons from complexes I and II to complex III and it is an intrinsic component of the respirasome. CoQ concentration is highly regulated in cells in order to adapt the metabolism of the cell to challenges of nutrient availability and stress stimuli. At least 10 proteins have been shown to be required for CoQ biosynthesis in a multi-peptide complex and COQ7 is a central regulatory factor of this pathway. We found that the first 765 bp of the 3′-untranslated region (UTR) of COQ7 mRNA contains cis-acting elements of interaction with RNA-binding proteins (RBPs) HuR and hnRNP C1/C2. Binding of hnRNP C1/C2 to COQ7 mRNA was found to require the presence of HuR, and hnRNP C1/C2 silencing appeared to stabilize COQ7 mRNA modestly. By contrast, lowering HuR levels by silencing or depriving cells of serum destabilized and reduced the half-life of COQ7 mRNA, thereby reducing COQ7 protein and CoQ biosynthesis rate. Accordingly, HuR knockdown decreased oxygen consumption rate and mitochondrial production of ATP, and increased lactate levels. Taken together, our results indicate that a reduction in COQ7 mRNA levels by HuR depletion causes mitochondrial dysfunction and a switch toward an enhanced aerobic glycolysis, the characteristic phenotype exhibited by primary deficiency of CoQ10. Thus HuR contributes to efficient oxidative phosphorylation by regulating of CoQ10 biosynthesis.
Collapse
Affiliation(s)
- María V Cascajo
- a Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Sevilla , Spain
| | - Kotb Abdelmohsen
- b Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH , Baltimore , Maryland , USA
| | - Ji Heon Noh
- b Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH , Baltimore , Maryland , USA
| | - Daniel J M Fernández-Ayala
- a Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Sevilla , Spain
| | - Imke M Willers
- c Departamento de Biología Molecular , Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM) and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Madrid , Spain
| | - Gloria Brea
- a Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Sevilla , Spain
| | - Guillermo López-Lluch
- a Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Sevilla , Spain
| | - Marina Valenzuela-Villatoro
- a Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Sevilla , Spain
| | - José M Cuezva
- c Departamento de Biología Molecular , Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM) and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Madrid , Spain
| | - Myriam Gorospe
- b Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH , Baltimore , Maryland , USA
| | - Emilio Siendones
- a Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Sevilla , Spain
| | - Plácido Navas
- a Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Sevilla , Spain
| |
Collapse
|
32
|
A new live-cell reporter strategy to simultaneously monitor mitochondrial biogenesis and morphology. Sci Rep 2015; 5:17217. [PMID: 26596249 PMCID: PMC4657046 DOI: 10.1038/srep17217] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/27/2015] [Indexed: 12/18/2022] Open
Abstract
Changes in mitochondrial amount and shape are intimately linked to maintenance of cell homeostasis via adaptation of vital functions. Here, we developed a new live-cell reporter strategy to simultaneously monitor mitochondrial biogenesis and morphology. This was achieved by making a genetic reporter construct where a master regulator of mitochondrial biogenesis, nuclear respiratory factor 1 (NRF-1), controls expression of mitochondria targeted green fluorescent protein (mitoGFP). HeLa cells with the reporter construct demonstrated inducible expression of mitoGFP upon activation of AMP-dependent protein kinase (AMPK) with AICAR. We established stable reporter cells where the mitoGFP reporter activity corresponded with mitochondrial biogenesis both in magnitude and kinetics, as confirmed by biochemical markers and confocal microscopy. Quantitative 3D image analysis confirmed accordant increase in mitochondrial biomass, in addition to filament/network promoting and protecting effects on mitochondrial morphology, after treatment with AICAR. The level of mitoGFP reversed upon removal of AICAR, in parallel with decrease in mtDNA. In summary, we here present a new GFP-based genetic reporter strategy to study mitochondrial regulation and dynamics in living cells. This combinatorial reporter concept can readily be transferred to other cell models and contexts to address specific physiological mechanisms.
