1
|
Björklund P, Åkerström G, Westin G. An LRP5 receptor with internal deletion in hyperparathyroid tumors with implications for deregulated WNT/beta-catenin signaling. PLoS Med 2007; 4:e328. [PMID: 18044981 PMCID: PMC2082644 DOI: 10.1371/journal.pmed.0040328] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 10/03/2007] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Hyperparathyroidism (HPT) is a common endocrine disorder with incompletely understood etiology, characterized by enlarged hyperactive parathyroid glands and increased serum concentrations of parathyroid hormone and ionized calcium. We have recently reported activation of the Wnt signaling pathway by accumulation of beta-catenin in all analyzed parathyroid tumors from patients with primary HPT (pHPT) and in hyperplastic parathyroid glands from patients with uremia secondary to HPT (sHPT). Mechanisms that may account for this activation have not been identified, except for a few cases of beta-catenin (CTNNB1) stabilizing mutation in pHPT tumors. METHODS AND FINDINGS Reverse transcription PCR and Western blot analysis showed expression of an aberrantly spliced internally truncated WNT coreceptor low-density lipoprotein receptor-related protein 5 (LRP5) in 32 out of 37 pHPT tumors (86%) and 20 out of 20 sHPT tumors (100%). Stabilizing mutation of CTNNB1 and expression of the internally truncated LRP5 receptor was mutually exclusive. Expression of the truncated LRP5 receptor was required to maintain the nonphosphorylated active beta-catenin level, transcription activity of beta-catenin, MYC expression, parathyroid cell growth in vitro, and parathyroid tumor growth in a xenograft severe combined immunodeficiency (SCID) mouse model. WNT3 ligand and the internally truncated LRP5 receptor strongly activated transcription, and the internally truncated LRP5 receptor was insensitive to inhibition by DKK1. CONCLUSIONS The internally truncated LRP5 receptor is strongly implicated in deregulated activation of the WNT/beta-catenin signaling pathway in hyperparathyroid tumors, and presents a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Peyman Björklund
- Department of Surgical Sciences, Uppsala University, Endocrine Unit, Uppsala University Hospital, Uppsala, Sweden
| | - Göran Åkerström
- Department of Surgical Sciences, Uppsala University, Endocrine Unit, Uppsala University Hospital, Uppsala, Sweden
| | - Gunnar Westin
- Department of Surgical Sciences, Uppsala University, Endocrine Unit, Uppsala University Hospital, Uppsala, Sweden
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
2
|
Wierstra I, Alves J. FOXM1c transactivates the human c-myc promoter directly via the two TATA boxes P1 and P2. FEBS J 2006; 273:4645-67. [PMID: 16965535 DOI: 10.1111/j.1742-4658.2006.05468.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
FOXM1c transactivates the c-myc promoter via the P1 and P2 TATA boxes using a new mechanism. Whereas the P1 TATA box TATAATGC requires its sequence context to be FOXM1c responsive, the P2 TATA box TATAAAAG alone is sufficient to confer FOXM1c responsiveness to any minimal promoter. FOXM1c transactivates by binding to the TATA box as well as directly to TATA-binding protein, transcription factor IIB and transcription factor IIA. This new transactivation mechanism is clearly distinguished from the function of FOXM1c as a conventional transcription factor. The central domain of FOXM1c functions as an essential domain for activation via the TATA box, but as an inhibitory domain (retinoblastoma protein-independent transrepression domain and retinoblastoma protein-recruiting negative regulatory domain) for transactivation via conventional FOXM1c-binding sites. Each promoter with the P2 TATA box TATAAAAG is postulated to be transactivated by FOXM1c. This was demonstrated for the promoters of c-fos, hsp70 and histone H2B/a. A database search revealed almost 300 probable FOXM1c target genes, many of which function in proliferation and tumorigenesis. Accordingly, dominant-negative FOXM1c proteins reduced cell growth approximately threefold, demonstrating a proliferation-stimulating function for wild-type FOXM1c.
