1
|
Salazar OR, N. Arun P, Cui G, Bay LK, van Oppen MJH, Webster NS, Aranda M. The coral Acropora loripes genome reveals an alternative pathway for cysteine biosynthesis in animals. SCIENCE ADVANCES 2022; 8:eabq0304. [PMID: 36149959 PMCID: PMC9506716 DOI: 10.1126/sciadv.abq0304] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/10/2022] [Indexed: 05/28/2023]
Abstract
The metabolic capabilities of animals have been derived from well-studied model organisms and are generally considered to be well understood. In animals, cysteine is an important amino acid thought to be exclusively synthesized through the transsulfuration pathway. Corals of the genus Acropora have lost cystathionine β-synthase, a key enzyme of the transsulfuration pathway, and it was proposed that Acropora relies on the symbiosis with dinoflagellates of the family Symbiodiniaceae for the acquisition of cysteine. Here, we identify the existence of an alternative pathway for cysteine biosynthesis in animals through the analysis of the genome of the coral Acropora loripes. We demonstrate that these coral proteins are functional and synthesize cysteine in vivo, exhibiting previously unrecognized metabolic capabilities of animals. This pathway is also present in most animals but absent in mammals, arthropods, and nematodes, precisely the groups where most of the animal model organisms belong to, highlighting the risks of generalizing findings from model organisms.
Collapse
Affiliation(s)
- Octavio R. Salazar
- Marine Science Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Prasanna N. Arun
- Marine Science Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Guoxin Cui
- Marine Science Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Line K. Bay
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- AIMS@JCU, Division of Research and Innovation, James Cook University, Townsville, Australia
| | - Madeleine J. H. van Oppen
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nicole S. Webster
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- Australian Centre for Ecogenomics, University of Queensland, St Lucia, Australia
- Australian Antarctic Division, Department of Agriculture, Water and the Environment, Kingston, Australia
| | - Manuel Aranda
- Marine Science Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Tran JU, Brown BL. Structural Basis for Allostery in PLP-dependent Enzymes. Front Mol Biosci 2022; 9:884281. [PMID: 35547395 PMCID: PMC9081730 DOI: 10.3389/fmolb.2022.884281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Pyridoxal 5'-phosphate (PLP)-dependent enzymes are found ubiquitously in nature and are involved in a variety of biological pathways, from natural product synthesis to amino acid and glucose metabolism. The first structure of a PLP-dependent enzyme was reported over 40 years ago, and since that time, there is a steady wealth of structural and functional information revealed for a wide array of these enzymes. A functional mechanism that is gaining more appreciation due to its relevance in drug design is that of protein allostery, where binding of a protein or ligand at a distal site influences the structure, organization, and function at the active site. Here, we present a review of current structure-based mechanisms of allostery for select members of each PLP-dependent enzyme family. Knowledge of these mechanisms may have a larger potential for identifying key similarities and differences among enzyme families that can eventually be exploited for therapeutic development.
Collapse
Affiliation(s)
- Jenny U. Tran
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Breann L. Brown
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
3
|
Lv H, Hu L, Xu J, Bo T, Wang W. Identification and functional analysis of the mitochondrial cysteine synthase TtCsa2 from Tetrahymena thermophila. J Cell Biochem 2021; 122:1817-1831. [PMID: 34427342 DOI: 10.1002/jcb.30136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 08/03/2021] [Accepted: 08/12/2021] [Indexed: 01/12/2023]
Abstract
Cysteine is a crucial component for all organisms and plays a critical role in the structure, stability, and catalytic functions of many proteins. Tetrahymena has reverse transsulfuration and de novo pathways for cysteine biosynthesis. Cysteine synthase is involved in the de novo cysteine biosynthesis and catalyzes the production of cysteine from O-acetylserine. The novel cysteine synthase TtCSA2 was identified from Tetrahymena thermophila. The TtCSA2 showed high expression levels at the log-phase and the sexual development stage. The TtCsa2 was localized on the outer mitochondrial membrane throughout different developmental stages. However, the truncated N-terminal signal peptide mutant TtCsa2-ΔN23 was localized into the mitochondria. His-TtCsa2 was expressed in Escherichia coli and purified using affinity chromatography. The His-TtCsa2 showed O-acetylserine sulfhydrylase and serine sulfhydrylase activities. Cysteine and glutathione contents decreased in the csa2KD mutant. Furthermore, mutant cells were sensitive to cadmium and copper stresses. This study indicated that the TtCSA2 was involved in the cysteine synthesis in mitochondria and related to heavy metal stresses resistance in Tetrahymena.
Collapse
Affiliation(s)
- Hongrui Lv
- School of Life Science, Shanxi University, Taiyuan, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Lina Hu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Jing Xu
- School of Life Science, Shanxi University, Taiyuan, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Tao Bo
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Wei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| |
Collapse
|
4
|
Structural insight into the unique conformation of cystathionine β-synthase from Toxoplasma gondii. Comput Struct Biotechnol J 2021; 19:3542-3555. [PMID: 34194677 PMCID: PMC8225704 DOI: 10.1016/j.csbj.2021.05.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 11/23/2022] Open
Abstract
Cysteine plays a major role in the redox homeostasis and antioxidative defense mechanisms of many parasites of the phylum Apicomplexa. Of relevance to human health is Toxoplasma gondii, the causative agent of toxoplasmosis. A major route of cysteine biosynthesis in this parasite is the reverse transsulfuration pathway involving two key enzymes cystathionine β-synthase (CBS) and cystathionine γ-lyase (CGL). CBS from T. gondii (TgCBS) catalyzes the pyridoxal-5́-phosphate-dependent condensation of homocysteine with either serine or O-acetylserine to produce cystathionine. The enzyme can perform alternative reactions that use homocysteine and cysteine as substrates leading to the endogenous biosynthesis of hydrogen sulfide, another key element in maintaining the intracellular redox equilibrium. In contrast with human CBS, TgCBS lacks the N-terminal heme binding domain and is not responsive to S-adenosylmethionine. Herein, we describe the structure of a TgCBS construct that lacks amino acid residues 466-491 and shows the same activity of the native protein. TgCBS Δ466-491 was determined alone and in complex with reaction intermediates. A complementary molecular dynamics analysis revealed a unique domain organization, similar to the pathogenic mutant D444N of human CBS. Our data provides one missing piece in the structural diversity of CBSs by revealing the so far unknown three-dimensional arrangement of the CBS-type of Apicomplexa. This domain distribution is also detected in yeast and bacteria like Pseudomonas aeruginosa. These results pave the way for understanding the mechanisms by which TgCBS regulates the intracellular redox of the parasite, and have far-reaching consequences for the functional understanding of CBSs with similar domain distribution.
Collapse
|
5
|
Benchoam D, Cuevasanta E, Julió Plana L, Capece L, Banerjee R, Alvarez B. Heme-Thiolate Perturbation in Cystathionine β-Synthase by Mercury Compounds. ACS OMEGA 2021; 6:2192-2205. [PMID: 33521459 PMCID: PMC7841933 DOI: 10.1021/acsomega.0c05475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/22/2020] [Indexed: 05/11/2023]
Abstract
Cystathionine β-synthase (CBS) is an enzyme involved in sulfur metabolism that catalyzes the pyridoxal phosphate-dependent condensation of homocysteine with serine or cysteine to form cystathionine and water or hydrogen sulfide (H2S), respectively. CBS possesses a b-type heme coordinated by histidine and cysteine. Fe(III)-CBS is inert toward exogenous ligands, while Fe(II)-CBS is reactive. Both Fe(III)- and Fe(II)-CBS are sensitive to mercury compounds. In this study, we describe the kinetics of the reactions with mercuric chloride (HgCl2) and p-chloromercuribenzoic acid. These reactions were multiphasic and resulted in five-coordinate CBS lacking thiolate ligation, with six-coordinate species as intermediates. Computational QM/MM studies supported the feasibility of formation of species in which the thiolate is proximal to both the iron ion and the mercury compound. The reactions of Fe(II)-CBS were faster than those of Fe(III)-CBS. The observed rate constants of the first phase increased hyperbolically with concentration of the mercury compounds, with limiting values of 0.3-0.4 s-1 for Fe(III)-CBS and 40 ± 4 s-1 for Fe(II)-CBS. The data were interpreted in terms of alternative models of conformational selection or induced fit. Exposure of Fe(III)-CBS to HgCl2 led to heme release and activity loss. Our study reveals the complexity of the interactions between mercury compounds and CBS.
Collapse
Affiliation(s)
- Dayana Benchoam
- Laboratorio
de Enzimología, Instituto de Química Biológica,
Facultad de Ciencias, Universidad de la
República, Montevideo, 11400 Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, 11800 Uruguay
| | - Ernesto Cuevasanta
- Laboratorio
de Enzimología, Instituto de Química Biológica,
Facultad de Ciencias, Universidad de la
República, Montevideo, 11400 Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, 11800 Uruguay
- Unidad
de Bioquímica Analítica, Centro de Investigaciones Nucleares,
Facultad de Ciencias, Universidad de la
República, Montevideo, 11400 Uruguay
| | - Laia Julió Plana
- Departamento
de Química Inorgánica, Analítica y Química
Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires/Instituto de Química
Física de los Materiales, Medio Ambiente y Energía (INQUIMAE-CONICET), C1428EGA Buenos
Aires, Argentina
| | - Luciana Capece
- Departamento
de Química Inorgánica, Analítica y Química
Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires/Instituto de Química
Física de los Materiales, Medio Ambiente y Energía (INQUIMAE-CONICET), C1428EGA Buenos
Aires, Argentina
| | - Ruma Banerjee
- Department
of Biological Chemistry, University of Michigan
Medical School, Ann Arbor, Michigan 48109, United States
| | - Beatriz Alvarez
- Laboratorio
de Enzimología, Instituto de Química Biológica,
Facultad de Ciencias, Universidad de la
República, Montevideo, 11400 Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, 11800 Uruguay
| |
Collapse
|
6
|
Lv H, Xu J, Bo T, Wang W. Characterization of Cystathionine β-Synthase TtCbs1 and Cysteine Synthase TtCsa1 Involved in Cysteine Biosynthesis in Tetrahymena thermophila. J Eukaryot Microbiol 2020; 68:e12834. [PMID: 33190347 DOI: 10.1111/jeu.12834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/21/2020] [Accepted: 11/07/2020] [Indexed: 12/19/2022]
Abstract
Cysteine is implicated in important biological processes. It is synthesized through two different pathways. Cystathionine β-synthase and cystathionine γ-lyase participate in the reverse transsulfuration pathway, while serine acetyltransferase and cysteine synthase function in the de novo pathway. Two evolutionarily related pyridoxal 5'-phosphate-dependent enzymes, cystathionine β-synthase TtCBS1 (TTHERM_00558300) and cysteine synthase TtCSA1 (TTHERM_00239430), were identified from a freshwater protozoan Tetrahymena thermophila. TtCbs1 contained the N-terminal heme binding domain, catalytic domain, and C-terminal regulatory domain, whereas TtCsa1 consisted of two α/β domains. The catalytic core of the two enzymes is similar. TtCBS1 and TtCSA1 showed high expression levels in the vegetative growth stage and decreased during the sexual developmental stage. TtCbs1 and TtCsa1 were localized in the cytoplasm throughout different developmental stages. His-TtCbs1 and His-TtCsa1 were expressed and purified in vitro. TtCbs1 catalyzed the canonical reaction with the highest velocity and possessed serine sulfhydrylase activity. TtCsa1 showed cysteine synthase activity with high Km for O-acetylserine and low Km for sulfide and also had serine sulfhydrylase activity toward serine. Both TtCbs1 and TtCsa1 catalyzed hydrogen sulfide producing. TtCBS1 knockdown and TtCSA1 knockout mutants affected cysteine and glutathione synthesis. TtCbs1 and TtCsa1 are involved in cysteine synthesis through two different pathways in T. thermophila.
