1
|
Caron-Godon CA, Collington E, Wolf JL, Coletta G, Glerum DM. More than Just Bread and Wine: Using Yeast to Understand Inherited Cytochrome Oxidase Deficiencies in Humans. Int J Mol Sci 2024; 25:3814. [PMID: 38612624 PMCID: PMC11011759 DOI: 10.3390/ijms25073814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Inherited defects in cytochrome c oxidase (COX) are associated with a substantial subset of diseases adversely affecting the structure and function of the mitochondrial respiratory chain. This multi-subunit enzyme consists of 14 subunits and numerous cofactors, and it requires the function of some 30 proteins to assemble. COX assembly was first shown to be the primary defect in the majority of COX deficiencies 36 years ago. Over the last three decades, most COX assembly genes have been identified in the yeast Saccharomyces cerevisiae, and studies in yeast have proven instrumental in testing the impact of mutations identified in patients with a specific COX deficiency. The advent of accessible genome-wide sequencing capabilities has led to more patient mutations being identified, with the subsequent identification of several new COX assembly factors. However, the lack of genotype-phenotype correlations and the large number of genes involved in generating a functional COX mean that functional studies must be undertaken to assign a genetic variant as being causal. In this review, we provide a brief overview of the use of yeast as a model system and briefly compare the COX assembly process in yeast and humans. We focus primarily on the studies in yeast that have allowed us to both identify new COX assembly factors and to demonstrate the pathogenicity of a subset of the mutations that have been identified in patients with inherited defects in COX. We conclude with an overview of the areas in which studies in yeast are likely to continue to contribute to progress in understanding disease arising from inherited COX deficiencies.
Collapse
Affiliation(s)
- Chenelle A. Caron-Godon
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (C.A.C.-G.); (E.C.); (J.L.W.); (G.C.)
| | - Emma Collington
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (C.A.C.-G.); (E.C.); (J.L.W.); (G.C.)
| | - Jessica L. Wolf
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (C.A.C.-G.); (E.C.); (J.L.W.); (G.C.)
| | - Genna Coletta
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (C.A.C.-G.); (E.C.); (J.L.W.); (G.C.)
| | - D. Moira Glerum
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (C.A.C.-G.); (E.C.); (J.L.W.); (G.C.)
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
2
|
Homberg B, Rehling P, Cruz-Zaragoza LD. The multifaceted mitochondrial OXA insertase. Trends Cell Biol 2023; 33:765-772. [PMID: 36863885 DOI: 10.1016/j.tcb.2023.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 03/04/2023]
Abstract
Most mitochondrial proteins are synthesized in the cytosol and transported into mitochondria by protein translocases. Yet, mitochondria contain their own genome and gene expression system, which generates proteins that are inserted in the inner membrane by the oxidase assembly (OXA) insertase. OXA contributes to targeting proteins from both genetic origins. Recent data provides insights into how OXA cooperates with the mitochondrial ribosome during synthesis of mitochondrial-encoded proteins. A picture of OXA emerges in which it coordinates insertion of OXPHOS core subunits and their assembly into protein complexes but also participates in the biogenesis of select imported proteins. These functions position the OXA as a multifunctional protein insertase that facilitates protein transport, assembly, and stability at the inner membrane.
Collapse
Affiliation(s)
- Bettina Homberg
- Department of Cellular Biochemistry, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, 37073 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), 37073 University of Göttingen, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy TNM, 37075 Göttingen, Germany; Max Planck Institute for Multidisciplinary Science, 37077 Göttingen, Germany.
| | | |
Collapse
|
3
|
Zanfardino P, Doccini S, Santorelli FM, Petruzzella V. Tackling Dysfunction of Mitochondrial Bioenergetics in the Brain. Int J Mol Sci 2021; 22:8325. [PMID: 34361091 PMCID: PMC8348117 DOI: 10.3390/ijms22158325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/15/2022] Open
Abstract
Oxidative phosphorylation (OxPhos) is the basic function of mitochondria, although the landscape of mitochondrial functions is continuously growing to include more aspects of cellular homeostasis. Thanks to the application of -omics technologies to the study of the OxPhos system, novel features emerge from the cataloging of novel proteins as mitochondrial thus adding details to the mitochondrial proteome and defining novel metabolic cellular interrelations, especially in the human brain. We focussed on the diversity of bioenergetics demand and different aspects of mitochondrial structure, functions, and dysfunction in the brain. Definition such as 'mitoexome', 'mitoproteome' and 'mitointeractome' have entered the field of 'mitochondrial medicine'. In this context, we reviewed several genetic defects that hamper the last step of aerobic metabolism, mostly involving the nervous tissue as one of the most prominent energy-dependent tissues and, as consequence, as a primary target of mitochondrial dysfunction. The dual genetic origin of the OxPhos complexes is one of the reasons for the complexity of the genotype-phenotype correlation when facing human diseases associated with mitochondrial defects. Such complexity clinically manifests with extremely heterogeneous symptoms, ranging from organ-specific to multisystemic dysfunction with different clinical courses. Finally, we briefly discuss the future directions of the multi-omics study of human brain disorders.
Collapse
Affiliation(s)
- Paola Zanfardino
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy;
| | - Stefano Doccini
- IRCCS Fondazione Stella Maris, Calambrone, 56128 Pisa, Italy;
| | | | - Vittoria Petruzzella
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy;
| |
Collapse
|
4
|
Mitochondrial Structure and Bioenergetics in Normal and Disease Conditions. Int J Mol Sci 2021; 22:ijms22020586. [PMID: 33435522 PMCID: PMC7827222 DOI: 10.3390/ijms22020586] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are ubiquitous intracellular organelles found in almost all eukaryotes and involved in various aspects of cellular life, with a primary role in energy production. The interest in this organelle has grown stronger with the discovery of their link to various pathologies, including cancer, aging and neurodegenerative diseases. Indeed, dysfunctional mitochondria cannot provide the required energy to tissues with a high-energy demand, such as heart, brain and muscles, leading to a large spectrum of clinical phenotypes. Mitochondrial defects are at the origin of a group of clinically heterogeneous pathologies, called mitochondrial diseases, with an incidence of 1 in 5000 live births. Primary mitochondrial diseases are associated with genetic mutations both in nuclear and mitochondrial DNA (mtDNA), affecting genes involved in every aspect of the organelle function. As a consequence, it is difficult to find a common cause for mitochondrial diseases and, subsequently, to offer a precise clinical definition of the pathology. Moreover, the complexity of this condition makes it challenging to identify possible therapies or drug targets.
Collapse
|
5
|
Lorenzi I, Oeljeklaus S, Aich A, Ronsör C, Callegari S, Dudek J, Warscheid B, Dennerlein S, Rehling P. The mitochondrial TMEM177 associates with COX20 during COX2 biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2018; 1865:323-333. [PMID: 29154948 PMCID: PMC5764226 DOI: 10.1016/j.bbamcr.2017.11.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/10/2017] [Accepted: 11/14/2017] [Indexed: 12/17/2022]
Abstract
The three mitochondrial-encoded proteins, COX1, COX2, and COX3, form the core of the cytochrome c oxidase. Upon synthesis, COX2 engages with COX20 in the inner mitochondrial membrane, a scaffold protein that recruits metallochaperones for copper delivery to the CuA-Site of COX2. Here we identified the human protein, TMEM177 as a constituent of the COX20 interaction network. Loss or increase in the amount of TMEM177 affects COX20 abundance leading to reduced or increased COX20 levels respectively. TMEM177 associates with newly synthesized COX2 and SCO2 in a COX20-dependent manner. Our data shows that by unbalancing the amount of TMEM177, newly synthesized COX2 accumulates in a COX20-associated state. We conclude that TMEM177 promotes assembly of COX2 at the level of CuA-site formation.
Collapse
Affiliation(s)
- Isotta Lorenzi
- Department of Cellular Biochemistry, University Medical Centre Göttingen, GZMB, D-37073 Göttingen, Germany
| | - Silke Oeljeklaus
- Faculty of Biology, Department of Biochemistry and Functional Proteomics, University Freiburg, D-79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
| | - Abhishek Aich
- Department of Cellular Biochemistry, University Medical Centre Göttingen, GZMB, D-37073 Göttingen, Germany
| | - Christin Ronsör
- Department of Cellular Biochemistry, University Medical Centre Göttingen, GZMB, D-37073 Göttingen, Germany
| | - Sylvie Callegari
- Department of Cellular Biochemistry, University Medical Centre Göttingen, GZMB, D-37073 Göttingen, Germany
| | - Jan Dudek
- Department of Cellular Biochemistry, University Medical Centre Göttingen, GZMB, D-37073 Göttingen, Germany
| | - Bettina Warscheid
- Faculty of Biology, Department of Biochemistry and Functional Proteomics, University Freiburg, D-79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
| | - Sven Dennerlein
- Department of Cellular Biochemistry, University Medical Centre Göttingen, GZMB, D-37073 Göttingen, Germany.
