1
|
Nong Y, Kim JS, Jia L, Arancio O, Wang Q. The interaction between neurotransmitter receptor activity and amyloid-β pathology in Alzheimer's disease. J Alzheimers Dis 2025:13872877251342273. [PMID: 40388923 DOI: 10.1177/13872877251342273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
The accumulation of amyloid-β (Aβ) peptides is a hallmark of Alzheimer's disease (AD). Central to AD pathology is the production of Aβ peptides through the amyloidogenic processing of amyloid-β protein precursor (AβPP) by β-secretase (BACE-1) and γ-secretase. Recent studies have shifted focus from Aβ plaque deposits to the more toxic soluble Aβ oligomers. One significant way in which Aβ peptides impair neuronal information processing is by influencing neurotransmitter receptor function. These receptors, including adrenergic, acetylcholine, dopamine, 5-HT, glutamate, and gamma-aminobutyric acid (GABA) receptors, play a crucial role in regulating synaptic transmission, which underlies perceptual and cognitive functions. This review explores how Aβ interacts with these key neurotransmitter receptors and how these interactions contribute to neural dysfunction in AD. Moreover, we examine how agonists and antagonists of these receptors influence Aβ pathology, offering new perspectives on potential therapeutic strategies to curb AD progression effectively and improve patients' quality of life.
Collapse
Affiliation(s)
- Yuhan Nong
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jung Soo Kim
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Litian Jia
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Ottavio Arancio
- Departments of Pathology & Cell Biology, and Medicine, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Qi Wang
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Neurosurgery, Columbia University, New York, NY, USA
| |
Collapse
|
2
|
Abdel-Aal RA, Meligy FY, Maghraby N, Sayed N, Mohamed Ashry IES. Comparing levetiracetam and zonisamide effects on rivastigmine anti-Alzheimer's activity in aluminum chloride-induced Alzheimer's-like disease in rats: Impact on α7 nicotinic acetylcholine receptors and amyloid β. Brain Res 2025; 1855:149573. [PMID: 40096940 DOI: 10.1016/j.brainres.2025.149573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 02/02/2025] [Accepted: 03/13/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND AND AIM Alzheimer's disease (AD) is the most progressive form of neurodegenerative disease, which severely impairs cognitive function. The leading class of drugs used to treat AD is acetylcholinesterase inhibitors (AChE-Is) as Rivastigmine (RIVA), partially ameliorate its cognitive symptoms. Since epilepsy is a common comorbidity with AD, we explored the potential that new the antiepileptic drugs; Levetiracetam (LEV) and Zonisamide (ZNS) may possess an additional therapeutic benefit to RIVA in AlCl3-induced AD rat model. MATERIALS AND METHODS AlCl3 was used to provoke AD in rats which were then supplemented with treatment drugs for 2 weeks. Treated groups were: Control, AlCl3, RIVA, LEV, RIVA + LEV, ZNS and RIVA + ZNS. Then, the behavioral tests; passive avoidance (PA), Morris water maze (MWM) and novel object recognition (NOR) were conducted to assess cognitive behavior and memory. The Hippocampal Aβ assembly was thoroughly examined by histopathology and ELISA. α7 Nicotinic ACh receptors' (α7nAChRs) expression was assessed immunohistochemically and by real-time quantitative polymerase chain reaction (qPCR). Caspase 3 expression was also assessed by real-time qPCR in hippocampal tissues. RESULTS AlCl3 administration impaired memory and cognitive functions in rats, augmented hippocampal Aβ deposition, with subsequent neurodegeneration and α7nAChRs down-regulation. LEV, but not ZNS, administration significantly mitigated AlCl3-induced cognitive impairment probably through suppression of amyloid β (Aβ) deposition, enhancement of neurogenesis and α7nAChRs expression. When combined to RIVA, ZNS treatment negatively affected cognition possibly through its impact on hippocampal Aβ and subsequent neuronal damage. CONCLUSION Although our results indicated that neither LEV nor ZNS provided any extra benefit to cognitive enhancements in AD rats receiving rivastigmine, LEV demonstrated positive effects individually while ZNS had negative effects when combined with RIVA. As a result, this study suggests the use of LEV rather than ZNS for managing epilepsy in patients with AD given that Alzheimer's and epilepsy can coexist.
Collapse
Affiliation(s)
- Raafat A Abdel-Aal
- Pharmacology Department, Faculty of Medicine, Assiut University, Assiut 71515, Egypt.
| | - Fatma Y Meligy
- Department of Restorative Dentistry and Basic Medical Sciences, Faculty of Dentistry, University of Petra, Amman 11196, Jordan; Histology and Cell Biology Department, Faculty of Medicine, Assiut University, Assiut 71515, Egypt.
| | - Nashwa Maghraby
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt.
| | - Nehal Sayed
- Pharmacology Department, Faculty of Medicine, Assiut University, Assiut 71515, Egypt.
| | | |
Collapse
|
3
|
Quintero-Espinosa DA, Velez-Pardo C, Jimenez-Del-Rio M. PF-06447475 Molecule Attenuates the Neuropathology of Familial Alzheimer's and Coexistent Parkinson's Disease Markers in PSEN1 I416T Dopaminergic-like Neurons. Molecules 2025; 30:2034. [PMID: 40363838 PMCID: PMC12074268 DOI: 10.3390/molecules30092034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 04/30/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
Familial Alzheimer's disease (FAD) is a complex multifactorial disorder clinically characterized by cognitive impairment and memory loss. Pathologically, FAD is characterized by intracellular accumulation of the protein fragment Aβ42 (iAβ), hyperphosphorylated microtubule-associated protein TAU (p-TAU), and extensive degeneration of basal forebrain cholinergic neurons of the nucleus basalis of Meynert (NbM) and the medial septal nucleus (MSN), mainly caused by mutations in the amyloid precursor protein (APP), presenilin 1 (PSEN1), and PSEN2 gene. Since the dopaminergic system may contribute to FAD symptoms, alterations in the nigro-hippocampal pathway may be associated with cognitive impairment in FAD. Interestingly, p-α-synuclein (p-α-Syn), Aβ, and p-TAU have been found to coexist in vulnerable regions of postmortem AD brains. However, the mechanism by which Aβ, p-TAU, and α-Syn coexist in DAergic neurons in AD brains has not been determined. We generated PSEN1 I416T dopaminergic-like neurons (DALNs) from I416T menstrual stromal cells (MenSCs) in NeuroForsk 2.0 medium for 7 days and then cultured them in minimal culture medium (MCm) for another 4 days. On day 11, DALNs were analyzed for molecular and pathological markers by flow cytometry and fluorescence microscopy. We found that mutant DALNs showed increased accumulation of iAβ as well as increased phosphorylation of TAU at S202/T205 compared to WT DALNs. Thus, mutant DALNs exhibited typical pathological hallmarks of Alzheimer's disease. Furthermore, PSEN1 I416T DALNs showed concomitant signs of OS as evidenced by the appearance of oxidized sensor protein DJ-1 (i.e., DJ-1C106-SO3) and apoptotic markers TP53, pS63-c-JUN, PUMA, and cleavage caspase 3 (CC3). Notably, these DALNs exhibited PD-associated proteins such as intracellular accumulation of α-Syn (detected as aggregates of pS129-α-Syn) and phosphorylation of LRRK2 kinase at residue S935. In addition, mutant DALNs showed a 17.16- and 6.17-fold decrease in DA-induced Ca2+ flux, compared to WT DALNs. These observations suggest that iAβ and p-TAU, together with p-α-Syn, and p-LRRK2 kinase, may damage DAergic neurons and thereby contribute to the exacerbation of neuropathologic processes in FAD. Remarkably, the LRRK2 inhibitor PF-06447475 (PF-475) significantly reversed PSEN1 I416T-induced neuropathological markers in DAergic neurons. PF-465 inhibitor reduced iAβ, oxDJ-1C106-SO3, and p-TAU. In addition, this inhibitor reduced pS935-LRRK2, pS129-αSYN, pS63-c-JUN, and CC3. We conclude that the observed neuroprotective effects of PF-475 are due to direct inhibition of LRRK2 activity and that the LRRK2 protein is upstream of the molecular cascade of apoptosis and proteinopathy. Our results suggest that PF-475 is an effective neuroprotective agent against endogenous PSEN1 I416T-induced neurotoxicity in DALNs coexisting with Parkinson's disease markers. Therefore, PF-475 may be of great therapeutic value in FAD.
Collapse
Affiliation(s)
| | | | - Marlene Jimenez-Del-Rio
- Neuroscience Research Group, Institute of Medical Research, Faculty of Medicine, University Research Headquarters, Calle 62#52-59, Building 1, Laboratory 411/412, Medellin 050010, Colombia; (D.A.Q.-E.); (C.V.-P.)
| |
Collapse
|
4
|
Fu E, Huang KF, Chang HH, Tseng HH, Yang SSD. Periodontitis Increases Gingival, Serum and Hippocampus β-Amyloid Expressions but Reduces Neurovascular Coupling in Basilar Artery of Rats. J Clin Periodontol 2025; 52:762-772. [PMID: 39780369 DOI: 10.1111/jcpe.14110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/19/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025]
Abstract
AIM Neurodegenerative diseases are characterized by early increased beta-amyloid (Aβ) and decreased cerebrovascular reactivity. We investigated Aβ in gingiva, serum or hippocampus and neurovascular reactivity in basilar artery (BA) of periodontitis rats, to test the impact of Aβ on BA vasoreactivity ex vivo. MATERIALS AND METHODS Periodontitis was induced in 32 rats using silk-ligation. Rats were sacrificed at weeks 0, 1, 2 and 4. Gingival TNF-α, IL-1β and Aβ were quantified via immunoblotting. Alveolar bone destruction was examined by micro-computed tomography. Serum and hippocampus Aβ values were measured by enzyme-linked immunosorbent assay and fluorescence staining, respectively. Vasoreactivity was measured by myography on isolated BA. RESULTS From Week 1, gingival TNF-α and IL-1β and bone destruction increased. Gingiva, serum and hippocampus Aβ values increased from Week 2. Nicotine-induced BA relaxation declined from Week 2, while acetylcholine-induced relaxation decreased by Week 4. Bone loss correlated with Aβ and nicotine-induced relaxation. Correlations were observed between Aβs in tissues, between two induced BA relaxations and between Aβ expressions and the induced relaxations. Ex vivo, Aβ reduced nicotine- and isoproterenol-induced relaxations but not electrical stimulated relaxation. CONCLUSIONS Periodontitis may increase Aβ expressions and reduce BA neurovascular reactivity, with Aβ contributing to this abnormal neurovascular coupling.