Collapse
Affiliation(s)
- Hongrui Lv
- School of Life Science, Shanxi University, Taiyuan, 030006, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Jing Xu
- School of Life Science, Shanxi University, Taiyuan, 030006, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Tao Bo
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Wei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
7
|
Mothersole RG, Billett CR, Saini G, Mothersole MK, Darbyshire AL, Wolthers KR. S224 Presents a Catalytic Trade-off in PLP-Dependent l-Lanthionine Synthase from Fusobacterium nucleatum. Biochemistry 2020; 59:4250-4261. [PMID: 33112129 DOI: 10.1021/acs.biochem.0c00683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lanthionine synthase from the oral bacterium Fusobacterium nucleatum is a fold type II pyridoxal-5'-phosphate (PLP)-dependent enzyme that catalyzes the β-replacement of l-cysteine by a second molecule of l-cysteine to form H2S and l-lanthionine. The meso-isomer of the latter product is incorporated into the F. nucleatum peptidoglycan layer. Herein, we investigated the catalytic role of S224, which engages in hydrogen-bond contact with the terminal carboxylate of l-lanthionine in the closed conformation of the enzyme. Unexpectedly, the S224A variant elicited a 7-fold increase in the turnover rate for H2S and lanthionine formation and a 70-fold faster rate constant for the formation of the α-aminoacrylate intermediate compared to the wild-type enzyme. Presteady state kinetic analysis further showed that the reaction between S224A and l-cysteine leads to the formation of the more reactive ketoenamine tautomer of the α-aminoacrylate. The α-aminoacrylate with the protonated Schiff base is not an observable intermediate in the analogous reaction with the wild type, which may account for its attenuated kinetic properties. However, the S224A substitution is detrimental to other aspects of the catalytic cycle; it facilitates the α,β-elimination of l-lanthionine, and it weakens the enzyme's catalytic preference for the formation of l-lanthionine over that of l-cystathionine.
Collapse
Affiliation(s)
- Robert G Mothersole
- Department of Chemistry, The University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, British Columbia V1V1V7, Canada
| | - Cory R Billett
- Department of Chemistry, The University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, British Columbia V1V1V7, Canada
| | - Gurpreet Saini
- Department of Chemistry, The University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, British Columbia V1V1V7, Canada
| | - Mina K Mothersole
- Department of Chemistry, The University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, British Columbia V1V1V7, Canada
| | - Amanda L Darbyshire
- Department of Chemistry, The University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, British Columbia V1V1V7, Canada
| | - Kirsten R Wolthers
- Department of Chemistry, The University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, British Columbia V1V1V7, Canada
| |
Collapse
|
8
|
Zuhra K, Augsburger F, Majtan T, Szabo C. Cystathionine-β-Synthase: Molecular Regulation and Pharmacological Inhibition. Biomolecules 2020; 10:E697. [PMID: 32365821 PMCID: PMC7277093 DOI: 10.3390/biom10050697] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022] Open
Abstract
Cystathionine-β-synthase (CBS), the first (and rate-limiting) enzyme in the transsulfuration pathway, is an important mammalian enzyme in health and disease. Its biochemical functions under physiological conditions include the metabolism of homocysteine (a cytotoxic molecule and cardiovascular risk factor) and the generation of hydrogen sulfide (H2S), a gaseous biological mediator with multiple regulatory roles in the vascular, nervous, and immune system. CBS is up-regulated in several diseases, including Down syndrome and many forms of cancer; in these conditions, the preclinical data indicate that inhibition or inactivation of CBS exerts beneficial effects. This article overviews the current information on the expression, tissue distribution, physiological roles, and biochemistry of CBS, followed by a comprehensive overview of direct and indirect approaches to inhibit the enzyme. Among the small-molecule CBS inhibitors, the review highlights the specificity and selectivity problems related to many of the commonly used "CBS inhibitors" (e.g., aminooxyacetic acid) and provides a comprehensive review of their pharmacological actions under physiological conditions and in various disease models.
Collapse
Affiliation(s)
- Karim Zuhra
- Chair of Pharmacology, Section of Medicine, University of Fribourg, 1702 Fribourg, Switzerland; (K.Z.); (F.A.)
| | - Fiona Augsburger
- Chair of Pharmacology, Section of Medicine, University of Fribourg, 1702 Fribourg, Switzerland; (K.Z.); (F.A.)
| | - Tomas Majtan
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, 1702 Fribourg, Switzerland; (K.Z.); (F.A.)
| |
Collapse
|
9
|
Kasak L, Bakolitsa C, Hu Z, Yu C, Rine J, Dimster-Denk DF, Pandey G, Baets GD, Bromberg Y, Cao C, Capriotti E, Casadio R, Durme JV, Giollo M, Karchin R, Katsonis P, Leonardi E, Lichtarge O, Martelli PL, Masica D, Mooney SD, Olatubosun A, Pal LR, Radivojac P, Rousseau F, Savojardo C, Schymkowitz J, Thusberg J, Tosatto SC, Vihinen M, Väliaho J, Repo S, Moult J, Brenner SE, Friedberg I. Assessing computational predictions of the phenotypic effect of cystathionine-beta-synthase variants. Hum Mutat 2019; 40:1530-1545. [PMID: 31301157 PMCID: PMC7325732 DOI: 10.1002/humu.23868] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/22/2019] [Accepted: 07/09/2019] [Indexed: 12/28/2022]
Abstract
Accurate prediction of the impact of genomic variation on phenotype is a major goal of computational biology and an important contributor to personalized medicine. Computational predictions can lead to a better understanding of the mechanisms underlying genetic diseases, including cancer, but their adoption requires thorough and unbiased assessment. Cystathionine-beta-synthase (CBS) is an enzyme that catalyzes the first step of the transsulfuration pathway, from homocysteine to cystathionine, and in which variations are associated with human hyperhomocysteinemia and homocystinuria. We have created a computational challenge under the CAGI framework to evaluate how well different methods can predict the phenotypic effect(s) of CBS single amino acid substitutions using a blinded experimental data set. CAGI participants were asked to predict yeast growth based on the identity of the mutations. The performance of the methods was evaluated using several metrics. The CBS challenge highlighted the difficulty of predicting the phenotype of an ex vivo system in a model organism when classification models were trained on human disease data. We also discuss the variations in difficulty of prediction for known benign and deleterious variants, as well as identify methodological and experimental constraints with lessons to be learned for future challenges.
Collapse
Affiliation(s)
- Laura Kasak
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Constantina Bakolitsa
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Zhiqiang Hu
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Changhua Yu
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Jasper Rine
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
| | - Dago F. Dimster-Denk
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
| | - Gaurav Pandey
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Greet De Baets
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Yana Bromberg
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA
| | - Chen Cao
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA
- Computational Biology, Bioinformatics and Genomics, Biological Sciences Graduate Program, University of Maryland, College Park, MD, USA
| | - Emidio Capriotti
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Rita Casadio
- Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Joost Van Durme
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Vrije Universiteit Brussel, Brussels, Belgium
| | - Manuel Giollo
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Rachel Karchin
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Pier Luigi Martelli
- Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - David Masica
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | | | - Ayodeji Olatubosun
- Institute of Medical Technology, University of Tampere, Tampere, Finland
| | - Lipika R. Pal
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA
| | - Predrag Radivojac
- School of Informatics and Computing, Indiana University, Bloomington, IN, USA
| | - Frederic Rousseau
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Castrense Savojardo
- Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Joost Schymkowitz
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | | | | | - Mauno Vihinen
- Institute of Medical Technology, University of Tampere, Tampere, Finland
| | - Jouni Väliaho
- Institute of Medical Technology, University of Tampere, Tampere, Finland
| | - Susanna Repo
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - John Moult
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Steven E. Brenner
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Iddo Friedberg
- Department of Microbiology, Miami University, Oxford, OH, USA
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA USA
| |
Collapse
|
10
|
Tu Y, Kreinbring CA, Hill M, Liu C, Petsko GA, McCune CD, Berkowitz DB, Liu D, Ringe D. Crystal Structures of Cystathionine β-Synthase from Saccharomyces cerevisiae: One Enzymatic Step at a Time. Biochemistry 2018; 57:3134-3145. [PMID: 29630349 DOI: 10.1021/acs.biochem.8b00092] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cystathionine β-synthase (CBS) is a key regulator of sulfur amino acid metabolism, taking homocysteine from the methionine cycle to the biosynthesis of cysteine via the trans-sulfuration pathway. CBS is also a predominant source of H2S biogenesis. Roles for CBS have been reported for neuronal death pursuant to cerebral ischemia, promoting ovarian tumor growth, and maintaining drug-resistant phenotype by controlling redox behavior and regulating mitochondrial bioenergetics. The trans-sulfuration pathway is well-conserved in eukaryotes, but the analogous enzymes have different enzymatic behavior in different organisms. CBSs from the higher organisms contain a heme in an N-terminal domain. Though the presence of the heme, whose functions in CBSs have yet to be elucidated, is biochemically interesting, it hampers UV-vis absorption spectroscopy investigations of pyridoxal 5'-phosphate (PLP) species. CBS from Saccharomyces cerevisiae (yCBS) naturally lacks the heme-containing N-terminal domain, which makes it an ideal model for spectroscopic studies of the enzymological reaction catalyzed and allows structural studies of the basic yCBS catalytic core (yCBS-cc). Here we present the crystal structure of yCBS-cc, solved to 1.5 Å. Crystal structures of yCBS-cc in complex with enzymatic reaction intermediates have been captured, providing a structural basis for residues involved in catalysis. Finally, the structure of the yCBS-cc cofactor complex generated by incubation with an inhibitor shows apparent off-pathway chemistry not normally seen with CBS.