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Centre Göttingen, GZMB, D-37073 Göttingen, Germany; Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany.
| |
Collapse
|
6
|
Fukuda Y, Wang Y, Lian S, Lynch J, Nagai S, Fanshawe B, Kandilci A, Janke LJ, Neale G, Fan Y, Sorrentino BP, Roussel MF, Grosveld G, Schuetz JD. Upregulated heme biosynthesis, an exploitable vulnerability in MYCN-driven leukemogenesis. JCI Insight 2017; 2:92409. [PMID: 28768907 DOI: 10.1172/jci.insight.92409] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 06/23/2017] [Indexed: 01/06/2023] Open
Abstract
The increased heme biosynthesis long observed in leukemia was previously of unknown significance. Heme, synthesized from porphyrin precursors, plays a central role in oxygen metabolism and mitochondrial function, yet little is known about its role in leukemogenesis. Here, we show increased expression of heme biosynthetic genes, including UROD, only in pediatric AML samples that have high MYCN expression. High expression of both UROD and MYCN predicts poor overall survival and unfavorable outcomes in adult AML. Murine leukemic progenitors derived from hematopoietic progenitor cells (HPCs) overexpressing a MYCN cDNA (MYCN-HPCs) require heme/porphyrin biosynthesis, accompanied by increased oxygen consumption, to fully engage in self-renewal and oncogenic transformation. Blocking heme biosynthesis reduced mitochondrial oxygen consumption and markedly suppressed self-renewal. Leukemic progenitors rely on balanced production of heme and heme intermediates, the porphyrins. Porphyrin homeostasis is required because absence of the porphyrin exporter, ABCG2, increased death of leukemic progenitors in vitro and prolonged the survival of mice transplanted with Abcg2-KO MYCN-HPCs. Pediatric AML patients with elevated MYCN mRNA display strong activation of TP53 target genes. Abcg2-KO MYCN-HPCs were rescued from porphyrin toxicity by p53 loss. This vulnerability was exploited to show that treatment with a porphyrin precursor, coupled with the absence of ABCG2, blocked MYCN-driven leukemogenesis in vivo, thereby demonstrating that porphyrin homeostasis is a pathway crucial to MYCN leukemogenesis.
Collapse
Affiliation(s)
- Yu Fukuda
- Department of Pharmaceutical Sciences
| | - Yao Wang
- Department of Pharmaceutical Sciences
| | | | | | | | | | | | | | | | | | | | - Martine F Roussel
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | | |
Collapse
|
7
|
Ribosome-Associated Mba1 Escorts Cox2 from Insertion Machinery to Maturing Assembly Intermediates. Mol Cell Biol 2016; 36:2782-2793. [PMID: 27550809 PMCID: PMC5086520 DOI: 10.1128/mcb.00361-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/08/2016] [Accepted: 08/17/2016] [Indexed: 01/25/2023] Open
Abstract
The three conserved core subunits of the cytochrome c oxidase are encoded by mitochondria in close to all eukaryotes. The Cox2 subunit spans the inner membrane twice, exposing the N and C termini to the intermembrane space. For this, the N terminus is exported cotranslationally by Oxa1 and subsequently undergoes proteolytic maturation in Saccharomyces cerevisiae. Little is known about the translocation of the C terminus, but Cox18 has been identified to be a critical protein in this process. Here we find that the scaffold protein Cox20, which promotes processing of Cox2, is in complex with the ribosome receptor Mba1 and translating mitochondrial ribosomes in a Cox2-dependent manner. The Mba1-Cox20 complex accumulates when export of the C terminus of Cox2 is blocked by the loss of the Cox18 protein. While Cox20 engages with Cox18, Mba1 is no longer present at this stage. Our analyses indicate that Cox20 associates with nascent Cox2 and Mba1 to promote Cox2 maturation cotranslationally. We suggest that Mba1 stabilizes the Cox20-ribosome complex and supports the handover of Cox2 to the Cox18 tail export machinery.
Collapse
|
8
|
A Perspective on Transport of Proteins into Mitochondria: A Myriad of Open Questions. J Mol Biol 2015; 427:1135-58. [DOI: 10.1016/j.jmb.2015.02.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/30/2015] [Accepted: 02/02/2015] [Indexed: 11/22/2022]
|
9
|
Dalbey RE, Kuhn A, Zhu L, Kiefer D. The membrane insertase YidC. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1489-96. [PMID: 24418623 DOI: 10.1016/j.bbamcr.2013.12.022] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/19/2013] [Accepted: 12/31/2013] [Indexed: 12/28/2022]
Abstract
The membrane insertases YidC-Oxa1-Alb3 provide a simple cellular system that catalyzes the transmembrane topology of newly synthesized membrane proteins. The insertases are composed of a single protein with 5 to 6 transmembrane (TM) helices that contact hydrophobic segments of the substrate proteins. Since YidC also cooperates with the Sec translocase it is widely involved in the assembly of many different membrane proteins including proteins that obtain complex membrane topologies. Homologues found in mitochondria (Oxa1) and thylakoids (Alb3) point to a common evolutionary origin and also demonstrate the general importance of this cellular process. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Ross E Dalbey
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| | - Andreas Kuhn
- Institute of Microbiology and Molecular Biology, University of Hohenheim, Garbenstr 30, 70599 Stuttgart, Germany.
| | - Lu Zhu
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Doro Kiefer
- Institute of Microbiology and Molecular Biology, University of Hohenheim, Garbenstr 30, 70599 Stuttgart, Germany
| |
Collapse
|
10
|
Benz M, Soll J, Ankele E. Arabidopsis thaliana Oxa proteins locate to mitochondria and fulfill essential roles during embryo development. PLANTA 2013; 237:573-88. [PMID: 23179441 DOI: 10.1007/s00425-012-1793-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/19/2012] [Indexed: 05/12/2023]
Abstract
Members of the Alb3/Oxa1/YidC protein family function as insertases in chloroplasts, mitochondria, and bacteria. Due to independent gene duplications, all organisms possess two isoforms, Oxa1 and Oxa2 except gram-negative bacteria, which encode only for one YidC-like protein. The genome of Arabidopsis thaliana however, encodes for eight different isoforms. The localization of three of these isoforms has been identified earlier: Alb3 and Alb4 located in thylakoid membranes of chloroplasts while AtOxa1 was found in the inner membrane of mitochondria. Here, we show that the second Oxa1 protein, Oxa1b as well as two Oxa2 proteins are also localized in mitochondria. The last two isoforms most likely encode truncated versions of Oxa-like proteins, which might be inoperable pseudogenes. Homozygous mutant lines were only obtained for Oxa1b, which did not reveal any significant phenotypes, while T-DNA insertion lines of Oxa1a, Oxa2a and Oxa2b resulted only in heterozygous plants indicating that these genes are indispensable for plant development. Phenotyping heterozygous lines showed that embryos are either retarded in growth, display an albino phenotype or embryo formation was entirely abolished suggesting that Oxa1a and both Oxa2 proteins function in embryo formation although at different developmental stages as indicated by the various phenotypes observed.
Collapse
Affiliation(s)
- Monique Benz
- Energy Biosciences Institute, University of California, 2151 Berkeley Way, Berkeley, CA 94720-5230, USA.
| | | | | |
Collapse
|
11
|
Kulawiak B, Höpker J, Gebert M, Guiard B, Wiedemann N, Gebert N. The mitochondrial protein import machinery has multiple connections to the respiratory chain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:612-26. [PMID: 23274250 DOI: 10.1016/j.bbabio.2012.12.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/12/2012] [Accepted: 12/17/2012] [Indexed: 01/09/2023]
Abstract
The mitochondrial inner membrane harbors the complexes of the respiratory chain and protein translocases required for the import of mitochondrial precursor proteins. These complexes are functionally interdependent, as the import of respiratory chain precursor proteins across and into the inner membrane requires the membrane potential. Vice versa the membrane potential is generated by the proton pumping complexes of the respiratory chain. Besides this basic codependency four different systems for protein import, processing and assembly show further connections to the respiratory chain. The mitochondrial intermembrane space import and assembly machinery oxidizes cysteine residues within the imported precursor proteins and is able to donate the liberated electrons to the respiratory chain. The presequence translocase of the inner membrane physically interacts with the respiratory chain. The mitochondrial processing peptidase is homologous to respiratory chain subunits and the carrier translocase of the inner membrane even shares a subunit with the respiratory chain. In this review we will summarize the import of mitochondrial precursor proteins and highlight these special links between the mitochondrial protein import machinery and the respiratory chain. This article is part of a Special Issue entitled: Respiratory complex II: Role in cellular physiology and disease.
Collapse
Affiliation(s)
- Bogusz Kulawiak
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Soto IC, Fontanesi F, Liu J, Barrientos A. Biogenesis and assembly of eukaryotic cytochrome c oxidase catalytic core. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1817:883-97. [PMID: 21958598 PMCID: PMC3262112 DOI: 10.1016/j.bbabio.2011.09.005] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 09/07/2011] [Accepted: 09/12/2011] [Indexed: 10/17/2022]
Abstract
Eukaryotic cytochrome c oxidase (COX) is the terminal enzyme of the mitochondrial respiratory chain. COX is a multimeric enzyme formed by subunits of dual genetic origin which assembly is intricate and highly regulated. The COX catalytic core is formed by three mitochondrial DNA encoded subunits, Cox1, Cox2 and Cox3, conserved in the bacterial enzyme. Their biogenesis requires the action of messenger-specific and subunit-specific factors which facilitate the synthesis, membrane insertion, maturation or assembly of the core subunits. The study of yeast strains and human cell lines from patients carrying mutations in structural subunits and COX assembly factors has been invaluable to identify these ancillary factors. Here we review the current state of knowledge of the biogenesis and assembly of the eukaryotic COX catalytic core and discuss the degree of conservation of the players and mechanisms operating from yeast to human. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.
