1
|
Hao X, Ou M, Zhang D, Zhao W, Yang Y, Liu J, Yang H, Zhu T, Li Y, Zhou C. The Effects of General Anesthetics on Synaptic Transmission. Curr Neuropharmacol 2020; 18:936-965. [PMID: 32106800 PMCID: PMC7709148 DOI: 10.2174/1570159x18666200227125854] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/20/2020] [Accepted: 02/26/2020] [Indexed: 02/08/2023] Open
Abstract
General anesthetics are a class of drugs that target the central nervous system and are widely used for various medical procedures. General anesthetics produce many behavioral changes required for clinical intervention, including amnesia, hypnosis, analgesia, and immobility; while they may also induce side effects like respiration and cardiovascular depressions. Understanding the mechanism of general anesthesia is essential for the development of selective general anesthetics which can preserve wanted pharmacological actions and exclude the side effects and underlying neural toxicities. However, the exact mechanism of how general anesthetics work is still elusive. Various molecular targets have been identified as specific targets for general anesthetics. Among these molecular targets, ion channels are the most principal category, including ligand-gated ionotropic receptors like γ-aminobutyric acid, glutamate and acetylcholine receptors, voltage-gated ion channels like voltage-gated sodium channel, calcium channel and potassium channels, and some second massager coupled channels. For neural functions of the central nervous system, synaptic transmission is the main procedure for which information is transmitted between neurons through brain regions, and intact synaptic function is fundamentally important for almost all the nervous functions, including consciousness, memory, and cognition. Therefore, it is important to understand the effects of general anesthetics on synaptic transmission via modulations of specific ion channels and relevant molecular targets, which can lead to the development of safer general anesthetics with selective actions. The present review will summarize the effects of various general anesthetics on synaptic transmissions and plasticity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yu Li
- Address correspondence to these authors at the Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China; E-mail: and Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, P.R. China; E-mail:
| | - Cheng Zhou
- Address correspondence to these authors at the Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China; E-mail: and Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, P.R. China; E-mail:
| |
Collapse
|
2
|
Kim KW, Kim K, Lee H, Suh BC. Ethanol Elevates Excitability of Superior Cervical Ganglion Neurons by Inhibiting Kv7 Channels in a Cell Type-Specific and PI(4,5)P 2-Dependent Manner. Int J Mol Sci 2019; 20:E4419. [PMID: 31500374 PMCID: PMC6770022 DOI: 10.3390/ijms20184419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022] Open
Abstract
Alcohol causes diverse acute and chronic symptoms that often lead to critical health problems. Exposure to ethanol alters the activities of sympathetic neurons that control the muscles, eyes, and blood vessels in the brain. Although recent studies have revealed the cellular targets of ethanol, such as ion channels, the molecular mechanism by which alcohol modulates the excitability of sympathetic neurons has not been determined. Here, we demonstrated that ethanol increased the discharge of membrane potentials in sympathetic neurons by inhibiting the M-type or Kv7 channel consisting of the Kv7.2/7.3 subunits, which were involved in determining the membrane potential and excitability of neurons. Three types of sympathetic neurons, classified by their threshold of activation and firing patterns, displayed distinct sensitivities to ethanol, which were negatively correlated with the size of the Kv7 current that differs depending on the type of neuron. Using a heterologous expression system, we further revealed that the inhibitory effects of ethanol on Kv7.2/7.3 currents were facilitated or diminished by adjusting the amount of plasma membrane phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). These results suggested that ethanol and PI(4,5)P2 modulated gating of the Kv7 channel in superior cervical ganglion neurons in an antagonistic manner, leading to regulation of the membrane potential and neuronal excitability, as well as the physiological functions mediated by sympathetic neurons.
Collapse
Affiliation(s)
- Kwon-Woo Kim
- Department of Brain and cognitive sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea.
| | - Keetae Kim
- Department of New biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea.
| | - Hyosang Lee
- Department of Brain and cognitive sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea.
| | - Byung-Chang Suh
- Department of Brain and cognitive sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea.
| |
Collapse
|
3
|
Oakes V, Domene C. Capturing the Molecular Mechanism of Anesthetic Action by Simulation Methods. Chem Rev 2018; 119:5998-6014. [DOI: 10.1021/acs.chemrev.8b00366] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Victoria Oakes
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Carmen Domene
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
4
|
Liljenström H. Modeling effects of neural fluctuations and inter-scale interactions. CHAOS (WOODBURY, N.Y.) 2018; 28:106319. [PMID: 30384657 DOI: 10.1063/1.5044510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
One of the greatest challenges to science, in particular, to neuroscience, is to understand how processes at different levels of organization are related to each other. In connection with this problem is the question of the functional significance of fluctuations, noise, and chaos. This paper deals with three related issues: (1) how processes at different organizational levels of neural systems might be related, (2) the functional significance of non-linear neurodynamics, including oscillations, chaos, and noise, and (3) how computational models can serve as useful tools in elucidating these types of issues. In order to capture and describe phenomena at different micro (molecular), meso (cellular), and macro (network) scales, the computational models need to be of appropriate complexity making use of available experimental data. I exemplify by two major types of computational models, those of Hans Braun and colleagues and those of my own group, which both aim at bridging gaps between different levels of neural systems. In particular, the constructive role of noise and chaos in such systems is modelled and related to functions, such as sensation, perception, learning/memory, decision making, and transitions between different (un-)conscious states. While there is, in general, a focus on upward causation, I will also discuss downward causation, where higher level activity may affect the activity at lower levels, which should be a condition for any functional role of consciousness and free will, often considered to be problematic to science.
Collapse
Affiliation(s)
- Hans Liljenström
- Biometry and Systems Analysis, ET, SLU, Uppsala, Sweden and Agora for Biosystems, Sigtuna, Sweden
| |
Collapse
|
5
|
Gianti E, Carnevale V. Computational Approaches to Studying Voltage-Gated Ion Channel Modulation by General Anesthetics. Methods Enzymol 2018; 602:25-59. [DOI: 10.1016/bs.mie.2018.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Covarrubias M, Barber AF, Carnevale V, Treptow W, Eckenhoff RG. Mechanistic Insights into the Modulation of Voltage-Gated Ion Channels by Inhalational Anesthetics. Biophys J 2016; 109:2003-11. [PMID: 26588560 DOI: 10.1016/j.bpj.2015.09.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/31/2015] [Accepted: 09/30/2015] [Indexed: 12/20/2022] Open
Abstract
General anesthesia is a relatively safe medical procedure, which for nearly 170 years has allowed life saving surgical interventions in animals and people. However, the molecular mechanism of general anesthesia continues to be a matter of importance and debate. A favored hypothesis proposes that general anesthesia results from direct multisite interactions with multiple and diverse ion channels in the brain. Neurotransmitter-gated ion channels and two-pore K+ channels are key players in the mechanism of anesthesia; however, new studies have also implicated voltage-gated ion channels. Recent biophysical and structural studies of Na+ and K+ channels strongly suggest that halogenated inhalational general anesthetics interact with gates and pore regions of these ion channels to modulate function. Here, we review these studies and provide a perspective to stimulate further advances.