Collapse
Affiliation(s)
- Yupeng Tu
- Department of Biochemistry , Brandeis University , Waltham , Massachusetts 02454 , United States
| | - Cheryl A Kreinbring
- Department of Biochemistry , Brandeis University , Waltham , Massachusetts 02454 , United States
| | - Megan Hill
- Department of Biology , Brandeis University , Waltham , Massachusetts 02454 , United States
| | - Cynthia Liu
- Department of Biochemistry , Brandeis University , Waltham , Massachusetts 02454 , United States
| | - Gregory A Petsko
- Department of Neurology and Neuroscience , Weill Cornell Medical College , New York , New York 10021 , United States
| | - Christopher D McCune
- Department of Biochemistry , University of Nebraska , Lincoln , Nebraska 68588 , United States
| | - David B Berkowitz
- Department of Biochemistry , University of Nebraska , Lincoln , Nebraska 68588 , United States
| | - Dali Liu
- Department of Chemistry and Biochemistry , Loyola University Chicago , Chicago , Illinois 60660 , United States
| | - Dagmar Ringe
- Department of Biochemistry , Brandeis University , Waltham , Massachusetts 02454 , United States.,Department of Chemistry , Brandeis University , Waltham , Massachusetts 02454 , United States.,Rosenstiel Basic Medical Sciences Research Center , Brandeis University , Waltham , Massachusetts 02454 , United States
| |
Collapse
|
11
|
Filipovic MR, Zivanovic J, Alvarez B, Banerjee R. Chemical Biology of H 2S Signaling through Persulfidation. Chem Rev 2018; 118:1253-1337. [PMID: 29112440 PMCID: PMC6029264 DOI: 10.1021/acs.chemrev.7b00205] [Citation(s) in RCA: 656] [Impact Index Per Article: 93.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Signaling by H2S is proposed to occur via persulfidation, a posttranslational modification of cysteine residues (RSH) to persulfides (RSSH). Persulfidation provides a framework for understanding the physiological and pharmacological effects of H2S. Due to the inherent instability of persulfides, their chemistry is understudied. In this review, we discuss the biologically relevant chemistry of H2S and the enzymatic routes for its production and oxidation. We cover the chemical biology of persulfides and the chemical probes for detecting them. We conclude by discussing the roles ascribed to protein persulfidation in cell signaling pathways.
Collapse
Affiliation(s)
- Milos R. Filipovic
- Univeristy of Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France
- CNRS, IBGC, UMR 5095, F-33077 Bordeaux, France
| | - Jasmina Zivanovic
- Univeristy of Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France
- CNRS, IBGC, UMR 5095, F-33077 Bordeaux, France
| | - Beatriz Alvarez
- Laboratorio de Enzimología, Facultad de Ciencias and Center for Free Radical and Biomedical Research, Universidad de la Republica, 11400 Montevideo, Uruguay
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600, United States
| |
Collapse
|
12
|
Majtan T, Pey AL, Gimenez-Mascarell P, Martínez-Cruz LA, Szabo C, Kožich V, Kraus JP. Potential Pharmacological Chaperones for Cystathionine Beta-Synthase-Deficient Homocystinuria. Handb Exp Pharmacol 2018; 245:345-383. [PMID: 29119254 DOI: 10.1007/164_2017_72] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Classical homocystinuria (HCU) is the most common loss-of-function inborn error of sulfur amino acid metabolism. HCU is caused by a deficiency in enzymatic degradation of homocysteine, a toxic intermediate of methionine transformation to cysteine, chiefly due to missense mutations in the cystathionine beta-synthase (CBS) gene. As with many other inherited disorders, the pathogenic mutations do not target key catalytic residues, but rather introduce structural perturbations leading to an enhanced tendency of the mutant CBS to misfold and either to form nonfunctional aggregates or to undergo proteasome-dependent degradation. Correction of CBS misfolding would represent an alternative therapeutic approach for HCU. In this review, we summarize the complex nature of CBS, its multi-domain architecture, the interplay between the three cofactors required for CBS function [heme, pyridoxal-5'-phosphate (PLP), and S-adenosylmethionine (SAM)], as well as the intricate allosteric regulatory mechanism only recently understood, thanks to advances in CBS crystallography. While roughly half of the patients respond to treatment with a PLP precursor pyridoxine, many studies suggested usefulness of small chemicals, such as chemical and pharmacological chaperones or proteasome inhibitors, rescuing mutant CBS activity in cellular and animal models of HCU. Non-specific chemical chaperones and proteasome inhibitors assist in mutant CBS folding process and/or prevent its rapid degradation, thus resulting in increased steady-state levels of the enzyme and CBS activity. Recent interest in the field and available structural information will hopefully yield CBS-specific compounds, by using high-throughput screening and computational modeling of novel ligands, improving folding, stability, and activity of CBS mutants.
Collapse
Affiliation(s)
- Tomas Majtan
- Department of Pediatrics, School of Medicine, University of Colorado, Aurora, CO, USA.
| | - Angel L Pey
- Department of Physical Chemistry, University of Granada, Granada, Spain
| | - Paula Gimenez-Mascarell
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Technology Park of Bizkaia, Derio, Spain
| | - Luis Alfonso Martínez-Cruz
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Technology Park of Bizkaia, Derio, Spain
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Viktor Kožich
- Department of Pediatrics and Adolescent Medicine, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague 2, Czech Republic
| | - Jan P Kraus
- Department of Pediatrics, School of Medicine, University of Colorado, Aurora, CO, USA
| |
Collapse
|
13
|
Matoba Y, Yoshida T, Izuhara-Kihara H, Noda M, Sugiyama M. Crystallographic and mutational analyses of cystathionine β-synthase in the H 2 S-synthetic gene cluster in Lactobacillus plantarum. Protein Sci 2017; 26:763-783. [PMID: 28127810 DOI: 10.1002/pro.3123] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/10/2017] [Accepted: 01/17/2017] [Indexed: 11/05/2022]
Abstract
Cystathionine β-synthase (CBS) catalyzes the formation of l-cystathionine from l-serine and l-homocysteine. The resulting l-cystathionine is decomposed into l-cysteine, ammonia, and α-ketobutylic acid by cystathionine γ-lyase (CGL). This reverse transsulfuration pathway, which is catalyzed by both enzymes, mainly occurs in eukaryotic cells. The eukaryotic CBS and CGL have recently been recognized as major physiological enzymes for the generation of hydrogen sulfide (H2 S). In some bacteria, including the plant-derived lactic acid bacterium Lactobacillus plantarum, the CBS- and CGL-encoding genes form a cluster in their genomes. Inactivation of these enzymes has been reported to suppress H2 S production in bacteria; interestingly, it has been shown that H2 S suppression increases their susceptibility to various antibiotics. In the present study, we characterized the enzymatic properties of the L. plantarum CBS, whose amino acid sequence displays a similarity with those of O-acetyl-l-serine sulfhydrylase (OASS) that catalyzes the generation of l-cysteine from O-acetyl-l-serine (l-OAS) and H2 S. The L. plantarum CBS shows l-OAS- and l-cysteine-dependent CBS activities together with OASS activity. Especially, it catalyzes the formation of H2 S in the presence of l-cysteine and l-homocysteine, together with the formation of l-cystathionine. The high affinity toward l-cysteine as a first substrate and tendency to use l-homocysteine as a second substrate might be associated with its enzymatic ability to generate H2 S. Crystallographic and mutational analyses of CBS indicate that the Ala70 and Glu223 residues at the substrate binding pocket are important for the H2 S-generating activity.
Collapse
Affiliation(s)
- Yasuyuki Matoba
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8551, Japan
| | - Tomoki Yoshida
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8551, Japan
| | - Hisae Izuhara-Kihara
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8551, Japan
| | - Masafumi Noda
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8551, Japan
| | - Masanori Sugiyama
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
14
|
Smith AT, Pazicni S, Marvin KA, Stevens DJ, Paulsen KM, Burstyn JN. Functional divergence of heme-thiolate proteins: a classification based on spectroscopic attributes. Chem Rev 2015; 115:2532-58. [PMID: 25763468 DOI: 10.1021/cr500056m] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aaron T Smith
- †Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Evanston, Illinois 60208, United States
| | - Samuel Pazicni
- ‡Department of Chemistry, University of New Hampshire, 23 Academic Way, Durham, New Hampshire 03824, United States
| | - Katherine A Marvin
- §Department of Chemistry, Hendrix College, 1600 Washington Avenue, Conway, Arkansas 72032, United States
| | - Daniel J Stevens
- ∥Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Katherine M Paulsen
- ∥Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Judith N Burstyn
- ∥Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
15
|
Niu WN, Yadav PK, Adamec J, Banerjee R. S-glutathionylation enhances human cystathionine β-synthase activity under oxidative stress conditions. Antioxid Redox Signal 2015; 22:350-61. [PMID: 24893130 PMCID: PMC4307034 DOI: 10.1089/ars.2014.5891] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
AIMS Cystathionine β-synthase (CBS) catalyzes the first and rate-limiting step in the two-step trans-sulfuration pathway that converts homocysteine to cysteine. It is also one of three major enzymes responsible for the biogenesis of H2S, a signaling molecule. We have previously demonstrated that CBS is activated in cells challenged by oxidative stress, but the underlying molecular mechanism of this regulation has remained unclear. RESULTS Here, we demonstrate that S-glutathionylation of CBS enhances its activity ∼2-fold in vitro. Loss of this post-translational modification in the presence of dithiothreitol results in reversal to basal activity. Cys346 was identified as the site for S-glutathionylation by a combination of mass spectrometric, mutagenesis, and activity analyses. To test the physiological relevance of S-glutathionylation-dependent regulation of CBS, HEK293 cells were oxidatively challenged with peroxide, which is known to enhance the trans-sulfuration flux. Under these conditions, CBS glutathionylation levels increased and were correlated with a ∼3-fold increase in CBS activity. INNOVATION Collectively, our results reveal a novel post-translational modification of CBS, that is, glutathionylation, which functions as an allosteric activator under oxidative stress conditions permitting enhanced synthesis of both cysteine and H2S. CONCLUSIONS Our study elucidates a molecular mechanism for increased cysteine and therefore glutathione, synthesis via glutathionylation of CBS. They also demonstrate the potential for increased H2S production under oxidative stress conditions, particularly in tissues where CBS is a major source of H2S.
Collapse
Affiliation(s)
- Wei-Ning Niu
- 1 The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an, China
| | | | | | | |
Collapse
|
16
|
Ereño-Orbea J, Majtan T, Oyenarte I, Kraus JP, Martínez-Cruz LA. Purification, crystallization and preliminary crystallographic analysis of the catalytic core of cystathionine β-synthase from Saccharomyces cerevisiae. Acta Crystallogr F Struct Biol Commun 2014; 70:320-5. [PMID: 24598918 PMCID: PMC3944693 DOI: 10.1107/s2053230x14001502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 01/21/2014] [Indexed: 11/10/2022] Open
Abstract
Cystathionine β-synthase (CBS; EC 4.2.1.22) catalyzes the condensation of homocysteine and serine to form cystathionine, with the release of water. In humans, deficiency in CBS activity is the most common cause of hyperhomocysteinaemia and homocystinuria. More than 160 pathogenic mutations in the human CBS gene have been described to date. Here, the purification and preliminary crystallographic analysis of the catalytic core of CBS from Saccharomyces cerevisiae (ScCBS) is described which, in contrast to other eukaryotic CBSs, lacks the N-terminal haem-binding domain and is considered to be a useful model for investigation of the pyridoxal-5'-phosphate-mediated reactions of human CBS (hCBS). The purified protein yielded two different crystal forms belonging to space groups P41212 and P212121, with unit-cell parameters a = b = 72.390, c = 386.794 Å and a = 58.156, b = 89.988, c = 121.687 Å, respectively. Diffraction data were collected to 2.7 and 3.1 Å resolution, respectively, using synchrotron radiation. Preliminary analysis of the X-ray data suggests the presence of ScCBS homodimers in both types of crystals.