Collapse
Affiliation(s)
- Ileana C. Soto
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine. Miami, FL
| | - Flavia Fontanesi
- Department of Neurology. University of Miami Miller School of Medicine. Miami, FL
| | - Jingjing Liu
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine. Miami, FL
| | - Antoni Barrientos
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine. Miami, FL
- Department of Neurology. University of Miami Miller School of Medicine. Miami, FL
| |
Collapse
|
13
|
Liu L, Oliveira NMM, Cheney KM, Pade C, Dreja H, Bergin AMH, Borgdorff V, Beach DH, Bishop CL, Dittmar MT, McKnight A. A whole genome screen for HIV restriction factors. Retrovirology 2011; 8:94. [PMID: 22082156 PMCID: PMC3228845 DOI: 10.1186/1742-4690-8-94] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 11/14/2011] [Indexed: 01/01/2023] Open
Abstract
Background Upon cellular entry retroviruses must avoid innate restriction factors produced by the host cell. For human immunodeficiency virus (HIV) human restriction factors, APOBEC3 (apolipoprotein-B-mRNA-editing-enzyme), p21 and tetherin are well characterised. Results To identify intrinsic resistance factors to HIV-1 replication we screened 19,121 human genes and identified 114 factors with significant inhibition of infection. Those with a known function are involved in a broad spectrum of cellular processes including receptor signalling, vesicle trafficking, transcription, apoptosis, cross-nuclear membrane transport, meiosis, DNA damage repair, ubiquitination and RNA processing. We focused on the PAF1 complex which has been previously implicated in gene transcription, cell cycle control and mRNA surveillance. Knockdown of all members of the PAF1 family of proteins enhanced HIV-1 reverse transcription and integration of provirus. Over-expression of PAF1 in host cells renders them refractory to HIV-1. Simian Immunodeficiency Viruses and HIV-2 are also restricted in PAF1 expressing cells. PAF1 is expressed in primary monocytes, macrophages and T-lymphocytes and we demonstrate strong activity in MonoMac1, a monocyte cell line. Conclusions We propose that the PAF1c establishes an anti-viral state to prevent infection by incoming retroviruses. This previously unrecognised mechanism of restriction could have implications for invasion of cells by any pathogen.
Collapse
Affiliation(s)
- Li Liu
- Centre for Immunology and Infectious Disease, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Delage L, Leblanc C, Nyvall Collén P, Gschloessl B, Oudot MP, Sterck L, Poulain J, Aury JM, Cock JM. In silico survey of the mitochondrial protein uptake and maturation systems in the brown alga Ectocarpus siliculosus. PLoS One 2011; 6:e19540. [PMID: 21611166 PMCID: PMC3097184 DOI: 10.1371/journal.pone.0019540] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 03/31/2011] [Indexed: 01/24/2023] Open
Abstract
The acquisition of mitochondria was a key event in eukaryote evolution. The aim of this study was to identify homologues of the components of the mitochondrial protein import machinery in the brown alga Ectocarpus and to use this information to investigate the evolutionary history of this fundamental cellular process. Detailed searches were carried out both for components of the protein import system and for related peptidases. Comparative and phylogenetic analyses were used to investigate the evolution of mitochondrial proteins during eukaryote diversification. Key observations include phylogenetic evidence for very ancient origins for many protein import components (Tim21, Tim50, for example) and indications of differences between the outer membrane receptors that recognize the mitochondrial targeting signals, suggesting replacement, rearrangement and/or emergence of new components across the major eukaryotic lineages. Overall, the mitochondrial protein import components analysed in this study confirmed a high level of conservation during evolution, indicating that most are derived from very ancient, ancestral proteins. Several of the protein import components identified in Ectocarpus, such as Tim21, Tim50 and metaxin, have also been found in other stramenopiles and this study suggests an early origin during the evolution of the eukaryotes.
Collapse
Affiliation(s)
- Ludovic Delage
- Université Pierre et Marie Curie, The Marine Plants and Biomolecules Laboratory, UMR 7139, Station Biologique de Roscoff, Roscoff, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7139, Laboratoire International Associé Dispersal and Adaptation in Marine Species, Station Biologique de Roscoff, Roscoff, France
| | - Catherine Leblanc
- Université Pierre et Marie Curie, The Marine Plants and Biomolecules Laboratory, UMR 7139, Station Biologique de Roscoff, Roscoff, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7139, Laboratoire International Associé Dispersal and Adaptation in Marine Species, Station Biologique de Roscoff, Roscoff, France
| | - Pi Nyvall Collén
- Université Pierre et Marie Curie, The Marine Plants and Biomolecules Laboratory, UMR 7139, Station Biologique de Roscoff, Roscoff, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7139, Laboratoire International Associé Dispersal and Adaptation in Marine Species, Station Biologique de Roscoff, Roscoff, France
| | - Bernhard Gschloessl
- Université Pierre et Marie Curie, The Marine Plants and Biomolecules Laboratory, UMR 7139, Station Biologique de Roscoff, Roscoff, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7139, Laboratoire International Associé Dispersal and Adaptation in Marine Species, Station Biologique de Roscoff, Roscoff, France
| | - Marie-Pierre Oudot
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lieven Sterck
- VIB Department of Plant Systems Biology, Ghent University, Ghent, Belgium
| | - Julie Poulain
- Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Génomique, Génoscope, Evry, France
- Centre National de la Recherche Scientifique, UMR 8030, Evry, France
- Université d'Evry, Evry, France
| | - Jean-Marc Aury
- Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Génomique, Génoscope, Evry, France
- Centre National de la Recherche Scientifique, UMR 8030, Evry, France
- Université d'Evry, Evry, France
| | - J. Mark Cock
- Université Pierre et Marie Curie, The Marine Plants and Biomolecules Laboratory, UMR 7139, Station Biologique de Roscoff, Roscoff, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7139, Laboratoire International Associé Dispersal and Adaptation in Marine Species, Station Biologique de Roscoff, Roscoff, France
| |
Collapse
|
15
|
Wang P, Dalbey RE. Inserting membrane proteins: the YidC/Oxa1/Alb3 machinery in bacteria, mitochondria, and chloroplasts. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:866-75. [PMID: 20800571 DOI: 10.1016/j.bbamem.2010.08.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 08/18/2010] [Accepted: 08/20/2010] [Indexed: 10/19/2022]
Abstract
The evolutionarily conserved YidC/Oxa1p/Alb3 family of proteins plays important roles in the membrane biogenesis in bacteria, mitochondria, and chloroplasts. The members in this family function as novel membrane protein insertases, chaperones, and assembly factors for transmembrane proteins, including energy transduction complexes localized in the bacterial and mitochondrial inner membrane, and in the chloroplast thylakoid membrane. In this review, we will present recent progress with this class of proteins in membrane protein biogenesis and discuss the structure/function relationships. This article is part of a Special Issue entitled Protein translocation across or insertion into membranes.
Collapse
Affiliation(s)
- Peng Wang
- Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | | |
Collapse
|
16
|
Stiburek L, Zeman J. Assembly factors and ATP-dependent proteases in cytochrome c oxidase biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1149-58. [PMID: 20398622 DOI: 10.1016/j.bbabio.2010.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 03/14/2010] [Accepted: 04/07/2010] [Indexed: 12/29/2022]
Abstract
Eukaryotic cytochrome c oxidase (CcO), the terminal enzyme of the energy-transducing mitochondrial electron transport chain is a hetero-oligomeric, heme-copper oxidase complex composed of both mitochondrially and nuclear-encoded subunits. It is embedded in the inner mitochondrial membrane where it couples the transfer of electrons from reduced cytochrome c to molecular oxygen with vectorial proton translocation across the membrane. The biogenesis of CcO is a complicated sequential process that requires numerous specific accessory proteins, so-called assembly factors, which include translational activators, translocases, molecular chaperones, copper metallochaperones and heme a biosynthetic enzymes. Besides these CcO-specific protein factors, the correct biogenesis of CcO requires an even greater number of proteins with much broader substrate specificities. Indeed, growing evidence indicates that mitochondrial ATP-dependent proteases might play an important role in CcO biogenesis. Out of the four identified energy-dependent mitochondrial proteases, three were shown to be directly involved in proteolysis of CcO subunits. In addition to their well-established protein-quality control function these oligomeric proteolytic complexes with chaperone-like activities may function as molecular chaperones promoting productive folding and assembly of subunit proteins. In this review, we summarize the current knowledge of the functional involvement of eukaryotic CcO-specific assembly factors and highlight the possible significance for CcO biogenesis of mitochondrial ATP-dependent proteases.
Collapse
Affiliation(s)
- Lukas Stiburek
- Charles University in Prague, First Faculty of Medicine, Department of Pediatrics, Prague, Czech Republic.
| | | |
Collapse
|
17
|
Ott M, Herrmann JM. Co-translational membrane insertion of mitochondrially encoded proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1803:767-75. [PMID: 19962410 DOI: 10.1016/j.bbamcr.2009.11.010] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 11/18/2009] [Accepted: 11/25/2009] [Indexed: 11/29/2022]
Abstract
The components of the mitochondrial proteome represent a mosaic of dual genetic origin: while most mitochondrial proteins are encoded by nuclear genes and imported into the organelle following synthesis in the cytosol, a small number of proteins is encoded by the mitochondrial genome. Though small in number, mitochondrial translation products are vital for cellular functionality as these proteins represent the core subunits of the respiratory chain and the ATPase which produce the vast majority of the cellular ATP. Mitochondrial translation products are almost exclusively highly hydrophobic polypeptides which are inserted into the inner membrane in the course of their synthesis. The machinery that mediates membrane insertion in mitochondria is deduced from that of their bacterial ancestors and hence shows profound similarities to the insertion machinery of prokaryotes. However, the specialization on the production of a very small set of translation products drove a severe reduction in the complexity of this system. The insertase Oxa1 forms the central component of the insertion machinery. Oxa1 directly binds to mitochondrial ribosomes and, together with the inner membrane protein Mba1, aligns the polypeptide exit tunnel of the ribosome with the insertion site at the inner membrane. The specific hallmarks and the critical components of this machinery are discussed in this review article.