Collapse
Affiliation(s)
- Inken Wierstra
- Institute of Molecular Biology, Medical School Hannover, Germany.
| | | |
Collapse
|
3
|
Osborne S, Hawkes HJ, Baldwin B, Alexander K, Svingen T, Clarke F, Tonissen K. The tert-butylhydroquinone-mediated activation of the human thioredoxin gene reveals a novel promoter structure. Biochem J 2006; 398:269-77. [PMID: 16712525 PMCID: PMC1550307 DOI: 10.1042/bj20060076] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Thioredoxin is a redox-active protein that plays multiple roles in regulating cell growth, cell signalling and apoptosis. Here, we have demonstrated that a complex mechanism involving multiple regulatory elements is involved in the tBHQ [tert-butylhydroquinone or 2,5-di-(t-butyl)-1,4-hydroquinone]-mediated activation of the thioredoxin gene. Luciferase assays, utilizing various wild-type and mutated thioredoxin promoter fragments, revealed roles for the ORE (oxidative stress responsive element), ARE (antioxidant responsive element), three Sp1 (specificity protein 1)-binding sites and the TATA box in the activation of the thioredoxin gene by tBHQ. The ORE required the presence of the ARE to elicit its response, whereas the independent removal of three Sp1-binding sites and the TATA box also decreased activation of the thioredoxin gene, with mutation of the TATA box having the greatest effect. Real-time RT (reverse transcriptase)-PCR analysis also revealed varying roles for two TSSs (transcription start sites) in the activation of the thioredoxin gene by tBHQ. Transcription was initiated from both TSSs; however, different response rates and fold inductions were observed. Together, these results suggest that the thioredoxin gene is controlled by a novel arrangement of two overlapping core promoter regions, one containing a TATA box and the other TATA-less. Altering the intracellular levels of thioredoxin in a breast cancer cell line also influenced the induction of thioredoxin transcription in response to tBHQ. Stable transfections with a redox-inactive thioredoxin mutant produced 3.6 times higher induction levels of thioredoxin transcription compared with control cells, indicating an intrinsic form of control of promoter activity by the thioredoxin system itself.
Collapse
Affiliation(s)
- Simone A. Osborne
- Cell Biology Group, Eskitis Institute for Cell and Molecular Therapies and School of Biomolecular and Biomedical Science, Griffith University, Nathan, QLD 4111, Australia
| | - Hye-Jin Kim Hawkes
- Cell Biology Group, Eskitis Institute for Cell and Molecular Therapies and School of Biomolecular and Biomedical Science, Griffith University, Nathan, QLD 4111, Australia
| | - Ben L. Baldwin
- Cell Biology Group, Eskitis Institute for Cell and Molecular Therapies and School of Biomolecular and Biomedical Science, Griffith University, Nathan, QLD 4111, Australia
| | - Kylie A. Alexander
- Cell Biology Group, Eskitis Institute for Cell and Molecular Therapies and School of Biomolecular and Biomedical Science, Griffith University, Nathan, QLD 4111, Australia
| | - Terje Svingen
- Cell Biology Group, Eskitis Institute for Cell and Molecular Therapies and School of Biomolecular and Biomedical Science, Griffith University, Nathan, QLD 4111, Australia
| | - Frank M. Clarke
- Cell Biology Group, Eskitis Institute for Cell and Molecular Therapies and School of Biomolecular and Biomedical Science, Griffith University, Nathan, QLD 4111, Australia
| | - Kathryn F. Tonissen
- Cell Biology Group, Eskitis Institute for Cell and Molecular Therapies and School of Biomolecular and Biomedical Science, Griffith University, Nathan, QLD 4111, Australia
- To whom correspondence should be addressed (email )
| |
Collapse
|
4
|
Pauli S, Rothnie HM, Chen G, He X, Hohn T. The cauliflower mosaic virus 35S promoter extends into the transcribed region. J Virol 2004; 78:12120-8. [PMID: 15507598 PMCID: PMC525061 DOI: 10.1128/jvi.78.22.12120-12128.2004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A 60-nucleotide region (S1) downstream of the transcription start site of the cauliflower mosaic virus 35S RNA can enhance gene expression. By using transient expression assays with plant protoplasts, this activity was shown to be at least partially due to the effect of transcriptional enhancers within this region. We identify sequence motifs with enhancer function, which are normally masked by the powerful upstream enhancers of the 35S promoter. A repeated CT-rich motif is involved both in enhancer function and in interaction with plant nuclear proteins. The S1 region can also enhance expression from heterologous promoters.
