1
|
Duan XP, Zhang CB, Wang WH, Lin DH. Role of calcineurin in regulating renal potassium (K +) excretion: Mechanisms of calcineurin inhibitor-induced hyperkalemia. Acta Physiol (Oxf) 2024; 240:e14189. [PMID: 38860527 PMCID: PMC11250626 DOI: 10.1111/apha.14189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/12/2024]
Abstract
Calcineurin, protein phosphatase 2B (PP2B) or protein phosphatase 3 (PP3), is a calcium-dependent serine/threonine protein phosphatase. Calcineurin is widely expressed in the kidney and regulates renal Na+ and K+ transport. In the thick ascending limb, calcineurin plays a role in inhibiting NKCC2 function by promoting the dephosphorylation of the cotransporter and an intracellular sorting receptor, called sorting-related-receptor-with-A-type repeats (SORLA), is involved in modulating the effect of calcineurin on NKCC2. Calcineurin also participates in regulating thiazide-sensitive NaCl-cotransporter (NCC) in the distal convoluted tubule. The mechanisms by which calcineurin regulates NCC include directly dephosphorylation of NCC, regulating Kelch-like-3/CUL3 E3 ubiquitin-ligase complex, which is responsible for WNK (with-no-lysin-kinases) ubiquitination, and inhibiting Kir4.1/Kir5.1, which determines NCC expression/activity. Finally, calcineurin is also involved in regulating ROMK (Kir1.1) channels in the cortical collecting duct and Cyp11 2 expression in adrenal zona glomerulosa. In summary, calcineurin is involved in the regulation of NKCC2, NCC, and inwardly rectifying K+ channels in the kidney, and it also plays a role in modulating aldosterone synthesis in adrenal gland, which regulates epithelial-Na+-channel expression/activity. Thus, application of calcineurin inhibitors (CNIs) is expected to abrupt calcineurin-mediated regulation of transepithelial Na+ and K+ transport in the kidney. Consequently, CNIs cause hypertension, compromise renal K+ excretion, and induce hyperkalemia.
Collapse
Affiliation(s)
- Xin-Peng Duan
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Cheng-Biao Zhang
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Dao-Hong Lin
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
2
|
Zhang Y, Bock F, Ferdaus M, Arroyo JP, L Rose K, Patel P, Denton JS, Delpire E, Weinstein AM, Zhang MZ, Harris RC, Terker AS. Low potassium activation of proximal mTOR/AKT signaling is mediated by Kir4.2. Nat Commun 2024; 15:5144. [PMID: 38886379 PMCID: PMC11183202 DOI: 10.1038/s41467-024-49562-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
The renal epithelium is sensitive to changes in blood potassium (K+). We identify the basolateral K+ channel, Kir4.2, as a mediator of the proximal tubule response to K+ deficiency. Mice lacking Kir4.2 have a compensated baseline phenotype whereby they increase their distal transport burden to maintain homeostasis. Upon dietary K+ depletion, knockout animals decompensate as evidenced by increased urinary K+ excretion and development of a proximal renal tubular acidosis. Potassium wasting is not proximal in origin but is caused by higher ENaC activity and depends upon increased distal sodium delivery. Three-dimensional imaging reveals Kir4.2 knockouts fail to undergo proximal tubule expansion, while the distal convoluted tubule response is exaggerated. AKT signaling mediates the dietary K+ response, which is blunted in Kir4.2 knockouts. Lastly, we demonstrate in isolated tubules that AKT phosphorylation in response to low K+ depends upon mTORC2 activation by secondary changes in Cl- transport. Data support a proximal role for cell Cl- which, as it does along the distal nephron, responds to K+ changes to activate kinase signaling.