Collapse
|
33
|
Okoh VO, Garba NA, Penney RB, Das J, Deoraj A, Singh KP, Sarkar S, Felty Q, Yoo C, Jackson RM, Roy D. Redox signalling to nuclear regulatory proteins by reactive oxygen species contributes to oestrogen-induced growth of breast cancer cells. Br J Cancer 2015; 112:1687-702. [PMID: 25965299 PMCID: PMC4430710 DOI: 10.1038/bjc.2014.586] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/10/2014] [Accepted: 10/22/2014] [Indexed: 12/31/2022] Open
Abstract
Background: 17β-Oestradiol (E2)-induced reactive oxygen species (ROS) have been implicated in regulating the growth of breast cancer cells. However, the underlying mechanism of this is not clear. Here we show how ROS through a novel redox signalling pathway involving nuclear respiratory factor-1 (NRF-1) and p27 contribute to E2-induced growth of MCF-7 breast cancer cells. Methods: Chromatin immunoprecipitation, qPCR, mass spectrometry, redox western blot, colony formation, cell proliferation, ROS assay, and immunofluorescence microscopy were used to study the role of NRF-1. Results: The major novel finding of this study is the demonstration of oxidative modification of phosphatases PTEN and CDC25A by E2-generated ROS along with the subsequent activation of AKT and ERK pathways that culminated in the activation of NRF-1 leading to the upregulation of cell cycle genes. 17β-Oestradiol-induced ROS by influencing nuclear proteins p27 and Jab1 also contributed to the growth of MCF-7 cells. Conclusions: Taken together, our results present evidence in the support of E2-induced ROS-mediated AKT signalling leading to the activation of NRF-1-regulated cell cycle genes as well as the impairment of p27 activity, which is presumably necessary for the growth of MCF-7 cells. These observations are important because they provide a new paradigm by which oestrogen may contribute to the growth of breast cancer.
Collapse
Affiliation(s)
- V O Okoh
- Department of Environmental and Occupational Health, Florida International University, 11200 SW 8th Street, Miami, FL 33199-0001, USA
| | - N A Garba
- Department of Environmental and Occupational Health, Florida International University, 11200 SW 8th Street, Miami, FL 33199-0001, USA
| | - R B Penney
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72204, USA
| | - J Das
- Department of Environmental and Occupational Health, Florida International University, 11200 SW 8th Street, Miami, FL 33199-0001, USA
| | - A Deoraj
- Department of Environmental and Occupational Health, Florida International University, 11200 SW 8th Street, Miami, FL 33199-0001, USA
| | - K P Singh
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, TX 79409, USA
| | - S Sarkar
- Department of Neuroscience and Cell Biology, UTMB, Galveston, TX 77555, USA
| | - Q Felty
- Department of Environmental and Occupational Health, Florida International University, 11200 SW 8th Street, Miami, FL 33199-0001, USA
| | - C Yoo
- Department of Biostatistics, Florida International University, Miami, FL 33199, USA
| | - R M Jackson
- Research Service, VA Medical Center, 1201 NW 16th Street, Miami, FL 33125, USA
| | - D Roy
- 1] Department of Environmental and Occupational Health, Florida International University, 11200 SW 8th Street, Miami, FL 33199-0001, USA [2] Research Service, VA Medical Center, 1201 NW 16th Street, Miami, FL 33125, USA
| |
Collapse
|
34
|
Zou D, Liu P, Chen K, Xie Q, Liang X, Bai Q, Zhou Q, Liu K, Zhang T, Zhu J, Mi M. Protective effects of myricetin on acute hypoxia-induced exercise intolerance and mitochondrial impairments in rats. PLoS One 2015; 10:e0124727. [PMID: 25919288 PMCID: PMC4412664 DOI: 10.1371/journal.pone.0124727] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 03/03/2015] [Indexed: 12/03/2022] Open
Abstract
Purpose Exercise tolerance is impaired in hypoxia. The aim of this study was to evaluate the effects of myricetin, a dietary flavonoid compound widely found in fruits and vegetables, on acute hypoxia-induced exercise intolerance in vivo and in vitro. Methods Male rats were administered myricetin or vehicle for 7 days and subsequently spent 24 hours at a barometric pressure equivalent to 5000 m. Exercise capacity was then assessed through the run-to-fatigue procedure, and mitochondrial morphology in skeletal muscle cells was observed by transmission electron microscopy (TEM). The enzymatic activities of electron transfer complexes were analyzed using an enzyme-linked immuno-sorbent assay (ELISA). mtDNA was quantified by real-time-PCR. Mitochondrial membrane potential was measured by JC-1 staining. Protein expression was detected through western blotting, immunohistochemistry, and immunofluorescence. Results Myricetin supplementation significantly prevented the decline of run-to-fatigue time of rats in hypoxia, and attenuated acute hypoxia-induced mitochondrial impairment in skeletal muscle cells in vivo and in vitro by maintaining mitochondrial structure, mtDNA content, mitochondrial membrane potential, and activities of the respiratory chain complexes. Further studies showed that myricetin maintained mitochondrial biogenesis in skeletal muscle cells under hypoxic conditions by up-regulating the expressions of mitochondrial biogenesis-related regluators, in addition, AMP-activated protein kinase(AMPK) plays a crucial role in this process. Conclusions Myricetin may have important applications for improving physical performance under hypoxic environment, which may be attributed to the protective effect against mitochondrial impairment by maintaining mitochondrial biogenesis.