Collapse
Affiliation(s)
- June Ereño-Orbea
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, Edificio 800, 48160 Derio, Bizkaia , Spain
| | - Tomas Majtan
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Iker Oyenarte
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, Edificio 800, 48160 Derio, Bizkaia , Spain
| | - Jan P. Kraus
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Luis Alfonso Martínez-Cruz
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, Edificio 800, 48160 Derio, Bizkaia , Spain
| |
Collapse
|
17
|
Jaworski AF, Aitken SM. Expression and characterization of the Arabidopsis thaliana 11S globulin family. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:730-5. [PMID: 24530827 DOI: 10.1016/j.bbapap.2014.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/24/2014] [Accepted: 02/05/2014] [Indexed: 10/25/2022]
Abstract
The 11S globulins are the principal seed storage proteins in a variety of major crop species, including members of the legume and mustard families. They are targets for protein engineering studies attempting to alter the physicochemical properties of seed protein extracts (e.g. soybean) and to improve the nutritional quality of important agricultural crops. A key factor that has limited the success of this approach to date is insufficient accumulation of the engineered protein variants in vivo due to their improper folding and/or reduced stability, compared to the native protein. We have developed the Arabidopsis thaliana 11S proglobulins as a model system to enable studies exploring the factors underlying structural stability in this family of proteins. Yields of 1.5-4 mg/L were achieved for the three A. thaliana 11S proglobulins expressed in the Origami Escherichia coli cell line in super broth media at 20°C for 16 h and purified via immobilized-metal affinity chromatography. We also demonstrate that differential scanning fluorimetry is an effective and accessible technique to facilitate the screening of variants to enable the successful engineering of 11S seed storage proteins. The relative in vitro stability of the A. thaliana 11S proglobulins (proAtCRU1>proAtCRU3>proAtCRU2) is consistent between chemical and thermal denaturation studies.
Collapse
Affiliation(s)
| | - Susan M Aitken
- Department of Biology, Carleton University, Ottawa K1S 5B6, Canada; Department of Health Sciences, Carleton University, Ottawa K1S 5B6, Canada.
| |
Collapse
|
18
|
Structural basis of regulation and oligomerization of human cystathionine β-synthase, the central enzyme of transsulfuration. Proc Natl Acad Sci U S A 2013; 110:E3790-9. [PMID: 24043838 DOI: 10.1073/pnas.1313683110] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cystathionine β-synthase (CBS) controls the flux of sulfur from methionine to cysteine, a precursor of glutathione, taurine, and H2S. CBS condenses serine and homocysteine to cystathionine with the help of three cofactors, heme, pyridoxal-5'-phosphate, and S-adenosyl-l-methionine. Inherited deficiency of CBS activity causes homocystinuria, the most frequent disorder of sulfur metabolism. We present the structure of the human enzyme, discuss the unique arrangement of the CBS domains in the C-terminal region, and propose how they interact with the catalytic core of the complementary subunit to regulate access to the catalytic site. This arrangement clearly contrasts with other proteins containing the CBS domain including the recent Drosophila melanogaster CBS structure. The absence of large conformational changes and the crystal structure of the partially activated pathogenic D444N mutant suggest that the rotation of CBS motifs and relaxation of loops delineating the entrance to the catalytic site represent the most likely molecular mechanism of CBS activation by S-adenosyl-l-methionine. Moreover, our data suggest how tetramers, the native quaternary structure of the mammalian CBS enzymes, are formed. Because of its central role in transsulfuration, redox status, and H2S biogenesis, CBS represents a very attractive therapeutic target. The availability of the structure will help us understand the pathogenicity of the numerous missense mutations causing inherited homocystinuria and will allow the rational design of compounds modulating CBS activity.
Collapse
|
19
|
Carballal S, Cuevasanta E, Marmisolle I, Kabil O, Gherasim C, Ballou DP, Banerjee R, Alvarez B. Kinetics of reversible reductive carbonylation of heme in human cystathionine β-synthase. Biochemistry 2013; 52:4553-62. [PMID: 23790103 DOI: 10.1021/bi4004556] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cystathionine β-synthase (CBS) catalyzes the condensation of homocysteine with serine or cysteine to form cystathionine and water or hydrogen sulfide (H2S), respectively. In addition to pyridoxal phosphate, human CBS has a heme cofactor with cysteine and histidine as ligands. While Fe(III)-CBS is inert to exogenous ligands, Fe(II)-CBS can be reversibly inhibited by carbon monoxide (CO) and reoxidized by O2 to yield superoxide radical. In this study, we have examined the kinetics of Fe(II)CO-CBS formation and reoxidation. Reduction of Fe(III)-CBS by dithionite showed a square root dependence on concentration, indicating that the reductant species was the sulfur dioxide radical anion (SO2(•-)) that exists in rapid equilibrium with S2O4(2-). Formation of Fe(II)CO-CBS from Fe(II)-CBS and 1 mM CO occurred with a rate constant of (3.1 ± 0.4) × 10(-3) s(-1) (pH 7.4, 25 °C). The reaction of Fe(III)-CBS with the reduced form of the flavoprotein methionine synthase reductase in the presence of CO and NADPH resulted in its reduction and carbonylation to form Fe(II)CO-CBS. Fe(II)-CBS was formed as an intermediate with a rate constant of (9.3 ± 2.5) × 10(2) M(-1) s(-1). Reoxidation of Fe(II)CO-CBS by O2 was multiphasic. The major phase showed a hyperbolic dependence on O2 concentration. Although H2S is a product of the CBS reaction and a potential heme ligand, we did not find evidence of an effect of exogenous H2S on activity or heme binding. Reversible reduction of CBS by a physiologically relevant oxidoreductase is consistent with a regulatory role for the heme and could constitute a mechanism for cross talk among the CO, H2S, and superoxide signaling pathways.
Collapse
Affiliation(s)
- Sebastián Carballal
- Laboratorio de Enzimología, Facultad de Ciencias, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Su Y, Majtan T, Freeman KM, Linck R, Ponter S, Kraus JP, Burstyn JN. Comparative study of enzyme activity and heme reactivity in Drosophila melanogaster and Homo sapiens cystathionine β-synthases. Biochemistry 2013; 52:741-51. [PMID: 23002992 PMCID: PMC3751582 DOI: 10.1021/bi300615c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cystathionine β-synthase (CBS) is the first and rate-limiting enzyme in the transsulfuration pathway, which is critical for the synthesis of cysteine from methionine in eukaryotes. CBS uses coenzyme pyridoxal 5'-phosphate (PLP) for catalysis, and S-adenosylmethionine regulates the activity of human CBS, but not yeast CBS. Human and fruit fly CBS contain heme; however, the role for heme is not clear. This paper reports biochemical and spectroscopic characterization of CBS from fruit fly Drosophila melanogaster (DmCBS) and the CO/NO gas binding reactions of DmCBS and human CBS. Like CBS enzymes from lower organisms (e.g., yeast), DmCBS is intrinsically highly active and is not regulated by AdoMet. The DmCBS heme coordination environment, the reactivity, and the accompanying effects on enzyme activity are similar to those of human CBS. The DmCBS heme bears histidine and cysteine axial ligands, and the enzyme becomes inactive when the cysteine ligand is replaced. The Fe(II) heme in DmCBS is less stable than that in human CBS, undergoing more facile reoxidation and ligand exchange. In both CBS proteins, the overall stability of the protein is correlated with the heme oxidation state. Human and DmCBS Fe(II) hemes react relatively slowly with CO and NO, and the rate of the CO binding reaction is faster at low pH than at high pH. Together, the results suggest that heme incorporation and AdoMet regulation in CBS are not correlated, possibly providing two independent means for regulating the enzyme.
Collapse
Affiliation(s)
- Yang Su
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin, 53706 USA
| | - Tomas Majtan
- Department of Pediatrics, University of Colorado, Denver, Aurora, Colorado 80045
- Department of Genomics & Biotechnology, Institute of Molecular Biology SAS, Dubravska cesta 21, Bratislava, 84551, Slovakia
| | - Katherine M. Freeman
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin, 53706 USA
| | - Rachel Linck
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin, 53706 USA
| | - Sarah Ponter
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin, 53706 USA
| | - Jan P. Kraus
- Department of Pediatrics, University of Colorado, Denver, Aurora, Colorado 80045
| | - Judith N. Burstyn
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin, 53706 USA
| |
Collapse
|
21
|
Oyenarte I, Majtan T, Ereño J, Corral-Rodríguez MA, Klaudiny J, Majtan J, Kraus JP, Martínez-Cruz LA. Purification, crystallization and preliminary crystallographic analysis of the full-length cystathionine β-synthase from Apis mellifera. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1323-8. [PMID: 23143241 PMCID: PMC3515373 DOI: 10.1107/s1744309112038638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 09/08/2012] [Indexed: 11/10/2022]
Abstract
Cystathionine β-synthase (CBS) is a pyridoxal-5'-phosphate-dependent enzyme that catalyzes the first step of the transsulfuration pathway, namely the condensation of serine with homocysteine to form cystathionine. Mutations in the CBS gene are the single most common cause of hereditary homocystinuria, a multisystemic disease affecting to various extents the vasculature, connective tissues and central nervous system. At present, the crystal structure of CBS from Drosophila melanogaster is the only available structure of the full-length enzyme. Here we describe a cloning, overexpression, purification and preliminary crystallographic analysis of a full-length CBS from Apis mellifera (AmCBS) which maintains 51 and 46% sequence identity with its Drosophila and human homologs, respectively. The AmCBS yielded crystals belonging to space group P2(1)2(1)2(1), with unit-cell parameters a=85.90, b=95.87, c=180.33 Å. Diffraction data were collected to a resolution of 3.0 Å. The crystal structure contained two molecules in the asymmetric unit which presumably correspond to the dimeric species observed in solution.