Collapse
Affiliation(s)
- Yahua Zhang
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Nashville, TN, USA
| | - Fabian Bock
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Nashville, TN, USA
| | - Mohammed Ferdaus
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Juan Pablo Arroyo
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Nashville, TN, USA
| | - Kristie L Rose
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Purvi Patel
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jerod S Denton
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alan M Weinstein
- Department of Physiology and Biophysics, Weil Medical College, New York, NY, USA
| | - Ming-Zhi Zhang
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Nashville, TN, USA
| | - Raymond C Harris
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Nashville, TN, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Andrew S Terker
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Center for Kidney Disease, Nashville, TN, USA.
| |
Collapse
|
3
|
Duan XP, Zheng JY, Jiang SP, Wang MX, Zhang C, Chowdhury T, Wang WH, Lin DH. mTORc2 in Distal Convoluted Tubule and Renal K + Excretion during High Dietary K + Intake. J Am Soc Nephrol 2024; 35:00001751-990000000-00330. [PMID: 38788191 PMCID: PMC11387030 DOI: 10.1681/asn.0000000000000406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/20/2024] [Indexed: 05/26/2024] Open
Abstract
Key Points
High K stimulates mechanistic target of rapamycin complex 2 (mTORc2) in the distal convoluted tubule (DCT).Inhibition of mTORc2 decreased the basolateral Kir4.1/Kir5.1 and Na-Cl cotransporter in the DCT.Inhibition of mTORc2 of the DCT compromised kidneys' ability to excrete potassium during high K intake.
Background
Renal mechanistic target of rapamycin complex 2 (mTORc2) plays a role in regulating renal K+ excretion (renal-EK) and K+ homeostasis. Inhibition of renal mTORc2 causes hyperkalemia due to suppressing epithelial Na+ channel and renal outer medullary K+ (Kir1.1) in the collecting duct. We now explore whether mTORc2 of distal convoluted tubules (DCTs) regulates basolateral Kir4.1/Kir5.1, Na-Cl cotransporter (NCC), and renal-EK.
Methods
We used patch-clamp technique to examine basolateral Kir4.1/Kir5.1 in early DCT, immunoblotting, and immunofluorescence to examine NCC expression and in vivo measurement of urinary K+ excretion to determine baseline renal-EK in mice treated with an mTORc2 inhibitor and in DCT-specific rapamycin-insensitive companion of mTOR knockout (DCT-RICTOR-KO) mice.
Results
Inhibition of mTORc2 with AZD8055 abolished high-K+–induced inhibition of Kir4.1/Kir5.1 in DCT, high potassium–induced depolarization of the DCT membrane, and high potassium–induced suppression of phosphorylated Na-Cl cotransporter (pNCC) expression. AZD8055 stimulated the 40-pS inwardly rectifying K+ channel (Kir4.1/Kir5.1-heterotetramer) in early DCT in the mice on overnight high potassium intake; this effect was absent in the presence of protein kinase C inhibitors, which also stimulated Kir4.1/Kir5.1. AZD8055 treatment decreased renal-EK in animals on overnight high-potassium diet. Deletion of RICTOR in the DCT increased the Kir4.1/Kir5.1-mediated K+ currents, hyperpolarized the DCT membrane, and increased the expression of pWNK4 and pNCC. Renal-EK was lower and plasma K+ was higher in DCT-RICTOR-KO mice than corresponding control mice. In addition, overnight high-potassium diet did not inhibit Kir4.1/Kir5.1 activity in the DCT and failed to inhibit the expression of pNCC in DCT-RICTOR-KO mice. Overnight high potassium intake stimulated renal-EK in control mice, but this effect was attenuated in DCT-RICTOR-KO mice. Thus, overnight high potassium intake induced hyperkalemia in DCT-RICTOR-KO mice but not in control mice.
Conclusions
mTORc2 of the DCT inhibits Kir4.1/Kir5.1 activity and NCC expression and stimulates renal-EK during high potassium intake.