Collapse
Affiliation(s)
- Dan Zou
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University; Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Chongqing, PR China
| | - Peng Liu
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University; Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Chongqing, PR China
| | - Ka Chen
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University; Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Chongqing, PR China
| | - Qi Xie
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University; Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Chongqing, PR China
| | - Xinyu Liang
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University; Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Chongqing, PR China
| | - Qian Bai
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University; Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Chongqing, PR China
| | - Qicheng Zhou
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University; Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Chongqing, PR China
| | - Kai Liu
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University; Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Chongqing, PR China
| | - Ting Zhang
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University; Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Chongqing, PR China
| | - Jundong Zhu
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University; Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Chongqing, PR China
- * E-mail: (MM); (JZ)
| | - Mantian Mi
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University; Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Chongqing, PR China
- * E-mail: (MM); (JZ)
| |
Collapse
|
35
|
De Riccardis L, Rizzello A, Ferramosca A, Urso E, De Robertis F, Danieli A, Giudetti AM, Trianni G, Zara V, Maffia M. Bioenergetics profile of CD4(+) T cells in relapsing remitting multiple sclerosis subjects. J Biotechnol 2015; 202:31-9. [PMID: 25701681 DOI: 10.1016/j.jbiotec.2015.02.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 02/06/2015] [Accepted: 02/11/2015] [Indexed: 12/17/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory autoimmune demyelinating disease of the central nervous system. There are four clinical forms of MS, the most common of which is characterized by a relapsing remitting course (RRMS). The etiology of MS is unknown, but many studies suggested that genetic, environmental and infectious agents may contribute to the development of this disease. In experimental autoimmune encephalomyelitis (EAE), the animal model for MS, it has been shown that CD4(+) T cells play a key role in MS pathogenesis. In fact, these cells are able to cross the blood-brain barrier and cause axonal damage with neuronal death. T cell activation critically depends on mitochondrial ATP synthesis and reactive oxygen species (ROS) production. Interestingly, lots of studies linked the oxidative damage arising from mitochondrial changes to neurodegenerative disorders, such as MS. Based on these evidences, this work focused on the metabolic reprogramming of CD4(+) T cells in MS subjects, being this cell population directly implicated in pathogenesis of disease, paying attention to mitochondrial function and response to oxidative stress. Such aspects, once clarified, may open new opportunities for a therapeutic metabolic modulation of MS disorder.
Collapse
Affiliation(s)
- Lidia De Riccardis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, Lecce, Italy
| | - Antonia Rizzello
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, Lecce, Italy
| | - Alessandra Ferramosca
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, Lecce, Italy
| | - Emanuela Urso
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, Lecce, Italy
| | | | - Antonio Danieli
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, Lecce, Italy
| | - Anna Maria Giudetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, Lecce, Italy
| | - Giorgio Trianni
- Department of Neurology, "Vito Fazzi" Hospital, ASL-Lecce, Italy
| | - Vincenzo Zara
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, Lecce, Italy
| | - Michele Maffia
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, Lecce, Italy.
| |
Collapse
|
36
|
Bharadwaj R, Peter CJ, Jiang Y, Roussos P, Vogel-Ciernia A, Shen EY, Mitchell AC, Mao W, Whittle C, Dincer A, Jakovcevski M, Pothula V, Rasmussen TP, Giakoumaki SG, Bitsios P, Sherif A, Gardner PD, Ernst P, Ghose S, Sklar P, Haroutunian V, Tamminga C, Myers RH, Futai K, Wood MA, Akbarian S. Conserved higher-order chromatin regulates NMDA receptor gene expression and cognition. Neuron 2014; 84:997-1008. [PMID: 25467983 PMCID: PMC4258154 DOI: 10.1016/j.neuron.2014.10.032] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2014] [Indexed: 12/17/2022]
Abstract
Three-dimensional chromosomal conformations regulate transcription by moving enhancers and regulatory elements into spatial proximity with target genes. Here we describe activity-regulated long-range loopings bypassing up to 0.5 Mb of linear genome to modulate NMDA glutamate receptor GRIN2B expression in human and mouse prefrontal cortex. Distal intronic and 3' intergenic loop formations competed with repressor elements to access promoter-proximal sequences, and facilitated expression via a "cargo" of AP-1 and NRF-1 transcription factors and TALE-based transcriptional activators. Neuronal deletion or overexpression of Kmt2a/Mll1 H3K4- and Kmt1e/Setdb1 H3K9-methyltransferase was associated with higher-order chromatin changes at distal regulatory Grin2b sequences and impairments in working memory. Genetic polymorphisms and isogenic deletions of loop-bound sequences conferred liability for cognitive performance and decreased GRIN2B expression. Dynamic regulation of chromosomal conformations emerges as a novel layer for transcriptional mechanisms impacting neuronal signaling and cognition.