Collapse
Affiliation(s)
- Manuel Covarrubias
- Department of Neuroscience and Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania.
| | - Annika F Barber
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Werner Treptow
- Laboratorio de Biologia Teorica e Computacional, Universidade de Brasilia, Brazil
| | - Roderic G Eckenhoff
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
7
|
Kopljar I, Grottesi A, de Block T, Rainier JD, Tytgat J, Labro AJ, Snyders DJ. Voltage-sensor conformation shapes the intra-membrane drug binding site that determines gambierol affinity in Kv channels. Neuropharmacology 2016; 107:160-167. [PMID: 26956727 DOI: 10.1016/j.neuropharm.2016.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 02/13/2016] [Accepted: 03/04/2016] [Indexed: 01/02/2023]
Abstract
Marine ladder-shaped polyether toxins are implicated in neurological symptoms of fish-borne food poisonings. The toxin gambierol, produced by the marine dinoflagellate Gambierdiscus toxicus, belongs to the group of ladder-shaped polyether toxins and inhibits Kv3.1 channels with nanomolar affinity through a mechanism of gating modification. Binding determinants for gambierol localize at the lipid-exposed interface of the pore forming S5 and S6 segments, suggesting that gambierol binds outside of the permeation pathway. To explore a possible involvement of the voltage-sensing domain (VSD), we made different chimeric channels between Kv3.1 and Kv2.1, exchanging distinct parts of the gating machinery. Our results showed that neither the electro-mechanical coupling nor the S1-S3a region of the VSD affect gambierol sensitivity. In contrast, the S3b-S4 part of the VSD (paddle motif) decreased gambierol sensitivity in Kv3.1 more than 100-fold. Structure determination by homology modeling indicated that the position of the S3b-S4 paddle and its primary structure defines the shape and∖or the accessibility of the binding site for gambierol, explaining the observed differences in gambierol affinity between the channel chimeras. Furthermore, these findings explain the observed difference in gambierol affinity for the closed and open channel configurations of Kv3.1, opening new possibilities for exploring the VSDs as selectivity determinants in drug design.
Collapse
Affiliation(s)
- Ivan Kopljar
- Laboratory for Molecular Biophysics, Physiology and Pharmacology, University of Antwerp, 2610, Antwerp, Belgium
| | | | - Tessa de Block
- Laboratory for Molecular Biophysics, Physiology and Pharmacology, University of Antwerp, 2610, Antwerp, Belgium
| | - Jon D Rainier
- Department of Chemistry, University of Utah, Salt Lake City, UT, 84112-0850, USA
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven Campus Gasthuisberg, 3000, Leuven, Belgium
| | - Alain J Labro
- Laboratory for Molecular Biophysics, Physiology and Pharmacology, University of Antwerp, 2610, Antwerp, Belgium
| | - Dirk J Snyders
- Laboratory for Molecular Biophysics, Physiology and Pharmacology, University of Antwerp, 2610, Antwerp, Belgium.
| |
Collapse
|
8
|
Alkanols inhibit voltage-gated K(+) channels via a distinct gating modifying mechanism that prevents gate opening. Sci Rep 2015; 5:17402. [PMID: 26616025 PMCID: PMC4663795 DOI: 10.1038/srep17402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/28/2015] [Indexed: 12/27/2022] Open
Abstract
Alkanols are small aliphatic compounds that inhibit voltage-gated K+ (Kv) channels through a yet unresolved gating mechanism. Kv channels detect changes in the membrane potential with their voltage-sensing domains (VSDs) that reorient and generate a transient gating current. Both 1-Butanol (1-BuOH) and 1-Hexanol (1-HeOH) inhibited the ionic currents of the Shaker Kv channel in a concentration dependent manner with an IC50 value of approximately 50 mM and 3 mM, respectively. Using the non-conducting Shaker-W434F mutant, we found that both alkanols immobilized approximately 10% of the gating charge and accelerated the deactivating gating currents simultaneously with ionic current inhibition. Thus, alkanols prevent the final VSD movement(s) that is associated with channel gate opening. Applying 1-BuOH and 1-HeOH to the Shaker-P475A mutant, in which the final gating transition is isolated from earlier VSD movements, strengthened that neither alkanol affected the early VSD movements. Drug competition experiments showed that alkanols do not share the binding site of 4-aminopyridine, a drug that exerts a similar effect at the gating current level. Thus, alkanols inhibit Shaker-type Kv channels via a unique gating modifying mechanism that stabilizes the channel in its non-conducting activated state.
Collapse
|
9
|
Heler R, Bell JK, Boland LM. Homology model and targeted mutagenesis identify critical residues for arachidonic acid inhibition of Kv4 channels. Channels (Austin) 2013; 7:74-84. [PMID: 23334377 PMCID: PMC3667888 DOI: 10.4161/chan.23453] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Polyunsaturated fatty acids such as arachidonic acid (AA) exhibit inhibitory modulation of Kv4 potassium channels. Molecular docking approaches using a Kv4.2 homology model predicted a membrane-embedded binding pocket for AA comprised of the S4-S5 linker on one subunit and several hydrophobic residues within S3, S5 and S6 from an adjacent subunit. The pocket is conserved among Kv4 channels. We tested the hypothesis that modulatory effects of AA on Kv4.2/KChIP channels require access to this site. Targeted mutation of a polar residue (K318) and a nonpolar residue (G314) within the S4-S5 linker as well as a nonpolar residue in S3 (V261) significantly impaired the effects of AA on K (+) currents in Xenopus oocytes. These residues may be important in stabilizing (K318) or regulating access to (V261, G314) the negatively charged carboxylate moiety on the fatty acid. Structural specificity was supported by the lack of disruption of AA effects observed with mutations at residues located near, but not within the predicted binding pocket. Furthermore, we found that the crystal structure of the related Kv1.2/2.1 chimera lacks the structural features present in the proposed AA docking site of Kv4.2 and the Kv1.2/2.1 K (+) currents were unaffected by AA. We simulated the mutagenic substitutions in our Kv4.2 model to demonstrate how specific mutations may disrupt the putative AA binding pocket. We conclude that AA inhibits Kv4 channel currents and facilitates current decay by binding within a hydrophobic pocket in the channel in which K318 within the S4-S5 linker is a critical residue for AA interaction.