Collapse
Affiliation(s)
- Xin-Peng Duan
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Jun-Ya Zheng
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Shao-Peng Jiang
- Department of Physiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Ming-Xiao Wang
- Department of Physiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Chengbiao Zhang
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Tanzina Chowdhury
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York
| | - Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Dao-Hong Lin
- Department of Pharmacology, New York Medical College, Valhalla, New York
| |
Collapse
|
4
|
Delgado-Bermúdez A, Yeste M, Bonet S, Pinart E. Physiological role of potassium channels in mammalian germ cell differentiation, maturation, and capacitation. Andrology 2024. [PMID: 38436215 DOI: 10.1111/andr.13606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Ion channels are essential for differentiation and maturation of germ cells, and even for fertilization in mammals. Different types of potassium channels have been identified, which are grouped into voltage-gated channels (Kv), ligand-gated channels (Kligand ), inwardly rectifying channels (Kir ), and tandem pore domain channels (K2P ). MATERIAL-METHODS The present review includes recent findings on the role of potassium channels in sperm physiology of mammals. RESULTS-DISCUSSION While most studies conducted thus far have been focused on the physiological role of voltage- (Kv1, Kv3, and Kv7) and calcium-gated channels (SLO1 and SLO3) during sperm capacitation, especially in humans and rodents, little data about the types of potassium channels present in the plasma membrane of differentiating germ cells exist. In spite of this, recent evidence suggests that the content and regulation mechanisms of these channels vary throughout spermatogenesis. Potassium channels are also essential for the regulation of sperm cell volume during epididymal maturation and for preventing premature membrane hyperpolarization. It is important to highlight that the nature, biochemical properties, localization, and regulation mechanisms of potassium channels are species-specific. In effect, while SLO3 is the main potassium channel involved in the K+ current during sperm capacitation in rodents, different potassium channels are implicated in the K+ outflow and, thus, plasma membrane hyperpolarization during sperm capacitation in other mammalian species, such as humans and pigs. CONCLUSIONS Potassium conductance is essential for male fertility, not only during sperm capacitation but throughout the spermiogenesis and epididymal maturation.
Collapse
Affiliation(s)
- Ariadna Delgado-Bermúdez
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Department of Biology, Faculty of Sciences, Unit of Cell Biology, University of Girona, Girona, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Department of Biology, Faculty of Sciences, Unit of Cell Biology, University of Girona, Girona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Sergi Bonet
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Department of Biology, Faculty of Sciences, Unit of Cell Biology, University of Girona, Girona, Spain
| | - Elisabeth Pinart
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Department of Biology, Faculty of Sciences, Unit of Cell Biology, University of Girona, Girona, Spain
| |
Collapse
|
5
|
Duan XP, Xiao Y, Su XT, Zheng JY, Gurley S, Emathinger J, Yang CL, McCormick J, Ellison DH, Lin DH, Wang WH. Role of Angiotensin II Type 1a Receptor (AT1aR) of Renal Tubules in Regulating Inwardly Rectifying Potassium Channels 4.2 (Kir4.2), Kir4.1, and Epithelial Na + Channel (ENaC). Hypertension 2024; 81:126-137. [PMID: 37909221 PMCID: PMC10842168 DOI: 10.1161/hypertensionaha.123.21389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/12/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND Kir4.2 and Kir4.1 play a role in regulating membrane transport in the proximal tubule (PT) and in the distal-convoluted-tubule (DCT), respectively. METHODS We generated kidney-tubule-specific-AT1aR-knockout (Ks-AT1aR-KO) mice to examine whether renal AT1aR regulates Kir4.2 and Kir4.1. RESULTS Ks-AT1aR-KO mice had a lower systolic blood pressure than Agtr1aflox/flox (control) mice. Ks-AT1aR-KO mice had a lower expression of NHE3 (Na+/H+-exchanger 3) and Kir4.2, a major Kir-channel in PT, than Agtr1aflox/flox mice. Whole-cell recording also demonstrated that the membrane potential in PT of Ks-AT1aR-KO mice was lesser negative than Agtr1aflox/flox mice. The expression of Kir4.1 and Kir5.1, Kir4.1/Kir5.1-mediated K+ currents of DCT and DCT membrane potential in Ks-AT1aR-KO mice, were similar to Agtr1aflox/flox mice. However, angiotensin II perfusion for 7 days hyperpolarized the membrane potential in PT and DCT of the control mice but not in Ks-AT1aR-KO mice, while angiotensin II perfusion did not change the expression of Kir4.1, Kir4.2, and Kir5.1. Deletion of AT1aR did not significantly affect the expression of αENaC (epithelial Na+ channel) and βENaC but increased cleaved γENaC expression. Patch-clamp experiments demonstrated that deletion of AT1aR increased amiloride-sensitive Na+-currents in the cortical-collecting duct but not in late-DCT. However, tertiapin-Q sensitive renal outer medullary potassium channel currents were similar in both genotypes. CONCLUSIONS AT1aR determines the baseline membrane potential of PT by controlling Kir4.2 expression/activity but AT1aR is not required for determining the baseline membrane potential of the DCT and Kir4.1/Kir5.1 activity/expression. However, AT1aR is required for angiotensin II-induced hyperpolarization of basolateral membrane of PT and DCT. Deletion of AT1aR had no effect on baseline renal outer medullary potassium channel activity but increased ENaC activity in the CCD.