Collapse
Affiliation(s)
- Rahul Bharadwaj
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Cyril J Peter
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yan Jiang
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Panos Roussos
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; James J. Peters Veterans Affairs Medical Center, Bronx, New York, NY 10468, USA
| | - Annie Vogel-Ciernia
- Department of Neurobiology and Behavior, University of California at Irvine, Irvine, CA 92697, USA
| | - Erica Y Shen
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Amanda C Mitchell
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Wenjie Mao
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Catheryne Whittle
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Aslihan Dincer
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Venu Pothula
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Theodore P Rasmussen
- Department of Pharmaceutical Sciences and U.Conn Stem Cell Institute, University of Connecticut, Storrs, CT 06269, USA
| | - Stella G Giakoumaki
- Department of Psychiatry, University of Crete, 71003 Iraklion, Greece; Department of Psychology, University of Crete, 71003 Iraklion, Greece
| | - Panos Bitsios
- Computational Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology Hellas, 71003 Iraklion, Greece; Department of Psychiatry, University of Crete, 71003 Iraklion, Greece
| | - Ajfar Sherif
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Paul D Gardner
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Patricia Ernst
- Department of Genetics and Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Subroto Ghose
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Pamela Sklar
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Vahram Haroutunian
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; James J. Peters Veterans Affairs Medical Center, Bronx, New York, NY 10468, USA
| | - Carol Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Richard H Myers
- Department of Neurology, Boston University, Boston, MA 02118, USA
| | - Kensuke Futai
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, University of California at Irvine, Irvine, CA 92697, USA
| | - Schahram Akbarian
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
37
|
Regulation of the biogenesis of OXPHOS complexes in cell transition from replicating to quiescent state: involvement of PKA and effect of hydroxytyrosol. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:675-84. [PMID: 24389246 DOI: 10.1016/j.bbamcr.2013.12.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 12/06/2013] [Accepted: 12/24/2013] [Indexed: 12/11/2022]
Abstract
A study is presented on the expression of mitochondrial oxidative phosphorylation complexes in exponentially growing and serum-starved, quiescent human fibroblast cultures. The functional levels of respiratory complexes I and III and complex V (adenosine triphosphate (ATP) synthase) were found to be severely depressed in serum-starved fibroblasts. The depression of oxidative phosphorylation system (OXPHOS) complexes was associated with reduced levels of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and the down-stream nuclear respiratory factor 1 (NRF1) and mitochondrial transcription factors (TFAM). In serum-starved fibroblasts decrease of the catalytic activity of AMP cyclic dependent protein kinase (PKA) and phosphorylation of cAMP response element-binding protein (CREB), the transcription coactivator of the PGC-1α gene, was found. Hydroxytyrosol prevented the decline in the expression of the PGC-1α transcription cascade of OXPHOS complexes in serum-starved fibroblast cultures. The positive effect of HT was associated with activation of PKA and CREB phosphorylation. These results show involvement of PKA, CREB and PGC-1α in the regulation of OXPHOS in cell transition from the replicating to the quiescent state.
Collapse
|
38
|
Zhang L, Yu H, Wang P, Ding Q, Wang Z. Screening of transcription factors with transcriptional initiation activity. Gene 2013; 531:64-70. [DOI: 10.1016/j.gene.2013.07.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 07/06/2013] [Accepted: 07/12/2013] [Indexed: 10/26/2022]
|
39
|
Verissimo CS, Elands R, Cheng S, Saaltink DJ, ter Horst JP, Alme MN, Pont C, van de Water B, Håvik B, Fitzsimons CP, Vreugdenhil E. Silencing of doublecortin-like (DCL) results in decreased mitochondrial activity and delayed neuroblastoma tumor growth. PLoS One 2013; 8:e75752. [PMID: 24086625 PMCID: PMC3784435 DOI: 10.1371/journal.pone.0075752] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 08/19/2013] [Indexed: 12/17/2022] Open
Abstract
Doublecortin-like (DCL) is a microtubule-binding protein crucial for neuroblastoma (NB) cell proliferation. We have investigated whether the anti-proliferative effect of DCL knockdown is linked to reduced mitochondrial activity. We found a delay in tumor development after DCL knockdown in vivo in doxycycline-inducible NB tumor xenografts. To understand the mechanisms underlying this tumor growth retardation we performed a series of in vitro experiments in NB cell lines. DCL colocalizes with mitochondria, interacts with the mitochondrial outer membrane protein OMP25/ SYNJ2BP and DCL knockdown results in decreased expression of genes involved in oxidative phosphorylation. Moreover, DCL knockdown decreases cytochrome c oxidase activity and ATP synthesis. We identified the C-terminal Serine/Proline-rich domain and the second microtubule-binding area as crucial DCL domains for the regulation of cytochrome c oxidase activity and ATP synthesis. Furthermore, DCL knockdown causes a significant reduction in the proliferation rate of NB cells under an energetic challenge induced by low glucose availability. Together with our previous studies, our results corroborate DCL as a key player in NB tumor growth in which DCL controls not only mitotic spindle formation and the stabilization of the microtubule cytoskeleton, but also regulates mitochondrial activity and energy availability, which makes DCL a promising molecular target for NB therapy.