Collapse
Affiliation(s)
- Martin Ott
- Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | | |
Collapse
|
18
|
Fiumera HL, Dunham MJ, Saracco SA, Butler CA, Kelly JA, Fox TD. Translocation and assembly of mitochondrially coded Saccharomyces cerevisiae cytochrome c oxidase subunit Cox2 by Oxa1 and Yme1 in the absence of Cox18. Genetics 2009; 182:519-28. [PMID: 19307606 PMCID: PMC2691760 DOI: 10.1534/genetics.109.101196] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 03/20/2009] [Indexed: 11/18/2022] Open
Abstract
Members of the Oxa1/YidC/Alb3 family of protein translocases are essential for assembly of energy-transducing membrane complexes. In Saccharomyces cerevisiae, Oxa1 and its paralog, Cox18, are required for assembly of Cox2, a mitochondrially encoded subunit of cytochrome c oxidase. Oxa1 is known to be required for cotranslational export of the Cox2 N-terminal domain across the inner mitochondrial membrane, while Cox18 is known to be required for post-translational export of the Cox2 C-tail domain. We find that overexpression of Oxa1 does not compensate for the absence of Cox18 at the level of respiratory growth. However, it does promote some translocation of the Cox2 C-tail domain across the inner membrane and causes increased accumulation of Cox2, which remains unassembled. This result suggests that Cox18 not only translocates the C-tail, but also must deliver it in a distinct state competent for cytochrome oxidase assembly. We identified respiring mutants from a cox18Delta strain overexpressing OXA1, whose respiratory growth requires overexpression of OXA1. The recessive nuclear mutations allow some assembly of Cox2 into cytochrome c oxidase. After failing to identify these mutations by methods based on transformation, we successfully located them to MGR1 and MGR3 by comparative hybridization to whole-genome tiling arrays and microarray-assisted bulk segregant analysis followed by linkage mapping. While Mgr1 and Mgr3 are known to associate with the Yme1 mitochondrial inner membrane i-AAA protease and to participate in membrane protein degradation, their absence does not appear to stabilize Cox2 under these conditions. Instead, Yme1 probably chaperones the folding and/or assembly of Oxa1-exported Cox2 in the absence of Mrg1 or Mgr3, since respiratory growth and cytochrome c oxidase assembly in a cox18 mgr3 double-mutant strain overexpressing OXA1 is YME1 dependent.
Collapse
Affiliation(s)
- Heather L Fiumera
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | | | |
Collapse
|
19
|
Mutation analysis of COX18 in 29 patients with isolated cytochrome c oxidase deficiency. J Hum Genet 2009; 54:419-21. [PMID: 19373256 DOI: 10.1038/jhg.2009.36] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Isolated cytochrome c oxidase (COX) deficiency (MIM#220110) is a relatively common biochemical finding in pediatric patients with mitochondrial disorder. It has been associated with different clinical phenotypes ranging from isolated myopathy to severe multisystem disorder. It is a genetically heterogeneous trait, and the most frequent genetic defects affect SURF1 and SCO2, two genes required for COX assembly. However, a significant proportion of patients lacks mutation in these genes and in other known genes that require COX biogenesis. COX18 is a novel COX assembly gene required for membrane insertion of the C-terminal portion of COX subunit II. We have studied 29 pediatric patients with isolated COX deficiency in the skeletal muscle associated with different clinical phenotypes. Mutations in SURF1, SCO2, SCO1, COX10, COX15 and in mitochondrial DNA, had been ruled out earlier. The COX18 gene was analyzed using a PCR-single-stranded conformation polymorphism (PCR-SSCP) protocol, and in 15 patients, the analysis was repeated by direct sequencing. No pathogenic mutations were detected in our cohort of patients indicating that COX18 mutations may be very rare or associated with other phenotypes than isolated COX deficiency in infancy.
Collapse
|
20
|
Independent gene duplications of the YidC/Oxa/Alb3 family enabled a specialized cotranslational function. Proc Natl Acad Sci U S A 2009; 106:6656-61. [PMID: 19366667 DOI: 10.1073/pnas.0809951106] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
YidC/Oxa/Alb3 family proteins catalyze the insertion of integral membrane proteins in bacteria, mitochondria, and chloroplasts, respectively. Unlike gram-negative organisms, gram-positive bacteria express 2 paralogs of this family, YidC1/SpoIIIJ and YidC2/YgjG. In Streptococcus mutans, deletion of yidC2 results in a stress-sensitive phenotype similar to that of mutants lacking the signal recognition particle (SRP) protein translocation pathway, while deletion of yidC1 has a less severe phenotype. In contrast to eukaryotes and gram-negative bacteria, SRP-deficient mutants are viable in S. mutans; however, double SRP-yidC2 mutants are severely compromised. Thus, YidC2 may enable loss of the SRP by playing an independent but overlapping role in cotranslational protein insertion into the membrane. This is reminiscent of the situation in mitochondria that lack an SRP pathway and where Oxa1 facilitates cotranslational membrane protein insertion by binding directly to translation-active ribosomes. Here, we show that OXA1 complements a lack of yidC2 in S. mutans. YidC2 also functions reciprocally in oxa1-deficient Saccharomyces cerevisiae mutants and mediates the cotranslational insertion of mitochondrial translation products into the inner membrane. YidC2, like Oxa1, contains a positively charged C-terminal extension and associates with translating ribosomes. Our results are consistent with a gene-duplication event in gram-positive bacteria that enabled the specialization of a YidC isoform that mediates cotranslational activity independent of an SRP pathway.
Collapse
|
21
|
Bonnefoy N, Fiumera HL, Dujardin G, Fox TD. Roles of Oxa1-related inner-membrane translocases in assembly of respiratory chain complexes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:60-70. [PMID: 18522806 DOI: 10.1016/j.bbamcr.2008.05.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 05/02/2008] [Accepted: 05/05/2008] [Indexed: 11/28/2022]
Abstract
Members of the family of the polytopic inner membrane proteins are related to Saccharomyces cerevisiae Oxa1 function in the assembly of energy transducing complexes of mitochondria and chloroplasts. Here we focus on the two mitochondrial members of this family, Oxa1 and Cox18, reviewing studies on their biogenesis as well as their functions, reflected in the phenotypic consequences of their absence in various organisms. In yeast, cytochrome c oxidase subunit II (Cox2) is a key substrate of these proteins. Oxa1 is required for co-translational translocation and insertion of Cox2, while Cox18 is necessary for the export of its C-terminal domain. Genetic and biochemical strategies have been used to investigate the functions of distinct domains of Oxa1 and to identify its partners in protein insertion/translocation. Recent work on the related bacterial protein YidC strongly indicates that it is capable of functioning alone as a translocase for hydrophilic domains and an insertase for TM domains. Thus, the Oxa1 and Cox18 probably catalyze these reactions directly in a co- and/or posttranslational way. In various species, Oxa1 appears to assist in the assembly of different substrate proteins, although it is still unclear how Oxa1 recognizes its substrates, and whether additional factors participate in this beyond its direct interaction with mitochondrial ribosomes, demonstrated in S. cerevisiae. Oxa1 is capable of assisting posttranslational insertion and translocation in isolated mitochondria, and Cox18 may posttranslationally translocate its only known substrate, the Cox2 C-terminal domain, in vivo. Detailed understanding of the mechanisms of action of these two proteins must await the resolution of their structure in the membrane and the development of a true in vitro mitochondrial translation system.
Collapse
Affiliation(s)
- Nathalie Bonnefoy
- Centre de Génétique Moléculaire, CNRS UPR 2167, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | | | | | | |
Collapse
|
22
|
Chapter 5 New Insights into the Mechanism of Precursor Protein Insertion into the Mitochondrial Membranes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 268:147-90. [DOI: 10.1016/s1937-6448(08)00805-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2023]
|
23
|
van Bloois E, Koningstein G, Bauerschmitt H, Herrmann JM, Luirink J. Saccharomyces cerevisiae Cox18 complements the essential Sec-independent function of Escherichia coli YidC. FEBS J 2007; 274:5704-13. [PMID: 17922846 DOI: 10.1111/j.1742-4658.2007.06094.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Members of the YidC/Oxa1/Alb3 protein family function in the biogenesis of membrane proteins in bacteria, mitochondria and chloroplasts. In Escherichia coli, YidC plays a key role in the integration and assembly of many inner membrane proteins. Interestingly, YidC functions both in concert with the Sec-translocon and as a separate insertase independent of the translocon. Mitochondria of higher eukaryotes contain two distant homologues of YidC: Oxa1 and Cox18/Oxa2. Oxa1 is required for the insertion of membrane proteins into the mitochondrial inner membrane. Cox18/Oxa2 plays a poorly defined role in the biogenesis of the cytochrome c oxidase complex. Employing a genetic complementation approach by expressing the conserved region of yeast Cox18 in E. coli, we show here that Cox18 is able to complement the essential Sec-independent function of YidC. This identifies Cox18 as a bona fide member of the YidC/Oxa1/Alb3 family.
Collapse
Affiliation(s)
- Edwin van Bloois
- Department of Molecular Microbiology, Institute of Molecular Cell Biology, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
24
|
Oshima R, Yoshinaga K, Ihara-Ohori Y, Fukuda R, Ohta A, Uchimiya H, Kawai-Yamada M. The Bax lnhibitor-1 needs a functional electron transport chain for cell death suppression. FEBS Lett 2007; 581:4627-32. [PMID: 17825821 DOI: 10.1016/j.febslet.2007.08.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 08/13/2007] [Accepted: 08/27/2007] [Indexed: 12/27/2022]
Abstract
Bax inhibitor-1 (BI-1) is an evolutionarily conserved cell death suppresser in animals, yeast, and plants. In this study, yeast strains carrying single-gene deletions were screened for factors related to cell death suppression by Arabidopsis BI-1 (AtBI-1). Our screen identified mutants that failed to survive Bax-induced lethality even with AtBI-1 coexpression (Bax suppressor). The Deltacox16 strain was isolated as a BI-1-inactive mutant; it was disrupted in a component of the mitochondrial cytochrome c oxidase. Other mutants defective in mitochondrial electron transport showed a similar phenotype. ATP levels were markedly decreased in all these mutants, suggesting that BI-1 requires normal electron transport activity to suppress cell death in yeast.