Collapse
Affiliation(s)
- Xin-Peng Duan
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
- Department of Pharmacology, New York Medical College, Valhalla, NY
| | - Yu Xiao
- Department of Physiology, Qiqihar Medical College, Heilongjiang, China
- Department of Pharmacology, New York Medical College, Valhalla, NY
| | - Xiao-Tong Su
- Department of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Jun-Ya Zheng
- Department of Pharmacology, New York Medical College, Valhalla, NY
| | - Susan Gurley
- Department of Medicine, Oregon Health & Science University, Portland, Oregon
| | | | - Chao-Ling Yang
- Department of Medicine, Oregon Health & Science University, Portland, Oregon
| | - James McCormick
- Department of Medicine, Oregon Health & Science University, Portland, Oregon
| | - David H. Ellison
- Department of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Dao-Hong Lin
- Department of Pharmacology, New York Medical College, Valhalla, NY
| | - Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, NY
| |
Collapse
|
6
|
Wouda RD, Gritter M, Karsten M, Michels EH, Nieuweboer TM, Danser AJ, de Borst MH, Hoorn EJ, Rotmans JI, Vogt L. Kaliuresis and Intracellular Uptake of Potassium with Potassium Citrate and Potassium Chloride Supplements: A Randomized Controlled Trial. Clin J Am Soc Nephrol 2023; 18:1260-1271. [PMID: 37382933 PMCID: PMC10578626 DOI: 10.2215/cjn.0000000000000228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND A potassium replete diet is associated with lower cardiovascular risk but may increase the risk of hyperkalemia, particularly in people using renin-angiotensin-aldosterone system inhibitors. We investigated whether intracellular uptake and potassium excretion after an acute oral potassium load depend on the accompanying anion and/or aldosterone and whether this results in altered plasma potassium change. METHODS In this placebo-controlled interventional cross-over trial including 18 healthy individuals, we studied the acute effects of one oral load of potassium citrate (40 mmol), potassium chloride (40 mmol), and placebo in random order after overnight fasting. Supplements were administered after a 6-week period with and without lisinopril pretreatment. Linear mixed effect models were used to compare blood and urine values before and after supplementation and between the interventions. Univariable linear regression was used to determine the association between baseline variables and change in blood and urine values after supplementation. RESULTS During the 4-hour follow-up, the rise in plasma potassium was similar for all interventions. After potassium citrate, both red blood cell potassium-as measure of the intracellular potassium-and transtubular potassium gradient (TTKG)-reflecting potassium secretory capacity-were higher than after potassium chloride or potassium citrate with lisinopril pretreatment. Baseline aldosterone was significantly associated with TTKG after potassium citrate, but not after potassium chloride or potassium citrate with lisinopril pretreatment. The observed TTKG change after potassium citrate was significantly associated with urine pH change during this intervention ( R =0.60, P < 0.001). CONCLUSIONS With similar plasma potassium increase, red blood cell potassium uptake and kaliuresis were higher after an acute load of potassium citrate as compared with potassium chloride alone or pretreatment with lisinopril. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER Potassium supplementation in patients with chronic kidney disease and healthy subjects: effects on potassium and sodium balance, NL7618.