Collapse
Affiliation(s)
- Robert Heler
- Department of Biology, University of Richmond, Richmond, VA, USA
| | | | | |
Collapse
|
10
|
Barber AF, Liang Q, Covarrubias M. Novel activation of voltage-gated K(+) channels by sevoflurane. J Biol Chem 2012; 287:40425-32. [PMID: 23038249 DOI: 10.1074/jbc.m112.405787] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Halogenated inhaled anesthetics modulate voltage-gated ion channels by unknown mechanisms. RESULTS Biophysical analyses revealed novel activation of K(v) channels by the inhaled anesthetic sevoflurane. CONCLUSION K(v) channel activation by sevoflurane results from the positive allosteric modulation of activation gating. SIGNIFICANCE The unique activation of K(v) channels by sevoflurane demonstrates novel anesthetic specificity and offers new insights into allosteric modulation of channel gating. Voltage-gated ion channels are modulated by halogenated inhaled general anesthetics, but the underlying molecular mechanisms are not understood. Alkanols and halogenated inhaled anesthetics such as halothane and isoflurane inhibit the archetypical voltage-gated Kv3 channel homolog K-Shaw2 by stabilizing the resting/closed states. By contrast, sevoflurane, a more heavily fluorinated ether commonly used in general anesthesia, specifically activates K-Shaw2 currents at relevant concentrations (0.05-1 mM) in a rapid and reversible manner. The concentration dependence of this modulation is consistent with the presence of high and low affinity interactions (K(D) = 0.06 and 4 mM, respectively). Sevoflurane (<1 mM) induces a negative shift in the conductance-voltage relation and increases the maximum conductance. Furthermore, suggesting possible roles in general anesthesia, mammalian Kv1.2 and Kv1.5 channels display similar changes. Quantitative description of the observations by an economical allosteric model indicates that sevoflurane binding favors activation gating and eliminates an unstable inactivated state outside the activation pathway. This study casts light on the mechanism of the novel sevoflurane-dependent activation of Kv channels, which helps explain how closely related inhaled anesthetics achieve specific actions and suggests strategies to develop novel Kv channel activators.
Collapse
Affiliation(s)
- Annika F Barber
- Department of Neuroscience, Jefferson Medical College of Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
11
|
Zhang J, Qu X, Covarrubias M, Germann MW. Insight into the modulation of Shaw2 Kv channels by general anesthetics: structural and functional studies of S4-S5 linker and S6 C-terminal peptides in micelles by NMR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:595-601. [PMID: 23031574 DOI: 10.1016/j.bbamem.2012.09.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 09/23/2012] [Accepted: 09/24/2012] [Indexed: 12/20/2022]
Abstract
The modulation of the Drosophila Shaw2 Kv channel by 1-alkanols and inhaled anesthetics is correlated with the involvement of the S4-S5 linker and C-terminus of S6, and consistent with stabilization of the channel's closed state. Structural analysis of peptides from S4-S5 (L45) and S6 (S6c), by nuclear magnetic resonance and circular dichroism spectroscopy supports that an α-helical conformation was adopted by L45, while S6c was only in an unstable/dynamic partially folded α-helix in dodecylphosphocholine micelles. Solvent accessibility and paramagnetic probing of L45 revealed that L45 lies parallel to the surface of micelles with charged and polar residues pointing towards the solution while hydrophobic residues are buried inside the micelles. Chemical shift perturbation introduced by 1-butanol on residues Gln320, Thr321, Phe322 and Arg323 of L45, as well as Thr423 and Gln424 of S6c indicates possible anesthetic binding sites on these two important components in the channel activation apparatus. Diffusion measurements confirmed the association of L45, S6c and 1-butanol with micelles which suggests the capability of 1-butanol to influence a possible interaction of L45 and S6c in the micelle environment.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | | | | | | |
Collapse
|
12
|
Molecular mapping of general anesthetic sites in a voltage-gated ion channel. Biophys J 2012; 101:1613-22. [PMID: 21961587 DOI: 10.1016/j.bpj.2011.08.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 08/11/2011] [Accepted: 08/15/2011] [Indexed: 12/20/2022] Open
Abstract
Several voltage-gated ion channels are modulated by clinically relevant doses of general anesthetics. However, the structural basis of this modulation is not well understood. Previous work suggested that n-alcohols and inhaled anesthetics stabilize the closed state of the Shaw2 voltage-gated (Kv) channel (K-Shaw2) by directly interacting with a discrete channel site. We hypothesize that the inhibition of K-Shaw2 channels by general anesthetics is governed by interactions between binding and effector sites involving components of the channel's activation gate. To investigate this hypothesis, we applied Ala/Val scanning mutagenesis to the S4-S5 linker and the post-PVP S6 segment, and conducted electrophysiological analysis to evaluate the energetic impact of the mutations on the inhibition of the K-Shaw2 channel by 1-butanol and halothane. These analyses identified residues that determine an apparent binding cooperativity and residue pairs that act in concert to modulate gating upon anesthetic binding. In some instances, due to their critical location, key residues also influence channel gating. Complementing these results, molecular dynamics simulations and in silico docking experiments helped us visualize possible anesthetic sites and interactions. We conclude that the inhibition of K-Shaw2 by general anesthetics results from allosteric interactions between distinct but contiguous binding and effector sites involving inter- and intrasubunit interfaces.
Collapse
|
13
|
Eckenhoff RG, Xi J, Shimaoka M, Bhattacharji A, Covarrubias M, Dailey WP. Azi-isoflurane, a Photolabel Analog of the Commonly Used Inhaled General Anesthetic Isoflurane. ACS Chem Neurosci 2010; 1:139-145. [PMID: 20228895 PMCID: PMC2837340 DOI: 10.1021/cn900014m] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Accepted: 09/28/2009] [Indexed: 11/30/2022] Open
Abstract
Volatility and low-affinity hamper an ability to define molecular targets of the inhaled anesthetics. Photolabels have proven to be a useful approach in this regard, although none have closely mimicked contemporary drugs. We report here the synthesis and validation of azi-isoflurane, a compound constructed by adding a diazirinyl moiety to the methyl carbon of the commonly used general anesthetic isoflurane. Azi-isoflurane is slightly more hydrophobic than isoflurane, and more potent in tadpoles. This novel compound inhibits Shaw2 K(+) channel currents similarly to isoflurane and binds to apoferritin with enhanced affinity. Finally, when irradiated at 300 nm, azi-isoflurane adducts to residues known to line isoflurane-binding sites in apoferritin and integrin LFA-1, the only proteins with isoflurane binding sites defined by crystallography. This reagent should allow rapid discovery of isoflurane molecular targets and binding sites within those targets.