Collapse
Affiliation(s)
- Sandra Pauli
- Friedrich Miescher Institute, P.O. Box 2543, CH-4002 Basel, Switzerland
| | | | | | | | | |
Collapse
|
5
|
Wang HH, Chiang AN. Cloning and characterization of the human beta2-glycoprotein I (beta2-GPI) gene promoter: roles of the atypical TATA box and hepatic nuclear factor-1alpha in regulating beta2-GPI promoter activity. Biochem J 2004; 380:455-63. [PMID: 14984368 PMCID: PMC1224180 DOI: 10.1042/bj20031610] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Revised: 02/19/2004] [Accepted: 02/25/2004] [Indexed: 12/14/2022]
Abstract
Beta2-glycoprotein I (beta2-GPI) is a plasma glycoprotein primarily synthesized in the liver. The interindividual variability of beta2-GPI expression in subjects with various metabolic syndromes and disease states suggests that it may have clinical importance. However, the regulation of beta2-GPI gene expression has not been clarified. To gain more insight into the control of beta2-GPI gene expression, we cloned the 4.1-kb 5'-flanking region and characterized the proximal promoter of the beta2- GPI gene in this study. Cis -acting elements required for beta2-GPI promoter activity were identified with transient transfection assays in the hepatoma cell lines HepG2 and Huh7 and in non-hepatic HeLa cells. Serial deletion analyses of the beta2-GPI 5'-flanking sequence revealed that the region from -197 to +7 had strong promoter activity in hepatoma cells but not in HeLa cells. Truncation and site-directed mutagenesis of putative cis -elements within this region showing an atypical TATA box and a HNF-1 (hepatic nuclear factor-1) element were both essential for the beta2-GPI promoter activity. Subsequent gel mobility shift assays confirmed the interaction of HNF-1alpha with the HNF-1 site residing downstream of the TATA box. Co-transfection of beta2-GPI promoter-luciferase vector with HNF-1alpha expression vector in Huh7 and HNF-1-deficient HeLa cells demonstrated the transactivation effect of HNF-1alpha on beta2-GPI promoter activity. In addition, overexpression of HNF-1alpha enhanced the endogenous beta2-GPI expression. These results suggest that the atypical TATA box and HNF-1 cis-element are critical for beta2-GPI transcription and HNF-1alpha may play an important role in cell-specific regulation of beta2-GPI gene expression.
Collapse
Affiliation(s)
- Hsueh-Hsiao Wang
- Institute of Biochemistry, School of Life Science, National Yang-Ming University, Taipei 112, Taiwan, ROC
| | | |
Collapse
|
6
|
Zhou GP, Wong C, Su R, Crable SC, Anderson KP, Gallagher PG. Human potassium chloride cotransporter 1 (SLC12A4) promoter is regulated by AP-2 and contains a functional downstream promoter element. Blood 2004; 103:4302-9. [PMID: 14976052 DOI: 10.1182/blood-2003-01-0107] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Most K-Cl cotransport in the erythrocyte is attributed to potassium chloride cotransporter 1 (KCC1). K-Cl cotransport is elevated in sickle erythrocytes, and the KCC1 gene has been proposed as a modifier gene in sickle cell disease. To provide insight into our understanding of the regulation of the human KCC1 gene, we mapped the 5' end of the KCC1 cDNA, cloned the corresponding genomic DNA, and identified the KCC1 gene promoter. The core promoter lacks a TATA box and is composed of an initiator element (InR) and a downstream promoter element (DPE), a combination found primarily in Drosophila gene promoters and rarely observed in mammalian gene promoters. Mutational analyses demonstrated that both the InR and DPE sites were critical for full promoter activity. In vitro DNase I footprinting, electrophoretic mobility shift assays, and reporter gene assays identified functional AP-2 and Sp1 sites in this region. The KCC1 promoter was transactivated by forced expression of AP-2 in heterologous cells. Sequences encoding the InR, DPE, AP-2, and Sp1 sites were 100% conserved between human and murine KCC1 genes. In vivo studies using chromatin immunoprecipitation assays with antihistone H3 and antihistone H4 antibodies demonstrated hyperacetylation of this core promoter region.
Collapse
Affiliation(s)
- Guo-Ping Zhou
- Department of Pediatrics, Yale University School of Medicine, PO Box 208064, 333 Cedar St, New Haven, CT 06520-8064, USA
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
The events leading to transcription of eukaryotic protein-coding genes culminate in the positioning of RNA polymerase II at the correct initiation site. The core promoter, which can extend ~35 bp upstream and/or downstream of this site, plays a central role in regulating initiation. Specific DNA elements within the core promoter bind the factors that nucleate the assembly of a functional preinitiation complex and integrate stimulatory and repressive signals from factors bound at distal sites. Although core promoter structure was originally thought to be invariant, a remarkable degree of diversity has become apparent. This article reviews the structural and functional diversity of the RNA polymerase II core promoter.