Collapse
Affiliation(s)
- Reiko Oshima
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Fiumera HL, Broadley SA, Fox TD. Translocation of mitochondrially synthesized Cox2 domains from the matrix to the intermembrane space. Mol Cell Biol 2007; 27:4664-73. [PMID: 17452441 PMCID: PMC1951498 DOI: 10.1128/mcb.01955-06] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The N-terminal and C-terminal domains of mitochondrially synthesized cytochrome c oxidase subunit II, Cox2, are translocated through the inner membrane to the intermembrane space (IMS). We investigated the distinct mechanisms of N-tail and C-tail export by analysis of epitope-tagged Cox2 variants encoded in Saccharomyces cerevisiae mitochondrial DNA. Both the N and C termini of a truncated protein lacking the Cox2 C-terminal domain were translocated to the IMS via a pathway dependent upon the conserved translocase Oxa1. The topology of this Cox2 variant, accumulated at steady state, was largely but not completely unaffected in mutants lacking proteins required for export of the C-tail domain, Cox18 and Mss2. C-tail export was blocked by truncation of the last 40 residues from the C-tail domain, indicating that sequence and/or structural features of this domain are required for its translocation. Mss2, a peripheral protein bound to the inner surface of the inner membrane, coimmunoprecipitated with full-length newly synthesized Cox2, whose leader peptide had already been cleaved in the IMS. Our data suggest that the C-tail domain is recognized posttranslationally by a specialized translocation apparatus after the N-tail has been translocated by Oxa1.
Collapse
Affiliation(s)
- Heather L Fiumera
- Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, NY 14853-2703, USA
| | | | | |
Collapse
|
26
|
Khalimonchuk O, Bird A, Winge DR. Evidence for a pro-oxidant intermediate in the assembly of cytochrome oxidase. J Biol Chem 2007; 282:17442-9. [PMID: 17430883 DOI: 10.1074/jbc.m702379200] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hydrogen peroxide sensitivity of cells lacking two proteins, Sco1 and Cox11, important in the assembly of cytochrome c oxidase (CcO), is shown to arise from the transient accumulation of a pro-oxidant heme A-Cox1 stalled intermediate. The peroxide sensitivity of these cells is abrogated by a reduction in either Cox1 expression or heme A formation but exacerbated by either enhanced Cox1 expression or heme A production arising from overexpression of COX15. Sco1 and Cox11 are implicated in the formation of the Cu(A) and Cu(B) sites of CcO, respectively. The respective wild-type genes suppress the peroxide sensitivities of sco1Delta and cox11Delta cells, but no cross-complementation is seen with noncognate genes. Copper-binding mutant alleles of Sco1 and Cox11 that are nonfunctional in promoting the assembly of CcO are functional in suppressing the peroxide sensitivity of their respective null mutants. Likewise, human Sco1 that is nonfunctional in yeast CcO assembly is able to suppress the peroxide sensitivity of yeast sco1Delta cells. Thus, a disconnect exists between the respiratory capacity of cells and hydrogen peroxide sensitivity. Hydrogen peroxide sensitivity of sco1Delta and cox11Delta cells is abrogated by overexpression of a novel mitochondrial ATPase Afg1 that promotes the degradation of CcO mitochondrially encoded subunits. Studies on the hydrogen peroxide sensitivity in CcO assembly mutants reveal new aspects of the CcO assembly process.
Collapse
Affiliation(s)
- Oleh Khalimonchuk
- University of Utah Health Sciences Center, Department of Medicine, Salt Lake City, Utah 84132, USA
| | | | | |
Collapse
|
27
|
Jia L, Dienhart MK, Stuart RA. Oxa1 directly interacts with Atp9 and mediates its assembly into the mitochondrial F1Fo-ATP synthase complex. Mol Biol Cell 2007; 18:1897-908. [PMID: 17344477 PMCID: PMC1855041 DOI: 10.1091/mbc.e06-10-0925] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The yeast Oxa1 protein is involved in the biogenesis of the mitochondrial oxidative phosphorylation (OXPHOS) machinery. The involvement of Oxa1 in the assembly of the cytochrome oxidase (COX) complex, where it facilitates the cotranslational membrane insertion of mitochondrially encoded COX subunits, is well documented. In this study we have addressed the role of Oxa1, and its sequence-related protein Cox18/Oxa2, in the biogenesis of the F(1)F(o)-ATP synthase complex. We demonstrate that Oxa1, but not Cox18/Oxa2, directly supports the assembly of the membrane embedded F(o)-sector of the ATP synthase. Oxa1 was found to physically interact with newly synthesized mitochondrially encoded Atp9 protein in a posttranslational manner and in a manner that is not dependent on the C-terminal, matrix-localized region of Oxa1. The stable manner of the Atp9-Oxa1 interaction is in contrast to the cotranslational and transient interaction previously observed for the mitochondrially encoded COX subunits with Oxa1. In the absence of Oxa1, Atp9 was observed to assemble into an oligomeric complex containing F(1)-subunits, but its further assembly with subunit 6 (Atp6) of the F(o)-sector was perturbed. We propose that by directly interacting with newly synthesized Atp9 in a posttranslational manner, Oxa1 is required to maintain the assembly competence of the Atp9-F(1)-subcomplex for its association with Atp6.
Collapse
Affiliation(s)
- Lixia Jia
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Mary K. Dienhart
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Rosemary A. Stuart
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| |
Collapse
|
28
|
Zambrano A, Fontanesi F, Solans A, de Oliveira RL, Fox TD, Tzagoloff A, Barrientos A. Aberrant translation of cytochrome c oxidase subunit 1 mRNA species in the absence of Mss51p in the yeast Saccharomyces cerevisiae. Mol Biol Cell 2006; 18:523-35. [PMID: 17135289 PMCID: PMC1783774 DOI: 10.1091/mbc.e06-09-0803] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Expression of yeast mitochondrial genes depends on specific translational activators acting on the 5'-untranslated region of their target mRNAs. Mss51p is a translational factor for cytochrome c oxidase subunit 1 (COX1) mRNA and a key player in down-regulating Cox1p expression when subunits with which it normally interacts are not available. Mss51p probably acts on the 5'-untranslated region of COX1 mRNA to initiate translation and on the coding sequence itself to facilitate elongation. Mss51p binds newly synthesized Cox1p, an interaction that could be necessary for translation. To gain insight into the different roles of Mss51p on Cox1p biogenesis, we have analyzed the properties of a new mitochondrial protein, mp15, which is synthesized in mss51 mutants and in cytochrome oxidase mutants in which Cox1p translation is suppressed. The mp15 polypeptide is not detected in cox14 mutants that express Cox1p normally. We show that mp15 is a truncated translation product of COX1 mRNA whose synthesis requires the COX1 mRNA-specific translational activator Pet309p. These results support a key role for Mss51p in translationally regulating Cox1p synthesis by the status of cytochrome oxidase assembly.
Collapse
Affiliation(s)
- Andrea Zambrano
- *Department of Neurology and Biochemistry and Molecular Biology, The John T. Macdonald Foundation Center for Medical Genetics, University of Miami School of Medicine, Miami, FL 33136
| | - Flavia Fontanesi
- *Department of Neurology and Biochemistry and Molecular Biology, The John T. Macdonald Foundation Center for Medical Genetics, University of Miami School of Medicine, Miami, FL 33136
| | - Asun Solans
- *Department of Neurology and Biochemistry and Molecular Biology, The John T. Macdonald Foundation Center for Medical Genetics, University of Miami School of Medicine, Miami, FL 33136
| | - Rodrigo Leite de Oliveira
- Life and Health Sciences Research Institute (ICVS), Health Sciences School, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Thomas D. Fox
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703; and
| | | | - Antoni Barrientos
- *Department of Neurology and Biochemistry and Molecular Biology, The John T. Macdonald Foundation Center for Medical Genetics, University of Miami School of Medicine, Miami, FL 33136
| |
Collapse
|
29
|
Cobine PA, Pierrel F, Winge DR. Copper trafficking to the mitochondrion and assembly of copper metalloenzymes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:759-72. [PMID: 16631971 DOI: 10.1016/j.bbamcr.2006.03.002] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 03/03/2006] [Accepted: 03/05/2006] [Indexed: 11/20/2022]
Abstract
Copper is required within the mitochondrion for the function of two metalloenzymes, cytochrome c oxidase (CcO) and superoxide dismutase (Sod1). Copper metallation of these two enzymes occurs within the mitochondrial intermembrane space and is mediated by metallochaperone proteins. Cox17 is a key copper donor to two accessory proteins, Sco1 and Cox11, to form the two copper centers in the mature CcO complex. Ccs1 is the necessary metallochaperone for the copper metallation of Sod1 in the IMS as well as within the cytoplasm where the bulk of Sod1 resides. Copper ions used in the metallation of CcO and Sod1 appear to be provided by a novel copper pool within the mitochondrial matrix. This review documents copper ion shuttling within the mitochondrion and the proteins that mediate assembly of active CcO and Sod1.
Collapse
Affiliation(s)
- Paul A Cobine
- Departments of Medicine and Biochemistry, University of Utah Health Sciences Center, Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|
30
|
Fontanesi F, Soto IC, Horn D, Barrientos A. Assembly of mitochondrial cytochrome c-oxidase, a complicated and highly regulated cellular process. Am J Physiol Cell Physiol 2006; 291:C1129-47. [PMID: 16760263 DOI: 10.1152/ajpcell.00233.2006] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytochrome c-oxidase (COX), the terminal enzyme of the mitochondrial respiratory chain, plays a key role in the regulation of aerobic production of energy. Biogenesis of eukaryotic COX involves the coordinated action of two genomes. Three mitochondrial DNA-encoded subunits form the catalytic core of the enzyme, which contains metal prosthetic groups. Another 10 subunits encoded in the nuclear DNA act as a protective shield surrounding the core. COX biogenesis requires the assistance of >20 additional nuclear-encoded factors acting at all levels of the process. Expression of the mitochondrial-encoded subunits, expression and import of the nuclear-encoded subunits, insertion of the structural subunits into the mitochondrial inner membrane, addition of prosthetic groups, assembly of the holoenzyme, further maturation to form a dimer, and additional assembly into supercomplexes are all tightly regulated processes in a nuclear-mitochondrial-coordinated fashion. Such regulation ensures the building of a highly efficient machine able to catalyze the safe transfer of electrons from cytochrome c to molecular oxygen and ultimately facilitate the aerobic production of ATP. In this review, we will focus on describing and analyzing the present knowledge about the different regulatory checkpoints in COX assembly and the dynamic relationships between the different factors involved in the process. We have used information mostly obtained from the suitable yeast model, but also from bacterial and animal systems, by means of large-scale genetic, molecular biology, and physiological approaches and by integrating information concerning individual elements into a cellular system network.