Collapse
Affiliation(s)
- Carla S. Verissimo
- Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research, Leiden University Medical Center, Leiden, the Netherlands
- * E-mail: (CSV); (EV)
| | - Rachel Elands
- Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research, Leiden University Medical Center, Leiden, the Netherlands
| | - Sou Cheng
- Prosensa Therapeutics B.V., Leiden, the Netherlands
| | - Dirk-Jan Saaltink
- Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research, Leiden University Medical Center, Leiden, the Netherlands
| | - Judith P. ter Horst
- Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research, Leiden University Medical Center, Leiden, the Netherlands
| | - Maria N. Alme
- Department of Biomedicine, K. G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| | - Chantal Pont
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden University Medical Center, Leiden, the Netherlands
| | - Bob van de Water
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden University Medical Center, Leiden, the Netherlands
| | - Bjarte Håvik
- Dr. E. Martens Research Group for Biological Psychiatry, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Carlos P. Fitzsimons
- Centre for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Erno Vreugdenhil
- Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research, Leiden University Medical Center, Leiden, the Netherlands
- Department of Human Genetics, Migraine Research Group, Leiden University Medical Center, Leiden, the Netherlands
- * E-mail: (CSV); (EV)
| |
Collapse
|
40
|
Fischer M, Quaas M, Wintsche A, Müller GA, Engeland K. Polo-like kinase 4 transcription is activated via CRE and NRF1 elements, repressed by DREAM through CDE/CHR sites and deregulated by HPV E7 protein. Nucleic Acids Res 2013; 42:163-80. [PMID: 24071582 PMCID: PMC3874167 DOI: 10.1093/nar/gkt849] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Infection by oncogenic viruses is a frequent cause for tumor formation as observed in cervical cancer. Viral oncoproteins cause inactivation of p53 function and false transcriptional regulation of central cell cycle genes. Here we analyze the regulation of Plk4, serving as an example of many cell cycle- and p53-regulated genes. Cell cycle genes are often repressed via CDE and CHR elements in their promoters and activated by NF-Y binding to CCAAT-boxes. In contrast, general activation of Plk4 depends on NRF1 and CRE sites. Bioinformatic analyses imply that NRF1 and CRE are central elements of the transcriptional network controlling cell cycle genes. We identify CDE and CHR sites in the Plk4 promoter, which are necessary for binding of the DREAM (DP, RB-like, E2F4 and MuvB) complex and for mediating repression in G0/G1. When cells progress to G2 and mitosis, DREAM is replaced by the MMB (Myb-MuvB) complex that only requires the CHR element for binding. Plk4 expression is downregulated by the p53-p21WAF1/CIP1-DREAM signaling pathway through the CDE and CHR sites. Cell cycle- and p53-dependent repression is abrogated by HPV E7 oncoprotein. Together with genome-wide analyses our results imply that many cell cycle genes upregulated in tumors by viral infection are bound by DREAM through CDE/CHR sites.