Collapse
Affiliation(s)
- Rosa D. Wouda
- Department of Internal Medicine, Section of Nephrology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Martin Gritter
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Micky Karsten
- Department of Internal Medicine, Section of Nephrology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Erik H.A. Michels
- Department of Internal Medicine, Section of Nephrology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Tamar M. Nieuweboer
- Department of Internal Medicine, Section of Nephrology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - A.H. Jan Danser
- Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Martin H. de Borst
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, Groningen, The Netherlands
| | - Ewout J. Hoorn
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Joris I. Rotmans
- Department of Internal Medicine, Division of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Liffert Vogt
- Department of Internal Medicine, Section of Nephrology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Liu H, Sun Q, Ding Z, Shi W, Wang WH, Zhang C. Adenosine stimulates the basolateral 50 pS K + channel in renal proximal tubule via adenosine-A1 receptor. Front Physiol 2023; 14:1242975. [PMID: 37700760 PMCID: PMC10493268 DOI: 10.3389/fphys.2023.1242975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023] Open
Abstract
Background: The basolateral potassium channels play an important role in maintaining the membrane transport in the renal proximal tubules (PT) and adenosine receptors have been shown to regulate the trans-epithelial Na+ absorption in the PT. The aim of the present study is to explore whether adenosine also regulates the basolateral K+ channel of the PT and to determine the adenosine receptor type and the signaling pathway which mediates the effect of adenosine on the K+ channel. Methods: We have used the single channel recording to examine the basolateral K+ channel activity in the proximal tubules of the mouse kidney. All experiments were performed in cell-attached patches. Results: Single channel recording has detected a 50 pS inwardly-rectifying K+ channel with high channel open probability and this 50 pS K+ channel is a predominant type K+ channel in the basolateral membrane of the mouse PT. Adding adenosine increased 50 pS K+ channel activity in cell-attached patches, defined by NPo (a product of channel Numbers and Open Probability). The adenosine-induced stimulation of the 50 pS K+ channel was absent in the PT pretreated with DPCPX, a selective inhibitor of adenosine A1 receptor. In contrast, adenosine was still able to stimulate the 50 pS K+ channel in the PT pretreated with CP-66713, a selective adenosine A2 receptor antagonist. This suggests that the stimulatory effect of adenosine on the 50 pS K+ channel of the PT was mediated by adenosine-A1 receptor. Moreover, the effect of adenosine on the 50 pS K+ channel was blocked in the PT pretreated with U-73122 or Calphostin C, suggesting that adenosine-induced stimulation of the 50 pS K+ channels of the PT was due to the activation of phospholipase C (PLC) and protein kinase C (PKC) pathway. In contrast, the inhibition of phospholipase A2 (PLA2) with AACOCF3 or inhibition of protein kinase A (PKA) with H8 failed to block the adenosine-induced stimulation of the 50 pS K+ channel of the PT. Conclusion: We conclude that adenosine activates the 50 pS K+ channels in the basolateral membrane of PT via adenosine-A1 receptor. Furthermore, the effect of adenosine on the 50 pS K+ channel is mediated by PLC-PKC signaling pathway.
Collapse
Affiliation(s)
- Hao Liu
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Qi Sun
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Zheng Ding
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Wensen Shi
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, NY, United States
| | - Chengbiao Zhang
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
8
|
Zhang C, Guo J. Diverse functions of the inward-rectifying potassium channel Kir5.1 and its relationship with human diseases. Front Physiol 2023; 14:1127893. [PMID: 36923292 PMCID: PMC10008857 DOI: 10.3389/fphys.2023.1127893] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/15/2023] [Indexed: 03/02/2023] Open
Abstract
The inward-rectifying potassium channel subunit Kir5.1, encoded by Kcnj16, can form functional heteromeric channels (Kir4.1/5.1 and Kir4.2/5.1) with Kir4.1 (encoded by Kcnj10) or Kir4.2 (encoded by Kcnj15). It is expressed in the kidneys, pancreas, thyroid, brain, and other organs. Although Kir5.1 cannot form functional homomeric channels in most cases, an increasing number of studies in recent years have found that the functions of this subunit should not be underestimated. Kir5.1 can confer intracellular pH sensitivity to Kir4.1/5.1 channels, which can act as extracellular potassium sensors in the renal distal convoluted tubule segment. This segment plays an important role in maintaining potassium and acid-base balances. This review summarizes the various pathophysiological processes involved in Kir5.1 and the expression changes of Kir5.1 as a differentially expressed gene in various cancers, as well as describing several other disease phenotypes caused by Kir5.1 dysfunction.