Collapse
Affiliation(s)
| | - Jin Xi
- Department of Anesthesiology & Critical Care, School of Medicine
| | - Motomu Shimaoka
- Immune Disease Institute; Molecular & Cellular Medicine, Children’s Hospital Boston, and Department of Anesthesia, Harvard Medical School, Boston, Massachusetts
| | - Aditya Bhattacharji
- Department of Pathology, Anatomy & Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Manuel Covarrubias
- Department of Pathology, Anatomy & Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | |
Collapse
|
14
|
Bhattacharji A, Klett N, Go RCV, Covarrubias M. Inhalational anaesthetics and n-alcohols share a site of action in the neuronal Shaw2 Kv channel. Br J Pharmacol 2010; 159:1475-85. [PMID: 20136839 DOI: 10.1111/j.1476-5381.2010.00642.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Neuronal ion channels are key targets of general anaesthetics and alcohol, and binding of these drugs to pre-existing and relatively specific sites is thought to alter channel gating. However, the underlying molecular mechanisms of this action are still poorly understood. Here, we investigated the neuronal Shaw2 voltage-gated K(+) (K(v)) channel to ask whether the inhalational anaesthetic halothane and n-alcohols share a binding site near the activation gate of the channel. EXPERIMENTAL APPROACH Focusing on activation gate mutations that affect channel modulation by n-alcohols, we investigated n-alcohol-sensitive and n-alcohol-resistant K(v) channels heterologously expressed in Xenopus oocytes to probe the functional modulation by externally applied halothane using two-electrode voltage clamping and a gas-tight perfusion system. KEY RESULTS Shaw2 K(v) channels are reversibly inhibited by halothane in a dose-dependent and saturable manner (K(0.5)= 400 microM; n(H)= 1.2). Also, discrete mutations in the channel's S4S5 linker are sufficient to reduce or confer inhibition by halothane (Shaw2-T330L and K(v)3.4-G371I/T378A respectively). Furthermore, a point mutation in the S6 segment of Shaw2 (P410A) converted the halothane-induced inhibition into halothane-induced potentiation. Lastly, the inhibition resulting from the co-application of n-butanol and halothane is consistent with the presence of overlapping binding sites for these drugs and weak binding cooperativity. CONCLUSIONS AND IMPLICATIONS These observations strongly support a molecular model of a general anaesthetic binding site in the Shaw2 K(v) channel. This site may involve the amphiphilic interface between the S4S5 linker and the S6 segment, which plays a pivotal role in K(v) channel activation.
Collapse
Affiliation(s)
- Aditya Bhattacharji
- Department of Pathology, Anatomy and Cell Biology, Jefferson Medical College of Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
15
|
Yuan C, O'Connell RJ, Wilson A, Pietrzykowski AZ, Treistman SN. Acute alcohol tolerance is intrinsic to the BKCa protein, but is modulated by the lipid environment. J Biol Chem 2007; 283:5090-8. [PMID: 18084004 DOI: 10.1074/jbc.m708214200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ethanol tolerance, in which exposure leads to reduced sensitivity, is an important component of alcohol abuse and addiction. The molecular mechanisms underlying this process remain poorly understood. The BKCa channel plays a central role in the behavioral response to ethanol in Caenorhabditis elegans (Davies, A. G., Pierce-Shimomura, J. T., Kim, H., VanHoven, M. K., Thiele, T. R., Bonci, A., Bargmann, C. I., and McIntire, S. L. (2003) Cell 115, 655-666) and Drosophila (Cowmeadow, R. B., Krishnan, H. R., and Atkinson, N. S. (2005) Alcohol. Clin. Exp. Res. 29, 1777-1786) . In neurons, ethanol tolerance in BKCa channels has two components: a reduced number of membrane channels and decreased potentiation of the remaining channels (Pietrzykowski, A. Z., Martin, G. E., Puig, S. I., Knott, T. K., Lemos, J. R., and Treistman, S. N. (2004) J. Neurosci. 24, 8322-8332) . Here, heterologous expression coupled with planar bilayer techniques examines two additional aspects of tolerance in human BKCa channels. 1) Is acute tolerance observed in a single channel protein complex within a lipid environment reduced to only two lipids? 2) Does lipid bilayer composition affect the appearance of acute tolerance? We found that tolerance was observable in BKCa channels in membrane patches pulled from HEK cells and when they are placed into reconstituted 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylethanolamine/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine membranes. Furthermore, altering bilayer thickness by incorporating the channel into lipid mixtures of 1,2-dioleoyl-3-phosphatidylethanolamine with phosphatidylcholines of increasing chain length, or with sphingomyelin, strongly affected the sensitivity of the channel, as well as the time course of the acute response. Ethanol sensitivity changed from a strong potentiation in thin bilayers to inhibition in thick sphingomyelin/1,2-dioleoyl-3-phosphatidylethanolamine bilayers. Thus, tolerance can be an intrinsic property of the channel protein-lipid complex, and bilayer thickness plays an important role in shaping the pattern of response to ethanol. As a consequence of these findings the protein-lipid complex should be treated as a unit when studying ethanol action.
Collapse
Affiliation(s)
- Chunbo Yuan
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01604, USA
| | | | | | | | | |
Collapse
|
16
|
Morris CE, Juranka PF. Lipid stress at play: mechanosensitivity of voltage-gated channels. CURRENT TOPICS IN MEMBRANES 2007; 59:297-338. [PMID: 25168141 DOI: 10.1016/s1063-5823(06)59011-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Membrane stretch modulates the activity of voltage-gated channels (VGCs). These channels are nearly ubiquitous among eukaryotes and they are present, too, in prokaryotes, so the potential ramifications of VGC mechanosensitivity are diverse. In situ traumatic stretch can irreversibly alter VGC activity with lethal results but that is pathology. This chapter discusses the reversible responses of VGCs to stretch, with the general relation of stretch stimuli to other forms of lipid stress, and briefly, with some irreversible stretch effects (=stretch trauma). A working assumption throughout is that mechanosensitive (MS) VGC motions-that is, motions that respond reversibly to bilayer stretch-are susceptible to other forms of lipid stress, such as the stresses produced when amphiphilic molecules (anesthetics, lipids, alcohols, and lipophilic drugs) are inserted into the bilayer. Insofar as these molecules change the bilayer's lateral pressure profile, they can be termed bilayer mechanical reagents (BMRs). The chapter also discusses the MS VGC behavior against the backdrop of eukaryotic channels more widely accepted as "MS channels"--namely, the transient receptor potential (TRP)-based MS cation channels.