Collapse
Affiliation(s)
- Flavia Fontanesi
- Departments of Neurology, The John T. Macdonald Foundation Center for Medical Genetics, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | | | | | | |
Collapse
|
31
|
Reif S, Randelj O, Domanska G, Dian EA, Krimmer T, Motz C, Rassow J. Conserved Mechanism of Oxa1 Insertion into the Mitochondrial Inner Membrane. J Mol Biol 2005; 354:520-8. [PMID: 16253275 DOI: 10.1016/j.jmb.2005.09.054] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 09/02/2005] [Accepted: 09/14/2005] [Indexed: 11/21/2022]
Abstract
Oxa1 is the mitochondrial representative of a family of related proteins that mediate the insertion of substrate proteins into the membranes of bacteria, chloroplasts, and mitochondria. Several studies have demonstrated that the bacterial homologue YidC participates both in the direct uptake of proteins from the bacterial cytosol, and in the uptake of nascent proteins from the Sec translocase. Studies on the biogenesis of membrane proteins in mitochondria established that Oxa1 has the capability to receive substrates at the inner surface of the inner membrane. In this study, we asked if Oxa1 may similarly cooperate with a protein translocase within the membrane. Since Oxa1 is involved in its own biogenesis, we used the precursor of Oxa1 as a model protein and investigated its import pathway. We found that immediately after import into mitochondria, Oxa1 initially accumulates at Tim23 that forms the inner membrane protein translocase. Cleavage of the Oxa1 presequence is dependent on mtHsp70, a heat shock protein of the mitochondrial matrix. However, mutant mtHsp70 showing a defect in the release of bound substrate proteins does not interfere with subsequent membrane insertion, indicating that membrane insertion of the mature protein is essentially mtHsp70-independent. We conclude that Oxa1 has the ability to accept preproteins within the membrane.
Collapse
Affiliation(s)
- Sebastian Reif
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Strasse 7, D-79104 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Sacconi S, Trevisson E, Pistollato F, Baldoin MC, Rezzonico R, Bourget I, Desnuelle C, Tenconi R, Basso G, DiMauro S, Salviati L. hCOX18 and hCOX19: Two human genes involved in cytochrome c oxidase assembly. Biochem Biophys Res Commun 2005; 337:832-9. [PMID: 16212937 DOI: 10.1016/j.bbrc.2005.09.127] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Accepted: 09/17/2005] [Indexed: 10/25/2022]
Abstract
We identified the human homologues of yCOX18 and yCOX19, two Saccharomyces cerevisiae genes involved in the biogenesis of mitochondrial respiratory chain complexes. In yeast, these two genes are required for the expression of cytochrome c oxidase: Cox18p catalyses the insertion of Cox2p COOH-tail into the mitochondrial inner membrane, and Cox19p is probably involved in metal transport to the intermembrane space. Both hCox18p and hCox19p present significant amino acid identity with the corresponding yeast polypeptides and reveal highly conserved functional domains. In addition, their subcellular localization is analogous to that of the yeast proteins. These data strongly suggest that the human gene products share similar functions with their yeast homologues. These two COX-assembly genes represent new candidates for mutational analysis in patients with isolated COX deficiency of unknown etiology.
Collapse
Affiliation(s)
- Sabrina Sacconi
- INSERM U638, Faculté de Médicine, Université de Nice, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Herrmann JM, Funes S. Biogenesis of cytochrome oxidase—Sophisticated assembly lines in the mitochondrial inner membrane. Gene 2005; 354:43-52. [PMID: 15905047 DOI: 10.1016/j.gene.2005.03.017] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Revised: 02/02/2005] [Accepted: 03/23/2005] [Indexed: 11/18/2022]
Abstract
Biogenesis of the cytochrome oxidase complex in the mitochondrial inner membrane depends on the concerted action of a variety of proteins. Recent studies shed light on this biological assembly process revealing an astonishingly complex procedure by which the different subunits of the enzymes are put together and the required cofactors are supplied. In this review we present a hypothetical model for the assembly process of cytochrome oxidase based on the current knowledge of the functions of specific assembly factors. According to this model the two largest subunits of the complex are first equipped with their respective cofactors on independent assembly lines. Prior to their assembly with the residual subunits that complete the whole complex, these two subcomplexes remain bound to substrate-specific chaperones. We propose that these chaperones, Mss51 for subunit 1 and Cox20 for subunit 2, control the coordinate assembly process to prevent potentially harmful redox reactions of unassembled or misassembled subunits.
Collapse
Affiliation(s)
- Johannes M Herrmann
- Institute of Physiological Chemistry, Butenandtstrasse 5, 81377 München, University of Munich, Germany.
| | | |
Collapse
|
34
|
Aguilera J, Petit T, de Winde JH, Pronk JT. Physiological and genome-wide transcriptional responses of Saccharomyces cerevisiae to high carbon dioxide concentrations. FEMS Yeast Res 2005; 5:579-93. [PMID: 15780657 DOI: 10.1016/j.femsyr.2004.09.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Revised: 09/23/2004] [Accepted: 09/24/2004] [Indexed: 10/26/2022] Open
Abstract
Physiological effects of carbon dioxide and impact on genome-wide transcript profiles were analysed in chemostat cultures of Saccharomyces cerevisiae. In anaerobic, glucose-limited chemostat cultures grown at atmospheric pressure, cultivation under CO(2)-saturated conditions had only a marginal (<10%) impact on the biomass yield. Conversely, a 25% decrease of the biomass yield was found in aerobic, glucose-limited chemostat cultures aerated with a mixture of 79% CO(2) and 21% O(2). This observation indicated that respiratory metabolism is more sensitive to CO(2) than fermentative metabolism. Consistent with the more pronounced physiological effects of CO(2) in respiratory cultures, the number of CO(2)-responsive transcripts was higher in aerobic cultures than in anaerobic cultures. Many genes involved in mitochondrial functions showed a transcriptional response to elevated CO(2) concentrations. This is consistent with an uncoupling effect of CO(2) and/or intracellular bicarbonate on the mitochondrial inner membrane. Other transcripts that showed a significant transcriptional response to elevated CO(2) included NCE103 (probably encoding carbonic anhydrase), PCK1 (encoding PEP carboxykinase) and members of the IMD gene family (encoding isozymes of inosine monophosphate dehydrogenase).
Collapse
Affiliation(s)
- Jaime Aguilera
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | | | | | | |
Collapse
|
35
|
Abstract
The mitochondrion has developed an elaborate translocation system for the import of nuclear-coded proteins and the export of proteins coded on the mitochondrial genome. Precursor proteins contain targeting and sorting information to reach the mitochondrion, whereas the translocons recognize the information and direct the precursor to the correct compartment. The outer membrane contains the TOM (translocase of the outer membrane) complex for translocation and the SAM (sorting and assembly machinery) complex for assembly of outer membrane proteins with complex topologies. At the inner membrane, the TIM23 (translocase of the inner membrane) mediates the import of mitochondrial proteins with a typical N-terminal targeting sequence, and the TIM22 complex mediates the import of polytopic inner membrane proteins. Based on its prokaryotic origin, the inner membrane also contains several components that mediate the export and assembly of proteins from within the matrix. Together the translocation and assembly complexes coordinate assembly of the mitochondrion.
Collapse
Affiliation(s)
- Carla M Koehler
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA 90095-1569, USA.
| |
Collapse
|
36
|
Preuss M, Ott M, Funes S, Luirink J, Herrmann JM. Evolution of mitochondrial oxa proteins from bacterial YidC. Inherited and acquired functions of a conserved protein insertion machinery. J Biol Chem 2005; 280:13004-11. [PMID: 15654078 DOI: 10.1074/jbc.m414093200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the Oxa1/YidC family are involved in the biogenesis of membrane proteins. In bacteria, YidC catalyzes the insertion and assembly of proteins of the inner membrane. Mitochondria of animals, fungi, and plants harbor two distant homologues of YidC, Oxa1 and Cox18/Oxa2. Oxa1 plays a pivotal role in the integration of mitochondrial translation products into the inner membrane of mitochondria. It contains a C-terminal ribosome-binding domain that physically interacts with mitochondrial ribosomes to facilitate the co-translational insertion of nascent membrane proteins. The molecular function of Cox18/Oxa2 is not well understood. Employing a functional complementation approach with mitochondria-targeted versions of YidC we show that YidC is able to functionally replace both Oxa1 and Cox18/Oxa2. However, to integrate mitochondrial translation products into the inner membrane of mitochondria, the ribosome-binding domain of Oxa1 has to be appended onto YidC. On the contrary, the fusion of the ribosome-binding domain onto YidC prevents its ability to complement COX18 mutants suggesting an indispensable post-translational activity of Cox18/Oxa2. Our observations suggest that during evolution of mitochondria from their bacterial ancestors the two descendents of YidC functionally segregated to perform two distinct activities, one co-translational and one post-translational.