Collapse
Affiliation(s)
- Stephen T Smale
- Howard Hughes Medical Institute and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095-1662, USA.
| | | |
Collapse
|
8
|
Carystinos GD, Kandouz M, Alaoui-Jamali MA, Batist G. Unexpected induction of the human connexin 43 promoter by the ras signaling pathway is mediated by a novel putative promoter sequence. Mol Pharmacol 2003; 63:821-31. [PMID: 12644583 DOI: 10.1124/mol.63.4.821] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Connexin 43 (Cx43) is essential for survival and is tightly regulated at the transcriptional and post-transcriptional levels. A number of previous studies have demonstrated altered expression in malignant tissues, and in the presence of carcinogenic factors. We examined the effect of protooncogenes of Cx43 expression, and found no effect on Cx43 promoter activity in cells transformed with Src or erbB2. On the other hand, we identified and characterized a novel sequence that mediates Cx43 promoter regulation in cell lines engineered to overexpress H-Ras. Compared with wild-type NIH3T3 cells, both Cx43 mRNA and protein levels are increased in NIH3T3-Ras cells. The H-Ras+ cells also have enhanced Cx43 promoter activation, which is inhibited by the MEK1 inhibitor 2'-amino-3'-methoxyflavone (PD98059), suggesting that Ras-mediated Cx43 overexpression is via the mitogen activated protein kinase kinase/extracellular signal-regulated pathway. Deletion analysis of the Cx43 promoter revealed a 200-bp region downstream of the Cx43 transcription start site as the minimal sequence essential for the Ras-mediated Cx43 up-regulation. Using this 200-base pair fragment in electrophoretic mobility shift assays, we identified one main protein complex that binds efficiently and is more abundant in nuclear extracts from NIH3T3-Ras and MCF7-Ras cells compared with their matched controls. This complex selectively recognizes a consensus sequence, AGTTCAATCA, located at positions +149 to +158 of the Cx43 promoter. Supershift assays identified the 90-kDa heat shock protein (HSP90) and c-Myc as constituents of this DNA-binding complex. Treatment of cells with the HSP90 inhibitor geldanamycin resulted in repression of the Cx43 promoter activity, and inhibits binding of the complex to the Cx43 promoter. Coimmunoprecipitation studies confirmed the interaction between endogenous HSP90 and c-Myc. This study provides evidence that the transcriptional up-regulation of Cx43 by Ras-Raf-MAPK is mediated via the interaction of a novel Cx43 promoter element with a protein complex that contains both HSP90 and c-Myc.
Collapse
Affiliation(s)
- George D Carystinos
- Department of Pharmacology & Therapeutics and the Montreal Centre for Experimental Therapeutics in Cancer, Lady Davis Institute of the Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, Canada
| | | | | | | |
Collapse
|
9
|
Abrescia C, De Gregorio E, Frontini M, Mantovani R, Di Nocera P. A novel intragenic sequence enhances initiator-dependent transcription in human embryonic kidney 293 cells. J Biol Chem 2002; 277:19594-9. [PMID: 11916971 DOI: 10.1074/jbc.m201193200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In a variety of Drosophila TATA-less promoters, transcription is directed by initiator (Inr) sequences, which are faithfully and efficiently recognized only when flanked 3' by the downstream promoter element (DPE). This motif, which is conserved at approximately 30 bp from the RNA start site, is viewed as a downstream counterpart to the TATA box, and is recognized by the general transcription factor (TF) IID. By transient expression assays in human embryonic kidney 293 cells, we show that DE1 (distal element 1), a DNA motif located at residues +23 to +29, sustains faithful Inr-dependent transcription as efficiently as the DPE. Transcription significantly increased when DE1 and DPE sequences were adjacently placed on the same template. Results emerging from in vivo RNA analyses matched electrophoretic mobility shift assay data. In agarose-electrophoretic mobility shift assays, retarded DNA-protein complexes resulting from the interaction of human holo-TFIID with either Inr(+)/DPE(+) or Inr(+)/DE1(+) promoters were formed at comparable levels, whereas binding of TFIID to both DE1 and DPE motifs was 2-fold increased. The strict requirement for spacing between the Inr and DPE was not observed for DE1, as locating the motif 4 bp away from the +1 site did not impair transcriptional enhancement. DE1 sequences may be common to many promoters and be overlooked because of their poor sequence homology.