Collapse
Affiliation(s)
- Catherine E Morris
- Neuroscience, Ottawa Health Research Institute, Ottawa Hospital, Ottawa, Ontario K1Y 4E9, Canada
| | - Peter F Juranka
- Neuroscience, Ottawa Health Research Institute, Ottawa Hospital, Ottawa, Ontario K1Y 4E9, Canada
| |
Collapse
|
17
|
Halnes G, Liljenström H, Arhem P. Density dependent neurodynamics. Biosystems 2006; 89:126-34. [PMID: 17284343 DOI: 10.1016/j.biosystems.2006.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Accepted: 06/16/2006] [Indexed: 11/20/2022]
Abstract
The dynamics of a neural network depends on density parameters at (at least) two different levels: the subcellular density of ion channels in single neurons, and the density of cells and synapses at a network level. For the Frankenhaeuser-Huxley (FH) neural model, the density of sodium (Na) and potassium (K) channels determines the behaviour of a single neuron when exposed to an external stimulus. The features of the onset of single neuron oscillations vary qualitatively among different regions in the channel density plane. At a network level, the density of neurons is reflected in the global connectivity. We study the relation between the two density levels in a network of oscillatory FH neurons, by qualitatively distinguishing between three regions, where the mean network activity is (1) spiking, (2) oscillating with enveloped frequencies, and (3) bursting, respectively. We demonstrate that the global activity can be shifted between regions by changing either the density of ion channels at the subcellular level, or the connectivity at the network level, suggesting that different underlying mechanisms can explain similar global phenomena. Finally, we model a possible effect of anaesthesia by blocking specific inhibitory ion channels.
Collapse
Affiliation(s)
- Geir Halnes
- Department of Biometry and Engineering, P.O. Box 7032 SLU, SE-75007 Uppsala, Sweden.
| | | | | |
Collapse
|
18
|
Arhem P, Blomberg C. Ion channel density and threshold dynamics of repetitive firing in a cortical neuron model. Biosystems 2006; 89:117-25. [PMID: 17287076 DOI: 10.1016/j.biosystems.2006.03.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 03/23/2006] [Indexed: 11/19/2022]
Abstract
Modifying the density and distribution of ion channels in a neuron (by natural up- and down-regulation, by pharmacological intervention or by spontaneous mutations) changes its activity pattern. In the present investigation, we analyze how the impulse patterns are regulated by the density of voltage-gated channels in a model neuron, based on voltage clamp measurements of hippocampal interneurons. At least three distinct oscillatory patterns, associated with three distinct regions in the Na-K channel density plane, were found. A stability analysis showed that the different regions are characterized by saddle-node, double-orbit, and Hopf bifurcation threshold dynamics, respectively. Single strongly graded action potentials occur in an area outside the oscillatory regions, but less graded action potentials occur together with repetitive firing over a considerable range of channel densities. The presently found relationship between channel densities and oscillatory behavior may be relevance for understanding principal spiking patterns of cortical neurons (regular firing and fast spiking). It may also be of relevance for understanding the action of pharmacological compounds on brain oscillatory activity.
Collapse
Affiliation(s)
- Peter Arhem
- Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden.
| | | |
Collapse
|
19
|
Bhattacharji A, Kaplan B, Harris T, Qu X, Germann MW, Covarrubias M. The concerted contribution of the S4-S5 linker and the S6 segment to the modulation of a Kv channel by 1-alkanols. Mol Pharmacol 2006; 70:1542-54. [PMID: 16887933 DOI: 10.1124/mol.106.026187] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gating of voltage-gated K(+) channels (K(v) channels) depends on the electromechanical coupling between the voltage sensor and activation gate. The main activation gate of K(v) channels involves the COOH-terminal section of the S6 segment (S6-b) and the S4-S5 linker at the intracellular mouth of the pore. In this study, we have expanded our earlier work to probe the concerted contribution of these regions to the putative amphipathic 1-alkanol site in the Shaw2 K(+) channel. In the S4-S5 linker, we found a direct energetic correlation between alpha-helical propensity and the inhibition of the Shaw2 channel by 1-butanol. Spectroscopic structural analyses of the S4-S5 linker supported this correlation. Furthermore, the analysis of chimeric Shaw2 and K(v)3.4 channels that exchanged their corresponding S4-S5 linkers showed that the potentiation induced by 1-butanol depends on the combination of a single mutation in the S6 PVPV motif (PVAV) and the presence of the Shaw2 S4-S5 linker. Then, using tandem-heterodimer subunits, we determined that this potentiation also depends on the number of S4-S5 linkers and PVAV mutations in the K(v) channel tetramer. Consistent with the critical contribution of the Shaw2 S4-S5 linker, the equivalent PVAV mutation in certain mammalian K(v) channels with divergent S4-S5 linkers conferred weak potentiation by 1-butanol. Overall, these results suggest that 1-alkanol action in Shaw2 channels depends on interactions involving the S4-S5 linker and the S6-b segment. Therefore, we propose that amphiphilic general anesthetic agents such as 1-alkanols may modulate gating of the Shaw2 K(+) channel by an interaction with its activation gate.
Collapse
Affiliation(s)
- Aditya Bhattacharji
- Department of Pathology, Anatomy and Cell Biology, Jefferson Medical College of Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | | | | | | | | | | |
Collapse
|
20
|
Arhem P, Klement G, Blomberg C. Channel density regulation of firing patterns in a cortical neuron model. Biophys J 2006; 90:4392-404. [PMID: 16565052 PMCID: PMC1471851 DOI: 10.1529/biophysj.105.077032] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Modifying the density and distribution of ion channels in a neuron (by natural up- and downregulation or by pharmacological intervention or by spontaneous mutations) changes its activity pattern. In this investigation we analyzed how the impulse patterns are regulated by the density of voltage-gated channels in a neuron model based on voltage-clamp measurements of hippocampal interneurons. At least three distinct oscillatory patterns, associated with three distinct regions in the Na-K channel density plane, were found. A stability analysis showed that the different regions are characterized by saddle-node, double-orbit, and Hopf-bifurcation threshold dynamics, respectively. Single, strongly graded action potentials occur in an area outside the oscillatory regions, but less graded action potentials occur together with repetitive firing over a considerable range of channel densities. The relationship found here between channel densities and oscillatory behavior may partly explain the difference between the principal spiking patterns previously described for crab axons (class 1 and 2) and cortical neurons (regular firing and fast spiking).