Collapse
Affiliation(s)
- Earl Fu
- Department of Dentistry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan, ROC
| | - Kuo-Feng Huang
- Division of Neurosurgery, Department of Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan, ROC
- School of Medicine, Tzu Chi University, Hualien, Taiwan, ROC
| | - Hsi-Hsien Chang
- Division of Urology, Department of Surgery, Taipei Tzu Chi Hospital, Buddhist Medical Foundation, New Taipei, Taiwan, ROC
| | - Hui-Hwa Tseng
- Department of Pathology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan, ROC
| | - Stephen Shei-Dei Yang
- School of Medicine, Tzu Chi University, Hualien, Taiwan, ROC
- Division of Urology, Department of Surgery, Taipei Tzu Chi Hospital, Buddhist Medical Foundation, New Taipei, Taiwan, ROC
| |
Collapse
|
5
|
Volloch V, Rits-Volloch S. Alzheimer's Is a Multiform Disease of Sustained Neuronal Integrated Stress Response Driven by the C99 Fragment Generated Independently of AβPP; Proteolytic Production of Aβ Is Suppressed in AD-Affected Neurons: Evolution of a Theory. Int J Mol Sci 2025; 26:4252. [PMID: 40362488 PMCID: PMC12073115 DOI: 10.3390/ijms26094252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/23/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
The present Perspective analyzes the remarkable evolution of the Amyloid Cascade Hypothesis 2.0 (ACH2.0) theory of Alzheimer's disease (AD) since its inception a few years ago, as reflected in the diminishing role of amyloid-beta (Aβ) in the disease. In the initial iteration of the ACH2.0, Aβ-protein-precursor (AβPP)-derived intraneuronal Aβ (iAβ), accumulated to neuronal integrated stress response (ISR)-eliciting levels, triggers AD. The neuronal ISR, in turn, activates the AβPP-independent production of its C99 fragment that is processed into iAβ, which drives the disease. The second iteration of the ACH2.0 stemmed from the realization that AD is, in fact, a disease of the sustained neuronal ISR. It introduced two categories of AD-conventional and unconventional-differing mainly in the manner of their causation. The former is caused by the neuronal ISR triggered by AβPP-derived iAβ, whereas in the latter, the neuronal ISR is elicited by stressors distinct from AβPP-derived iAβ and arising from brain trauma, viral and bacterial infections, and various types of inflammation. Moreover, conventional AD always contains an unconventional component, and in both forms, the disease is driven by iAβ generated independently of AβPP. In its third, the current, iteration, the ACH2.0 posits that proteolytic production of Aβ is suppressed in AD-affected neurons and that the disease is driven by C99 generated independently of AβPP. Suppression of Aβ production in AD seems an oxymoron: Aβ is equated with AD, and the later is inconceivable without the former in an ingrained Amyloid Cascade Hypothesis (ACH)-based notion. But suppression of Aβ production in AD-affected neurons is where the logic leads, and to follow it we only need to overcome the inertia of the preexisting assumptions. Moreover, not only is the generation of Aβ suppressed, so is the production of all components of the AβPP proteolytic pathway. This assertion is not a quantum leap (unless overcoming the inertia counts as such): the global cellular protein synthesis is severely suppressed under the neuronal ISR conditions, and there is no reason for constituents of the AβPP proteolytic pathway to be exempted, and they, apparently, are not, as indicated by the empirical data. In contrast, tau protein translation persists in AD-affected neurons under ISR conditions because the human tau mRNA contains an internal ribosomal entry site in its 5'UTR. In current mouse models, iAβ derived from AβPP expressed exogenously from human transgenes elicits the neuronal ISR and thus suppresses its own production. Its levels cannot principally reach AD pathology-causing levels regardless of the number of transgenes or the types of FAD mutations that they (or additional transgenes) carry. Since the AβPP-independent C99 production pathway is inoperative in mice, the current transgenic models have no potential for developing the full spectrum of AD pathology. What they display are only effects of the AβPP-derived iAβ-elicited neuronal ISR. The paper describes strategies to construct adequate transgenic AD models. It also details the utilization of human neuronal cells as the only adequate model system currently available for conventional and unconventional AD. The final alteration of the ACH2.0, introduced in the present Perspective, is that AβPP, which supports neuronal functionality and viability, is, after all, potentially produced in AD-affected neurons, albeit not conventionally but in an ISR-driven and -compatible process. Thus, the present narrative begins with the "omnipotent" Aβ capable of both triggering and driving the disease and ends up with this peptide largely dislodged from its pedestal and retaining its central role in triggering the disease in only one, although prevalent (conventional), category of AD (and driving it in none). Among interesting inferences of the present Perspective is the determination that "sporadic AD" is not sporadic at all ("non-familial" would be a much better designation). The term has fatalistic connotations, implying that the disease can strike at random. This is patently not the case: The conventional disease affects a distinct subpopulation, and the basis for unconventional AD is well understood. Another conclusion is that, unless prevented, the occurrence of conventional AD is inevitable given a sufficiently long lifespan. This Perspective also defines therapeutic directions not to be taken as well as auspicious ways forward. The former category includes ACH-based drugs (those interfering with the proteolytic production of Aβ and/or depleting extracellular Aβ). They are legitimate (albeit inefficient) preventive agents for conventional AD. There is, however, a proverbial snowball's chance in hell of them being effective in symptomatic AD, lecanemab, donanemab, and any other "…mab" or "…stat" notwithstanding. They comprise Aβ-specific antibodies, inhibitors of beta- and gamma-secretase, and modulators of the latter. In the latter category, among ways to go are the following: (1) Depletion of iAβ, which, if sufficiently "deep", opens up a tantalizing possibility of once-in-a-lifetime preventive transient treatment for conventional AD and aging-associated cognitive decline, AACD. (2) Composite therapy comprising the degradation of C99/iAβ and concurrent inhibition of the neuronal ISR. A single transient treatment could be sufficient to arrest the progression of conventional AD and prevent its recurrence for life. Multiple recurrent treatments would achieve the same outcome in unconventional AD. Alternatively, the sustained reduction/removal of unconventional neuronal ISR-eliciting stressors through the elimination of their source would convert unconventional AD into conventional one, preventable/treatable by a single transient administration of the composite C99/iAβ depletion/ISR suppression therapy. Efficient and suitable ISR inhibitors are available, and it is explicitly clear where to look for C99/iAβ-specific targeted degradation agents-activators of BACE1 and, especially, BACE2. Directly acting C99/iAβ-specific degradation agents such as proteolysis-targeting chimeras (PROTACs) and molecular-glue degraders (MGDs) are also viable options. (3) A circumscribed shift (either upstream or downstream) of the position of transcription start site (TSS) of the human AβPP gene, or, alternatively, a gene editing-mediated excision or replacement of a small, defined segment of its portion encoding 5'-untranslated region of AβPP mRNA; targeting AβPP RNA with anti-antisense oligonucleotides is another possibility. If properly executed, these RNA-based strategies would not interfere with the protein-coding potential of AβPP mRNA, and each would be capable of both preventing and stopping the AβPP-independent generation of C99 and thus of either preventing AD or arresting the progression of the disease in its conventional and unconventional forms. The paper is interspersed with "validation" sections: every conceptually significant notion is either validated by the existing data or an experimental procedure validating it is proposed.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children’s Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
6
|
Soto-Mercado V, Mendivil-Perez M, Jimenez-Del-Rio M, Velez-Pardo C. Combination of Epigallocatechin-3-Gallate and Tramiprosate Prevent Accumulation of Intracellular Aβ and Dysfunctional Autophagy-Lysosomal Pathway at Earliest Stage of Transdifferentiation of Mesenchymal Stromal Cells into PSEN1 E280A Cholinergic-like Neurons. Int J Mol Sci 2025; 26:3756. [PMID: 40332390 PMCID: PMC12027828 DOI: 10.3390/ijms26083756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 05/08/2025] Open
Abstract
Familial Alzheimer's disease (FAD) caused by presenilin 1 (PSEN1) E280A induces the aberrant accumulation of intracellular Aβ (iAβ) in cholinergic-like neurons (ChLNs). How early iAβ accumulates in the development of ChLNs is still unknown. Consequently, the timing of appropriate therapeutic approaches against FAD is unclear. To determine the earliest iAβ in PSEN1 E280A ChLNs, flow cytometry and immunofluorescence microscopy were used to follow the development of menstrual mesenchymal stromal cells (MenSCs) into ChLNs (proliferation marker Ki67, cluster of differentiation 73 (CD73), neuronal nuclei (NeuN) marker, choline acetyl transferase (ChAT)), the kinetics of iAβ accumulation, and the simultaneous evaluation of other associated markers (e.g., DJ-1C106-SO3; lysosomes; phosphatidylethanolamine-conjugated microtubule-associated protein 1A/1B light chain 3, LC3-II; cleaved caspase 3 (CC3)) at 0, 1, 3, 5, and 7 days. To reverse the PSEN1 E280A phenotype, we used rapamycin (RAP), verubecestat (VER), compound E (CE), epigallocatechin-3-gallate (EGCG), and tramiprosate (TM) in WT and mutant ChLNs. We found that PSEN1 E280A did not induce significant differences in the NeuN marker and ChAT in MenSCs transitioning to ChLNs. The iAβ accumulates at the earliest cholinergic developmental stage from day 0 (18%, at MenSCs stage) to day 7 (46%, at ChLNs stage), i.e., iAβ increased +156% in mutant compared to WT cells (1-6%). A significant increase in DJ-1C106-SO3 occurs only at day 7 (+250%). While neither CC3 (0-1%) nor lysosomes were different between WT and mutant cells at any time point, a stepwise increase in autophagosome accumulation was observed from day 3 (15%) to day 7 (79%), i.e., +427%, in mutant cells. While neither RAP, VER, nor CE was able to completely reduce all PSEN1 E280A-induced markers in ChLNs, the combination of EGCG and TM was more effective in removing these markers than EGCG and TM alone in PSEN1 E280A ChLNs. Given that this investigation is based on a single menstrual blood sample from WT and PSEN1 E280A, our results should be considered exploratory. Larger sample sizes are needed.
Collapse
Affiliation(s)
- Viviana Soto-Mercado
- Neuroscience Research Group, Institute of Medical Research, Faculty of Medicine, University Research Headquarters, Calle 62#52-59, Building 1, Laboratory 411/412, Medellin 050010, Colombia; (V.S.-M.); (M.J.-D.-R.)
| | - Miguel Mendivil-Perez
- Neuroscience Research Group, Faculty of Nursing, University Research Headquarters, Calle 62#52-59, Building 1, Laboratory 411/412, Medellin 050010, Colombia;
| | - Marlene Jimenez-Del-Rio
- Neuroscience Research Group, Institute of Medical Research, Faculty of Medicine, University Research Headquarters, Calle 62#52-59, Building 1, Laboratory 411/412, Medellin 050010, Colombia; (V.S.-M.); (M.J.-D.-R.)
| | - Carlos Velez-Pardo
- Neuroscience Research Group, Institute of Medical Research, Faculty of Medicine, University Research Headquarters, Calle 62#52-59, Building 1, Laboratory 411/412, Medellin 050010, Colombia; (V.S.-M.); (M.J.-D.-R.)
| |
Collapse
|
7
|
Sabec MH, Savage QR, Wood JL, Maskos U. Targeting high-affinity nicotinic receptors protects against the functional consequences of β-amyloid in mouse hippocampus. Mol Psychiatry 2025; 30:556-566. [PMID: 39164528 DOI: 10.1038/s41380-024-02666-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 08/22/2024]
Abstract
The accumulation of β-amyloid oligomers is a hallmark of Alzheimer's disease, inducing neural and network dysfunction in the early stages of pathology. The hippocampus is affected early in the pathogenesis of AD, however the impact of soluble β-amyloid on the dentate gyrus (DG) subregion of the hippocampus and its interaction with nicotinic acetylcholine receptors (nAChRs) within this region are not known. Using a localized model of over-expression, we show that β-amyloid induces early-onset neuronal hyperactivity and hippocampal-dependent memory deficits in mice. Further, we find the DG region to be under potent and sub-type specific nicotinic control in both healthy and pathophysiological conditions, with targeted receptor inhibition leading to a mnemonic rescue against localized amyloidosis. We show that while neurogenesis and synaptic functions are not severely affected in our model, reducing β2-containing nAChR function is associated with the promotion of young adult-born neurons within the pathological network, suggesting a possible protective mechanism. Our data thus reveal the DG network level changes which occur in the early-stages of β-amyloid accumulation and highlight the downstream consequences of targeted nicotinic neuromodulation.
Collapse
Affiliation(s)
- Marie H Sabec
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Integrative Neurobiology of Cholinergic Systems, 75015, Paris, France.
- Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK.
| | - Quentin R Savage
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76798, USA
| | - John L Wood
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76798, USA
| | - Uwe Maskos
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Integrative Neurobiology of Cholinergic Systems, 75015, Paris, France.
| |
Collapse
|
8
|
Volloch V, Rits-Volloch S. Production of Amyloid-β in the Aβ-Protein-Precursor Proteolytic Pathway Is Discontinued or Severely Suppressed in Alzheimer's Disease-Affected Neurons: Contesting the 'Obvious'. Genes (Basel) 2025; 16:46. [PMID: 39858593 PMCID: PMC11764795 DOI: 10.3390/genes16010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/27/2025] Open
Abstract
A notion of the continuous production of amyloid-β (Aβ) via the proteolysis of Aβ-protein-precursor (AβPP) in Alzheimer's disease (AD)-affected neurons constitutes both a cornerstone and an article of faith in the Alzheimer's research field. The present Perspective challenges this assumption. It analyses the relevant empirical data and reaches an unexpected conclusion, namely that in AD-afflicted neurons, the production of AβPP-derived Aβ is either discontinued or severely suppressed, a concept that, if proven, would fundamentally change our understanding of the disease. This suppression, effectively self-suppression, occurs in the context of the global inhibition of the cellular cap-dependent protein synthesis as a consequence of the neuronal integrated stress response (ISR) elicited by AβPP-derived intraneuronal Aβ (iAβ; hence self-suppression) upon reaching certain levels. Concurrently with the suppression of the AβPP proteolytic pathway, the neuronal ISR activates in human neurons, but not in mouse neurons, the powerful AD-driving pathway generating the C99 fragment of AβPP independently of AβPP. The present study describes molecular mechanisms potentially involved in these phenomena, propounds novel approaches to generate transgenic animal models of AD, advocates for the utilization of human neuronal cells-based models of the disease, makes verifiable predictions, suggests experiments designed to validate the proposed concept, and considers its potential research and therapeutic implications. Remarkably, it opens up the possibility that the conventional production of AβPP, BACE enzymes, and γ-secretase components is also suppressed under the neuronal ISR conditions in AD-affected neurons, resulting in the dyshomeostasis of AβPP. It follows that whereas conventional AD is triggered by AβPP-derived iAβ accumulated to the ISR-eliciting levels, the disease, in its both conventional and unconventional (triggered by the neuronal ISR-eliciting stressors distinct from iAβ) forms, is driven not (or not only) by iAβ produced in the AβPP-independent pathway, as we proposed previously, but mainly, possibly exclusively, by the C99 fragment generated independently of AβPP and not cleaved at the γ-site due to the neuronal ISR-caused deficiency of γ-secretase (apparently, the AD-driving "substance X" predicted in our previous study), a paradigm consistent with a dictum by George Perry that Aβ is "central but not causative" in AD. The proposed therapeutic strategies would not only deplete the driver of the disease and abrogate the AβPP-independent production of C99 but also reverse the neuronal ISR and ameliorate the AβPP dyshomeostasis, a potentially significant contributor to AD pathology.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children’s Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
9
|
Giraldo-Berrio D, Jimenez-Del-Rio M, Velez-Pardo C. Minocycline mitigates Aβ and TAU pathology, neuronal dysfunction, and death in the PSEN1 E280A cholinergic-like neurons model of familial Alzheimer's disease. Neuropharmacology 2024; 261:110152. [PMID: 39245141 DOI: 10.1016/j.neuropharm.2024.110152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Familial Alzheimer's disease (FAD) presenilin 1 E280A (PSEN1 E280A) is a severe neurological condition due to the loss of cholinergic neurons (ChNs), accumulation of amyloid beta (Aβ), and abnormal phosphorylation of the TAU protein. Up to date, there are no effective therapies available. The need for innovative treatments for this illness is critical. We found that minocycline (MC, 5 μM) was innocuous toward wild-type (WT) PSEN1 ChLNs but significantly (i) reduces the accumulation of intracellular Aβ by -69%, (ii) blocks both abnormal phosphorylation of the protein TAU at residue Ser202/Thr205 by -33% and (iii) phosphorylation of the proapoptotic transcription factor c-JUN at residue Ser63/Ser73 by -25%, (iv) diminishes oxidized DJ-1 at Cys106-SO3 by -29%, (v) downregulates the expression of transcription factor TP53, (vi) BH-3-only protein PUMA, and (vii) cleaved caspase 3 (CC3) by -33, -86, and -78%, respectively, compared with untreated PSEN1 E280A ChLNs. Additionally, MC increases the response to ACh-induced Ca2+ influx by +92% in mutant ChLNs. Oxygen radical absorbance capacity (ORAC) and ferric ion-reducing antioxidant power (FRAP) analysis showed that MC might operate more efficiently as a hydrogen atom transfer agent than a single electron transfer agent. In silico molecular docking analysis predicts that MC binds with high affinity to Aβ (Vina Score -6.6 kcal/mol), TAU (VS -6.5 kcal/mol), and caspase 3 (VS -7.1 kcal/mol). Taken together, our findings suggest that MC demonstrates antioxidant, anti-amyloid, and anti-apoptosis activity and promotes physiological ACh-induced Ca2+ influx in PSEN1 E280A ChLNs. The MC has therapeutic potential for treating early-onset FAD.