Collapse
Affiliation(s)
- Martin Fischer
- Molecular Oncology, Medical School, University of Leipzig, Semmelweisstr. 14, 04103 Leipzig, Germany and Computational EvoDevo Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany
| | | | | | | | | |
Collapse
|
41
|
Zhu J, Wang KZQ, Chu CT. After the banquet: mitochondrial biogenesis, mitophagy, and cell survival. Autophagy 2013; 9:1663-76. [PMID: 23787782 DOI: 10.4161/auto.24135] [Citation(s) in RCA: 230] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mitochondria are highly dynamic organelles of crucial importance to the proper functioning of neuronal, cardiac and other cell types dependent upon aerobic efficiency. Mitochondrial dysfunction has been implicated in numerous human conditions, to include cancer, metabolic diseases, neurodegeneration, diabetes, and aging. In recent years, mitochondrial turnover by macroautophagy (mitophagy) has captured the limelight, due in part to discoveries that genes linked to Parkinson disease regulate this quality control process. A rapidly growing literature is clarifying effector mechanisms that underlie the process of mitophagy; however, factors that regulate positive or negative cellular outcomes have been less studied. Here, we review the literature on two major pathways that together may determine cellular adaptation vs. cell death in response to mitochondrial dysfunction. Mitochondrial biogenesis and mitophagy represent two opposing, but coordinated processes that determine mitochondrial content, structure, and function. Recent data indicate that the capacity to undergo mitochondrial biogenesis, which is dysregulated in disease states, may play a key role in determining cell survival following mitophagy-inducing injuries. The current literature on major pathways that regulate mitophagy and mitochondrial biogenesis is summarized, and mechanisms by which the interplay of these two processes may determine cell fate are discussed. We conclude that in primary neurons and other mitochondrially dependent cells, disruptions in any phase of the mitochondrial recycling process can contribute to cellular dysfunction and disease. Given the emerging importance of crosstalk among regulators of mitochondrial function, autophagy, and biogenesis, signaling pathways that coordinate these processes may contribute to therapeutic strategies that target or regulate mitochondrial turnover and regeneration.
Collapse
Affiliation(s)
- Jianhui Zhu
- Department of Pathology; Division of Neuropathology; University of Pittsburgh School of Medicine; Pittsburgh, PA USA
| | | | | |
Collapse
|
42
|
Khodagholi F, Ashabi G. Dietary supplementation with Salvia sahendica attenuates memory deficits, modulates CREB and its down-stream molecules and decreases apoptosis in amyloid beta-injected rats. Behav Brain Res 2013. [DOI: 10.1016/j.bbr.2012.11.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
43
|
Piantadosi CA, Suliman HB. Redox regulation of mitochondrial biogenesis. Free Radic Biol Med 2012; 53:2043-53. [PMID: 23000245 PMCID: PMC3604744 DOI: 10.1016/j.freeradbiomed.2012.09.014] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 09/07/2012] [Accepted: 09/11/2012] [Indexed: 12/21/2022]
Abstract
The cell renews, adapts, or expands its mitochondrial population during episodes of cell damage or periods of intensified energy demand by the induction of mitochondrial biogenesis. This bigenomic program is modulated by redox-sensitive signals that respond to physiological nitric oxide (NO), carbon monoxide (CO), and mitochondrial reactive oxygen species production. This review summarizes our current ideas about the pathways involved in the activation of mitochondrial biogenesis by the physiological gases leading to changes in the redox milieu of the cell, with an emphasis on the responses to oxidative stress and inflammation. The cell's energy supply is protected from conditions that damage mitochondria by an inducible transcriptional program of mitochondrial biogenesis that operates in large part through redox signals involving the nitric oxide synthase and the heme oxygenase-1/CO systems. These redox events stimulate the coordinated activities of several multifunctional transcription factors and coactivators also involved in the elimination of defective mitochondria and the expression of counterinflammatory and antioxidant genes, such as IL10 and SOD2, as part of a unified damage-control network. The redox-regulated mechanisms of mitochondrial biogenesis schematically outlined in the graphical abstract link mitochondrial quality control to an enhanced capacity to support the cell's metabolic needs while improving its resistance to metabolic failure and avoidance of cell death during periods of oxidative stress.
Collapse
Affiliation(s)
- Claude A Piantadosi
- Department of Medicine, Duke University Medical Center and the Durham VA Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
44
|
Devin A, Rigoulet M. Regulation of mitochondrial biogenesis in eukaryotic cells. Toxicol Mech Methods 2012; 14:271-9. [PMID: 20021106 DOI: 10.1080/15376520490479620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Mitochondria amount within a cell is modulated in response to energy demand. This involves a tight regulation of mitochondrial biogenesis and the coordinated expression of hundreds of genes, both at the nuclear and at the mitochondrial level. This review will focus on two aspects of mitochondrial biogenesis regulation: (i) In mammalian cells, physiological effectors, and the regulatory proteins that control the expression of the respiratory apparatus, will be considered, and different kinds of tissue will be addressed. (ii) In yeast, the regulation of mitochondrial biogenesis in response to growth conditions as well as the signaling pathway involved will be considered.