Collapse
Affiliation(s)
- P Arhem
- Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden.
| | | | | |
Collapse
|
21
|
Covarrubias M, Bhattacharji A, Harris T, Kaplan B, Germann MW. Alcohol and anesthetic action at the gate of a voltage-dependent K+ channel. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.ics.2005.06.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Hodge JJL, Choi JC, O'Kane CJ, Griffith LC. Shaw potassium channel genes in Drosophila. ACTA ACUST UNITED AC 2005; 63:235-54. [PMID: 15751025 DOI: 10.1002/neu.20126] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Drosophila Shaw encodes a voltage-insensitive, slowly activating, noninactivating K(+) current. The functional and developmental roles of this channel are unknown. In this study, we use a dominant transgenic strategy to investigate Shaw function and describe a second member of the Shaw family, Shawl. In situ hybridization showed that the two Shaw family genes, Shaw and Shawl, have largely nonoverlapping expression patterns in embryos. Shaw is expressed mainly in excitable cells of the CNS and PNS of late embryos. Shawl is expressed in many nonexcitable cell types: ubiquitously in embryos until the germband extends, then transiently in the developing CNS and PNS, becoming restricted to progressively smaller subsets of the CNS. Ectopic full-length and truncated Shaw localize differently within neurons, and produce uneclosed small pupae and adults with unfurled wings and softened cuticle. This phenotype was mapped to the crustacean cardioactive peptide (CCAP)-neuropeptide circuit. Widespread expression of Shaw in the nervous system results in a reduction in body mass, ether-induced shaking, and lethality. Expression of full-length Shaw had more extreme phenotypic consequences and caused earlier lethality than expression of truncated Shaw in a given GAL4 pattern. Whole cell recordings from ventral ganglion motor neurons expressing the truncated Shaw protein suggest that a major role of Shaw channels in these cells is to contribute to the resting potential.
Collapse
Affiliation(s)
- James J L Hodge
- Department of Genetics, University of Cambridge, Downing Site, Cambridge CB2 3EH, UK
| | | | | | | |
Collapse
|
23
|
Rubin R, Harrison R, Chen XF, Corzitotto J, Hoek JB, Hallak H. Inhibition of insulin-like growth factor I receptor tyrosine kinase by ethanol. Biochem Pharmacol 2004; 68:2009-17. [PMID: 15476672 DOI: 10.1016/j.bcp.2004.06.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2004] [Accepted: 06/28/2004] [Indexed: 11/17/2022]
Abstract
Ethanol inhibits insulin and insulin-like growth factor-I (IGF-I) signaling in a variety of cell types leading to reduced mitogenesis and impaired survival. This effect is associated with inhibition of insulin receptor (IR) and insulin-like growth factor-I receptor (IGF-IR) autophosphorylation, which implicates these receptors as direct targets for ethanol. It was demonstrated previously that ethanol inhibits the autophosphorylation and kinase activity of the purified cytoplasmic tyrosine kinase domain of the IR. We performed computer modeling of the ethanol interaction with the IR and IGF-IR kinases (IRK and IGF-IRK). The analysis predicted binding of alcohols within the hydrophobic pocket of the kinase activation cleft, with stabilization at specific polar residues. Using IGF-IRK purified from baculovirus-infected insect cells, ethanol inhibited peptide substrate phosphorylation by non-phosphorylated IGF-IRK, but had no effect on the autophosphorylated enzyme. In common with the IRK, ethanol inhibited IGF-IRK autophosphorylation. In cerebellar granule neurons, ethanol inhibited autophosphorylation of the apo-IGF-IR, but did not reverse IGF-IR phosphorylation after IGF-I stimulation. In summary, the findings demonstrate direct inhibition of IGF-IR tyrosine kinase by ethanol. The data are consistent with a model wherein ethanol prevents the initial phase of IRK and IGF-IRK activation, by inhibiting the engagement of the kinase activation loop.
Collapse
Affiliation(s)
- Raphael Rubin
- Department of Pathology, Anatomy and Cell Biology, Jefferson Medical College, 226 Alumni Hall, Philadelphia, PA 19107, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Harris T, Graber AR, Covarrubias M. Allosteric modulation of a neuronal K+ channel by 1-alkanols is linked to a key residue in the activation gate. Am J Physiol Cell Physiol 2003; 285:C788-96. [PMID: 12958027 DOI: 10.1152/ajpcell.00113.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The selective inhibition of neuronal Shaw2 K+ channels by 1-alkanols is conferred by the internal S4-S5 loop, a region that also contributes to the gating of voltage-gated K+ channels. Here, we applied alanine scanning mutagenesis to examine the contribution of the S5 and S6 segments to the allosteric modulation of Shaw2 K+ channels by 1-alkanols. The internal section of S6 is the main activation gate of K+ channels. While several mutations in S5 and S6 modulated the inhibition of the channels by 1-butanol and others had no effect, a single mutation at a key site in S6 (P410A) converted this inhibition into a dramatic dose-dependent potentiation (approximately 2-fold at 15 mM and approximately 6-fold at 50 mM). P410 is the second proline in the highly conserved PVP motif that may cause a significant alpha-helix kink. The P410A currents in the presence of 1-butanol also exhibited novel kinetics (faster activation and slow inactivation). Internal application of 15 mM 1-butanol to inside-out patches expressing P410A did not significantly affect the mean unitary currents (approximately 2 pA at 0 mV) or the mean open time (5-6 ms) but clearly increased the opening frequency and open probability (approximately 2- to 4-fold). All effects displayed a fast onset and were fully reversible upon washout. The results suggest that the allosteric modulation of the Shaw2 K+ channel by 1-alkanols depends on a critical link between the PVP motif and activation gating. This study establishes the Shaw2 K+ channel as a robust model to investigate the mechanisms of alcohol intoxication and general anesthesia.
Collapse
Affiliation(s)
- Thanawath Harris
- Department of Pathology, Anatomy and Cell Biology, Jefferson Medical College of Thomas Jefferson University, 1020 Locust St., Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
25
|
Shahidullah M, Harris T, Germann MW, Covarrubias M. Molecular features of an alcohol binding site in a neuronal potassium channel. Biochemistry 2003; 42:11243-52. [PMID: 14503874 PMCID: PMC2219921 DOI: 10.1021/bi034738f] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aliphatic alcohols (1-alkanols) selectively inhibit the neuronal Shaw2 K(+) channel at an internal binding site. This inhibition is conferred by a sequence of 13 residues that constitutes the S4-S5 loop in the pore-forming subunit. Here, we combined functional and structural approaches to gain insights into the molecular basis of this interaction. To infer the forces that are involved, we employed a fast concentration-clamp method (10-90% exchange time = 800 micros) to examine the kinetics of the interaction of three members of the homologous series of 1-alkanols (ethanol, 1-butanol, and 1-hexanol) with Shaw2 K(+) channels in Xenopus oocyte inside-out patches. As expected for a second-order mechanism involving a receptor site, only the observed association rate constants were linearly dependent on the 1-alkanol concentration. While the alkyl chain length modestly influenced the dissociation rate constants (decreasing only approximately 2-fold between ethanol and 1-hexanol), the second-order association rate constants increased e-fold per carbon atom. Thus, hydrophobic interactions govern the probability of productive collisions at the 1-alkanol binding site, and short-range polar interactions help to stabilize the complex. We also examined the relationship between the energetics of 1-alkanol binding and the structural properties of the S4-S5 loop. Circular dichroism spectroscopy applied to peptides corresponding to the S4-S5 loop of various K(+) channels revealed a correlation between the apparent binding affinity of the 1-alkanol binding site and the alpha-helical propensity of the S4-S5 loop. The data suggest that amphiphilic interactions at the Shaw2 1-alkanol binding site depend on specific structural constraints in the pore-forming subunit of the channel.