Collapse
Affiliation(s)
- Iker Oyenarte
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, Edificio 800, Derio, Bizkaia 48160, Spain
| | - Tomas Majtan
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - June Ereño
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, Edificio 800, Derio, Bizkaia 48160, Spain
| | | | - Jaroslav Klaudiny
- Institute of Zoology, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 06, Slovakia
| | - Juraj Majtan
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 38, Slovakia
| | - Jan P. Kraus
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Luis Alfonso Martínez-Cruz
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, Edificio 800, Derio, Bizkaia 48160, Spain
| |
Collapse
|
22
|
Novel structural arrangement of nematode cystathionine β-synthases: characterization of Caenorhabditis elegans CBS-1. Biochem J 2012; 443:535-47. [PMID: 22240119 PMCID: PMC3316156 DOI: 10.1042/bj20111478] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CBSs (cystathionine β-synthases) are eukaryotic PLP (pyridoxal 5 *-phosphate)-dependent proteins that maintain cellular homocysteine homoeostasis and produce cystathionine and hydrogen sulfide. In the present study, we describe a novel structural arrangement of the CBS enzyme encoded by the cbs-1 gene of the nematode Caenorhabditis elegans. The CBS-1 protein contains a unique tandem repeat of two evolutionarily conserved catalytic regions in a single polypeptide chain. These repeats include a catalytically active C-terminal module containing a PLP-binding site and a less conserved N-terminal module that is unable to bind the PLP cofactor and cannot catalyse CBS reactions, as demonstrated by analysis of truncated variants and active-site mutant proteins. In contrast with other metazoan enzymes, CBS-1 lacks the haem and regulatory Bateman domain essential for activation by AdoMet (S-adenosylmethionine) and only forms monomers. We determined the tissue and subcellular distribution of CBS-1 and showed that cbs-1 knockdown by RNA interference leads to delayed development and to an approximately 10-fold elevation of homocysteine concentrations in nematode extracts. The present study provides the first insight into the metabolism of sulfur amino acids and hydrogen sulfide in C. elegans and shows that nematode CBSs possess a structural feature that is unique among CBS proteins.
Collapse
|
23
|
Singh S, Banerjee R. PLP-dependent H(2)S biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1814:1518-27. [PMID: 21315854 PMCID: PMC3193879 DOI: 10.1016/j.bbapap.2011.02.004] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 01/11/2011] [Accepted: 02/01/2011] [Indexed: 12/15/2022]
Abstract
The role of endogenously produced H(2)S in mediating varied physiological effects in mammals has spurred enormous recent interest in understanding its biology and in exploiting its pharmacological potential. In these early days in the field of H(2)S signaling, large gaps exist in our understanding of its biological targets, its mechanisms of action and the regulation of its biogenesis and its clearance. Two branches within the sulfur metabolic pathway contribute to H(2)S production: (i) the reverse transsulfuration pathway in which two pyridoxal 5'-phosphate-dependent (PLP) enzymes, cystathionine β-synthase and cystathionine γ-lyase convert homocysteine successively to cystathionine and cysteine and (ii) a branch of the cysteine catabolic pathway which converts cysteine to mercaptopyruvate via a PLP-dependent cysteine aminotransferase and subsequently, to mercaptopyruvate sulfur transferase-bound persulfide from which H(2)S can be liberated. In this review, we present an overview of the kinetics of the H(2)S-generating reactions, compare the structures of the PLP-enzymes involved in its biogenesis and discuss strategies for their regulation. This article is part of a Special Issue entitled: Pyridoxal Phospate Enzymology.
Collapse
Affiliation(s)
- Sangita Singh
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, MI 48109-5606
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, MI 48109-5606
| |
Collapse
|
24
|
Smith AT, Majtan T, Freeman KM, Su Y, Kraus JP, Burstyn JN. Cobalt cystathionine β-synthase: a cobalt-substituted heme protein with a unique thiolate ligation motif. Inorg Chem 2011; 50:4417-27. [PMID: 21480614 PMCID: PMC3350334 DOI: 10.1021/ic102586b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human cystathionine β-synthase (hCBS), a key enzyme in the trans-sulfuration pathway, catalyzes the condensation of serine with homocysteine to produce cystathionine. CBS from higher organisms is the only known protein that binds pyridoxal-5'-phosphate (PLP) and heme. Intriguingly, the function of the heme in hCBS has yet to be elucidated. Herein, we describe the characterization of a cobalt-substituted variant of hCBS (Co hCBS) in which CoPPIX replaces FePPIX (heme). Co(III) hCBS is a unique Co-substituted heme protein: the Co(III) ion is 6-coordinate, low-spin, diamagnetic, and bears a cysteine(thiolate) as one of its axial ligands. The peak positions and intensities of the electronic absorption and MCD spectra of Co(III) hCBS are distinct from those of previously Co-substituted heme proteins; TD-DFT calculations reveal that the unique features arise from the 6-coordinate Co bound axially by cysteine(thiolate) and a neutral donor, presumably histidine. Reactivity of Co(III) hCBS with HgCl(2) is consistent with a loss of the cysteine(thiolate) ligand. Co(III) hCBS is slowly reduced to Co(II) hCBS, which contains a 5-coordinate, low-spin, S = 1/2 Co-porphyrin that does not retain the cysteine(thiolate) ligand; this form of Co(II) hCBS binds NO((g)) but not CO((g)). Co(II) hCBS is reoxidized in the air to form a new Co(III) form, which does not contain a cysteine(thiolate) ligand. Canonical and alternative CBS assays suggest that maintaining the native heme ligation motif of wild-type Fe hCBS (Cys/His) is essential in maintaining maximal activity in Co hCBS. Correlation between the coordination structures and enzyme activity in both native Fe and Co-substituted proteins implicates a structural role for the heme in CBS.
Collapse
Affiliation(s)
- Aaron T. Smith
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin, 53706 USA
| | - Tomas Majtan
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado 80045
- Department of Genomics & Biotechnology, Institute of Molecular Biology SAS, Dubravska cesta 21, Bratislava, 84551, Slovakia
| | - Katherine M. Freeman
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin, 53706 USA
| | - Yang Su
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin, 53706 USA
| | - Jan P. Kraus
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado 80045
| | - Judith N. Burstyn
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin, 53706 USA
| |
Collapse
|
25
|
Aitken SM, Lodha PH, Morneau DJK. The enzymes of the transsulfuration pathways: active-site characterizations. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1511-7. [PMID: 21435402 DOI: 10.1016/j.bbapap.2011.03.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 03/03/2011] [Accepted: 03/09/2011] [Indexed: 11/19/2022]
Abstract
The diversity of reactions catalyzed by enzymes reliant on pyridoxal 5'-phosphate (PLP) demonstrates the catalytic versatility of this cofactor and the plasticity of the protein scaffolds of the major fold types of PLP-dependent enzymes. The enzymes of the transsulfuration (cystathionine γ-synthase and cystathionine β-lyase) and reverse transsulfuration (cystathionine β-synthase and cystathionine γ-lyase) pathways interconvert l-cysteine and l-homocysteine, the immediate precursor of l-methionine, in plants/bacteria and yeast/animals, respectively. These enzymes provide a useful model system for investigation of the mechanisms of substrate and reaction specificity in PLP-dependent enzymes as they catalyze distinct side chain rearrangements of similar amino acid substrates. Exploration of the underlying factors that enable enzymes to control the substrate and reaction specificity of this cofactor will enable the engineering of these properties and the development of therapeutics and antimicrobial compounds. Recent studies probing the role of active-site residues, of the enzymes of the transsulfuration pathways, as determinants of substrate and reaction specificity are the subject of this review. This article is part of a Special Issue entitled: Pyridoxal Phosphate Enzymology.
Collapse
Affiliation(s)
- Susan M Aitken
- Department of Biology, Carleton University, Ottowa, Canada.
| | | | | |
Collapse
|
26
|
Singh S, Ballou DP, Banerjee R. Pre-steady-state kinetic analysis of enzyme-monitored turnover during cystathionine β-synthase-catalyzed H(2)S generation. Biochemistry 2010; 50:419-25. [PMID: 21141970 DOI: 10.1021/bi1010893] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cystathionine β-synthase (CBS) catalyzes the first step in the transsulfuration pathway in mammals, i.e., the condensation of serine and homocysteine to produce cystathionine and water. Recently, we have reported a steady-state kinetic analysis of the three hydrogen sulfide (H(2)S)-generating reactions that are catalyzed by human and yeast CBS [Singh, S., et al. (2009) J. Biol. Chem. 284, 22457-22466]. In the study presented here, we report a pre-steady-state kinetic analysis of intermediates in the H(2)S-generating reactions catalyzed by yeast CBS (yCBS). Because yCBS does not have a heme cofactor, in contrast to human CBS, it is easier to observe reaction intermediates with yCBS. The most efficient route for H(2)S generation by yCBS is the β-replacement of the cysteine thiol with homocysteine. In this reaction, yCBS first reacts with cysteine to release H(2)S and forms an aminoacrylate intermediate (k(obs) of 1.61 ± 0.04 mM(-1) s(-1) at low cysteine concentrations and 2.8 ± 0.1 mM(-1) s(-1) at high cysteine concentrations, at 20 °C), which has an absorption maximum at 465 nm. Homocysteine binds to the E·aminoacrylate intermediate with a bimolecular rate constant of 142 mM(-1) s(-1) and rapidly condenses to form the enzyme-bound external aldimine of cystathionine. The reactions could be partially rate limited by release of the products, cystathionine and H(2)S.
Collapse
Affiliation(s)
- Sangita Singh
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, MI 48109-0600, USA
| | | | | |
Collapse
|
27
|
Residue N84 of Yeast Cystathionine β-Synthase is a Determinant of Reaction Specificity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1424-31. [DOI: 10.1016/j.bbapap.2010.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Revised: 01/28/2010] [Accepted: 02/12/2010] [Indexed: 11/23/2022]
|
28
|
Weeks CL, Singh S, Madzelan P, Banerjee R, Spiro TG. Heme regulation of human cystathionine beta-synthase activity: insights from fluorescence and Raman spectroscopy. J Am Chem Soc 2009; 131:12809-16. [PMID: 19722721 DOI: 10.1021/ja904468w] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cystathionine beta-synthase (CBS) plays a central role in homocysteine metabolism, and malfunction of the enzyme leads to homocystinuria, a devastating metabolic disease. CBS contains a pyridoxal 5'-phosphate (PLP) cofactor which catalyzes the synthesis of cystathionine from homocysteine and serine. Mammalian forms of the enzyme also contain a heme group, which is not involved in catalysis. It may, however, play a regulatory role, since the enzyme is inhibited when CO or NO are bound to the heme. We have investigated the mechanism of this inhibition using fluorescence and resonance Raman spectroscopies. CO binding is found to induce a tautomeric shift of the PLP from the ketoenamine to the enolimine form. The ketoenamine is key to PLP reactivity because its imine C horizontal lineN bond is protonated, facilitating attack by the nucleophilic substrate, serine. The same tautomer shift is also induced by heat inactivation of Fe(II)CBS, or by an Arg266Met replacement in Fe(II)CBS, which likewise inactivates the enzyme; in both cases the endogenous Cys52 ligand to the heme is replaced by another, unidentified ligand. CO binding also displaces Cys52 from the heme. We propose that the tautomer shift results from loss of a stabilizing H-bond from Asn149 to the PLP ring O3' atom, which is negatively charged in the ketoenamine tautomer. This loss would be induced by displacement of the PLP as a result of breaking the salt bridge between Cys52 and Arg266, which resides on a short helix that is also anchored to the PLP via H-bonds to its phosphate group. The salt bridge would be broken when Cys52 is displaced from the heme. Cys52 protonation is inferred to be the rate-limiting step in breaking the salt bridge, since the rate of the tautomer shift, following CO binding, increases with decreasing pH. In addition, elevation of the concentration of phosphate buffer was found to diminish the rate and extent of the tautomer shift, suggesting a ketoenamine-stabilizing phosphate binding site, possibly at the protonated imine bond of the PLP. Implications of these findings for CBS regulation are discussed.