Collapse
Affiliation(s)
- Anne Devin
- Institut de Biochimie et Génétique Cellulaires, UMR 5095 CNRS/Université Victor Segalen, 1 rue Camille Saint-Saëns, Bordeaux cedex, 33077, France
| | | |
Collapse
|
45
|
Kwon HJ. ATP oscillations mediate inductive action of FGF and Shh signalling on prechondrogenic condensation. Cell Biochem Funct 2012; 31:75-81. [PMID: 22886426 DOI: 10.1002/cbf.2862] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/08/2012] [Accepted: 07/10/2012] [Indexed: 01/05/2023]
Abstract
Skeletal patterns are prefigured by prechondrogenic condensation. Morphogens such as fibroblast growth factor (FGF) and sonic hedgehog (Shh) specify the skeletal patterns in limb development. However, how morphogens regulate prechondrogenic condensation has remained unclear. Recently, it was demonstrated that synchronized Adenosine triphosphate (ATP) oscillations play a critical role in prechondrogenic condensation. Thus, the present study has focused on whether ATP oscillations mediate the actions of major developmental morphogens such as FGF and Shh on prechondrogenic condensation. It has been shown that both FGF and Shh signalling promoted cellular condensation but not chondrogenic differentiation and also induced ATP oscillations. In addition, blockage of FGF and Shh signalling prevented both ATP oscillations and prechondrogenic condensation. Furthermore, it was found that inhibition of ATP oscillations suppressed FGF/Shh-induced prechondrogenic condensation. These results indicate that ATP oscillations mediate the actions of FGF and Shh signalling on prechondrogenic condensation. This study proposes that morphogens organize skeletal patterns via ATP oscillations.
Collapse
Affiliation(s)
- Hyuck Joon Kwon
- Regenerative Medicine/Tissue Engineering Division, Research Center for Cooperative Projects, Graduate School of Medicine, Hokkaido University, N-15 W-7, Kita-ku, Sapporo, 060-8638, Japan.
| |
Collapse
|
46
|
Zhang L, Ding Q, Wang Z. Nuclear respiratory factor 1 mediates the transcription initiation of insulin-degrading enzyme in a TATA box-binding protein-independent manner. PLoS One 2012; 7:e42035. [PMID: 22870279 PMCID: PMC3411688 DOI: 10.1371/journal.pone.0042035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 06/29/2012] [Indexed: 01/22/2023] Open
Abstract
CpG island promoters often lack canonical core promoter elements such as the TATA box, and have dispersed transcription initiation sites. Despite the prevalence of CpG islands associated with mammalian genes, the mechanism of transcription initiation from CpG island promoters remains to be clarified. Here we investigate the mechanism of transcription initiation of the CpG island-associated gene, insulin-degrading enzyme (IDE). IDE is ubiquitously expressed, and has dispersed transcription initiation sites. The IDE core promoter locates within a 32-bp region, which contains three CGGCG repeats and a nuclear respiratory factor 1 (NRF-1) binding motif. Sequential mutation analysis indicates that the NRF-1 binding motif is critical for IDE transcription initiation. The NRF-1 binding motif is functional, because NRF-1 binds to this motif in vivo and this motif is required for the regulation of IDE promoter activity by NRF-1. Furthermore, the NRF-1 binding site in the IDE promoter is conserved among different species, and dominant negative NRF-1 represses endogenous IDE expression. Finally, TATA-box binding protein (TBP) is not associated with the IDE promoter, and inactivation of TBP does not abolish IDE transcription, suggesting that TBP is not essential for IDE transcription initiation. Our studies indicate that NRF-1 mediates IDE transcription initiation in a TBP-independent manner, and provide insights into the potential mechanism of transcription initiation for other CpG island-associated genes.
Collapse
Affiliation(s)
- Lang Zhang
- Protein Science Key Laboratory of the Ministry of Education, Department of Biological Sciences and Biotechnology, School of Medicine, Tsinghua University, Beijing, China
| | - Qingyang Ding
- Protein Science Key Laboratory of the Ministry of Education, Department of Biological Sciences and Biotechnology, School of Medicine, Tsinghua University, Beijing, China
| | - Zhao Wang
- Protein Science Key Laboratory of the Ministry of Education, Department of Biological Sciences and Biotechnology, School of Medicine, Tsinghua University, Beijing, China
- * E-mail:
| |
Collapse
|
47
|
Abstract
BACKGROUND p53 induces cell-cycle arrest and apoptosis in cancer cells and negatively regulates glycolysis via TIGAR. Glycolysis is crucial for cancer progression although TIGAR provides protection from reactive oxygen species and apoptosis. The relation between TIGAR-mediated inhibition of glycolysis and p53 tumour-suppressor activity is unknown. METHODS RT-PCR, western blot, luciferase and chromatin immunoprecipitation assays were used to study TIGAR gene regulation. Co-IPP was used to determine the role of TIGAR protein in regulating the protein-protein interaction between retinoblastoma (RB) and E2F1. MCF-7 tumour xenografts were utilised to study the role of TIGAR in tumour regression. RESULTS Our study shows that TIGAR promotes p21-independent, p53-mediated G1-phase arrest in cancer cells. p53 activates the TIGAR promoter only in cells exposed to repairable doses of stress. TIGAR regulates the expression of genes involved in cell-cycle progression; suppresses synthesis of CDK-2, CDK-4, CDK-6, Cyclin D, Cyclin E and promotes de-phosphorylation of RB protein. RB de-phosphorylation stabilises the complex between RB and E2F1 thus inhibiting the entry of cell cycle from G1 phase to S phase. CONCLUSION TIGAR mediates de-phosphorylation of RB and stabilisation of RB-E2F1 complex thus delaying the entry of cells in S phase of the cell cycle. Thus, TIGAR inhibits proliferation of cancer cells and increases drug-mediated tumour regression by promoting p53-mediated cell-cycle arrest.