Collapse
Affiliation(s)
- Marc Preuss
- Institut für Physiologische Chemie, Universität München, Butenandtstrasse 5, 81377 München, Germany
| | | | | | | | | |
Collapse
|
37
|
Barrientos A, Zambrano A, Tzagoloff A. Mss51p and Cox14p jointly regulate mitochondrial Cox1p expression in Saccharomyces cerevisiae. EMBO J 2004; 23:3472-82. [PMID: 15306853 PMCID: PMC516630 DOI: 10.1038/sj.emboj.7600358] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Accepted: 07/19/2004] [Indexed: 11/10/2022] Open
Abstract
Mutations in SURF1, the human homologue of yeast SHY1, are responsible for Leigh's syndrome, a neuropathy associated with cytochrome oxidase (COX) deficiency. Previous studies of the yeast model of this disease showed that mutant forms of Mss51p, a translational activator of COX1 mRNA, partially rescue the COX deficiency of shy1 mutants by restoring normal synthesis of the mitochondrially encoded Cox1p subunit of COX. Here we present evidence showing that Cox1p synthesis is reduced in most COX mutants but is restored to that of wild type by the same mss51 mutation that suppresses shy1 mutants. An important exception is a null mutation in COX14, which by itself or in combination with other COX mutations does not affect Cox1p synthesis. Cox14p and Mss51p are shown to interact with newly synthesized Cox1p and with each other. We propose that the interaction of Mss51p and Cox14p with Cox1p to form a transient Cox14p-Cox1p-Mss51p complex functions to downregulate Cox1p synthesis. The release of Mss51p from the complex occurs at a downstream step in the assembly pathway, probably catalyzed by Shy1p.
Collapse
Affiliation(s)
- Antoni Barrientos
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| | | | | |
Collapse
|
38
|
Valadi A, Granath K, Gustafsson L, Adler L. Distinct intracellular localization of Gpd1p and Gpd2p, the two yeast isoforms of NAD+-dependent glycerol-3-phosphate dehydrogenase, explains their different contributions to redox-driven glycerol production. J Biol Chem 2004; 279:39677-85. [PMID: 15210723 DOI: 10.1074/jbc.m403310200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During anaerobiosis Saccharomyces cerevisiae strongly increases glycerol production to provide for non-respiratory oxidation of NADH to NAD(+). We here report that respiratory-deficient cells become strictly dependent on the Gpd2p isoform of the NAD(+)-linked glycerol-3-phosphate dehydrogenase (Gpd). The growth inhibition of respiratory incompetent cox18Delta cells lacking GPD2 is reversed by the addition of acetoin, an alternative sink for NADH oxidation. Growth is also restored by addition of lysine or glutamic acid/glutamine, the synthesis of which involves production of mitochondrial NADH. Lysine produced a stronger growth stimulating effect than glutamic acid consistent with an upregulated expression of the IDP3 gene for peroxisomal synthesis of the glutamate precursor alpha-ketoglutarate. Gpd2p is known to be a cytosolic protein but possesses a classical mitochondrial presequence, which we show is sufficient for mitochondrial targeting. A partial mitochondrial localization of Gpd2p will provide for establishment of intramitochondrial redox balance under non-respiratory conditions. Gpd1p, the other Gpd isoform, is partly cytosolic and partly peroxisomal and becomes more strictly peroxisomal in respiratory-deficient mutants. The different cellular distribution of Gpd1p and Gpd2p thus appears to be the main reason Gpd1p cannot substitute for Gpd2p in cox18Deltagpd2Delta cells, despite similar kinetic characteristics of the two iso-enzymes.
Collapse
Affiliation(s)
- Asa Valadi
- Department of Cell and Molecular Biology/Microbiology, Box 462, SE-405 30 Göteborg, Sweden
| | | | | | | |
Collapse
|
39
|
Funes S, Nargang FE, Neupert W, Herrmann JM. The Oxa2 protein of Neurospora crassa plays a critical role in the biogenesis of cytochrome oxidase and defines a ubiquitous subbranch of the Oxa1/YidC/Alb3 protein family. Mol Biol Cell 2004; 15:1853-61. [PMID: 14767059 PMCID: PMC379281 DOI: 10.1091/mbc.e03-11-0789] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Proteins of the Oxa1/YidC/Alb3 family mediate the insertion of proteins into membranes of mitochondria, bacteria, and chloroplasts. Here we report the identification of a second gene of the Oxa1/YidC/Alb3 family in the genome of Neurospora crassa, which we have named oxa2. Its gene product, Oxa2, is located in the inner membrane of mitochondria. Deletion of the oxa2 gene caused a specific defect in the biogenesis of cytochrome oxidase and resulted in induction of the alternative oxidase (AOD), which bypasses the need for complex IV of the respiratory chain. The Oxa2 protein of N. crassa complements Cox18-deficient yeast mutants suggesting a common function for both proteins. The oxa2 sequence allowed the identification of a new subfamily of Oxa1/YidC/Alb3 proteins whose members appear to be ubiquitously present in mitochondria of fungi, plants, and animals including humans.
Collapse
Affiliation(s)
- Soledad Funes
- Institut für Physiologische Chemie, Universität München, 81377 München, Germany
| | | | | | | |
Collapse
|
40
|
Richter OMH, Ludwig B. Cytochrome c oxidase--structure, function, and physiology of a redox-driven molecular machine. Rev Physiol Biochem Pharmacol 2003; 147:47-74. [PMID: 12783267 DOI: 10.1007/s10254-003-0006-0] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cytochome c oxidase is the terminal member of the electron transport chains of mitochondria and many bacteria. Providing an efficient mechanism for dioxygen reduction on the one hand, it also acts as a redox-linked proton pump, coupling the free energy of water formation to the generation of a transmembrane electrochemical gradient to eventually drive ATP synthesis. The overall complexity of the mitochondrial enzyme is also reflected by its subunit structure and assembly pathway, whereas the diversity of the bacterial enzymes has fostered the notion of a large family of heme-copper terminal oxidases. Moreover, the successful elucidation of 3-D structures for both the mitochondrial and several bacterial oxidases has greatly helped in designing mutagenesis approaches to study functional aspects in these enzymes.
Collapse
Affiliation(s)
- O-M H Richter
- Institute of Biochemistry, Biocenter, J.W. Goethe-Universität, Marie-Curie-Str. 9, 60439 Frankfurt, Germany.
| | | |
Collapse
|
41
|
Frazier AE, Chacinska A, Truscott KN, Guiard B, Pfanner N, Rehling P. Mitochondria use different mechanisms for transport of multispanning membrane proteins through the intermembrane space. Mol Cell Biol 2003; 23:7818-28. [PMID: 14560025 PMCID: PMC207575 DOI: 10.1128/mcb.23.21.7818-7828.2003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mitochondrial inner membrane contains numerous multispanning integral proteins. The precursors of these hydrophobic proteins are synthesized in the cytosol and therefore have to cross the mitochondrial outer membrane and intermembrane space to reach the inner membrane. While the import pathways of noncleavable multispanning proteins, such as the metabolite carriers, have been characterized in detail by the generation of translocation intermediates, little is known about the mechanism by which cleavable preproteins of multispanning proteins, such as Oxa1, are transferred from the outer membrane to the inner membrane. We have identified a translocation intermediate of the Oxa1 preprotein in the translocase of the outer membrane (TOM) and found that there are differences from the import mechanisms of carrier proteins. The intermembrane space domain of the receptor Tom22 supports the stabilization of the Oxa1 intermediate. Transfer of the Oxa1 preprotein to the inner membrane is not affected by inactivation of the soluble TIM complexes. Both the inner membrane potential and matrix heat shock protein 70 are essential to release the preprotein from the TOM complex, suggesting a close functional cooperation of the TOM complex and the presequence translocase of the inner membrane. We conclude that mitochondria employ different mechanisms for translocation of multispanning proteins across the aqueous intermembrane space.
Collapse
Affiliation(s)
- Ann E Frazier
- Institut für Biochemie und Molekularbiologie. Fakultät für Biologie, Universität Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Carlson CG, Barrientos A, Tzagoloff A, Glerum DM. COX16 encodes a novel protein required for the assembly of cytochrome oxidase in Saccharomyces cerevisiae. J Biol Chem 2003; 278:3770-5. [PMID: 12446688 DOI: 10.1074/jbc.m209893200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have characterized Cox16p, a new cytochrome oxidase (COX) assembly factor. This protein is encoded by COX16, corresponding to the previously uncharacterized open reading frame YJL003w of the yeast genome. COX16 was identified in studies of COX-deficient mutants previously assigned to complementation group G22 of a collection of yeast pet mutants. To determine its location, Cox16p was tagged with a Myc epitope at the C terminus. The fusion protein, when expressed from a low-copy plasmid, complements the mutant and is detected solely in mitochondria. Cox16p-myc is an integral component of the mitochondrial inner membrane, with its C terminus exposed to the intermembrane space. Cox16 homologues are found in both the human and murine genomes, although human COX16 does not complement the yeast mutant. Cox16p does not appear to be involved in maturation of subunit 2, copper recruitment, or heme A biosynthesis. Cox16p is thus a new protein in the growing family of eukaryotic COX assembly factors for which there are as yet no specific functions known. Like other recently described nuclear gene products involved in expression of cytochrome oxidase, COX16 is a candidate for screening in inherited human COX deficiencies.