Collapse
Affiliation(s)
- Colin L Weeks
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | |
Collapse
|
29
|
Characterisation of a human liver cystathionine beta synthase mRNA sequence corresponding to the c.[833T>C;844_845ins68] mutation in CBS gene. Mol Cell Biochem 2009; 332:183-7. [PMID: 19593657 DOI: 10.1007/s11010-009-0189-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 06/25/2009] [Indexed: 10/20/2022]
Abstract
Cystathionine beta synthase (CBS) is the only reaction that removes homocysteine from methionine cycle and redirects it to the transsulfuration pathway. The c.[833T>C;844_845ins68] mutation in the CBS gene has been reported initially as corresponding to classic homocystinuria. Studies showing that the insertion is associated with very smalls amounts of the transcript in the nucleus; others suggest that the heterozygous and homozygous subjects are protected against hyperhomocysteinemia and that the insertion tends to rescue the protein function. The liver is the major organ which metabolizes the circulating homocysteine to cystathionine. We have determined the sequence of the liver mRNA corresponding to the CBS c.[833T>C;844_845ins68] gene. We have shown that a novel splicing event could account for the modification in protein and possibly in enzyme activity.
Collapse
|
30
|
Lodha PH, Shadnia H, Woodhouse CM, Wright JS, Aitken SM. Investigation of residues Lys112, Glu136, His138, Gly247, Tyr248, and Asp249 in the active site of yeast cystathionine β-synthase. Biochem Cell Biol 2009; 87:531-40. [DOI: 10.1139/o09-003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cystathionine β-synthase (CBS), the first enzyme of the reverse transsulfuration pathway, catalyzes the pyridoxal 5′-phosphate–dependent condensation of l-serine and l-homocysteine to form l-cystathionine (l-Cth). A model of the l-Cth complex of the truncated form of yeast CBS (ytCBS), comprising the catalytic core, was constructed to identify residues involved in the binding of l-homocysteine and the distal portion of l-Cth. Residue K112 was selected for site-directed mutagenesis based on the results of the in silico docking of l-Cth to the modeled structure of ytCBS. Residues E136, H138, Y248, and D249 of ytCBS were also targeted as they correspond to identical polar residues lining the mouth of the active site in the structure of human CBS. A series of 8 site-directed mutants was constructed, and their order of impact on the ability of ytCBS to catalyze the β-replacement reaction is G247S ≈ K112Q > K112L ≈ K112R >> Y248F > D249A ≈ H138F > E136A. The β-replacement activity of G247S, which corresponds to the homocystinuria-associated G307S mutant of human CBS, is undetectable. The Kml-Ser of the K112L and K112R mutants is increased by 50- and 90-fold, respectively, while Kml-Hcys increases by only 2- and 4-fold, respectively. The Kml-Hcys of H138F and Y248F is increased by 8- and 18-fold, respectively. These results indicate that, while the targeted residues are not direct determinants of l-Hcys binding, G307, Y248, and K112 play essential roles in the maintenance of appropriate active-site conformation.
Collapse
Affiliation(s)
- Pratik H. Lodha
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Hooman Shadnia
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Colleen M. Woodhouse
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - James S. Wright
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Susan M. Aitken
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
31
|
Quazi F, Aitken SM. Characterization of the S289A,D mutants of yeast cystathionine β-synthase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:892-7. [DOI: 10.1016/j.bbapap.2009.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2008] [Revised: 02/17/2009] [Accepted: 02/18/2009] [Indexed: 10/21/2022]
|
32
|
Belew MS, Quazi FI, Willmore WG, Aitken SM. Kinetic characterization of recombinant human cystathionine β-synthase purified from E. coli. Protein Expr Purif 2009; 64:139-45. [DOI: 10.1016/j.pep.2008.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 10/19/2008] [Accepted: 10/24/2008] [Indexed: 10/21/2022]
|
33
|
Singh S, Madzelan P, Stasser J, Weeks CL, Becker D, Spiro TG, Penner-Hahn J, Banerjee R. Modulation of the heme electronic structure and cystathionine beta-synthase activity by second coordination sphere ligands: The role of heme ligand switching in redox regulation. J Inorg Biochem 2009; 103:689-97. [PMID: 19232736 DOI: 10.1016/j.jinorgbio.2009.01.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 01/05/2009] [Accepted: 01/07/2009] [Indexed: 11/30/2022]
Abstract
In humans, cystathionine beta-synthase (CBS) is a hemeprotein, which catalyzes a pyridoxal phosphate (PLP)-dependent condensation reaction. Changes in the heme environment are communicated to the active site, which is approximately 20A away. In this study, we have examined the role of H67 and R266, which are in the second coordination sphere of the heme ligands, H65 and C52, respectively, in modulating the heme's electronic properties and in transmitting information between the heme and active sites. While the H67A mutation is comparable to wild-type CBS, interesting differences are revealed by mutations at the R266 site. The pathogenic mutant, R266K, is moderately PLP-responsive while the R266M mutation shows dramatic differences in the ferrous state. The electrostatic interaction between C52 and R266 is critical for stabilizing the ferrous heme and its disruption leads to the facile formation of a 424nm (C-424) absorbing ferrous species, which is inactive, compared to the active 449nm ferrous species for wild-type CBS. Resonance Raman studies on the R266M mutant reveal that the kinetics of C52 rebinding after Fe-CO photolysis are comparable to that of wild-type CBS. EXAFS studies on C-424 CBS are consistent with the presence of two axial N/O low Z scatters with only one being a rigid unit of a histidine residue while the other could be a solvent molecule, an oxygen atom from the peptide backbone or a side chain nitrogen. The redox potential for the heme in full-length CBS is -350+/-4mV and is substantially lower than the value of -287+/-2mV determined for truncated CBS. A redox-regulated ligand change has the potential to serve as an allosteric on/off switch in human CBS and the second sphere ligand, R266, plays an important role in this transition.
Collapse
Affiliation(s)
- Sangita Singh
- Department of Biological Chemistry, University of Michigan, Ann Arbor, 48109-0606, United States
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Majtan T, Singh LR, Wang L, Kruger WD, Kraus JP. Active cystathionine beta-synthase can be expressed in heme-free systems in the presence of metal-substituted porphyrins or a chemical chaperone. J Biol Chem 2008; 283:34588-95. [PMID: 18849566 PMCID: PMC2596375 DOI: 10.1074/jbc.m805928200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 10/06/2008] [Indexed: 11/06/2022] Open
Abstract
Cystathionine beta-synthase (CBS), a key enzyme in the metabolism of homocysteine, has previously been shown to require a heme co-factor for maximal activity. However, the biochemical function of the CBS heme is not well defined. Here, we show that expression of human CBS in heme-deficient strains of Saccharomyces cerevisiae and Escherichia coli results in production of an enzyme that is misfolded and degraded. Addition of exogenous heme, porphyrins with non-iron metal, or porphyrin lacking metal entirely produced stable and active CBS enzyme. Purification of recombinant CBS enzyme expressed in the presence of various metalloporphyrins confirmed that Mn(III) and Co(III) had 30-60% of the specific activity of Fe(III)-CBS, and still responded to allosteric activation by S-adenosyl-L-methionine. Treatment of S. cerevisiae with the chemical chaperone trimethylamine-N-oxide resulted in near complete restoration of function to human CBS produced in a heme-deficient strain. Taken together, these results suggest that porphyrin moiety of the heme plays a critical role in proper CBS folding and assembly, but that the metal ion is not essential for this function or for allosteric regulation by S-adenosyl-L-methionine.
Collapse
Affiliation(s)
- Tomas Majtan
- Department of Pediatrics, University of Colorado, Denver, Aurora, Colorado 80045, USA
| | | | | | | | | |
Collapse
|
35
|
Carballal S, Madzelan P, Zinola CF, Graña M, Radi R, Banerjee R, Alvarez B. Dioxygen Reactivity and Heme Redox Potential of Truncated Human Cystathionine β-Synthase. Biochemistry 2008; 47:3194-201. [DOI: 10.1021/bi700912k] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sebastián Carballal
- Laboratorio de Enzimología and Laboratorio de Electroquímica Fundamental, Facultad de Ciencias, Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay, Unité de Biochimie Structurale, Institut Pasteur, 75015 Paris, France, Redox Biology Center and the Biochemistry Department, University of Nebraska, Lincoln, Nebraska 68588-0664, and Department of Biological Chemistry, University of Michigan, Ann Arbor,
| | - Peter Madzelan
- Laboratorio de Enzimología and Laboratorio de Electroquímica Fundamental, Facultad de Ciencias, Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay, Unité de Biochimie Structurale, Institut Pasteur, 75015 Paris, France, Redox Biology Center and the Biochemistry Department, University of Nebraska, Lincoln, Nebraska 68588-0664, and Department of Biological Chemistry, University of Michigan, Ann Arbor,
| | - Carlos F. Zinola
- Laboratorio de Enzimología and Laboratorio de Electroquímica Fundamental, Facultad de Ciencias, Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay, Unité de Biochimie Structurale, Institut Pasteur, 75015 Paris, France, Redox Biology Center and the Biochemistry Department, University of Nebraska, Lincoln, Nebraska 68588-0664, and Department of Biological Chemistry, University of Michigan, Ann Arbor,
| | - Martín Graña
- Laboratorio de Enzimología and Laboratorio de Electroquímica Fundamental, Facultad de Ciencias, Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay, Unité de Biochimie Structurale, Institut Pasteur, 75015 Paris, France, Redox Biology Center and the Biochemistry Department, University of Nebraska, Lincoln, Nebraska 68588-0664, and Department of Biological Chemistry, University of Michigan, Ann Arbor,
| | - Rafael Radi
- Laboratorio de Enzimología and Laboratorio de Electroquímica Fundamental, Facultad de Ciencias, Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay, Unité de Biochimie Structurale, Institut Pasteur, 75015 Paris, France, Redox Biology Center and the Biochemistry Department, University of Nebraska, Lincoln, Nebraska 68588-0664, and Department of Biological Chemistry, University of Michigan, Ann Arbor,
| | - Ruma Banerjee
- Laboratorio de Enzimología and Laboratorio de Electroquímica Fundamental, Facultad de Ciencias, Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay, Unité de Biochimie Structurale, Institut Pasteur, 75015 Paris, France, Redox Biology Center and the Biochemistry Department, University of Nebraska, Lincoln, Nebraska 68588-0664, and Department of Biological Chemistry, University of Michigan, Ann Arbor,
| | - Beatriz Alvarez
- Laboratorio de Enzimología and Laboratorio de Electroquímica Fundamental, Facultad de Ciencias, Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay, Unité de Biochimie Structurale, Institut Pasteur, 75015 Paris, France, Redox Biology Center and the Biochemistry Department, University of Nebraska, Lincoln, Nebraska 68588-0664, and Department of Biological Chemistry, University of Michigan, Ann Arbor,
| |
Collapse
|
36
|
Frank N, Kent JO, Meier M, Kraus JP. Purification and characterization of the wild type and truncated human cystathionine beta-synthase enzymes expressed in E. coli. Arch Biochem Biophys 2007; 470:64-72. [PMID: 18060852 DOI: 10.1016/j.abb.2007.11.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 11/09/2007] [Accepted: 11/10/2007] [Indexed: 11/17/2022]
Abstract
In this paper, we describe the expression and characterization of recombinant human cystathionine beta-synthase (CBS) in Escherichia coli. We have used a glutathione-S-transferase (GST) fusion protein vector and incorporated a cleavage site with a long hinge region which allows for the independent folding of CBS and its fusion partner. In addition, our construct has the added benefit of yielding a purified CBS which only contains one extra glycine amino acid residue at the N-terminus. In our two-step purification procedure we are able to obtain a highly pure enzyme in sufficient quantities for crystallography and other physical chemical methods. We have investigated the biochemical and catalytic properties of purified full-length human CBS and of two truncation mutants lacking the C-terminal domain or both the N-terminal heme-binding and the C-terminal regulatory regions. Specifically, we have determined the pH optima of the different CBS forms and their kinetic and spectral properties. The full-length and the C-terminally truncated enzyme had a broad pH 8.5 optimum while the pH optimum of the N- and C- terminally truncated enzyme was sharp and shifted to pH 9. Furthermore, we have shown unequivocally that CBS binds one mole of heme per subunit by determining both the heme and the iron content of the enzyme. The activity of the enzyme was unaffected by the redox status of the heme iron. Finally, we show that CBS is stimulated by S-adenosyl- l-methionine but not its analogs.