Collapse
Affiliation(s)
- Daniela Giraldo-Berrio
- Neuroscience Research Group, Institute of Medical Investigations, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Torre 1, Laboratory 412, Medellín, Colombia
| | - Marlene Jimenez-Del-Rio
- Neuroscience Research Group, Institute of Medical Investigations, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Torre 1, Laboratory 412, Medellín, Colombia.
| | - Carlos Velez-Pardo
- Neuroscience Research Group, Institute of Medical Investigations, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Torre 1, Laboratory 412, Medellín, Colombia.
| |
Collapse
|
10
|
Hossain MS, Haque MA, Park IS. Novel role of curcumin as inhibitor of β-amyloid-induced lamin fragmentation. Histochem Cell Biol 2024; 163:2. [PMID: 39542878 DOI: 10.1007/s00418-024-02331-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2024] [Indexed: 11/17/2024]
Abstract
Oligomer amyloid beta 42 (Aβ) is considered the key pathogenic molecule in Alzheimer disease (AD) and causes specific lamin fragmentation. Curcumin has been recognized for its protective effects against Aβ-induced toxicity in AD, though its underlying mechanism remains unclear. In this study, the inhibitory mechanism of curcumin against Aβ-induced lamin fragmentation and cell death was investigated. Human neuroblastoma cells were used to examine Aβ-induced lamin fragmentation and lamin deformation by immunoblotting and confocal microscopy, while cell viability was measured using MTT and alamarBlue assay. Caspase and cathepsin L activity were assessed by spectrofluorometry, and Aβ aggregation was evaluated by ThT assay. Our results demonstrated that curcumin inhibited Aβ aggregation, reducing intracellular Aβ uptake by 45% compared to Aβ-treated cells. Curcumin also inhibited the Aβ-induced intracellular calcium rise, subsequently leading to a onefold reduction in cathepsin L activity. This reduction in cathepsin L activity by curcumin blocked the Aβ-induced lamin fragmentation. Collectively, these findings suggest that curcumin inhibits Aβ-induced cell death by preventing Aβ entry and lamin cleavage, providing potential new insights for AD treatment.
Collapse
Affiliation(s)
- Md Selim Hossain
- Department of Biomedical Sciences, Chosun University, Gwangju, 61452, Republic of Korea.
- Department of Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA.
| | - Md Aminul Haque
- Department of Biomedical Sciences, Chosun University, Gwangju, 61452, Republic of Korea
- School of Pharmacy, BRAC University, Dhaka, Bangladesh
- Rufaida BioMeds, Dhaka, Bangladesh
| | - Il-Seon Park
- Department of Biomedical Sciences, Chosun University, Gwangju, 61452, Republic of Korea.
- Department of Cellular and Molecular Medicine, Chosun University, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
11
|
Fanlo-Ucar H, Picón-Pagès P, Herrera-Fernández V, ILL-Raga G, Muñoz FJ. The Dual Role of Amyloid Beta-Peptide in Oxidative Stress and Inflammation: Unveiling Their Connections in Alzheimer's Disease Etiopathology. Antioxidants (Basel) 2024; 13:1208. [PMID: 39456461 PMCID: PMC11505517 DOI: 10.3390/antiox13101208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease, and it is currently the seventh leading cause of death worldwide. It is characterized by the extracellular aggregation of the amyloid β-peptide (Aβ) into oligomers and fibrils that cause synaptotoxicity and neuronal death. Aβ exhibits a dual role in promoting oxidative stress and inflammation. This review aims to unravel the intricate connection between these processes and their contribution to AD progression. The review delves into oxidative stress in AD, focusing on the involvement of metals, mitochondrial dysfunction, and biomolecule oxidation. The distinct yet overlapping concept of nitro-oxidative stress is also discussed, detailing the roles of nitric oxide, mitochondrial perturbations, and their cumulative impact on Aβ production and neurotoxicity. Inflammation is examined through astroglia and microglia function, elucidating their response to Aβ and their contribution to oxidative stress within the AD brain. The blood-brain barrier and oligodendrocytes are also considered in the context of AD pathophysiology. We also review current diagnostic methodologies and emerging therapeutic strategies aimed at mitigating oxidative stress and inflammation, thereby offering potential treatments for halting or slowing AD progression. This comprehensive synthesis underscores the pivotal role of Aβ in bridging oxidative stress and inflammation, advancing our understanding of AD and informing future research and treatment paradigms.
Collapse
Affiliation(s)
- Hugo Fanlo-Ucar
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
| | - Pol Picón-Pagès
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
- Laboratory of Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08028 Barcelona, Spain
| | - Víctor Herrera-Fernández
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
| | - Gerard ILL-Raga
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
| | - Francisco J. Muñoz
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
| |
Collapse
|
12
|
Ray A, Loghinov I, Ravindranath V, Barth AL. Early hippocampal hyperexcitability and synaptic reorganization in mouse models of amyloidosis. iScience 2024; 27:110629. [PMID: 39262788 PMCID: PMC11388185 DOI: 10.1016/j.isci.2024.110629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/09/2024] [Accepted: 07/29/2024] [Indexed: 09/13/2024] Open
Abstract
The limited success of plaque-reducing therapies in Alzheimer's disease suggests that early treatment might be more effective in delaying or reversing memory impairments. Toward this end, it is important to establish the progression of synaptic and circuit changes before onset of plaques or cognitive deficits. Here, we used quantitative, fluorescence-based methods for synapse detection in CA1 pyramidal neurons to investigate the interaction between abnormal circuit activity, measured by Fos-immunoreactivity, and synapse reorganization in mouse models of amyloidosis. Using a genetically encoded, fluorescently labeled synaptic marker in juvenile mice (prior to sexual maturity), we find both synapse gain and loss depending on dendritic location. This progresses to broad synapse loss in aged mice. Elevated hippocampal activity in both CA3 and CA1 was present at weaning and preceded this reorganization. Thus, Aβ overproduction may initiate abnormal activity and subsequent input-specific synapse plasticity. These findings indicate that sustained amyloidosis drives heterogeneous and progressive circuit-wide abnormalities.
Collapse
Affiliation(s)
- Ajit Ray
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Iulia Loghinov
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Vijayalakshmi Ravindranath
- Centre for Neuroscience, Indian Institute of Science, Bengaluru, Karnataka 560012, India
- Centre for Brain Research, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Alison L. Barth
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
13
|
Volloch V, Rits-Volloch S. Quintessential Synergy: Concurrent Transient Administration of Integrated Stress Response Inhibitors and BACE1 and/or BACE2 Activators as the Optimal Therapeutic Strategy for Alzheimer's Disease. Int J Mol Sci 2024; 25:9913. [PMID: 39337400 PMCID: PMC11432332 DOI: 10.3390/ijms25189913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
The present study analyzes two potential therapeutic approaches for Alzheimer's disease (AD). One is the suppression of the neuronal integrated stress response (ISR). Another is the targeted degradation of intraneuronal amyloid-beta (iAβ) via the activation of BACE1 (Beta-site Aβ-protein-precursor Cleaving Enzyme) and/or BACE2. Both approaches are rational. Both are promising. Both have substantial intrinsic limitations. However, when combined in a carefully orchestrated manner into a composite therapy they display a prototypical synergy and constitute the apparently optimal, potentially most effective therapeutic strategy for AD.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children’s Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
14
|
Gao J, Li H, Lv H, Cheng X. Mutation of TRPML1 Channel and Pathogenesis of Neurodegeneration in Haimeria. Mol Neurobiol 2024; 61:4992-5001. [PMID: 38157120 DOI: 10.1007/s12035-023-03874-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
Neurodegenerative diseases, a group of debilitating disorders, have garnered increasing attention due to their escalating prevalence, particularly among aging populations. Alzheimer's disease (AD) reigns as a prominent exemplar within this category, distinguished by its relentless progression of cognitive impairment and the accumulation of aberrant protein aggregates within the intricate landscape of the brain. While the intricate pathogenesis of neurodegenerative diseases has been the subject of extensive investigation, recent scientific inquiry has unveiled a novel player in this complex scenario-transient receptor potential mucolipin 1 (TRPML1) channels. This comprehensive review embarks on an exploration of the intricate interplay between TRPML1 channels and neurodegenerative diseases, with an explicit spotlight on Alzheimer's disease. It immerses itself in the intricate molecular mechanisms governing TRPML1 channel functionality and elucidates their profound implications for the well-being of neurons. Furthermore, the review ventures into the realm of therapeutic potential, pondering the possibilities and challenges associated with targeting TRPML1 channels as a promising avenue for the amelioration of neurodegenerative disorders. As we traverse this multifaceted terrain of neurodegeneration and the enigmatic role of TRPML1 channels, we embark on a journey that not only broadens our understanding of the intricate machinery governing neuronal health but also holds promise for the development of innovative therapeutic interventions in the relentless battle against neurodegenerative diseases.
Collapse
Affiliation(s)
- Junqing Gao
- Department of Neurology, Shaanxi Provincial People's Hospital, Shaanxi, Xi'an, 710068, China
| | - Huanhuan Li
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Shaanxi, Xi'an, 710038, China
| | - Hua Lv
- Department of Neurology, Shaanxi Provincial People's Hospital, Shaanxi, Xi'an, 710068, China
| | - Xiansong Cheng
- Department of Neurology, Shaanxi Provincial People's Hospital, Shaanxi, Xi'an, 710068, China.
| |
Collapse
|
15
|
Rezaul Islam M, Akash S, Murshedul Islam M, Sarkar N, Kumer A, Chakraborty S, Dhama K, Ahmed Al-Shaeri M, Anwar Y, Wilairatana P, Rauf A, Halawani IF, Alzahrani FM, Khan H. Alkaloids as drug leads in Alzheimer's treatment: Mechanistic and therapeutic insights. Brain Res 2024; 1834:148886. [PMID: 38582413 DOI: 10.1016/j.brainres.2024.148886] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/08/2024]
Abstract
Alzheimer's disease (AD) has few effective treatment options and continues to be a major global health concern. AD is a neurodegenerative disease that typically affects elderly people. Alkaloids have potential sources for novel drug discovery due to their diverse chemical structures and pharmacological activities. Alkaloids, natural products with heterocyclic nitrogen-containing structures, are considered potential treatments for AD. This review explores the neuroprotective properties of alkaloids in AD, focusing on their ability to regulate pathways such as amyloid-beta aggregation, oxidative stress, synaptic dysfunction, tau hyperphosphorylation, and neuroinflammation. The FDA has approved alkaloids such as acetylcholinesterase inhibitors like galantamine and rivastigmine. This article explores AD's origins, current market medications, and clinical applications of alkaloids in AD therapy. This review explores the development of alkaloid-based drugs for AD, focusing on pharmacokinetics, blood-brain barrier penetration, and potential adverse effects. Future research should focus on the clinical evaluation of promising alkaloids, developing recently discovered alkaloids, and the ongoing search for novel alkaloids for medical treatment. A pharmaceutical option containing an alkaloid may potentially slow down the progression of AD while enhancing its symptoms. This review highlights the potential of alkaloids as valuable drug leads in treating AD, providing a comprehensive understanding of their mechanisms of action and therapeutic implications.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Mohammed Murshedul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Nadia Sarkar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Ajoy Kumer
- Laboratory of Computational Research for Drug Design and Material Science, Department of Chemistry, College of Arts and Sciences IUBAT-International University of Business Agriculture and Technology, 4 Embankment Drive Road, Sector 10, Uttara Model Town, Dhaka 1230, Bangladesh; Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Sandip Chakraborty
- State Disease Investigation Laboratory, ARDD, Abhoynagar, Agartala, West Tripura, Pin-799005, India
| | - Kuldeep Dhama
- Division of Pathology, Indian Veterinary Research Institute (IVRI) Izatnagar-243 122, Bareilly, Uttar Pradesh, India
| | - Majed Ahmed Al-Shaeri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21441, Kingdom of Saudi Arabia
| | - Yasir Anwar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21441, Kingdom of Saudi Arabia
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan
| | - Ibrahim F Halawani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Fuad M Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200 Mardan, Pakistan.
| |
Collapse
|
16
|
Gao X, Guan Y, Wang C, Jia M, Ahmad S, Nouman MF, Ai H. Specific interaction from different Aβ 42 peptide fragments to α7nAChR-A study of molecular dynamics simulation. J Mol Model 2024; 30:233. [PMID: 38937296 DOI: 10.1007/s00894-024-06032-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
CONTEXT Existing researches confirmed that β amyloid (Aβ) has a high affinity for the α7 nicotinic acetylcholine receptor (α7nAChR), associating closely to Alzheimer's disease. The majority of related studies focused on the experimental reports on the neuroprotective role of Aβ fragment (Aβx), however, with a lack of investigation into the most suitable binding region and mechanism of action between Aβ fragment and α7nAChR. In the study, we employed four Aβ1-42 fragments Aβx, Aβ1-16, Aβ10-16, Aβ12-28, and Aβ30-42, of which the first three were confirmed to play neuroprotective roles upon directly binding, to interact with α7nAChR. METHODS The protein-ligand docking server of CABS-DOCK was employed to obtain the α7nAChR-Aβx complexes. Only the top α7nAChR-Aβx complexes were used to perform all-atom GROMACS dynamics simulation in combination with Charmm36 force field, by which α7nAChR-Aβx interactions' dynamic behavior and specific locations of these different Aβx fragments were identified. MM-PBSA calculations were also done to estimate the binding free energies and the different contributions from the residues in the Aβx. Two distinct results for the first three and fourth Aβx fragments in binding site, strength, key residue, and orientation, account for why the fourth fails to play a neuroprotective role at the molecular level.
Collapse
Affiliation(s)
- Xvzhi Gao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Yvning Guan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Chuanbo Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Mengke Jia
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Sajjad Ahmad
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Muhammad Fahad Nouman
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Hongqi Ai
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.
| |
Collapse
|
17
|
Giraldo-Berrio D, Mendivil-Perez M, Velez-Pardo C, Jimenez-Del-Rio M. Rotenone Induces a Neuropathological Phenotype in Cholinergic-like Neurons Resembling Parkinson's Disease Dementia (PDD). Neurotox Res 2024; 42:28. [PMID: 38842585 PMCID: PMC11156752 DOI: 10.1007/s12640-024-00705-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/12/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024]
Abstract
Parkinson's disease with dementia (PDD) is a neurological disorder that clinically and neuropathologically overlaps with Parkinson's disease (PD) and Alzheimer's disease (AD). Although it is assumed that alpha-synuclein ( α -Syn), amyloid beta (A β ), and the protein Tau might synergistically induce cholinergic neuronal degeneration, presently the pathological mechanism of PDD remains unclear. Therefore, it is essential to delve into the cellular and molecular aspects of this neurological entity to identify potential targets for prevention and treatment strategies. Cholinergic-like neurons (ChLNs) were exposed to rotenone (ROT, 10 μ M) for 24 h. ROT provokes loss of Δ Ψ m , generation of reactive oxygen species (ROS), phosphorylation of leucine-rich repeated kinase 2 (LRRK2 at Ser935) concomitantly with phosphorylation of α -synuclein ( α -Syn, Ser129), induces accumulation of intracellular A β (iA β ), oxidized DJ-1 (Cys106), as well as phosphorylation of TAU (Ser202/Thr205), increases the phosphorylation of c-JUN (Ser63/Ser73), and increases expression of proapoptotic proteins TP53, PUMA, and cleaved caspase 3 (CC3) in ChLNs. These neuropathological features resemble those reproduced in presenilin 1 (PSEN1) E280A ChLNs. Interestingly, anti-oxidant and anti-amyloid cannabidiol (CBD), JNK inhibitor SP600125 (SP), TP53 inhibitor pifithrin- α (PFT), and LRRK2 kinase inhibitor PF-06447475 (PF475) significantly diminish ROT-induced oxidative stress (OS), proteinaceous, and cell death markers in ChLNs compared to naïve ChLNs. In conclusion, ROT induces p- α -Syn, iA β , p-Tau, and cell death in ChLNs, recapitulating the neuropathology findings in PDD. Our report provides an excellent in vitro model to test for potential therapeutic strategies against PDD. Our data suggest that ROT induces a neuropathologic phenotype in ChLNs similar to that caused by the mutation PSEN1 E280A.