Collapse
|
43
|
Stuart R. Insertion of proteins into the inner membrane of mitochondria: the role of the Oxa1 complex. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1592:79-87. [PMID: 12191770 DOI: 10.1016/s0167-4889(02)00266-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The inner mitochondrial membrane harbors a large number of proteins that display a wide range of topological arrangements. The majority of these proteins are encoded in the cell's nucleus, but a few polytopic proteins, all subunits of respiratory chain complexes are encoded by the mitochondrial genome. A number of distinct sorting mechanisms exist to direct these proteins into the mitochondrial inner membrane. One of these pathways involves the export of proteins from the matrix into the inner membrane and is used by both proteins synthesized within the mitochondria, as well as by a subset of nuclear encoded proteins. Prior to embarking on the export pathway, nuclear encoded proteins using this sorting route are initially imported into the mitochondrial matrix from the cytosol, their site of synthesis. Protein export from the matrix into the inner membrane bears similarities to Sec-independent protein export in bacteria and requires the function of the Oxa1 protein. Oxa1 is a component of a general protein insertion site in yeast mitochondrial inner membrane used by both nuclear and mitochondrial DNA encoded proteins. Oxa1 is a member of the conserved Oxa1/YidC/Alb3 protein family found throughout prokaryotes throughout eukaryotes (where it is found in mitochondria and chloroplasts). The evidence to demonstrate that the Oxa1/YidC/Alb3 protein family represents a novel evolutionarily conserved membrane insertion machinery is reviewed here.
Collapse
Affiliation(s)
- Rosemary Stuart
- Department of Biology, Marquette University, 530 N. 15th Street, Milwaukee, WI 53233, USA.
| |
Collapse
|
44
|
Carr HS, George GN, Winge DR. Yeast Cox11, a protein essential for cytochrome c oxidase assembly, is a Cu(I)-binding protein. J Biol Chem 2002; 277:31237-42. [PMID: 12063264 DOI: 10.1074/jbc.m204854200] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cox11 is a protein essential for respiratory growth and has been implicated in the assembly of the Cu(B) site of cytochrome c oxidase. In the present study, we demonstrate that Cox11 is a copper-binding protein. The soluble C-terminal domain of Cox11 forms a dimer that coordinates one Cu(I) per monomer via three thiolate ligands. The two Cu(I) ions in the dimer exist in a binuclear cluster and appear to be ligated by three conserved Cys residues. Mutation of any of these Cys residues reduces Cu(I) binding and confers respiratory incompetence. Cytochrome c oxidase activity is reduced in these mutants. Thus, the residues important for Cu(I) binding correlate with in vivo function, suggesting that Cu(I) binding is important in Cox11 function.
Collapse
Affiliation(s)
- Heather S Carr
- University of Utah Health Sciences Center, Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|
45
|
Abstract
Biosynthesis of heme A, a prosthetic group of cytochrome oxidase (COX), involves an initial farnesylation of heme B. The heme O product formed in this reaction is modified by hydroxylation of the methyl group at carbon C-8 of the porphyrin ring. This reaction was proposed to be catalyzed by Cox15p, ferredoxin, and ferredoxin reductase. Oxidation of the alcohol to the corresponding aldehyde yields heme A. In the present study we have assayed heme A and heme O in yeast COX mutants. The steady state concentrations of the two hemes in the different strains studied indicate that hydroxylation of heme O, catalyzed by Cox15p, is regulated either by a subunit or assembly intermediate of COX. The heme profiles of the mutants also suggest positive regulation of heme B farnesylation by the hydroxylated intermediate formed at the subsequent step or by Cox15p itself.
Collapse
Affiliation(s)
- Mario H Barros
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | |
Collapse
|
46
|
Saracco SA, Fox TD. Cox18p is required for export of the mitochondrially encoded Saccharomyces cerevisiae Cox2p C-tail and interacts with Pnt1p and Mss2p in the inner membrane. Mol Biol Cell 2002; 13:1122-31. [PMID: 11950926 PMCID: PMC102256 DOI: 10.1091/mbc.01-12-0580] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2001] [Revised: 12/03/2001] [Accepted: 12/24/2001] [Indexed: 11/11/2022] Open
Abstract
The amino- and carboxy-terminal domains of mitochondrially encoded cytochrome c oxidase subunit II (Cox2p) are translocated out of the matrix to the intermembrane space. We have carried out a genetic screen to identify components required to export the biosynthetic enzyme Arg8p, tethered to the Cox2p C terminus by a translational gene fusion inserted into mtDNA. We obtained multiple alleles of COX18, PNT1, and MSS2, as well as mutations in CBP1 and PET309. Focusing on Cox18p, we found that its activity is required to export the C-tail of Cox2p bearing a short C-terminal epitope tag. This is not a consequence of reduced membrane potential due to loss of cytochrome oxidase activity because Cox2p C-tail export was not blocked in mitochondria lacking Cox4p. Cox18p is not required to export the Cox2p N-tail, indicating that these two domains of Cox2p are translocated by genetically distinct mechanisms. Cox18p is a mitochondrial integral inner membrane protein. The inner membrane proteins Mss2p and Pnt1p both coimmunoprecipitate with Cox18p, suggesting that they work together in translocation of Cox2p domains, an inference supported by functional interactions among the three genes.
Collapse
Affiliation(s)
- Scott A Saracco
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703, USA
| | | |
Collapse
|
47
|
Barros MH, Nobrega FG, Tzagoloff A. Mitochondrial ferredoxin is required for heme A synthesis in Saccharomyces cerevisiae. J Biol Chem 2002; 277:9997-10002. [PMID: 11788607 DOI: 10.1074/jbc.m112025200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heme A is a prosthetic group of all eukaryotic and some prokaryotic cytochrome oxidases. This heme differs from heme B (protoheme) at two carbon positions of the porphyrin ring. The synthesis of heme A begins with farnesylation of the vinyl group at carbon C-2 of heme B. The heme O product of this reaction is then converted to heme A by a further oxidation of a methyl to a formyl group on C-8. In a previous study (Barros, M. H., Carlson, C. G., Glerum, D. M., and Tzagoloff, A. (2001) FEBS Lett. 492, 133-138) we proposed that the formyl group is formed by an initial hydroxylation of the C-8 methyl by a three-component monooxygenase consisting of Cox15p, ferredoxin, and ferredoxin reductase. In the present study three lines of evidence confirm a requirement of ferredoxin in heme A synthesis. 1) Temperature-conditional yah1 mutants grown under restrictive conditions display a decrease in heme A relative to heme B. 2) The incorporation of radioactive delta-aminolevulinic acid into heme A is reduced in yah1 ts but not in the wild type after the shift to the restrictive temperature; and 3) the overexpression of Cox15p in cytochrome oxidase mutants that accumulate heme O leads to an increased mitochondrial concentration of heme A. The increase in heme A is greater in mutants that overexpress Cox15p and ferredoxin. These results are consistent with a requirement of ferredoxin and indirectly of ferredoxin reductase in hydroxylation of heme O.
Collapse
Affiliation(s)
- Mario H Barros
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | |
Collapse
|
48
|
Abstract
Yeast and bovine cytochrome c oxidases (COX) are composed of 12 and 13 different polypeptides, respectively. In both cases, the three subunits constituting the catalytic core are encoded by mitochondrial DNA. The other subunits are all products of nuclear genes that are translated on cytoplasmic ribosomes and imported through different transport routes into mitochondria. Biogenesis of the functional complex depends on the expression of all the structural and more than two dozen COX-specific genes. The latter impinge on all aspects of the biogenesis process. Here we review the current state of information about the functions of the COX-specific gene products and of their relationship to human COX deficiencies.
Collapse
Affiliation(s)
- Antoni Barrientos
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | | | | | | | |
Collapse
|
49
|
Barrientos A, Korr D, Tzagoloff A. Shy1p is necessary for full expression of mitochondrial COX1 in the yeast model of Leigh's syndrome. EMBO J 2002; 21:43-52. [PMID: 11782424 PMCID: PMC125806 DOI: 10.1093/emboj/21.1.43] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
SHY1 codes for a mitochondrial protein required for full expression of cytochrome oxidase (COX) in Saccharomyces cerevisiae. Mutations in the homologous human gene (SURF1) have been reported to cause Leigh's syndrome, a neurological disease associated with COX deficiency. The function of Shy1p/Surf1p is poorly understood. Here we have characterized revertants of shy1 null mutants carrying extragenic nuclear suppressor mutations. The steady-state levels of COX in the revertants is increased by a factor of 4-5, accounting for their ability to respire and grow on non-fermentable carbon sources at nearly wild-type rates. The suppressor mutations are in MSS51, a gene previously implicated in processing and translation of the COX1 transcript for subunit 1 (Cox1) of COX. The function of Shy1p and the mechanism of suppression of shy1 mutants were examined by comparing the rates of synthesis and turnover of the mitochondrial translation products in wild-type, mutant and revertant cells. We propose that Shy1p promotes the formation of an assembly intermediate in which Cox1 is one of the partners.
Collapse
Affiliation(s)
| | | | - Alexander Tzagoloff
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
Corresponding author e-mail:
| |
Collapse
|
50
|
Fonseca GV, Tambor JHM, Nobrega MP, Santos R, Nobrega FG. Sugarcane genes related to mitochondrial function. Genet Mol Biol 2001. [DOI: 10.1590/s1415-47572001000100024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mitochondria function as metabolic powerhouses by generating energy through oxidative phosphorylation and have become the focus of renewed interest due to progress in understanding the subtleties of their biogenesis and the discovery of the important roles which these organelles play in senescence, cell death and the assembly of iron-sulfur (Fe/S) centers. Using proteins from the yeast Saccharomyces cerevisiae, Homo sapiens and Arabidopsis thaliana we searched the sugarcane expressed sequence tag (SUCEST) database for the presence of expressed sequence tags (ESTs) with similarity to nuclear genes related to mitochondrial functions. Starting with 869 protein sequences, we searched for sugarcane EST counterparts to these proteins using the basic local alignment search tool TBLASTN similarity searching program run against 260,781 sugarcane ESTs contained in 81,223 clusters. We were able to recover 367 clusters likely to represent sugarcane orthologues of the corresponding genes from S. cerevisiae, H. sapiens and A. thaliana with E-value <= 10-10. Gene products belonging to all functional categories related to mitochondrial functions were found and this allowed us to produce an overview of the nuclear genes required for sugarcane mitochondrial biogenesis and function as well as providing a starting point for detailed analysis of sugarcane gene structure and physiology.
Collapse
|