Collapse
Affiliation(s)
- Nina Frank
- Department of Pediatrics, University of Colorado School of Medicine, UCHSC, RC1 North, Rm. 4128, 12800, Mail Stop 8313, P.O. Box 6511, Aurora, CO 80045-0511, USA
| | | | | | | |
Collapse
|
37
|
Singh S, Madzelan P, Banerjee R. Properties of an unusual heme cofactor in PLP-dependent cystathionine beta-synthase. Nat Prod Rep 2007; 24:631-9. [PMID: 17534535 DOI: 10.1039/b604182p] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Sangita Singh
- Redox Biology Center and Department of Biochemistry, University of Nebraska, Lincoln, NE 68588-0664, USA
| | | | | |
Collapse
|
38
|
Lee SJ, Lee DH, Yoo HW, Koo SK, Park ES, Park JW, Lim HG, Jung SC. Identification and functional analysis of cystathionine beta-synthase gene mutations in patients with homocystinuria. J Hum Genet 2005; 50:648-54. [PMID: 16205833 DOI: 10.1007/s10038-005-0312-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Accepted: 08/31/2005] [Indexed: 11/28/2022]
Abstract
Homocystinuria is an autosomal recessive inborn error of metabolism that is most often caused by mutation in the cystathionine beta-synthase (CBS) gene. Patients may develop serious clinical manifestations such as lens dislocation, mental retardation, osteoporosis, and atherothrombotic vascular disease. Over 100 mutations have been reported, but so far, none have been reported in Korea. Mutation analysis of the CBS gene in six Korean patients with homocystinuria was performed by direct sequencing. Eight mutations were identified, including four known mutations (T257M, R336C, T353M, and G347S) and four novel mutations (L154Q, A155V, del234D, and A288T). All patients were compound heterozygotes. To characterize these mutations, normal or mutated forms of CBS were cloned into pcDNA3.1 expression vector followed by transfection into mammalian cells for transient expression. Whereas the expression levels of mutant proteins were comparable to that of normal control, enzyme activities of all the mutant forms were significantly decreased. In addition, a novel single nucleotide polymorphism, R18C, was identified, which showed one-third to two-thirds the enzyme activity of wild type and 1% of the allele frequency in normal control. The spectrum of mutations observed in Korean patients bears less resemblance to those observed in Western countries.
Collapse
Affiliation(s)
- Sook-Jin Lee
- Division of Genetic Disease, Department of Biomedical Sciences, National Institute of Health, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Cystathionine beta-synthase (CBS) is the first enzyme in the transsulfuration pathway, catalyzing the conversion of serine and homocysteine to cystathionine and water. The enzyme contains three functional domains. The middle domain contains the catalytic core, which is responsible for the pyridoxal phosphate-catalyzed reaction. The C-terminal domain contains a negative regulatory region that is responsible for allosteric activation of the enzyme by S-adenosylmethionine. The N-terminal domain contains heme, and this domain regulates the enzyme in response to redox conditions. Besides its canonical reaction, CBS can catalyze alternative reactions that produce hydrogen sulfide, a novel neuromodulator in the brain. Mutations in human CBS result in homocystinuria, an autosomal recessive disorder characterized by defects in a variety of different organ systems. The most common CBS allele is 833T>C (I278T), which is associated with pyridoxine-responsive homocystinuria. A complementation system in S. cerevisiae has been developed for analysis of human CBS mutations. Using this system, it has been discovered that deletion of the C-terminal domain of CBS can suppress the functional defects of many patient-derived mutations. This finding suggests it may be possible to develop drugs that interact with the C-terminal domain of CBS to treat elevated homocysteine in humans.
Collapse
Affiliation(s)
- Kwang-Hwan Jhee
- Department of Applied Chemistry, Kumoh National Institute of Technology, Kyungbuk, Korea
| | | |
Collapse
|
40
|
Banerjee R, Zou CG. Redox regulation and reaction mechanism of human cystathionine-beta-synthase: a PLP-dependent hemesensor protein. Arch Biochem Biophys 2005; 433:144-56. [PMID: 15581573 DOI: 10.1016/j.abb.2004.08.037] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Revised: 08/16/2004] [Indexed: 10/26/2022]
Abstract
Cystathionine beta-synthase in mammals lies at a pivotal crossroad in methionine metabolism directing flux toward cysteine synthesis and catabolism. The enzyme exhibits a modular organization and complex regulation. It catalyzes the beta-replacement of the hydroxyl group of serine with the thiolate of homocysteine and is unique in being the only known pyridoxal phosphate-dependent enzyme that also contains heme b as a cofactor. The heme functions as a sensor and modulates enzyme activity in response to redox change and to CO binding. Mutations in this enzyme are the single most common cause of hereditary hyperhomocysteinemia. Elucidation of the crystal structure of a truncated and highly active form of the human enzyme containing the heme- and pyridoxal phosphate binding domains has afforded a structural perspective on mechanistic and mutation analysis studies. The C-terminal regulatory domain containing two CBS motifs exerts intrasteric regulation and binds the allosteric activator, S-adenosylmethionine. Studies with mammalian cells in culture as well as with animal models have unraveled multiple layers of regulation of cystathionine beta-synthase in response to redox perturbations and reveal the important role of this enzyme in glutathione-dependent redox homestasis. This review discusses the recent advances in our understanding of the structure, mechanism, and regulation of cystathionine beta-synthase from the perspective of its physiological function, focusing on the clinically relevant human enzyme.
Collapse
Affiliation(s)
- Ruma Banerjee
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588-0664, USA.
| | | |
Collapse
|
41
|
Aitken SM, Kirsch JF. The enzymology of cystathionine biosynthesis: strategies for the control of substrate and reaction specificity. Arch Biochem Biophys 2005; 433:166-75. [PMID: 15581575 DOI: 10.1016/j.abb.2004.08.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Indexed: 11/29/2022]
Abstract
The ability of enzymes to catalyze specific reactions, while excluding others, is central to cellular metabolism. Control of reaction specificity is of particular importance for enzymes that employ catalytically versatile cofactors, of which pyridoxal 5'-phosphate is a prime example. Cystathionine gamma-synthase and cystathionine beta-synthase are the first enzymes in the transsulfuration and reverse transsulfuration pathways, respectively. Each of them occupies branch-point positions in amino acid metabolism and as such are subject to transcriptional and post-translational regulation. Both enzymes catalyze the pyridoxal 5'-phosphate-dependent formation of l-cystathionine; however, their substrate and reaction specificities are distinct. The mechanisms whereby these enzymes control the chemistry of the cofactor are the subject of this review.
Collapse
Affiliation(s)
- Susan M Aitken
- Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6.
| | | |
Collapse
|
42
|
Evande R, Ojha S, Banerjee R. Visualization of PLP-bound intermediates in hemeless variants of human cystathionine β-synthase: evidence that lysine 119 is a general base. Arch Biochem Biophys 2004; 427:188-96. [PMID: 15196993 DOI: 10.1016/j.abb.2004.04.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Revised: 04/08/2004] [Indexed: 11/18/2022]
Abstract
Cystathionine beta-synthase catalyzes the condensation of serine and homocysteine to give cystathionine in a pyridoxal phosphate (PLP)-dependent reaction. The human enzyme contains a single heme per monomer that is bound in an N-terminal 69 amino acid extension that is missing from the otherwise highly homologous yeast enzyme. The heme dominates the UV-visible spectrum and obscures kinetic characterization of the PLP-bound reaction intermediates. In this study, we have engineered a hemeless mutant of human cystathionine beta-synthase by deletion of the N-terminal 69 amino acids. The resulting variant displays approximately 40% of the activity seen with the wild type enzyme, binds stoichiometric amounts of PLP, and permits spectral characterization of PLP-based intermediates. The enzyme as isolated exhibits an absorption maximum at 412nm corresponding to a protonated internal aldimine. Addition of serine shifts the lambdamax to 420nm (assigned as the external aldimine) with a broad shoulder between 450 and 500nm (assigned as the aminoacrylate intermediate). Addition of the product, cystathionine, also leads to formation of an external aldimine (420nm). Homocysteine elicits a red shift (and a decrease in absorption) in the spectrum from 412 to 424nm and an increase in absorption at 330nm, presumably due to formation of a dead-end complex. Mutation of K119, the residue that forms the Schiff base, to alanine results in a approximately 10(3)-fold decrease in activity, which increases approximately 2-fold in the presence of an exogenous base, ethylamine. Spectral shifts (412 --> 420nm) consistent with the formation of external aldimines are observed in the presence of serine or cystathionine, but an aminoacrylate intermediate is not formed at detectable levels. These results are consistent with an additional role for K119 as a general base in the reaction catalyzed by human cystathionine beta-synthase.