Collapse
Affiliation(s)
- Daniela Giraldo-Berrio
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Building 1, Room 412, Medellin, Antioquia, Colombia
| | - Miguel Mendivil-Perez
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Building 1, Room 412, Medellin, Antioquia, Colombia
| | - Carlos Velez-Pardo
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Building 1, Room 412, Medellin, Antioquia, Colombia.
| | - Marlene Jimenez-Del-Rio
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Building 1, Room 412, Medellin, Antioquia, Colombia.
| |
Collapse
|
18
|
Graur A, Haymond A, Lee KH, Viscarra F, Russo P, Luchini A, Paige M, Bermudez-Diaz I, Kabbani N. Protein Painting Mass Spectrometry in the Discovery of Interaction Sites within the Acetylcholine Binding Protein. ACS Chem Neurosci 2024; 15:2322-2333. [PMID: 38804618 PMCID: PMC11157483 DOI: 10.1021/acschemneuro.4c00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are a family of ligand-gated ion channel receptors that contribute to cognition, memory, and motor control in many organisms. The pharmacological targeting of these receptors, using small molecules or peptides, presents an important strategy for the development of drugs that can treat important human diseases, including neurodegenerative disorders. The Aplysia californica acetylcholine binding protein (Ac-AChBP) is a structural surrogate of the nAChR with high homology to the extracellular ligand binding domain of homopentameric nAChRs. In this study, we optimized protein-painting-based mass spectrometry to identify regions of interaction between the Ac-AChBP and several nAChR ligands. Using molecular dyes that adhere to the surface of a solubilized Ac-AChBP complex, we identified amino acid residues that constitute a contact site within the Ac-AChBP for α-bungarotoxin, choline, nicotine, and amyloid-β 1-42. By integrating innovation in protein painting mass spectrometry with computational structural modeling, we present a new experimental tool for analyzing protein interactions of the nAChR.
Collapse
Affiliation(s)
- Alexandru Graur
- School
of Systems Biology, George Mason University, Fairfax, Virginia 22030, United States
| | - Amanda Haymond
- Center
for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia 20110, United States
| | - Kyung Hyeon Lee
- Department
of Chemistry and Biochemistry, George Mason
University, Fairfax, Virginia 20110, United States
| | - Franco Viscarra
- Department
of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, United Kingdom
- Structural
Bioinformatics and Computational Biochemistry, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Paul Russo
- Center
for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia 20110, United States
| | - Alessandra Luchini
- Center
for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia 20110, United States
| | - Mikell Paige
- Department
of Chemistry and Biochemistry, George Mason
University, Fairfax, Virginia 20110, United States
| | - Isabel Bermudez-Diaz
- Department
of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, United Kingdom
| | - Nadine Kabbani
- School
of Systems Biology, George Mason University, Fairfax, Virginia 22030, United States
| |
Collapse
|
19
|
Zare I, Choi D, Zhang J, Yaraki MT, Ghaee A, Nasab SZ, Taheri-Ledari R, Maleki A, Rahi A, Fan K, Lee J. Modulating the catalytic activities of nanozymes for molecular sensing. NANO TODAY 2024; 56:102276. [DOI: 10.1016/j.nantod.2024.102276] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
20
|
Volloch V, Rits-Volloch S. ACH2.0/E, the Consolidated Theory of Conventional and Unconventional Alzheimer's Disease: Origins, Progression, and Therapeutic Strategies. Int J Mol Sci 2024; 25:6036. [PMID: 38892224 PMCID: PMC11172602 DOI: 10.3390/ijms25116036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
The centrality of amyloid-beta (Aβ) is an indisputable tenet of Alzheimer's disease (AD). It was initially indicated by the detection (1991) of a mutation within Aβ protein precursor (AβPP) segregating with the disease, which served as a basis for the long-standing Amyloid Cascade Hypothesis (ACH) theory of AD. In the intervening three decades, this notion was affirmed and substantiated by the discovery of numerous AD-causing and AD-protective mutations with all, without an exception, affecting the structure, production, and intraneuronal degradation of Aβ. The ACH postulated that the disease is caused and driven by extracellular Aβ. When it became clear that this is not the case, and the ACH was largely discredited, a new theory of AD, dubbed ACH2.0 to re-emphasize the centrality of Aβ, was formulated. In the ACH2.0, AD is caused by physiologically accumulated intraneuronal Aβ (iAβ) derived from AβPP. Upon reaching the critical threshold, it triggers activation of the autonomous AβPP-independent iAβ generation pathway; its output is retained intraneuronally and drives the AD pathology. The bridge between iAβ derived from AβPP and that generated independently of AβPP is the neuronal integrated stress response (ISR) elicited by the former. The ISR severely suppresses cellular protein synthesis; concurrently, it activates the production of a small subset of proteins, which apparently includes components necessary for operation of the AβPP-independent iAβ generation pathway that are absent under regular circumstances. The above sequence of events defines "conventional" AD, which is both caused and driven by differentially derived iAβ. Since the ISR can be elicited by a multitude of stressors, the logic of the ACH2.0 mandates that another class of AD, referred to as "unconventional", has to occur. Unconventional AD is defined as a disease where a stressor distinct from AβPP-derived iAβ elicits the neuronal ISR. Thus, the essence of both, conventional and unconventional, forms of AD is one and the same, namely autonomous, self-sustainable, AβPP-independent production of iAβ. What distinguishes them is the manner of activation of this pathway, i.e., the mode of causation of the disease. In unconventional AD, processes occurring at locations as distant from and seemingly as unrelated to the brain as, say, the knee can potentially trigger the disease. The present study asserts that these processes include traumatic brain injury (TBI), chronic traumatic encephalopathy, viral and bacterial infections, and a wide array of inflammatory conditions. It considers the pathways which are common to all these occurrences and culminate in the elicitation of the neuronal ISR, analyzes the dynamics of conventional versus unconventional AD, shows how the former can morph into the latter, explains how a single TBI can hasten the occurrence of AD and why it takes multiple TBIs to trigger the disease, and proposes the appropriate therapeutic strategies. It posits that yet another class of unconventional AD may occur where the autonomous AβPP-independent iAβ production pathway is initiated by an ISR-unrelated activator, and consolidates the above notions in a theory of AD, designated ACH2.0/E (for expanded ACH2.0), which incorporates the ACH2.0 as its special case and retains the centrality of iAβ produced independently of AβPP as the driving agent of the disease.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children’s Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
21
|
Pastor V, Medina JH. α7 nicotinic acetylcholine receptor in memory processing. Eur J Neurosci 2024; 59:2138-2154. [PMID: 36634032 DOI: 10.1111/ejn.15913] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
Information storage in the brain involves different memory types and stages that are processed by several brain regions. Cholinergic pathways through acetylcholine receptors actively participate on memory modulation, and their disfunction is associated with cognitive decline in several neurological disorders. During the last decade, the role of α7 subtype of nicotinic acetylcholine receptors in different memory stages has been studied. However, the information about their role in memory processing is still scarce. In this review, we attempt to identify brain areas where α7 nicotinic receptors have an essential role in different memory types and stages. In addition, we discuss recent work implicating-or not-α7 nicotinic receptors as promising pharmacological targets for memory impairment associated with neurological disorders.
Collapse
Affiliation(s)
- Verónica Pastor
- Instituto de Biología Celular y Neurociencia "Prof. Eduardo De Robertis" (IBCN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
- Facultad de Medicina, Departamento de Ciencias Fisiológicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jorge H Medina
- Instituto de Biología Celular y Neurociencia "Prof. Eduardo De Robertis" (IBCN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires, Argentina
| |
Collapse
|
22
|
Gomez-Sequeda N, Jimenez-Del-Rio M, Velez-Pardo C. Combination of Tramiprosate, Curcumin, and SP600125 Reduces the Neuropathological Phenotype in Familial Alzheimer Disease PSEN1 I416T Cholinergic-like Neurons. Int J Mol Sci 2024; 25:4925. [PMID: 38732141 PMCID: PMC11084854 DOI: 10.3390/ijms25094925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Familial Alzheimer's disease (FAD) is a complex and multifactorial neurodegenerative disorder for which no curative therapies are yet available. Indeed, no single medication or intervention has proven fully effective thus far. Therefore, the combination of multitarget agents has been appealing as a potential therapeutic approach against FAD. Here, we investigated the potential of combining tramiprosate (TM), curcumin (CU), and the JNK inhibitor SP600125 (SP) as a treatment for FAD. The study analyzed the individual and combined effects of these two natural agents and this pharmacological inhibitor on the accumulation of intracellular amyloid beta iAβ; hyperphosphorylated protein TAU at Ser202/Thr205; mitochondrial membrane potential (ΔΨm); generation of reactive oxygen species (ROS); oxidized protein DJ-1; proapoptosis proteins p-c-JUN at Ser63/Ser73, TP53, and cleaved caspase 3 (CC3); and deficiency in acetylcholine (ACh)-induced transient Ca2+ influx response in cholinergic-like neurons (ChLNs) bearing the mutation I416T in presenilin 1 (PSEN1 I416T). We found that single doses of TM (50 μM), CU (10 μM), or SP (1 μM) were efficient at reducing some, but not all, pathological markers in PSEN 1 I416T ChLNs, whereas a combination of TM, CU, and SP at a high (50, 10, 1 μM) concentration was efficient in diminishing the iAβ, p-TAU Ser202/Thr205, DJ-1Cys106-SO3, and CC3 markers by -50%, -75%, -86%, and -100%, respectively, in PSEN1 I417T ChLNs. Although combinations at middle (10, 2, 0.2) and low (5, 1, 0.1) concentrations significantly diminished p-TAU Ser202/Thr205, DJ-1Cys106-SO3, and CC3 by -69% and -38%, -100% and -62%, -100% and -62%, respectively, these combinations did not alter the iAβ compared to untreated mutant ChLNs. Moreover, a combination of reagents at H concentration was able to restore the dysfunctional ACh-induced Ca2+ influx response in PSEN 1 I416T. Our data suggest that the use of multitarget agents in combination with anti-amyloid (TM, CU), antioxidant (e.g., CU), and antiapoptotic (TM, CU, SP) actions might be beneficial for reducing iAβ-induced ChLN damage in FAD.
Collapse
Affiliation(s)
| | | | - Carlos Velez-Pardo
- Neuroscience Research Group, Faculty of Medicine, Institute of Medical Research, University of Antioquia, University Research Headquarters, Calle 62#52-59, Building 1, Laboratory 411/412, Medellin 050010, Colombia; (N.G.-S.); (M.J.-D.-R.)
| |
Collapse
|
23
|
Sharma M, Pal P, Gupta SK. The neurotransmitter puzzle of Alzheimer's: Dissecting mechanisms and exploring therapeutic horizons. Brain Res 2024; 1829:148797. [PMID: 38342422 DOI: 10.1016/j.brainres.2024.148797] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/10/2024] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
Alzheimer's Disease (AD) represents a complex interplay of neurological pathways and molecular mechanisms, with significant impacts on patients' lives. This review synthesizes the latest developments in AD research, focusing on both the scientific advancements and their clinical implications. We examine the role of microglia in AD, highlighting their contribution to the disease's inflammatory aspects. The cholinergic hypothesis, a cornerstone of AD research, is re-evaluated, including the role of Alpha-7 Nicotinic Acetylcholine Receptors in disease progression. This review places particular emphasis on the neurotransmission systems, exploring the therapeutic potential of GABAergic neurotransmitters and the role of NMDA inhibitors in the context of glutamatergic neurotransmission. By analyzing the interactions and implications of neurotransmitter pathways in AD, we aim to shed light on emerging therapeutic strategies. In addition to molecular insights, the review addresses the clinical and personal aspects of AD, underscoring the need for patient-centered approaches in treatment and care. The final section looks at the future directions of AD research and treatment, discussing the integration of scientific innovation with patient care. This review aims to provide a comprehensive update on AD, merging scientific insights with practical considerations, suitable for both specialists and those new to the field.
Collapse
Affiliation(s)
- Monika Sharma
- Faculty of Pharmacy, Department of Pharmacology, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Pankaj Pal
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India
| | - Sukesh Kumar Gupta
- Department of Anatomy and Neurobiology, School of Medicine, University of California, USA.
| |
Collapse
|
24
|
Ihnatovych I, Saddler RA, Sule N, Szigeti K. Translational implications of CHRFAM7A, an elusive human-restricted fusion gene. Mol Psychiatry 2024; 29:1020-1032. [PMID: 38200291 PMCID: PMC11176066 DOI: 10.1038/s41380-023-02389-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
Genes restricted to humans may contribute to human-specific traits and provide a different context for diseases. CHRFAM7A is a uniquely human fusion gene and a negative regulator of the α7 nicotinic acetylcholine receptor (α7 nAChR). The α7 nAChR has been a promising target for diseases affecting cognition and higher cortical functions, however, the treatment effect observed in animal models failed to translate into human clinical trials. As CHRFAM7A was not accounted for in preclinical drug screens it may have contributed to the translational gap. Understanding the complex genetic architecture of the locus, deciphering the functional impact of CHRFAM7A on α7 nAChR neurobiology and utilizing human-relevant models may offer novel approaches to explore α7 nAChR as a drug target.