Collapse
Affiliation(s)
- Chaojie Zhang
- Nephrology Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Nephrology, Zhengzhou University, Zhengzhou, China.,Henan Province Research Center for Kidney Disease, Zhengzhou, China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Jia Guo
- Nephrology Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Nephrology, Zhengzhou University, Zhengzhou, China.,Henan Province Research Center for Kidney Disease, Zhengzhou, China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| |
Collapse
|
9
|
Meng XX, Zhang H, Meng GL, Jiang SP, Duan XP, Wang WH, Wang MX. The effect of high-dietary K + (HK) on Kir4.1/Kir5.1 and ROMK in the distal convoluted tubule (DCT) is not affected by gender and Cl - content of the diet. Front Physiol 2022; 13:1039029. [PMID: 36439248 PMCID: PMC9682262 DOI: 10.3389/fphys.2022.1039029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
Basolateral potassium channels in the distal convoluted tubule (DCT) are composed of inwardly-rectifying potassium channel 4.1 (Kir4.1) and Kir5.1. Kir4.1 interacts with Kir5.1 to form a 40 pS K+ channel which is the only type K+ channel expressed in the basolateral membrane of the DCT. Moreover, Kir4.1/Kir5.1 heterotetramer plays a key role in determining the expression and activity of thiazide-sensitive Na-Cl cotransport (NCC). In addition to Kir4.1/Kir5.1, Kir1.1 (ROMK) is expressed in the apical membrane of the late DCT (DCT2) and plays a key role in mediating epithelial Na+ channel (ENaC)-dependent K+ excretion. High dietary-K+-intake (HK) stimulates ROMK and inhibits Kir4.1/Kir5.1 in the DCT. Inhibition of Kir4.1/Kir5.1 is essential for HK-induced suppression of NCC whereas the stimulation of ROMK is important for increasing ENaC-dependent K+ excretion during HK. We have now used the patch-clamp-technique to examine whether gender and Cl- content of K+-diet affect HK-induced inhibition of basolateral Kir4.1/Kir5.1 and HK-induced stimulation of ROMK. Single-channel-recording shows that basolateral 40 pS K+ channel (Kir4.1/Kir5.1) activity of the DCT defined by NPo was 1.34 (1% KCl, normal K, NK), 0.95 (5% KCl) and 1.03 (5% K+-citrate) in male mice while it was 1.47, 1.02 and 1.05 in female mice. The whole-cell recording shows that Kir4.1/Kir5.1-mediated-K+ current of the early-DCT (DCT1) was 1,170 pA (NK), 725 pA (5% KCl) and 700 pA (5% K+-citrate) in male mice whereas it was 1,125 pA, 674 pA and 700 pA in female mice. Moreover, K+-currents (IK) reversal potential of DCT (an index of membrane potential) was -63 mV (NK), -49 mV (5% KCl) and -49 mV (5% K-citrate) in the male mice whereas it was -63 mV, -50 mV and -50 mV in female mice. Finally, TPNQ-sensitive whole-cell ROMK-currents in the DCT2 /initial-connecting tubule (CNT) were 910 pA (NK), 1,520 pA (5% KCl) and 1,540 pA (5% K+-citrate) in male mice whereas the ROMK-mediated K+ currents were 1,005 pA, 1,590 pA and 1,570 pA in female mice. We conclude that the effect of HK intake on Kir4.1/Kir5.1 of the DCT and ROMK of DCT2/CNT is similar between male and female mice. Also, Cl- content in HK diets has no effect on HK-induced inhibition of Kir4.1/Kir5.1 of the DCT and HK-induced stimulation of ROMK in DCT2/CNT.