Collapse
Affiliation(s)
- Mohammad Shahidullah
- Department of Pathology, Anatomy and Cell Biology, Jefferson Medical College of Thomas Jefferson University, 1020 Locust Street, Philadelphia, Pennsylvania 19107, USA
| | | | | | | |
Collapse
|
26
|
Arhem P, Klement G, Nilsson J. Mechanisms of anesthesia: towards integrating network, cellular, and molecular level modeling. Neuropsychopharmacology 2003; 28 Suppl 1:S40-7. [PMID: 12827143 DOI: 10.1038/sj.npp.1300142] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The mechanisms of anesthesia are surprisingly little understood. The present article summarizes current knowledge about the function of general anesthetics at different organization levels of the nervous system. It argues that a consensus view can be constructed, assuming that general anesthetics modulate the activity of ion channels, the main targets being GABA and NMDA channels and possibly voltage-gated and background channels, thereby hyperpolarizing neurons in thalamocortical loops, which lead to disruption of coherent oscillatory activity in the cortex. Two computational cases are used to illustrate the possible importance of molecular level effects on cellular level activity. Subtle differences in the mechanism of ion channel block can be shown to cause considerable differences in the modification of the oscillatory activity in a single neuron, and consequently in an associated network. Finally, the relation between the anesthesia problem and the classical consciousness problem is discussed, and some consequences of introducing the phenomenon of degeneracy into the picture are pointed out.
Collapse
Affiliation(s)
- Peter Arhem
- Department of Neuroscience and the Nobel Institute for Neurophysiology, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | | | | |
Collapse
|
27
|
Nilsson J, Madeja M, Arhem P. Local anesthetic block of Kv channels: role of the S6 helix and the S5-S6 linker for bupivacaine action. Mol Pharmacol 2003; 63:1417-29. [PMID: 12761353 DOI: 10.1124/mol.63.6.1417] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To gain insights in the molecular mechanisms of anesthesia, we analyzed the effects of bupivacaine on a series of voltage-gated K+ channels (Kv1.1, -1.2, -1.5, -2.1, -3.1, and -3.2) and various mutant channels derived from Kv2.1, using Xenopus laevis oocytes. Two phenomenologically different blocking effects were seen at room temperature: a time-dependent block of Kv1 and Kv3 channels (Kd between 110 and 240 microM), and a time-independent block on Kv2.1 (Kd = 220 microM). At 32 degrees C, however, Kv2.1 also showed a time-dependent block. Swapping the S6 helix between Kv1.2 and Kv2.1 introduced Kv1.2 features in Kv2.1. Critical residues were located in the N-terminal end of S6, positions 395 and 398. The triple substitution of residues 372, 373, and 374 in the S5-S6 linker decreased the bupivacaine affinity by 5-fold (Kd increased from 220 to 1170 microM). The results suggest that bupivacaine blocks Kv channels by an open-state-dependent mechanism and that Kv2.1 deviates from the other channels in allowing a partial closure of the channel with bupivacaine bound. The results also suggest that the binding site is located in the internal vestibule and that residues in the descending P-loop and the upper part of S6 are critical for the binding, most likely by allosteric mechanisms. A simple mechanistic scenario that explains the observations is presented. Thermodynamic considerations suggest that the interaction between bupivacaine and the channels is hydrophobic.
Collapse
Affiliation(s)
- Johanna Nilsson
- The Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | | |
Collapse
|
28
|
Wilkemeyer MF, Menkari CE, Charness ME. Novel antagonists of alcohol inhibition of l1-mediated cell adhesion: multiple mechanisms of action. Mol Pharmacol 2002; 62:1053-60. [PMID: 12391267 DOI: 10.1124/mol.62.5.1053] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
1-Octanol antagonizes ethanol inhibition of L1-mediated cell adhesion and prevents ethanol teratogenesis in mouse whole embryo culture. Herein, we identify a new series of alcohol antagonists and study their mechanism of action. Cell aggregation assays were carried out in ethanol-sensitive, human L1-transfected NIH/3T3 cells in the absence and presence of 100 mM ethanol or 2 mM 1-butanol and candidate antagonists. Antagonist potency for 1-alcohols increased progressively over 5 log orders from 1-pentanol (C5) to 1-dodecanol (C12). Antagonist potency declined from 1-dodecanol (C12) to 1-tridecanol (C13), and 1-tetradecanol (C14) and 1-pentadecanol (C15) were inactive. The presence and position of a double bond in the 1-butanol molecule determined whether a compound was a full agonist (1-butanol), a mixed agonist-antagonist (2-buten-1-ol), or an antagonist (3-buten-1-ol). Increasing the concentration of agonist (1-butanol or ethanol) overcame the antagonism of 3-buten-1-ol, benzyl alcohol, cyclopentanol, and 3-pentanol, but not that of 4-methyl-1-pentanol, 2-methyl-2-pentanol, 1-pentanol, 2-pentanol, 1-octanol, and 2,6-di-isopropylphenol (propofol), suggesting that the mechanisms of antagonism may differ between these groups of compounds. These findings suggest that selective straight, branched, and cyclic alcohols may act at multiple, discrete sites to antagonize the actions of ethanol and 1-butanol on L1-mediated cell-cell adhesion.
Collapse
|
29
|
Chen X, Yamakage M, Yamada Y, Tohse N, Namiki A. Inhibitory effects of volatile anesthetics on currents produced on heterologous expression of KvLQT1 and minK in Xenopus oocytes. Vascul Pharmacol 2002; 39:33-8. [PMID: 12616988 DOI: 10.1016/s1537-1891(02)00279-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The slowly activating component of delayed rectifier K+ current (IKs) in the heart modulates the repolarization of cardiac action potential. We investigated the effects of the volatile anesthetics isoflurane and sevoflurane on cloned IKs coexpressed by KvLQT1 and minK. Currents were induced following injection into oocytes of KvLQT1 mRNA (10 ng) with or without minK mRNA (1 ng), which were transcribed in vitro from cDNAs of normal rats hearts. A two-electrode voltage-clamp recording technique was used to investigate the effects of isoflurane (0-1.5 minimum alveolar concentration, MAC) and sevoflurane (0-1.5 MAC) on IKs (KvLQT1 with minK) and KvLQT1 alone currents. Currents were activated by step depolarizations to a series of potentials from a holding potential of -80 mV and measured as the deactivating tail current on repolarization to -60 mV. Following a 2-s depolarization to 40 mV, isoflurane and sevoflurane caused potency-dependent reductions in IKs and KvLQT1 currents. Both of the volatile anesthetics tested accelerated the deactivation of IKs and KvLQT1 currents. We conclude that the significant inhibitory effect of volatile anesthetics on the cloned IKs may partly contribute to the clinical observations of the prolongation of the ventricular repolarization (Q-T interval) by the anesthetics.