Collapse
Affiliation(s)
- Chiara Abrescia
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università degli Studi di Napoli Federico II, Via S. Pansini 5, 80131 Napoli, Italy
| | | | | | | | | |
Collapse
|
10
|
He X, Fütterer J, Hohn T. Contribution of downstream promoter elements to transcriptional regulation of the rice tungro bacilliform virus promoter. Nucleic Acids Res 2002; 30:497-506. [PMID: 11788712 PMCID: PMC99825 DOI: 10.1093/nar/30.2.497] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Downstream sequences influence activity of the rice tungro bacilliform virus (RTBV) promoter in protoplasts derived from cultured rice cells. We previously identified a DNA element located between positions +50 and +90 relative to the transcription start site to which rice nuclear proteins bind. In this study, using DNA UV crosslinking assays, we show that two rice nuclear proteins bind specifically to this DNA element. We demonstrate that the DNA element enhances RTBV promoter activity in a copy number-dependent manner when transferred to a position upstream of the promoter. In addition, using electrophoretic mobility shift assays, we show that at least two novel nuclear proteins from rice cell suspension cultures bind to a subregion (from +50 to +59) of the DNA element and that a protein from rice root, but not shoot, nuclear extracts interacts with a perfect palindromic sequence motif located within the sequence +45 to +59. Furthermore, a position-dependent GAGA motif, present in three copies within downstream promoter sequences from +1 to +50, is involved in the regulation of RTBV promoter activity.
Collapse
Affiliation(s)
- Xiaoyuan He
- Friedrich Miescher Institute, PO Box 2543, CH-4002 Basel, Switzerland
| | | | | |
Collapse
|
11
|
Affiliation(s)
- S T Smale
- Howard Hughes Medical Institute, Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095-1662, USA.
| |
Collapse
|
12
|
Kobayashi A, Miyake T, Ohyama Y, Kawaichi M, Kokubo T. Mutations in the TATA-binding protein, affecting transcriptional activation, show synthetic lethality with the TAF145 gene lacking the TAF N-terminal domain in Saccharomyces cerevisiae. J Biol Chem 2001; 276:395-405. [PMID: 11035037 DOI: 10.1074/jbc.m008208200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The general transcription factor TFIID, which is composed of the TATA box-binding protein (TBP) and a set of TBP-associated factors (TAFs), is crucial for both basal and regulated transcription by RNA polymerase II. The N-terminal small segment of yeast TAF145 (yTAF145) binds to TBP and thereby inhibits TBP function. To understand the physiological role of this inhibitory domain, which is designated as TAND (TAF N-terminal domain), we screened mutations, synthetically lethal with the TAF145 gene lacking TAND (taf145 Delta TAND), in Saccharomyces cerevisiae by exploiting a red/white colony-sectoring assay. Our screen yielded several recessive nsl (Delta TAND synthetic lethal) mutations, two of which, nsl1-1 and nsl1-2, define the same complementation group. The NSL1 gene was found to be identical to the SPT15 gene encoding TBP. Interestingly, both temperature-sensitive nsl1/spt15 alleles, which harbor the single amino acid substitutions, S118L and P65S, respectively, were defective in transcriptional activation in vivo. Several other previously characterized activation-deficient spt15 alleles also displayed synthetic lethal interactions with taf145 Delta TAND, indicating that TAND and TBP carry an overlapping but as yet unidentified function that is specifically required for transcriptional regulation.
Collapse
Affiliation(s)
- A Kobayashi
- Division of Gene Function in Animals, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | | | | | | | | |
Collapse
|
13
|
Knutson A, Lillhager P, Westin G. Identification of a CpG island in the human LRP-2 gene and analysis of its methylation status in parathyroid adenomas. Biol Chem 2000; 381:433-8. [PMID: 10937874 DOI: 10.1515/bc.2000.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Methylation of CpG residues in mammalian genomes is a mechanism of vital importance for many cellular functions, which all relate to gene expression. In this study we describe the identification of a CpG island in the 5'-region of the gene encoding human megalin/LRP-2, a receptor capable of binding multiple ligands, which is involved in the regulation of calcium metabolism. Southern blot analysis and genomic bisulfite sequencing revealed that the CpG island is methylated in a non-expressing cell line, largely unmethylated in an expressing cell line and unmethylated in human parathyroid tissue. In addition, we show that artificial methylation of LRP-2 promoter reporter plasmids leads to strong transcriptional repression, in vitro as well as in transfected cells. No evidence for aberrant LRP-2 gene methylation in parathyroid adenomas, in which the LRP-2 protein is generally down-regulated, was found.
Collapse
Affiliation(s)
- A Knutson
- Department of Surgery, Uppsala University Hospital, Sweden
| | | | | |
Collapse
|