Collapse
Affiliation(s)
- Ivanna Ihnatovych
- Department of Neurology, State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Ruth-Ann Saddler
- Department of Neurology, State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Norbert Sule
- Roswell Park Comprehensive Cancer Center, 665 Elm St, Buffalo, NY, 14203, USA
| | - Kinga Szigeti
- Department of Neurology, State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA.
| |
Collapse
|
25
|
Volloch V, Rits-Volloch S. On the Inadequacy of the Current Transgenic Animal Models of Alzheimer's Disease: The Path Forward. Int J Mol Sci 2024; 25:2981. [PMID: 38474228 PMCID: PMC10932000 DOI: 10.3390/ijms25052981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
For at least two reasons, the current transgenic animal models of Alzheimer's disease (AD) appear to be patently inadequate. They may be useful in many respects, the AD models; however, they are not. First, they are incapable of developing the full spectrum of the AD pathology. Second, they respond spectacularly well to drugs that are completely ineffective in the treatment of symptomatic AD. These observations indicate that both the transgenic animal models and the drugs faithfully reflect the theory that guided the design and development of both, the amyloid cascade hypothesis (ACH), and that both are inadequate because their underlying theory is. This conclusion necessitated the formulation of a new, all-encompassing theory of conventional AD-the ACH2.0. The two principal attributes of the ACH2.0 are the following. One, in conventional AD, the agent that causes the disease and drives its pathology is the intraneuronal amyloid-β (iAβ) produced in two distinctly different pathways. Two, following the commencement of AD, the bulk of Aβ is generated independently of Aβ protein precursor (AβPP) and is retained inside the neuron as iAβ. Within the framework of the ACH2.0, AβPP-derived iAβ accumulates physiologically in a lifelong process. It cannot reach levels required to support the progression of AD; it does, however, cause the disease. Indeed, conventional AD occurs if and when the levels of AβPP-derived iAβ cross the critical threshold, elicit the neuronal integrated stress response (ISR), and trigger the activation of the AβPP-independent iAβ generation pathway; the disease commences only when this pathway is operational. The iAβ produced in this pathway reaches levels sufficient to drive the AD pathology; it also propagates its own production and thus sustains the activity of the pathway and perpetuates its operation. The present study analyzes the reason underlying the evident inadequacy of the current transgenic animal models of AD. It concludes that they model, in fact, not Alzheimer's disease but rather the effects of the neuronal ISR sustained by AβPP-derived iAβ, that this is due to the lack of the operational AβPP-independent iAβ production pathway, and that this mechanism must be incorporated into any successful AD model faithfully emulating the disease. The study dissects the plausible molecular mechanisms of the AβPP-independent iAβ production and the pathways leading to their activation, and introduces the concept of conventional versus unconventional Alzheimer's disease. It also proposes the path forward, posits the principles of design of productive transgenic animal models of the disease, and describes the molecular details of their construction.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children’s Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
26
|
Rinauro DJ, Chiti F, Vendruscolo M, Limbocker R. Misfolded protein oligomers: mechanisms of formation, cytotoxic effects, and pharmacological approaches against protein misfolding diseases. Mol Neurodegener 2024; 19:20. [PMID: 38378578 PMCID: PMC10877934 DOI: 10.1186/s13024-023-00651-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/17/2023] [Indexed: 02/22/2024] Open
Abstract
The conversion of native peptides and proteins into amyloid aggregates is a hallmark of over 50 human disorders, including Alzheimer's and Parkinson's diseases. Increasing evidence implicates misfolded protein oligomers produced during the amyloid formation process as the primary cytotoxic agents in many of these devastating conditions. In this review, we analyze the processes by which oligomers are formed, their structures, physicochemical properties, population dynamics, and the mechanisms of their cytotoxicity. We then focus on drug discovery strategies that target the formation of oligomers and their ability to disrupt cell physiology and trigger degenerative processes.
Collapse
Affiliation(s)
- Dillon J Rinauro
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Fabrizio Chiti
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Ryan Limbocker
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, 10996, USA.
| |
Collapse
|
27
|
Crestini A, Carbone E, Rivabene R, Ancidoni A, Rosa P, Tata AM, Fabrizi E, Locuratolo N, Vanacore N, Lacorte E, Piscopo P. A Systematic Review on Drugs Acting as Nicotinic Acetylcholine Receptor Agonists in the Treatment of Dementia. Cells 2024; 13:237. [PMID: 38334629 PMCID: PMC10854606 DOI: 10.3390/cells13030237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
Acetylcholine signaling is attenuated in early Alzheimer's disease (AD) and other dementias. A significant reduction in the expression of nicotinic acetylcholine receptors (nAChRs) in the brain of AD patients has also been reported in several molecular biological and in situ labeling studies. The modulation of the functional deficit of the cholinergic system as a pharmacological target could therefore have a clinical benefit, which is not to be neglected. This systematic review was conducted to identify clinical trials, which evaluated the safety and efficacy of nicotinic acetylcholine receptor agonists using Clinicaltrial (CT) and EudraCT databases. Structured searches identified 39 trials, which used 15 different drugs designed to increase the function of the nAChRs. Most of the identified clinical trials were phase II trials, with some of them classified as ongoing for several years. The systematic screening of the literature led to the selection of 14 studies out of the 8261 bibliographic records retrieved. Six trials reported detailed data on adverse events associated with the intervention, while twelve trials reported data on efficacy measures, such as attention, behavior and cognition. Overall, smost of the physical side effects of cholinergic agonists were reported to be well tolerated. Some trials also reported improvements in attention. However, the efficacy of these drugs in other cognitive and behavioral outcomes remains highly controversial.
Collapse
Affiliation(s)
- Alessio Crestini
- Department of Neuroscience, Italian National Institute of Health, 00161 Rome, Italy; (E.C.); (R.R.); (P.P.)
| | - Elena Carbone
- Department of Neuroscience, Italian National Institute of Health, 00161 Rome, Italy; (E.C.); (R.R.); (P.P.)
| | - Roberto Rivabene
- Department of Neuroscience, Italian National Institute of Health, 00161 Rome, Italy; (E.C.); (R.R.); (P.P.)
| | - Antonio Ancidoni
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, 00161 Rome, Italy; (A.A.); (N.L.); (N.V.); (E.L.)
| | - Paolo Rosa
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Polo Pontino, 04100 Latina, Italy;
- ICOT (Institute of Traumatology and Orthopaedic Surgery), 04100 Latina, Italy
| | - Ada Maria Tata
- Department of Biology and Biotechnologies Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy;
- Research Center in Neurobiology Daniel Bovet, Sapienza University of Rome, 00185 Rome, Italy
| | - Elisa Fabrizi
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, 00161 Rome, Italy; (A.A.); (N.L.); (N.V.); (E.L.)
- Doctoral School, The Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - Nicoletta Locuratolo
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, 00161 Rome, Italy; (A.A.); (N.L.); (N.V.); (E.L.)
| | - Nicola Vanacore
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, 00161 Rome, Italy; (A.A.); (N.L.); (N.V.); (E.L.)
| | - Eleonora Lacorte
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, 00161 Rome, Italy; (A.A.); (N.L.); (N.V.); (E.L.)
| | - Paola Piscopo
- Department of Neuroscience, Italian National Institute of Health, 00161 Rome, Italy; (E.C.); (R.R.); (P.P.)
| |
Collapse
|
28
|
Volloch V, Rits-Volloch S. Next Generation Therapeutic Strategy for Treatment and Prevention of Alzheimer's Disease and Aging-Associated Cognitive Decline: Transient, Once-in-a-Lifetime-Only Depletion of Intraneuronal Aβ ( iAβ) by Its Targeted Degradation via Augmentation of Intra- iAβ-Cleaving Activities of BACE1 and/or BACE2. Int J Mol Sci 2023; 24:17586. [PMID: 38139415 PMCID: PMC10744314 DOI: 10.3390/ijms242417586] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Although the long-standing Amyloid Cascade Hypothesis (ACH) has been largely discredited, its main attribute, the centrality of amyloid-beta (Aβ) in Alzheimer's disease (AD), remains the cornerstone of any potential interpretation of the disease: All known AD-causing mutations, without a single exception, affect, in one way or another, Aβ. The ACH2.0, a recently introduced theory of AD, preserves this attribute but otherwise differs fundamentally from the ACH. It posits that AD is a two-stage disorder where both stages are driven by intraneuronal (rather than extracellular) Aβ (iAβ) albeit of two distinctly different origins. The first asymptomatic stage is the decades-long accumulation of Aβ protein precursor (AβPP)-derived iAβ to the critical threshold. This triggers the activation of the self-sustaining AβPP-independent iAβ production pathway and the commencement of the second, symptomatic AD stage. Importantly, Aβ produced independently of AβPP is retained intraneuronally. It drives the AD pathology and perpetuates the operation of the pathway; continuous cycles of the iAβ-stimulated propagation of its own AβPP-independent production constitute an engine that drives AD, the AD Engine. It appears that the dynamics of AβPP-derived iAβ accumulation is the determining factor that either drives Aging-Associated Cognitive Decline (AACD) and triggers AD or confers the resistance to both. Within the ACH2.0 framework, the ACH-based drugs, designed to lower levels of extracellular Aβ, could be applicable in the prevention of AD and treatment of AACD because they reduce the rate of accumulation of AβPP-derived iAβ. The present study analyzes their utility and concludes that it is severely limited. Indeed, their short-term employment is ineffective, their long-term engagement is highly problematic, their implementation at the symptomatic stages of AD is futile, and their evaluation in conventional clinical trials for the prevention of AD is impractical at best, impossible at worst, and misleading in between. In contrast, the ACH2.0-guided Next Generation Therapeutic Strategy for the treatment and prevention of both AD and AACD, namely the depletion of iAβ via its transient, short-duration, targeted degradation by the novel ACH2.0-based drugs, has none of the shortcomings of the ACH-based drugs. It is potentially highly effective, easily evaluable in clinical trials, and opens up the possibility of once-in-a-lifetime-only therapeutic intervention for prevention and treatment of both conditions. It also identifies two plausible ACH2.0-based drugs: activators of physiologically occurring intra-iAβ-cleaving capabilities of BACE1 and/or BACE2.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children’s Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
29
|
Davis SE, Cirincione AB, Jimenez-Torres AC, Zhu J. The Impact of Neurotransmitters on the Neurobiology of Neurodegenerative Diseases. Int J Mol Sci 2023; 24:15340. [PMID: 37895020 PMCID: PMC10607327 DOI: 10.3390/ijms242015340] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Neurodegenerative diseases affect millions of people worldwide. Neurodegenerative diseases result from progressive damage to nerve cells in the brain or peripheral nervous system connections that are essential for cognition, coordination, strength, sensation, and mobility. Dysfunction of these brain and nerve functions is associated with Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic lateral sclerosis, and motor neuron disease. In addition to these, 50% of people living with HIV develop a spectrum of cognitive, motor, and/or mood problems collectively referred to as HIV-Associated Neurocognitive Disorders (HAND) despite the widespread use of a combination of antiretroviral therapies. Neuroinflammation and neurotransmitter systems have a pathological correlation and play a critical role in developing neurodegenerative diseases. Each of these diseases has a unique pattern of dysregulation of the neurotransmitter system, which has been attributed to different forms of cell-specific neuronal loss. In this review, we will focus on a discussion of the regulation of dopaminergic and cholinergic systems, which are more commonly disturbed in neurodegenerative disorders. Additionally, we will provide evidence for the hypothesis that disturbances in neurotransmission contribute to the neuronal loss observed in neurodegenerative disorders. Further, we will highlight the critical role of dopamine as a mediator of neuronal injury and loss in the context of NeuroHIV. This review will highlight the need to further investigate neurotransmission systems for their role in the etiology of neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | | | - Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA; (S.E.D.); (A.B.C.); (A.C.J.-T.)
| |
Collapse
|
30
|
Shivakumar AB, Kumari S, Mehak SF, Gangadharan G. Compulsive-like Behaviors in Amyloid-β 1-42-Induced Alzheimer's Disease in Mice Are Associated With Hippocampo-cortical Neural Circuit Dysfunction. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:773-784. [PMID: 37881551 PMCID: PMC10593884 DOI: 10.1016/j.bpsgos.2023.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 03/08/2023] Open
Abstract
Background In addition to memory deficits, patients with Alzheimer's disease (AD) experience neuropsychiatric disturbances. Recent studies have suggested the association of obsessive-compulsive disorder with the early stages of AD. However, there is a lack of understanding of the neurobiological underpinnings of compulsive-like behaviors at the neuronal circuit level and their relationship with AD. Methods We have addressed this issue in an amyloid-β 1-42-induced mouse model of AD by studying compulsive-like behaviors. Next, we compared the hippocampal and medial prefrontal cortex (mPFC) local field potential pattern and coherence between these regions of control and AD mice. We also assessed the expression pattern of acetylcholine and glutamatergic signaling in these regions, using quantitative polymerase chain reaction. Results Our findings show that AD mice exhibit compulsive-like behaviors, as evidenced by enhanced marble burying, nest building, and burrowing. Furthermore, AD mice exhibited hippocampo-cortical circuit dysfunction demonstrated by decreased power of rhythmic oscillations at the theta (4-12 Hz) and gamma (25-50 Hz) frequencies in the hippocampus and mPFC, two functionally interconnected brain regions involved both in AD and compulsive behaviors. Importantly, coherence between the hippocampus and mPFC in the theta band of AD animals was significantly reduced. Furthermore, we found reduced cholinergic and glutamatergic neurotransmission in the hippocampus and mPFC of AD mice. Conclusions We conclude that the hippocampo-cortical functional alterations may play a significant role in mediating the compulsive-like behaviors observed in AD mice. These findings may help in understanding the underlying circuit mechanisms of obsessive-compulsive disorder-like phenotypes associated with AD.