Collapse
Affiliation(s)
- Xin-Xin Meng
- Department of Physiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Hao Zhang
- Department of Physiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Gui-Lin Meng
- Department of Physiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Shao-Peng Jiang
- Department of Physiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Xin-Peng Duan
- Department of Pharmacology, New York Medical College, Valhalla, NY, United States
| | - Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, NY, United States,*Correspondence: Ming-Xiao Wang, ; Wen-Hui Wang,
| | - Ming-Xiao Wang
- Department of Physiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China,*Correspondence: Ming-Xiao Wang, ; Wen-Hui Wang,
| |
Collapse
|
10
|
Role of inwardly rectifying K+ channel 5.1 (Kir5.1) in the regulation of renal membrane transport. Curr Opin Nephrol Hypertens 2022; 31:479-485. [PMID: 35894283 DOI: 10.1097/mnh.0000000000000817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Kir5.1 interacts with Kir4.2 in proximal tubule and with Kir4.1 in distal convoluted tubule (DCT), connecting tubule (CNT) and cortical collecting duct (CCD) to form basolateral-K+-channels. Kir4.2/Kir5.1 and Kir4.1/Kir5.1 play an important role in regulating Na+/HCO3--transport of the proximal tubule and Na+/K+ -transport in the DCT/CNT/CCD. The main focus of this review is to provide an overview of the recent development in the field regarding the role of Kir5.1 regulating renal electrolyte transport in the proximal tubule and DCT. RECENT FINDINGS Loss-of-function-mutations of KCNJ16 cause a new form of tubulopathy, characterized by hypokalaemia, Na+-wasting, acid-base-imbalance and metabolic-acidosis. Abnormal bicarbonate transport induced by loss-of-function of KCNJ16-mutants is recapitulated in Kir4.2-knockout-(Kir4.2 KO) mice. Deletion of Kir5.1 also abolishes the effect of dietary Na+ and K+-intakes on the basolateral membrane voltage and NCC expression/activity. Long-term high-salt intake or high-K+-intake causes hyperkalaemic in Kir5.1-deficient mice. SUMMARY Kir4.2/Kir5.1 activity in the proximal tubule plays a key role in regulating Na+, K+ and bicarbonate-transport through regulating electrogenic-Na+-bicarbonate-cotransporter-(NBCe1) and type 3-Na+/H+-exchanger-(NHE3). Kir4.1/Kir5.1 activity of the DCT plays a critical role in mediating the effect of dietary-K+ and Na+-intakes on NCC activity/expression. As NCC determines the Na+ delivery rate to the aldosterone-sensitive distal nephron (ASDN), defective regulation of NCC during high-salt and high-K+ compromises renal K+ excretion and K+ homeostasis.
Collapse
|
11
|
Wang WH, Lin DH. Inwardly rectifying K + channels 4.1 and 5.1 (Kir4.1/Kir5.1) in the renal distal nephron. Am J Physiol Cell Physiol 2022; 323:C277-C288. [PMID: 35759440 PMCID: PMC9291425 DOI: 10.1152/ajpcell.00096.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The inwardly rectifying potassium channel (Kir) 4.1 (encoded by KCNJ10) interacts with Kir5.1 (encoded by KCNJ16) to form a major basolateral K+ channel in the renal distal convoluted tubule (DCT), connecting tubule (CNT), and the cortical collecting duct (CCD). Kir4.1/Kir5.1 heterotetramer plays an important role in regulating Na+ and K+ transport in the DCT, CNT, and CCD. A recent development in the field has firmly established the role of Kir4.1/Kir5.1 heterotetramer of the DCT in the regulation of thiazide-sensitive Na-Cl cotransporter (NCC). Changes in Kir4.1/Kir5.1 activity of the DCT are an essential step for the regulation of NCC expression/activity induced by dietary K+ and Na+ intakes and play a role in modulating NCC by type 2 angiotensin II receptor (AT2R), bradykinin type II receptor (BK2R), and β-adrenergic receptor. Since NCC activity determines the Na+ delivery rate to the aldosterone-sensitive distal nephron (ASDN), a distal nephron segment from late DCT to CCD, Kir4.1/Kir5.1 activity plays a critical role not only in the regulation of renal Na+ absorption but also in modulating renal K+ excretion and maintaining K+ homeostasis. Thus, Kir4.1/Kir5.1 activity serves as an important component of renal K+ sensing mechanism. The main focus of this review is to provide an overview regarding the role of Kir4.1 and Kir5.1 of the DCT and CCD in the regulation of renal K+ excretion and Na+ absorption.