Collapse
|
48
|
Qin G, Wang J, Huo Y, Yan H, Jiang C, Zhou J, Wang X, Sang N. Sulfur dioxide inhalation stimulated mitochondrial biogenesis in rat brains. Toxicology 2012; 300:67-74. [PMID: 22677886 DOI: 10.1016/j.tox.2012.05.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 05/20/2012] [Accepted: 05/28/2012] [Indexed: 11/15/2022]
Abstract
Sulfur dioxide (SO(2)) is a common environmental pollutant. Mitochondria play essential roles in energy metabolism, generation of reactive oxygen species, and regulation of apoptosis in response to neuronal brain injury. It is of interest to observe the effect of SO(2) on mitochondrial function in brain. In the present study, male Wistar rats were housed in exposure chambers and treated with 3.5, 7 and 14mg/m(3) SO(2) for 4h/day for 30days, while control rats were exposed to filtered air in the same condition. Mitochondrial membrane potential (MMP) was assessed in cerebral mitochondria using the lipophilic cationic probe JC-1. The amount of ATP was measured by the luciferinluciferase method. Analyses of mitochondrial replication and transcription were performed by real time PCR. The protein levels were detected using Western blotting. Our results showed that cerebral mtDNA content was markedly increased in rats after SO(2) exposure. Paralleling the change in mtDNA content, MMP, ATP content, MDA level, CO1 & 4 and ATP6 & 8 expression, and cytochrome c oxidase activity were increased in rat cortex after SO(2) inhalation. Moreover, mitochondrial biogenesis was accompanied by increased expression of NRF1 and TFAM, whereas PGC-1α was not changed. We report for the first time increased mitochondrial biogenesis in brain of rats exposed to SO(2), which might be an adaptive response to mitochondrial depletion by oxidant damage.
Collapse
Affiliation(s)
- Guohua Qin
- The College of Environmental Science and Resources, Shanxi University, Taiyuan, Shanxi 030006, China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Ashabi G, Ramin M, Azizi P, Taslimi Z, Alamdary SZ, Haghparast A, Ansari N, Motamedi F, Khodagholi F. ERK and p38 inhibitors attenuate memory deficits and increase CREB phosphorylation and PGC-1α levels in Aβ-injected rats. Behav Brain Res 2012; 232:165-73. [DOI: 10.1016/j.bbr.2012.04.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 03/30/2012] [Accepted: 04/03/2012] [Indexed: 11/30/2022]
|
50
|
Garedew A, Andreassi C, Moncada S. Mitochondrial dynamics, biogenesis, and function are coordinated with the cell cycle by APC/C CDH1. Cell Metab 2012; 15:466-79. [PMID: 22482729 DOI: 10.1016/j.cmet.2012.03.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 12/19/2011] [Accepted: 03/05/2012] [Indexed: 01/23/2023]
Abstract
Cell proliferation is associated with a high rate of aerobic glycolysis, which has been widely interpreted as a compensatory mechanism for suppressed mitochondrial function, despite reports of high respiration rates. The molecular mechanisms that link cell proliferation with mitochondrial metabolism, dynamics, and biogenesis remain obscure. Here, we show that proliferation is associated with an increase in both glycolysis and respiration, in conjunction with mitochondrial fusion and biogenesis. Changes in mitochondrial morphology and mass are due to accumulation of OPA1, MFN1, and TFAM, silencing any of which hinders cell proliferation. Moreover, the levels of OPA1, MFN1, and TFAM are regulated by the ubiquitin ligase APC/C(CDH1), which also controls proteasomal degradation of key glycolytic, glutaminolytic, and cell-cycle proteins. Thus, we have identified an important component of the molecular mechanism that coordinates cell proliferation with activation of the mitochondrial metabolic machinery that provides the necessary energy and biosynthetic substrates.
Collapse
Affiliation(s)
- Assegid Garedew
- Wolfson Institute for Biomedical Research, University College London, London, UK.
| | | | | |
Collapse
|