Collapse
Affiliation(s)
- Apoorva Bettagere Shivakumar
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sparsha Kumari
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sonam Fathima Mehak
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Gireesh Gangadharan
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
31
|
Wang HY, Cecon E, Dam J, Pei Z, Jockers R, Burns LH. Simufilam Reverses Aberrant Receptor Interactions of Filamin A in Alzheimer's Disease. Int J Mol Sci 2023; 24:13927. [PMID: 37762230 PMCID: PMC10531384 DOI: 10.3390/ijms241813927] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Simufilam is a novel oral drug candidate in Phase 3 clinical trials for Alzheimer's disease (AD) dementia. This small molecule binds an altered form of filamin A (FLNA) that occurs in AD. This drug action disrupts FLNA's aberrant linkage to the α7 nicotinic acetylcholine receptor (α7nAChR), thereby blocking soluble amyloid beta1-42 (Aβ42)'s signaling via α7nAChR that hyperphosphorylates tau. Here, we aimed to clarify simufilam's mechanism. We now show that simufilam reduced Aβ42 binding to α7nAChR with a 10-picomolar IC50 using time-resolved fluorescence resonance energy transfer (TR-FRET), a robust technology to detect highly sensitive molecular interactions. We also show that FLNA links to multiple inflammatory receptors in addition to Toll-like receptor 4 (TLR4) in postmortem human AD brains and in AD transgenic mice: TLR2, C-X-C chemokine receptor type 4 (CXCR4), C-C chemokine receptor type 5 (CCR5), and T-cell co-receptor cluster of differentiation 4 (CD4). These aberrant FLNA linkages, which can be induced in a healthy control brain by Aβ42 incubation, were disrupted by simufilam. Simufilam reduced inflammatory cytokine release from Aβ42-stimulated human astrocytes. In the AD transgenic mice, CCR5-G protein coupling was elevated, indicating persistent activation. Oral simufilam reduced both the FLNA-CCR5 linkage and the CCR5-G protein coupling in these mice, while restoring CCR5's responsivity to C-C chemokine ligand 3 (CCL3). By disrupting aberrant FLNA-receptor interactions critical to AD pathogenic pathways, simufilam may promote brain health.
Collapse
Affiliation(s)
- Hoau-Yan Wang
- Department of Molecular, Cellular and Biomedical Sciences, City University of New York School of Medicine, New York, NY 10031, USA; (H.-Y.W.); (Z.P.)
- Department of Biology and Neuroscience, Graduate School, City University of New York, New York, NY 10016, USA
| | - Erika Cecon
- Institut Cochin, INSERM, CNRS, Université Paris Cité, 75014 Paris, France; (E.C.); (J.D.); (R.J.)
| | - Julie Dam
- Institut Cochin, INSERM, CNRS, Université Paris Cité, 75014 Paris, France; (E.C.); (J.D.); (R.J.)
| | - Zhe Pei
- Department of Molecular, Cellular and Biomedical Sciences, City University of New York School of Medicine, New York, NY 10031, USA; (H.-Y.W.); (Z.P.)
| | - Ralf Jockers
- Institut Cochin, INSERM, CNRS, Université Paris Cité, 75014 Paris, France; (E.C.); (J.D.); (R.J.)
| | | |
Collapse
|
32
|
Buccellato FR, D’Anca M, Tartaglia GM, Del Fabbro M, Scarpini E, Galimberti D. Treatment of Alzheimer's Disease: Beyond Symptomatic Therapies. Int J Mol Sci 2023; 24:13900. [PMID: 37762203 PMCID: PMC10531090 DOI: 10.3390/ijms241813900] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
In an ever-increasing aged world, Alzheimer's disease (AD) represents the first cause of dementia and one of the first chronic diseases in elderly people. With 55 million people affected, the WHO considers AD to be a disease with public priority. Unfortunately, there are no final cures for this pathology. Treatment strategies are aimed to mitigate symptoms, i.e., acetylcholinesterase inhibitors (AChEI) and the N-Methyl-D-aspartate (NMDA) antagonist Memantine. At present, the best approaches for managing the disease seem to combine pharmacological and non-pharmacological therapies to stimulate cognitive reserve. Over the last twenty years, a number of drugs have been discovered acting on the well-established biological hallmarks of AD, deposition of β-amyloid aggregates and accumulation of hyperphosphorylated tau protein in cells. Although previous efforts disappointed expectations, a new era in treating AD has been working its way recently. The Food and Drug Administration (FDA) gave conditional approval of the first disease-modifying therapy (DMT) for the treatment of AD, aducanumab, a monoclonal antibody (mAb) designed against Aβ plaques and oligomers in 2021, and in January 2023, the FDA granted accelerated approval for a second monoclonal antibody, Lecanemab. This review describes ongoing clinical trials with DMTs and non-pharmacological therapies. We will also present a future scenario based on new biomarkers that can detect AD in preclinical or prodromal stages, identify people at risk of developing AD, and allow an early and curative treatment.
Collapse
Affiliation(s)
- Francesca R. Buccellato
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
- Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Marianna D’Anca
- Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Gianluca Martino Tartaglia
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
- Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Massimo Del Fabbro
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
- Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Elio Scarpini
- Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
- Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
33
|
Gutierrez-Merino C. Brain Hydrophobic Peptides Antagonists of Neurotoxic Amyloid β Peptide Monomers/Oligomers-Protein Interactions. Int J Mol Sci 2023; 24:13846. [PMID: 37762148 PMCID: PMC10531495 DOI: 10.3390/ijms241813846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Amyloid β (Aβ) oligomers have been linked to Alzheimer's disease (AD) pathogenesis and are the main neurotoxic forms of Aβ. This review focuses on the following: (i) the Aβ(1-42):calmodulin interface as a model for the design of antagonist Aβ peptides and its limitations; (ii) proteolytic degradation as the major source of highly hydrophobic peptides in brain cells; and (iii) brain peptides that have been experimentally demonstrated to bind to Aβ monomers or oligomers, Aβ fibrils, or Aβ plaques. It is highlighted that the hydrophobic amino acid residues of the COOH-terminal segment of Aβ(1-42) play a key role in its interaction with intracellular protein partners linked to its neurotoxicity. The major source of highly hydrophobic endogenous peptides of 8-10 amino acids in neurons is the proteasome activity. Many canonical antigen peptides bound to the major histocompatibility complex class 1 are of this type. These highly hydrophobic peptides bind to Aβ and are likely to be efficient antagonists of the binding of Aβ monomers/oligomers concentrations in the nanomolar range with intracellular proteins. Also, their complexation with Aβ will protect them against endopeptidases, suggesting a putative chaperon-like physiological function for Aβ that has been overlooked until now. Remarkably, the hydrophobic amino acid residues of Aβ responsible for the binding of several neuropeptides partially overlap with those playing a key role in its interaction with intracellular protein partners that mediates its neurotoxicity. Therefore, these latter neuropeptides are also potential candidates to antagonize Aβ peptides binding to target proteins. In conclusion, the analysis performed in this review points out that hydrophobic endogenous brain neuropeptides could be valuable biomarkers to evaluate the risk of the onset of sporadic AD, as well as for the prognosis of AD.
Collapse
Affiliation(s)
- Carlos Gutierrez-Merino
- Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain
| |
Collapse
|
34
|
Burns LH, Pei Z, Wang HY. Targeting α7 nicotinic acetylcholine receptors and their protein interactions in Alzheimer's disease drug development. Drug Dev Res 2023; 84:1085-1095. [PMID: 37291958 DOI: 10.1002/ddr.22085] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/09/2023] [Accepted: 05/29/2023] [Indexed: 06/10/2023]
Abstract
The decades-old cholinergic hypothesis of Alzheimer's disease (AD) led to clinical testing and FDA approval of acetylcholinesterase inhibitor drugs. Subsequently, the α7 nicotinic acetylcholine receptor (α7nAChR) was proposed as a new drug target for enhancing cholinergic neurotransmission. Nearly simultaneously, soluble amyloid β1-42 (Aβ42 ) was shown to bind α7nAChR with picomolar affinity to activate kinases that hyperphosphorylate tau, the precursor to tau-containing tangles. Multiple biopharmaceutical companies explored α7nAChR as a drug target for AD, mostly to enhance neurotransmission. Directly targeting α7nAChR proved to be a drug development challenge. The ultra-high-affinity interaction between Aβ42 and α7nAChR posed a significant hurdle for direct competition in the AD brain. The receptor rapidly desensitizes, undermining efficacy of agonists. Drug discovery approaches therefore included partial agonists and allosteric modulators of α7nAChR. After substantial effort, numerous drug candidates were abandoned due to lack of efficacy or drug-related toxicities. As alternatives, proteins interacting with α7nAChR were sought. In 2016, a novel nAChR regulator was identified, but no drug candidates have emerged from this effort. In 2012, the interaction of filamin A with α7nAChR was shown to be critical to Aβ42 's toxic signaling via α7nAChR, presenting a new drug target. The novel drug candidate simufilam disrupts the filamin A-α7nAChR interaction, reduces Aβ42 's high-affinity binding to α7nAChR, and suppresses Aβ42 's toxic signaling. Early clinical trials of simufilam showed improvements in experimental CSF biomarkers and indications of cognitive improvement in mild AD patients at 1 year. Simufilam is currently in phase 3 clinical trials as a disease-modifying treatment for AD.
Collapse
Affiliation(s)
| | - Zhe Pei
- Department of Molecular, Cellular and Biomedical Sciences, City University of New York School of Medicine, New York, New York, USA
| | - Hoau-Yan Wang
- Department of Molecular, Cellular and Biomedical Sciences, City University of New York School of Medicine, New York, New York, USA
- Department of Biology and Neuroscience, Graduate School of the City University of New York, New York, New York, USA
| |
Collapse
|
35
|
Volloch V, Rits-Volloch S. Principles of Design of Clinical Trials for Prevention and Treatment of Alzheimer's Disease and Aging-Associated Cognitive Decline in the ACH2.0 Perspective: Potential Outcomes, Challenges, and Solutions. J Alzheimers Dis Rep 2023; 7:921-955. [PMID: 37849639 PMCID: PMC10578334 DOI: 10.3233/adr-230037] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/31/2023] [Indexed: 10/19/2023] Open
Abstract
With the Amyloid Cascade Hypothesis (ACH) largely discredited, the ACH2.0 theory of Alzheimer's disease (AD) has been recently introduced. Within the framework of the ACH2.0, AD is triggered by amyloid-β protein precursor (AβPP)-derived intraneuronal Aβ (iAβ) and is driven by iAβ produced in the AβPP-independent pathway and retained intraneuronally. In this paradigm, the depletion of extracellular Aβ or suppression of Aβ production by AβPP proteolysis, the two sources of AβPP-derived iAβ, would be futile in symptomatic AD, due to its reliance on iAβ generated independently of AβPP, but effective in preventing AD and treating Aging-Associated Cognitive Decline (AACD) driven, in the ACH2.0 framework, by AβPP-derived iAβ. The observed effect of lecanemab and donanemab, interpreted in the ACH2.0 perspective, supports this notion and mandates AD-preventive clinical trials. Such trials are currently in progress. They are likely, however, to fail or to yield deceptive results if conducted conventionally. The present study considers concepts of design of clinical trials of lecanemab, donanemab, or any other drug, targeting the influx of AβPP-derived iAβ, in prevention of AD and treatment of AACD. It analyzes possible outcomes and explains why selection of high-risk asymptomatic participants seems reasonable but is not. It argues that outcomes of such AD preventive trials could be grossly misleading, discusses inevitable potential problems, and proposes feasible solutions. It advocates the initial evaluation of this type of drugs in clinical trials for treatment of AACD. Whereas AD protective trials of these drugs are potentially of an impractical length, AACD clinical trials are expected to yield unequivocal results within a relatively short duration. Moreover, success of the latter, in addition to its intrinsic value, would constitute a proof of concept for the former. Furthermore, this study introduces concepts of the active versus passive iAβ depletion, contends that targeted degradation of iAβ is the best therapeutic strategy for both prevention and treatment of AD and AACD, proposes potential iAβ-degrading drugs, and describes their feasible and unambiguous evaluation in clinical trials.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children’s Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
36
|
Volloch V, Rits-Volloch S. The Amyloid Cascade Hypothesis 2.0 for Alzheimer's Disease and Aging-Associated Cognitive Decline: From Molecular Basis to Effective Therapy. Int J Mol Sci 2023; 24:12246. [PMID: 37569624 PMCID: PMC10419172 DOI: 10.3390/ijms241512246] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
With the long-standing amyloid cascade hypothesis (ACH) largely discredited, there is an acute need for a new all-encompassing interpretation of Alzheimer's disease (AD). Whereas such a recently proposed theory of AD is designated ACH2.0, its commonality with the ACH is limited to the recognition of the centrality of amyloid-β (Aβ) in the disease, necessitated by the observation that all AD-causing mutations affect, in one way or another, Aβ. Yet, even this narrow commonality is superficial since AD-causing Aβ of the ACH differs distinctly from that specified in the ACH2.0: Whereas in the former, the disease is caused by secreted extracellular Aβ, in the latter, it is triggered by Aβ-protein-precursor (AβPP)-derived intraneuronal Aβ (iAβ) and driven by iAβ generated independently of AβPP. The ACH2.0 envisions AD as a two-stage disorder. The first, asymptomatic stage is a decades-long accumulation of AβPP-derived iAβ, which occurs via internalization of secreted Aβ and through intracellular retention of a fraction of Aβ produced by AβPP proteolysis. When AβPP-derived iAβ reaches critical levels, it activates a self-perpetuating AβPP-independent production of iAβ that drives the second, devastating AD stage, a cascade that includes tau pathology and culminates in neuronal loss. The present study analyzes the dynamics of iAβ accumulation in health and disease and concludes that it is the prime factor driving both AD and aging-associated cognitive decline (AACD). It discusses mechanisms potentially involved in AβPP-independent generation of iAβ, provides mechanistic interpretations for all principal aspects of AD and AACD including the protective effect of the Icelandic AβPP mutation, the early onset of FAD and the sequential manifestation of AD pathology in defined regions of the affected brain, and explains why current mouse AD models are neither adequate nor suitable. It posits that while drugs affecting the accumulation of AβPP-derived iAβ can be effective only protectively for AD, the targeted degradation of iAβ is the best therapeutic strategy for both prevention and effective treatment of AD and AACD. It also proposes potential iAβ-degrading drugs.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children’s Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
37
|
Shehata MK, Ismail AA, Kamel MA. Combined Donepezil with Astaxanthin via Nanostructured Lipid Carriers Effective Delivery to Brain for Alzheimer's Disease in Rat Model. Int J Nanomedicine 2023; 18:4193-4227. [PMID: 37534058 PMCID: PMC10391537 DOI: 10.2147/ijn.s417928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023] Open
Abstract
Introduction Donepezil (DPL), a specific acetylcholinesterase inhibitor, is used as a first-line treatment to improve cognitive deficits in Alzheimer's disease (AD) and it might have a disease modifying effect. Astaxanthin (AST) is a natural potent antioxidant with neuroprotective, anti-amyloidogenic, anti-apoptotic, and anti-inflammatory effects. This study aimed to prepare nanostructured lipid carriers (NLCs) co-loaded with donepezil and astaxanthin (DPL/AST-NLCs) and evaluate their in vivo efficacy in an AD-like rat model 30 days after daily intranasal administration. Methods DPL/AST-NLCs were prepared using a hot high-shear homogenization technique, in vitro examined for their physicochemical parameters and in vivo evaluated. AD induction in rats was performed by aluminum chloride. The cortex and hippocampus were isolated from the brain of rats for biochemical testing and histopathological examination. Results DPL/AST-NLCs showed z-average diameter 149.9 ± 3.21 nm, polydispersity index 0.224 ± 0.017, zeta potential -33.7 ± 4.71 mV, entrapment efficiency 81.25 ±1.98% (donepezil) and 93.85 ±1.75% (astaxanthin), in vitro sustained release of both donepezil and astaxanthin for 24 h, spherical morphology by transmission electron microscopy, and they were stable at 4-8 ± 2°C for six months. Differential scanning calorimetry revealed that donepezil and astaxanthin were molecularly dispersed in the NLC matrix in an amorphous state. The DPL/AST-NLC-treated rats showed significantly lower levels of nuclear factor-kappa B, malondialdehyde, β-site amyloid precursor protein cleaving enzyme-1, caspase-3, amyloid beta (Aβ1‑42), and acetylcholinesterase, and significantly higher levels of glutathione and acetylcholine in the cortex and hippocampus than the AD-like untreated rats and that treated with donepezil-NLCs. DPL/AST-NLCs showed significantly higher anti-amyloidogenic, antioxidant, anti-acetylcholinesterase, anti-inflammatory, and anti-apoptotic effects, resulting in significant improvement in the cortical and hippocampal histopathology. Conclusion Nose-to-brain delivery of DPL/AST-NLCs is a promising strategy for the management of AD.