Collapse
Affiliation(s)
- Ruby Evande
- Biochemistry Department, University of Nebraska, Lincoln, NE 68588-0664, USA
| | | | | |
Collapse
|
43
|
Miles EW, Kraus JP. Cystathionine beta-synthase: structure, function, regulation, and location of homocystinuria-causing mutations. J Biol Chem 2004; 279:29871-4. [PMID: 15087459 DOI: 10.1074/jbc.r400005200] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Edith Wilson Miles
- NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0830, USA
| | | |
Collapse
|
44
|
Scott JW, Hawley SA, Green KA, Anis M, Stewart G, Scullion GA, Norman DG, Hardie DG. CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations. J Clin Invest 2004; 113:274-84. [PMID: 14722619 PMCID: PMC311435 DOI: 10.1172/jci19874] [Citation(s) in RCA: 577] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2003] [Accepted: 11/04/2003] [Indexed: 11/17/2022] Open
Abstract
CBS domains are defined as sequence motifs that occur in several different proteins in all kingdoms of life. Although thought to be regulatory, their exact functions have been unknown. However, their importance was underlined by findings that mutations in conserved residues within them cause a variety of human hereditary diseases, including (with the gene mutated in parentheses): Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase); retinitis pigmentosa (IMP dehydrogenase-1); congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members); and homocystinuria (cystathionine beta-synthase). AMP-activated protein kinase is a sensor of cellular energy status that is activated by AMP and inhibited by ATP, but the location of the regulatory nucleotide-binding sites (which are prime targets for drugs to treat obesity and diabetes) was not characterized. We now show that tandem pairs of CBS domains from AMP-activated protein kinase, IMP dehydrogenase-2, the chloride channel CLC2, and cystathionine beta-synthase bind AMP, ATP, or S-adenosyl methionine,while mutations that cause hereditary diseases impair this binding. This shows that tandem pairs of CBS domains act, in most cases, as sensors of cellular energy status and, as such, represent a newly identified class of binding domain for adenosine derivatives.
Collapse
Affiliation(s)
- John W Scott
- Division of Molecular Physiology, Faculty of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Scotland, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Banerjee R, Evande R, Kabil O, Ojha S, Taoka S. Reaction mechanism and regulation of cystathionine beta-synthase. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1647:30-5. [PMID: 12686104 DOI: 10.1016/s1570-9639(03)00044-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In mammals, cystathionine beta-synthase catalyzes the first step in the transsulfuration pathway which provides an avenue for the conversion of the essential amino acid, methionine, to cysteine. Cystathionine beta-synthase catalyzes a PLP-dependent condensation of serine and homocysteine to cystathionine and is unique in also having a heme cofactor. In this review, recent advances in our understanding of the kinetic mechanism of the yeast and human enzymes as well as pathogenic mutants of the human enzyme and insights into the role of heme in redox sensing are discussed from the perspective of the crystal structure of the catalytic core of the human enzyme.
Collapse
Affiliation(s)
- Ruma Banerjee
- Biochemistry Department, University of Nebraska, Lincoln, NE 68588-0664, USA.
| | | | | | | | | |
Collapse
|
46
|
Oliveriusová J, Kery V, Maclean KN, Kraus JP. Deletion mutagenesis of human cystathionine beta-synthase. Impact on activity, oligomeric status, and S-adenosylmethionine regulation. J Biol Chem 2002; 277:48386-94. [PMID: 12379655 DOI: 10.1074/jbc.m207087200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cystathionine beta-synthase is a tetrameric hemeprotein that catalyzes the pyridoxal 5'-phosphate-dependent condensation of serine and homocysteine to cystathionine. We have used deletion mutagenesis of both the N and C termini to investigate the functional organization of the catalytic and regulatory regions of this enzyme. Western blot analysis of these mutants expressed in Escherichia coli indicated that residues 497-543 are involved in tetramer formation. Deletion of the 70 N-terminal residues resulted in a heme-free protein retaining 20% of wild type activity. Additional deletion of 151 C-terminal residues from this mutant resulted in an inactive enzyme. Expression of this double-deletion mutant as a glutathione S-transferase fusion protein generated catalytically active protein (15% of wild type activity) that was unaffected by subsequent removal of the fusion partner. The function of the N-terminal region appears to be primarily steric in nature and involved in the correct folding of the enzyme. The C-terminal region of human cystathionine beta-synthase contains two hydrophobic motifs designated "CBS domains." Partial deletion of the most C-terminal of these domains decreased activity and caused enzyme aggregation and instability. Removal of both of these domains resulted in stable constitutively activated enzyme. Deletion of as few as 8 C-terminal residues increased enzyme activity and abolished any further activation by S-adenosylmethionine indicating that the autoinhibitory role of the C-terminal region is not exclusively a function of the CBS domains.
Collapse
Affiliation(s)
- Jana Oliveriusová
- Department of Pediatrics, University of Colorado School of Medicine, Denver 80262, USA
| | | | | | | |
Collapse
|
47
|
Maclean KN, Janosík M, Kraus E, Kozich V, Allen RH, Raab BK, Kraus JP. Cystathionine beta-synthase is coordinately regulated with proliferation through a redox-sensitive mechanism in cultured human cells and Saccharomyces cerevisiae. J Cell Physiol 2002; 192:81-92. [PMID: 12115739 DOI: 10.1002/jcp.10118] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cystathionine beta-synthase (CBS) catalyzes the condensation of serine with homocysteine to form cystathionine and occupies a crucial regulatory position between the methionine cycle and the biosynthesis of cysteine by transsulfuration. Analysis of CBS activity under a variety of growth conditions indicated that CBS is coordinately regulated with proliferation in both yeast and human cells. In batch cultures of Saccharomyces cerevisiae, maximal CBS activities were observed in the exponential phase of cells grown on glucose, while growth-arrested cultures or those growing non-fermentatively on ethanol or glycerol had approximately 3-fold less activity. CBS activity assays and Western blotting indicated that growth-specific regulation of CBS is evolutionarily conserved in a range of human cell lines. CBS activity was found to be maximal during proliferation and was reduced two- to five-fold when cells became quiescent at confluence. In cultured HepG2 cells, the human CBS gene is induced by serum and basic fibroblast growth factor and is downregulated, but not abolished, by contact inhibition, serum-starvation, nutrient depletion, or the induction of differentiation. Consequently, for certain cell types, CBS may represent a novel marker of both differentiation and proliferation. The intracellular level of the CBS regulator compound, S-adenosylmethionine, was found to reflect the proliferation status of both yeast and human cells, and as such, constitutes an additional mechanism for proliferation-specific regulation of human CBS. Our data indicates that screening compounds for the ability to affect transsulfuration in cultured cell models must take proliferation status into account to avoid masking regulatory interactions that may be of significance in vivo.
Collapse
Affiliation(s)
- Kenneth N Maclean
- Department of Pediatrics, University of Colorado School of Medicine, Denver, Colorado 80262, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Taoka S, Banerjee R. Stopped-flow kinetic analysis of the reaction catalyzed by the full-length yeast cystathionine beta-synthase. J Biol Chem 2002; 277:22421-5. [PMID: 11948191 DOI: 10.1074/jbc.m202513200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cystathionine beta-synthase found in yeast catalyzes a pyridoxal phosphate-dependent condensation of homocysteine and serine to form cystathionine. Unlike the homologous mammalian enzymes, yeast cystathionine beta-synthase lacks a second cofactor, heme, which facilitates detailed kinetic studies of the enzyme because the different pyridoxal phosphate-bound intermediates can be followed by their characteristic absorption spectra. We conducted a rapid reaction kinetic analysis of the full-length yeast enzyme in the forward and reverse directions. In the forward direction, we observed formation of the external aldimine of serine (14 mm(-1) s(-1)) and the aminoacrylate intermediate (15 s(-1)). Homocysteine binds to the aminoacrylate with a bimolecular rate constant of 35 mm(-1) s(-1) and rapidly converts to cystathionine (180 s(-1)), leading to the accumulation of a 420 nm absorbing species, which has been assigned as the external aldimine of cystathionine. Release of cystathionine is slow (k = 2.3 s(-1)), which is similar to k(cat) (1.7 s(-1)) at 15 degrees C, consistent with this being a rate-determining step. In the reverse direction, cystathionine binds to the enzyme with a bimolecular rate constant of 1.5 mm(-1) s(-1) and is rapidly converted to the aminoacrylate without accumulation of the external aldimine. The kinetic behavior of the full-length enzyme shows notable differences from that reported for a truncated form of the enzyme lacking the C-terminal third of the protein (Jhee, K. H., Niks, D., McPhie, P., Dunn, M. F., and Miles, E. W. (2001) Biochemistry 40, 10873-10880).
Collapse
Affiliation(s)
- Shinichi Taoka
- Biochemistry Department, University of Nebraska, Lincoln, Nebraska 68588-0664, USA
| | | |
Collapse
|
49
|
Lo SCC, Hamer L, Hamer JE. Molecular characterization of a cystathionine beta-synthase gene, CBS1, in Magnaporthe grisea. EUKARYOTIC CELL 2002; 1:311-4. [PMID: 12455965 PMCID: PMC118034 DOI: 10.1128/ec.1.2.311-314.2002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
CBS1 from Magnaporthe grisea is a structural and functional homolog of the cystathionine beta-synthase (CBS) gene from Saccharomyces cerevisiae. Our studies indicated that M. grisea can utilize homocysteine and methionine through a CBS-independent pathway. The results also revealed responses of M. grisea to homocysteine that are reminiscent of human homocystinuria.
Collapse
Affiliation(s)
- Sze Chung Clive Lo
- Microbial Research, Paradigm Genetics, Inc., Research Triangle Park, North Carolina 27709, USA.
| | | | | |
Collapse
|
50
|
Taoka S, Green EL, Loehr TM, Banerjee R. Mercuric chloride-induced spin or ligation state changes in ferric or ferrous human cystathionine beta-synthase inhibit enzyme activity. J Inorg Biochem 2001; 87:253-9. [PMID: 11744063 DOI: 10.1016/s0162-0134(01)00336-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cystathionine beta-synthase is a key heme and pyridoxal phosphate-dependent enzyme involved in homocysteine metabolism in humans. The role of the recently discovered heme in this protein remains an important open question. The axial ligands to the heme in both the ferrous and ferric states have been assigned as cysteine and histidine residues, respectively. In this study, we have examined the effect of ligation and spin state changes in the heme on the activity of the enzyme. Treatment of the ferric enzyme with HgCl2 results in the conversion of six-coordinate low-spin heme to five-coordinate high-spin heme and is paralleled by a loss of activity. In contrast, treatment of the ferrous enzyme with HgCl2 results in replacement of the cysteine ligand by an unidentified sixth ligand and retention of the six-coordinate state, and is also accompanied by loss of enzyme activity. Treatment of the five-coordinate HgCl2-treated enzyme with thiols, such as homocysteine, results in reversion to a six-coordinate state. Resonance Raman spectroscopy with 34S-labeled enzyme reveals the return of the endogenous thiol ligand under these conditions and rules out direct coordination by the thiolate of homocysteine to the heme.
Collapse
Affiliation(s)
- S Taoka
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588-0664, USA
| | | | | | | |
Collapse
|