Collapse
Affiliation(s)
- Xiangdong Chen
- Department of Anesthesiology, Sapporo Medical University School of Medicine, South 1, West 16, Chuo-ku, 060-8543 Sapporo, Hokkaido, Japan
| | | | | | | | | |
Collapse
|
30
|
Li J, Correa AM. Single-channel basis for conductance increase induced by isoflurane in Shaker H4 IR K(+) channels. Am J Physiol Cell Physiol 2001; 280:C1130-9. [PMID: 11287326 DOI: 10.1152/ajpcell.2001.280.5.c1130] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Volatile anesthetics modulate the function of various K(+) channels. We previously reported that isoflurane induces an increase in macroscopic currents and a slowing down of current deactivation of Shaker H4 IR K(+) channels. To understand the single-channel basis of these effects, we performed nonstationary noise analysis of macroscopic currents and analysis of single channels in patches from Xenopus oocytes expressing Shaker H4 IR. Isoflurane (1.2% and 2.5%) induced concentration-dependent, partially reversible increases in macroscopic currents and in the time course of tail currents. Noise analysis of currents (70 mV) revealed an increase in unitary current (approximately 17%) and maximum open probability (approximately 20%). Single-channel conductance was larger (approximately 20%), and opening events were more stable, in isoflurane. Tail-current slow time constants increased by 41% and 136% in 1.2% and 2.5% isoflurane, respectively. Our results show that, in a manner consistent with stabilization of the open state, isoflurane increased the macroscopic conductance of Shaker H4 IR K(+) channels by increasing the single-channel conductance and the open probability.
Collapse
Affiliation(s)
- J Li
- Department of Anesthesiology, School of Medicine, University of California, Los Angeles, California 90095-7115, USA
| | | |
Collapse
|
31
|
Walters FS, Covarrubias M, Ellingson JS. Potent inhibition of the aortic smooth muscle maxi-K channel by clinical doses of ethanol. Am J Physiol Cell Physiol 2000; 279:C1107-15. [PMID: 11003591 DOI: 10.1152/ajpcell.2000.279.4.c1107] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the effects of clinically relevant ethanol concentrations (5-20 mM) on the single-channel kinetics of bovine aortic smooth muscle maxi-K channels reconstituted in lipid bilayers (1:1 palmitoyl-oleoyl-phosphatidylethanolamine: palmitoyl-oleoyl-phosphatidylcholine). Ethanol at 10 and 20 mM decreased the channel open probability (P(o)) by 75 +/- 20.3% mainly by increasing the mean closed time (+82 to +960%, n = 7). In some instances, ethanol also decreased the mean open time (-40.8 +/- 22. 5%). The P(o)-voltage relation in the presence of 20 mM ethanol exhibited a rightward shift in the midpoint of voltage activation (DeltaV(1/2) congruent with 17 mV), a slightly steeper relationship (change in slope factor, Deltak, congruent with -2.5 mV), and a decreased maximum P(o) (from approximately 0.82 to approximately 0. 47). Interestingly, channels inhibited by ethanol at low Ca(2+) concentrations (2.5 microM) were very resistant to ethanol in the presence of increased Ca(2+) (>/= 20 microM). Alcohol consumption in clinically relevant amounts may alter the contribution of maxi-K channels to the regulation of arterial tone.
Collapse
Affiliation(s)
- F S Walters
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
32
|
Davies LA, Hopkins PM, Boyett MR, Harrison SM. Effects of halothane on the transient outward K(+) current in rat ventricular myocytes. Br J Pharmacol 2000; 131:223-30. [PMID: 10991914 PMCID: PMC1572320 DOI: 10.1038/sj.bjp.0703565] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Halothane has been shown to affect several membrane currents in cardiac tissue including the L-type calcium current (I(Ca)), sodium current and a variety of potassium currents. However, little is known about the effects of halothane on the transient outward K(+) current (I(to)). 2. Single ventricular myocytes from rat hearts were voltage clamped using the whole cell patch configuration and an EGTA-containing pipette solution to record the Ca(2+)-independent, 4-aminopyridine sensitive component of I(to). 300 microM Cd(2+) or 10 microM nifedipine was used to block I(Ca). 3. At +80 mV, I(to) (peak current minus current at the end of the pulse) was 1.8+/-0.2 nA under control conditions which was reduced to 1.3+/-0.2 nA by 1 mM halothane (P:<0.001, mean+/-s.e.mean, n=9). The inhibition of I(to) by halothane was concentration-dependent (K(0.5), 1.1+/-0.2 mM). 4. One mM halothane led to a 16 mV shift in the steady-state inactivation curve towards negative membrane potentials (P:=0.005, n=8) but had no significant effect on the activation-voltage relationship (P:=0. 724). One mM halothane also increased the rate of inactivation of I(to); the dominant time constant of inactivation was reduced from 14+/-1 to 9+/-1 ms (P:=0.017, mean+/-s.e.mean, n=6). 5. These data show that halothane reduced I(to); 0.3 mM, close to the MAC(50) value for halothane, inhibited the current by 15% and as such, the inhibition of I(to) will be relevant to the clinical situation. Halothane induced a shift in the steady-state inactivation curve and accelerated the inactivation process of I(to) which could be responsible for its inhibitory effect. 6. Due to the differential transmural expression of I(to) in ventricular tissue, inhibition of I(to) would reduce the transmural dispersion of refractoriness which could contribute to the arrhythmogenic properties of halothane.
Collapse
Affiliation(s)
- Lucinda A Davies
- School of Biomedical Sciences, University of Leeds, Leeds, LS2 9NQ
| | - Philip M Hopkins
- Academic Unit of Anaesthesia, University of Leeds, Leeds, LS2 9JT
| | - Mark R Boyett
- School of Biomedical Sciences, University of Leeds, Leeds, LS2 9NQ
| | - Simon M Harrison
- School of Biomedical Sciences, University of Leeds, Leeds, LS2 9NQ
- Author for correspondence:
| |
Collapse
|