Collapse
Affiliation(s)
- Mustafa K Shehata
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Assem A Ismail
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Maher A Kamel
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
38
|
Waigi EW, Webb RC, Moss MA, Uline MJ, McCarthy CG, Wenceslau CF. Soluble and insoluble protein aggregates, endoplasmic reticulum stress, and vascular dysfunction in Alzheimer's disease and cardiovascular diseases. GeroScience 2023; 45:1411-1438. [PMID: 36823398 PMCID: PMC10400528 DOI: 10.1007/s11357-023-00748-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/28/2023] [Indexed: 02/25/2023] Open
Abstract
Dementia refers to a particular group of symptoms characterized by difficulties with memory, language, problem-solving, and other thinking skills that affect a person's ability to perform everyday activities. Alzheimer's disease (AD) is the most common form of dementia, affecting about 6.2 million Americans aged 65 years and older. Likewise, cardiovascular diseases (CVDs) are a major cause of disability and premature death, impacting 126.9 million adults in the USA, a number that increases with age. Consequently, CVDs and cardiovascular risk factors are associated with an increased risk of AD and cognitive impairment. They share important age-related cardiometabolic and lifestyle risk factors, that make them among the leading causes of death. Additionally, there are several premises and hypotheses about the mechanisms underlying the association between AD and CVD. Although AD and CVD may be considered deleterious to health, the study of their combination constitutes a clinical challenge, and investigations to understand the mechanistic pathways for the cause-effect and/or shared pathology between these two disease constellations remains an active area of research. AD pathology is propagated by the amyloid β (Aβ) peptides. These peptides give rise to small, toxic, and soluble Aβ oligomers (SPOs) that are nonfibrillar, and it is their levels that show a robust correlation with the extent of cognitive impairment. This review will elucidate the interplay between the effects of accumulating SPOs in AD and CVDs, the resulting ER stress response, and their role in vascular dysfunction. We will also address the potential underlying mechanisms, including the possibility that SPOs are among the causes of vascular injury in CVD associated with cognitive decline. By revealing common mechanistic underpinnings of AD and CVD, we hope that novel experimental therapeutics can be designed to reduce the burden of these devastating diseases. Graphical abstract Alzheimer's disease (AD) pathology leads to the release of Aβ peptides, and their accumulation in the peripheral organs has varying effects on various components of the cardiovascular system including endoplasmic reticulum (ER) stress and vascular damage. Image created with BioRender.com.
Collapse
Affiliation(s)
- Emily W Waigi
- Cardiovascular Translational Research Cententer (CTRC), Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
| | - R Clinton Webb
- Cardiovascular Translational Research Cententer (CTRC), Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
- Biomedical Engineering Program, Univeristy of South Carolina, Columbia, SC, USA
| | - Melissa A Moss
- Biomedical Engineering Program, Univeristy of South Carolina, Columbia, SC, USA
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, USA
| | - Mark J Uline
- Biomedical Engineering Program, Univeristy of South Carolina, Columbia, SC, USA
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, USA
| | - Cameron G McCarthy
- Cardiovascular Translational Research Cententer (CTRC), Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
- Biomedical Engineering Program, Univeristy of South Carolina, Columbia, SC, USA
| | - Camilla Ferreira Wenceslau
- Cardiovascular Translational Research Cententer (CTRC), Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA.
- Biomedical Engineering Program, Univeristy of South Carolina, Columbia, SC, USA.
| |
Collapse
|
39
|
Sonsalla MM, Lamming DW. Geroprotective interventions in the 3xTg mouse model of Alzheimer's disease. GeroScience 2023; 45:1343-1381. [PMID: 37022634 PMCID: PMC10400530 DOI: 10.1007/s11357-023-00782-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/23/2023] [Indexed: 04/07/2023] Open
Abstract
Alzheimer's disease (AD) is an age-associated neurodegenerative disease. As the population ages, the increasing prevalence of AD threatens massive healthcare costs in the coming decades. Unfortunately, traditional drug development efforts for AD have proven largely unsuccessful. A geroscience approach to AD suggests that since aging is the main driver of AD, targeting aging itself may be an effective way to prevent or treat AD. Here, we discuss the effectiveness of geroprotective interventions on AD pathology and cognition in the widely utilized triple-transgenic mouse model of AD (3xTg-AD) which develops both β-amyloid and tau pathologies characteristic of human AD, as well as cognitive deficits. We discuss the beneficial impacts of calorie restriction (CR), the gold standard for geroprotective interventions, and the effects of other dietary interventions including protein restriction. We also discuss the promising preclinical results of geroprotective pharmaceuticals, including rapamycin and medications for type 2 diabetes. Though these interventions and treatments have beneficial effects in the 3xTg-AD model, there is no guarantee that they will be as effective in humans, and we discuss the need to examine these interventions in additional animal models as well as the urgent need to test if some of these approaches can be translated from the lab to the bedside for the treatment of humans with AD.
Collapse
Affiliation(s)
- Michelle M Sonsalla
- Department of Medicine, University of Wisconsin-Madison, 2500 Overlook Terrace, VAH C3127 Research 151, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, 2500 Overlook Terrace, VAH C3127 Research 151, Madison, WI, 53705, USA.
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA.
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
40
|
Nakayama M, Nishimura O, Nishimura Y, Kitaichi M, Kuraku S, Sone M, Hama C. Control of Synaptic Levels of Nicotinic Acetylcholine Receptor by the Sequestering Subunit Dα5 and Secreted Scaffold Protein Hig. J Neurosci 2023; 43:3989-4004. [PMID: 37117011 PMCID: PMC10255049 DOI: 10.1523/jneurosci.2243-21.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/30/2023] Open
Abstract
The presentation of nicotinic acetylcholine receptors (nAChRs) on synaptic membranes is crucial for generating cholinergic circuits, some of which are associated with memory function and neurodegenerative disorders. Although the physiology and structure of nAChR, a cation channel comprising five subunits, have been extensively studied, little is known about how the receptor levels in interneuronal synapses are determined and which nAChR subunits participate in the regulatory process in cooperation with synaptic cleft matrices and intracellular proteins. By a genetic screen of Drosophila, we identified mutations in the nAChR subunit Dα5 gene as suppressors that restored the mutant phenotypes of hig, which encodes a secretory matrix protein localized to cholinergic synaptic clefts in the brain. Only the loss of function of Dα5 among the 10 nAChR subunits suppressed hig mutant phenotypes in both male and female flies. Dα5 behaved as a lethal factor when Hig was defective; loss of Dα5 in hig mutants rescued lethality, upregulating Dα6 synaptic levels. By contrast, levels of Dα5, Dα6, and Dα7 subunits were all reduced in hig mutants. These three subunits have distinct properties for interaction with Hig or trafficking, as confirmed by chimeric subunit experiments. Notably, the chimeric Dα5 protein, which has the extracellular sequences that display no positive interaction with Hig, exhibited abnormal distribution and lethality even in the presence of Hig. We propose that the sequestering subunit Dα5 functions by reducing synaptic levels of nAChR through internalization, and this process is blocked by Hig, which tethers Dα5 to the synaptic cleft matrix.SIGNIFICANCE STATEMENT Because the cholinergic synapse is one of the major synapses that generate various brain functions, numerous studies have sought to reveal the physiology and structure of the nicotinic acetylcholine receptor (nAChR). However, little is known about how synaptic levels of nAChR are controlled and which nAChR subunits participate in the regulatory process in cooperation with synaptic cleft matrices. By a genetic screen of Drosophila, we identified mutations in the nAChR subunit Dα5 gene as suppressors that restored the mutant phenotypes of hig, which encodes a secretory matrix protein localized to cholinergic synaptic clefts. Our data indicate that Dα5 functions in reducing synaptic levels of nAChR, and this process is blocked by Hig, which tethers Dα5 to the synaptic cleft matrix.
Collapse
Affiliation(s)
- Minoru Nakayama
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
- Faculty of Science, Toho University, Funabashi 274-8510, Japan
| | - Osamu Nishimura
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, RIKEN, Kobe 650-0047, Japan
| | - Yuhi Nishimura
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Miwa Kitaichi
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Shigehiro Kuraku
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, RIKEN, Kobe 650-0047, Japan
| | - Masaki Sone
- Faculty of Science, Toho University, Funabashi 274-8510, Japan
| | - Chihiro Hama
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| |
Collapse
|
41
|
Ali A, Masood A, Khan AA, Zhu FY, Cheema MAR, Samad A, Wadood A, Khan A, Yu Q, Heng W, Li D, Wei DQ. Comparative binding analysis of WGX50 and Alpha-M with APP family proteins APLP1 and APLP2 using structural-dynamics and free energy calculation approaches. Phys Chem Chem Phys 2023; 25:14887-14897. [PMID: 37199163 DOI: 10.1039/d2cp06083c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
A.D. is a common disease among other neurodegenerative disorders primarily developing due to amyloid-β (Aβ) neurotoxicity derived from the amyloid-β protein precursor (AβPP). The amyloid precursor-like proteins 1 and 2 (APP1 and APLP2) biochemically behave similarly in many aspects to AβPP. We, therefore, proposed to test WGX-50 and Alpha-M for their interaction mechanism with APLP1 and APLP2 because both these drug candidate compounds previously showed inhibition of Aβ aggregation. We employed a comparative atomic investigation on Alpha-M and WGX-50 in complex with novel targets, i.e., APLP1 and APLP2, using biophysical and molecular simulation methods. The docking score was -6.83 kcal mol-1 for Alpha-M-APLP1, -8.41 kcal mol-1 for WGX-50-APLP1, -7.02 kcal mol-1 for Alpha-M-APLP2 and -8.25 kcal mol-1 for the WGX-50-APLP2 complex. Our results also elaborate that in the case of their interaction with both APLP1 and APLP2, the WGX-50 complex exhibits better stability than the APLP1/2-Alpha-M complexes during simulation. Furthermore, WGX50 in both APLP1 and APLP2 stabilized the internal flexibility upon binding in contrast to the Alpha-M complexes. The data showed that the BFE for Alpha-M-APLP1 was calculated to be -27.38 ± 0.93 kcal mol-1, for WGX-50-APLP1 -39.65 ± 0.95 kcal mol-1, for Alpha-M-APLP2 -24.80 ± 0.63 kcal mol-1 while for WGX-50-APLP2 the BFE was -57.16 ± 1.03 kcal mol-1 respectively. These results highlight that APLP2-WGX50 has greater binding energies in all four systems. PCA and FEL analysis further revealed variations in the dynamic behavior of these complexes. Overall, our findings demonstrate that WGX50 potentially acts as a more potent inhibitor for APLP1 and APLP2 than Alpha-M and thus shows the diverse pharmacological potential of WGX50. Due to its stable binding interaction, WGX50 might be a suitable candidate drug compound for targeting these precursors under pathological conditions.
Collapse
Affiliation(s)
- Arif Ali
- Department of Bioinformatics and Biological Statistics, Shanghai Jiao Tong University, Shanghai, P. R. China.
| | - Adan Masood
- University Medical and Dental College, Faisalabad, Punjab, Pakistan.
| | - Abdul Aziz Khan
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China.
| | - Feng-Yun Zhu
- College of Biology and Food Engineering, Huanghuai University, Zhumadian, 463000, Henan, China.
| | | | - Abdus Samad
- Department of Biochemistry, Abdul Wali khan University Mardan, 23200 Khyber Pakhtunkhwa, Pakistan.
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali khan University Mardan, 23200 Khyber Pakhtunkhwa, Pakistan.
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, Shanghai Jiao Tong University, Shanghai, P. R. China.
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Qiu Yu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Wang Heng
- International School of Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, China.
| | - Daixi Li
- Institute of Biothermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, 20093, China.
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, Shanghai Jiao Tong University, Shanghai, P. R. China.
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen, Guangdong, 518055, P. R. China
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nayang, Henan, 473006, P. R. China
| |
Collapse
|
42
|
Frackowiak J, Mazur-Kolecka B. Intraneuronal accumulation of amyloid-β peptides as the pathomechanism linking autism and its co-morbidities: epilepsy and self-injurious behavior - the hypothesis. Front Mol Neurosci 2023; 16:1160967. [PMID: 37305553 PMCID: PMC10250631 DOI: 10.3389/fnmol.2023.1160967] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/28/2023] [Indexed: 06/13/2023] Open
Abstract
Autism spectrum disorder (ASD) is associated with enhanced processing of amyloid-β precursor protein (APP) by secretase-α, higher blood levels of sAPPα and intraneuronal accumulation of N-terminally truncated Aβ peptides in the brain cortex - mainly in the GABAergic neurons expressing parvalbumin - and subcortical structures. Brain Aβ accumulation has been also described in epilepsy-the frequent ASD co-morbidity. Furthermore, Aβ peptides have been shown to induce electroconvulsive episodes. Enhanced production and altered processing of APP, as well as accumulation of Aβ in the brain are also frequent consequences of traumatic brain injuries which result from self-injurious behaviors, another ASD co-morbidity. We discuss distinct consequences of accumulation of Aβ in the neurons and synapses depending on the Aβ species, their posttranslational modifications, concentration, level of aggregation and oligomerization, as well as brain structures, cell types and subcellular structures where it occurs. The biological effects of Aβ species which are discussed in the context of the pathomechanisms of ASD, epilepsy, and self-injurious behavior include modulation of transcription-both activation and repression; induction of oxidative stress; activation and alteration of membrane receptors' signaling; formation of calcium channels causing hyper-activation of neurons; reduction of GABAergic signaling - all of which lead to disruption of functions of synapses and neuronal networks. We conclude that ASD, epilepsy, and self-injurious behaviors all contribute to the enhanced production and accumulation of Aβ peptides which in turn cause and enhance dysfunctions of the neuronal networks that manifest as autism clinical symptoms, epilepsy, and self-injurious behaviors.
Collapse
|
43
|
Baracaldo-Santamaría D, Avendaño-Lopez SS, Ariza-Salamanca DF, Rodriguez-Giraldo M, Calderon-Ospina CA, González-Reyes RE, Nava-Mesa MO. Role of Calcium Modulation in the Pathophysiology and Treatment of Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24109067. [PMID: 37240413 DOI: 10.3390/ijms24109067] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease and the most frequent cause of progressive dementia in senior adults. It is characterized by memory loss and cognitive impairment secondary to cholinergic dysfunction and N-methyl-D-aspartate (NMDA)-mediated neurotoxicity. Intracellular neurofibrillary tangles, extracellular plaques composed of amyloid-β (Aβ), and selective neurodegeneration are the anatomopathological hallmarks of this disease. The dysregulation of calcium may be present in all the stages of AD, and it is associated with other pathophysiological mechanisms, such as mitochondrial failure, oxidative stress, and chronic neuroinflammation. Although the cytosolic calcium alterations in AD are not completely elucidated, some calcium-permeable channels, transporters, pumps, and receptors have been shown to be involved at the neuronal and glial levels. In particular, the relationship between glutamatergic NMDA receptor (NMDAR) activity and amyloidosis has been widely documented. Other pathophysiological mechanisms involved in calcium dyshomeostasis include the activation of L-type voltage-dependent calcium channels, transient receptor potential channels, and ryanodine receptors, among many others. This review aims to update the calcium-dysregulation mechanisms in AD and discuss targets and molecules with therapeutic potential based on their modulation.
Collapse
Affiliation(s)
- Daniela Baracaldo-Santamaría
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Sara Sofia Avendaño-Lopez
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Daniel Felipe Ariza-Salamanca
- Medical and Health Sciences Education Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Mateo Rodriguez-Giraldo
- Grupo de Investigación en Neurociencias (NeURos), Centro de Neurociencias Neurovitae-UR, Instituto de Medicina Traslacional (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111221, Colombia
| | - Carlos A Calderon-Ospina
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
- Grupo de Investigación en Ciencias Biomédicas Aplicadas (UR Biomed), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Rodrigo E González-Reyes
- Grupo de Investigación en Neurociencias (NeURos), Centro de Neurociencias Neurovitae-UR, Instituto de Medicina Traslacional (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111221, Colombia
| | - Mauricio O Nava-Mesa
- Grupo de Investigación en Neurociencias (NeURos), Centro de Neurociencias Neurovitae-UR, Instituto de Medicina Traslacional (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111221, Colombia
| |
Collapse
|
44
|
Fontana IC, Kumar A, Nordberg A. The role of astrocytic α7 nicotinic acetylcholine receptors in Alzheimer disease. Nat Rev Neurol 2023; 19:278-288. [PMID: 36977843 DOI: 10.1038/s41582-023-00792-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 03/30/2023]
Abstract
The ongoing search for therapeutic interventions in Alzheimer disease (AD) has highlighted the complexity of this condition and the need for additional biomarkers, beyond amyloid-β (Aβ) and tau, to improve clinical assessment. Astrocytes are brain cells that control metabolic and redox homeostasis, among other functions, and are emerging as an important focus of AD research owing to their swift response to brain pathology in the initial stages of the disease. Reactive astrogliosis - the morphological, molecular and functional transformation of astrocytes during disease - has been implicated in AD progression, and the definition of new astrocytic biomarkers could help to deepen our understanding of reactive astrogliosis along the AD continuum. As we highlight in this Review, one promising biomarker candidate is the astrocytic α7 nicotinic acetylcholine receptor (α7nAChR), upregulation of which correlates with Aβ pathology in the brain of individuals with AD. We revisit the past two decades of research into astrocytic α7nAChRs to shed light on their roles in the context of AD pathology and biomarkers. We discuss the involvement of astrocytic α7nAChRs in the instigation and potentiation of early Aβ pathology and explore their potential as a target for future reactive astrocyte-based therapeutics and imaging biomarkers in AD.
Collapse
Affiliation(s)
- Igor C Fontana
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Amit Kumar
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Agneta Nordberg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
45
|
Whiteaker P, George AA. Discoveries and future significance of research into amyloid-beta/α7-containing nicotinic acetylcholine receptor (nAChR) interactions. Pharmacol Res 2023; 191:106743. [PMID: 37084859 PMCID: PMC10228377 DOI: 10.1016/j.phrs.2023.106743] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 04/23/2023]
Abstract
Initiated by findings that Alzheimer's disease is associated with a profound loss of cholinergic markers in human brain, decades of studies have examined the interactions between specific subtypes of nicotinic acetylcholine receptors and amyloid-β [derived from the amyloid precursor protein (APP), which is cleaved to yield variable isoforms of amyloid-β]. We review the evolving understanding of amyloid-β's roles in Alzheimer's disease and pioneering studies that highlighted a role of nicotinic acetylcholine receptors in mediating important aspects of amyloid-β's effects. This review also surveys the current state of research into amyloid-β / nicotinic acetylcholine receptor interactions. The field has reached an exciting point in which common themes are emerging from the wide range of prior research and a range of accessible, relevant model systems are available to drive further progress. We highlight exciting new areas of inquiry and persistent challenges that need to be considered while conducting this research. Studies of amyloid-β and the nicotinic acetylcholine receptor populations that it interacts with provide opportunities for innovative basic and translational scientific breakthroughs related to nicotinic receptor biology, Alzheimer's disease, and cholinergic contributions to cognition more broadly.
Collapse
Affiliation(s)
- Paul Whiteaker
- Virginia Commonwealth University School of Medicine, Department of Pharmacology and Toxicology, VCU Health Sciences Research Building, Box 980613, Richmond, VA 23298-0613, USA
| | - Andrew A George
- Virginia Commonwealth University School of Medicine, Department of Pharmacology and Toxicology, VCU Health Sciences Research Building, Box 980613, Richmond, VA 23298-0613, USA.
| |
Collapse
|
46
|
Huffels CFM, Middeldorp J, Hol EM. Aß Pathology and Neuron-Glia Interactions: A Synaptocentric View. Neurochem Res 2023; 48:1026-1046. [PMID: 35976488 PMCID: PMC10030451 DOI: 10.1007/s11064-022-03699-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 06/30/2022] [Accepted: 07/15/2022] [Indexed: 10/15/2022]
Abstract
Alzheimer's disease (AD) causes the majority of dementia cases worldwide. Early pathological hallmarks include the accumulation of amyloid-ß (Aß) and activation of both astrocytes and microglia. Neurons form the building blocks of the central nervous system, and astrocytes and microglia provide essential input for its healthy functioning. Their function integrates at the level of the synapse, which is therefore sometimes referred to as the "quad-partite synapse". Increasing evidence puts AD forward as a disease of the synapse, where pre- and postsynaptic processes, as well as astrocyte and microglia functioning progressively deteriorate. Here, we aim to review the current knowledge on how Aß accumulation functionally affects the individual components of the quad-partite synapse. We highlight a selection of processes that are essential to the healthy functioning of the neuronal synapse, including presynaptic neurotransmitter release and postsynaptic receptor functioning. We further discuss how Aß affects the astrocyte's capacity to recycle neurotransmitters, release gliotransmitters, and maintain ion homeostasis. We additionally review literature on how Aß changes the immunoprotective function of microglia during AD progression and conclude by summarizing our main findings and highlighting the challenges in current studies, as well as the need for further research.
Collapse
Affiliation(s)
- Christiaan F M Huffels
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Jinte Middeldorp
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
- Department of Neurobiology & Aging, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
47
|
Griffiths J, Grant SGN. Synapse pathology in Alzheimer's disease. Semin Cell Dev Biol 2023; 139:13-23. [PMID: 35690535 DOI: 10.1016/j.semcdb.2022.05.028] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/12/2022] [Accepted: 05/27/2022] [Indexed: 12/31/2022]
Abstract
Synapse loss and damage are central features of Alzheimer's disease (AD) and contribute to the onset and progression of its behavioural and physiological features. Here we review the literature describing synapse pathology in AD, from what we have learned from microscopy in terms of its impacts on synapse architecture, to the mechanistic role of Aβ, tau and glial cells, mitochondrial dysfunction, and the link with AD risk genes. We consider the emerging view that synapse pathology may operate at a further level, that of synapse diversity, and discuss the prospects for leveraging new synaptome mapping methods to comprehensively understand the molecular properties of vulnerable and resilient synapses. Uncovering AD impacts on brain synapse diversity should inform therapeutic approaches targeted at preserving or replenishing lost and damaged synapses and aid the interpretation of clinical imaging approaches that aim to measure synapse damage.
Collapse
Affiliation(s)
- Jessica Griffiths
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; Dementia Research Institute at Imperial College, Department of Brain Sciences, Imperial College London, London W12 0NN, UK
| | - Seth G N Grant
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK.
| |
Collapse
|
48
|
Porosk L, Härk HH, Bicev RN, Gaidutšik I, Nebogatova J, Armolik EJ, Arukuusk P, da Silva ER, Langel Ü. Aggregation Limiting Cell-Penetrating Peptides Derived from Protein Signal Sequences. Int J Mol Sci 2023; 24:ijms24054277. [PMID: 36901707 PMCID: PMC10002422 DOI: 10.3390/ijms24054277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease (ND) and the leading cause of dementia. It is characterized by non-linear, genetic-driven pathophysiological dynamics with high heterogeneity in the biological alterations and the causes of the disease. One of the hallmarks of the AD is the progression of plaques of aggregated amyloid-β (Aβ) or neurofibrillary tangles of Tau. Currently there is no efficient treatment for the AD. Nevertheless, several breakthroughs in revealing the mechanisms behind progression of the AD have led to the discovery of possible therapeutic targets. Some of these include the reduction in inflammation in the brain, and, although highly debated, limiting of the aggregation of the Aβ. In this work we show that similarly to the Neural cell adhesion molecule 1 (NCAM1) signal sequence, other Aβ interacting protein sequences, especially derived from Transthyretin, can be used successfully to reduce or target the amyloid aggregation/aggregates in vitro. The modified signal peptides with cell-penetrating properties reduce the Aβ aggregation and are predicted to have anti-inflammatory properties. Furthermore, we show that by expressing the Aβ-EGFP fusion protein, we can efficiently assess the potential for reduction in aggregation, and the CPP properties of peptides in mammalian cells.
Collapse
Affiliation(s)
- Ly Porosk
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
- Correspondence:
| | - Heleri Heike Härk
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Renata Naporano Bicev
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Ilja Gaidutšik
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | | | - Eger-Jasper Armolik
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Piret Arukuusk
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | | | - Ülo Langel
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
- Department Biochemistry and Biophysics, Stockholm University, S.Arrheniusv. 16B, Room C472, 106 91 Stockholm, Sweden
| |
Collapse
|
49
|
Volloch V, Rits-Volloch S. The Amyloid Cascade Hypothesis 2.0: Generalization of the Concept. J Alzheimers Dis Rep 2023; 7:21-35. [PMID: 36777328 PMCID: PMC9912825 DOI: 10.3233/adr-220079] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/09/2022] [Indexed: 12/31/2022] Open
Abstract
Recently, we proposed the Amyloid Cascade Hypothesis 2.0 (ACH2.0), a reformulation of the ACH. In the former, in contrast to the latter, Alzheimer's disease (AD) is driven by intraneuronal amyloid-β (iAβ) and occurs in two stages. In the first, relatively benign stage, Aβ protein precursor (AβPP)-derived iAβ activates, upon reaching a critical threshold, the AβPP-independent iAβ-generating pathway, triggering a devastating second stage resulting in neuronal death. While the ACH2.0 remains aligned with the ACH premise that Aβ is toxic, the toxicity is exerted because of intra- rather than extracellular Aβ. In this framework, a once-in-a-lifetime-only iAβ depletion treatment via transient activation of BACE1 and/or BACE2 (exploiting their Aβ-cleaving activities) or by any means appears to be the best therapeutic strategy for AD. Whereas the notion of differentially derived iAβ being the principal moving force at both AD stages is both plausible and elegant, a possibility remains that the second AD stage is enabled by an AβPP-derived iAβ-activated self-sustaining mechanism producing a yet undefined deleterious "substance X" (sX) which anchors the second AD stage. The present study generalizes the ACH2.0 by incorporating this possibility and shows that, in this scenario, the iAβ depletion therapy may be ineffective at symptomatic AD stages but fully retains its preventive potential for both AD and the aging-associated cognitive decline, which is defined in the ACH2.0 framework as the extended first stage of AD.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA,Correspondence to: Vladimir Volloch, Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA. and Sophia Rits-Volloch, Division of Molecular Medicine, Children’s Hospital, Boston, MA, USA. E-mail:
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children’s Hospital, Boston, MA, USA,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
50
|
Yi Y, Lim MH. Current understanding of metal-dependent amyloid-β aggregation and toxicity. RSC Chem Biol 2023; 4:121-131. [PMID: 36794021 PMCID: PMC9906324 DOI: 10.1039/d2cb00208f] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/22/2022] [Indexed: 11/23/2022] Open
Abstract
The discovery of effective therapeutics targeting amyloid-β (Aβ) aggregates for Alzheimer's disease (AD) has been very challenging, which suggests its complicated etiology associated with multiple pathogenic elements. In AD-affected brains, highly concentrated metals, such as copper and zinc, are found in senile plaques mainly composed of Aβ aggregates. These metal ions are coordinated to Aβ and affect its aggregation and toxicity profiles. In this review, we illustrate the current view on molecular insights into the assembly of Aβ peptides in the absence and presence of metal ions as well as the effect of metal ions on their toxicity.
Collapse
Affiliation(s)
- Yelim Yi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|