Collapse
Affiliation(s)
- Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Dao-Hong Lin
- Department of Pharmacology, New York Medical College, Valhalla, New York
| |
Collapse
|
12
|
McClenahan SJ, Kent CN, Kharade SV, Isaeva E, Williams JC, Han C, Terker A, Gresham R, Lazarenko RM, Days EL, Romaine IM, Bauer JA, Boutaud O, Sulikowski GA, Harris R, Weaver CD, Staruschenko A, Lindsley CW, Denton JS. VU6036720: The First Potent and Selective In Vitro Inhibitor of Heteromeric Kir4.1/5.1 Inward Rectifier Potassium Channels. Mol Pharmacol 2022; 101:357-370. [PMID: 35246480 PMCID: PMC9092466 DOI: 10.1124/molpharm.121.000464] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/14/2022] [Indexed: 01/14/2023] Open
Abstract
Heteromeric Kir4.1/Kir5.1 (KCNJ10/KCNJ16) inward rectifier potassium (Kir) channels play key roles in the brain and kidney, but pharmacological tools for probing their physiology and therapeutic potential have not been developed. Here, we report the discovery, in a high-throughput screening of 80,475 compounds, of the moderately potent and selective inhibitor VU0493690, which we selected for characterization and chemical optimization. VU0493690 concentration-dependently inhibits Kir4.1/5.1 with an IC50 of 0.96 μM and exhibits at least 10-fold selectivity over Kir4.1 and ten other Kir channels. Multidimensional chemical optimization of VU0493690 led to the development of VU6036720, the most potent (IC50 = 0.24 μM) and selective (>40-fold over Kir4.1) Kir4.1/5.1 inhibitor reported to date. Cell-attached patch single-channel recordings revealed that VU6036720 inhibits Kir4.1/5.1 activity through a reduction of channel open-state probability and single-channel current amplitude. Elevating extracellular potassium ion by 20 mM shifted the IC50 6.8-fold, suggesting that VU6036720 is a pore blocker that binds in the ion-conduction pathway. Mutation of the "rectification controller" asparagine 161 to glutamate (N161E), which is equivalent to small-molecule binding sites in other Kir channels, led to a strong reduction of inhibition by VU6036720. Renal clearance studies in mice failed to show a diuretic response that would be consistent with inhibition of Kir4.1/5.1 in the renal tubule. Drug metabolism and pharmacokinetics profiling revealed that high VU6036720 clearance and plasma protein binding may prevent target engagement in vivo. In conclusion, VU6036720 represents the current state-of-the-art Kir4.1/5.1 inhibitor that should be useful for probing the functions of Kir4.1/5.1 in vitro and ex vivo. SIGNIFICANCE STATEMENT: Heteromeric inward rectifier potassium (Kir) channels comprising Kir4.1 and Kir5.1 subunits play important roles in renal and neural physiology and may represent inhibitory drug targets for hypertension and edema. Herein, we employ high-throughput compound library screening, patch clamp electrophysiology, and medicinal chemistry to develop and characterize the first potent and specific in vitro inhibitor of Kir4.1/5.1, VU6036720, which provides proof-of-concept that drug-like inhibitors of this channel may be developed.
Collapse
Affiliation(s)
- Samantha J McClenahan
- Departments of Anesthesiology (S.J.M., S.V.K., R.G., R.M.L., J.S.D.), Biochemistry (J.A.B.), Chemistry (C.N.K., J.C.W., I.M.R., C.D.W., G.A.S., C.W.L.), Pharmacology (E.L.D., C.D.W., C.W.L., C.H., O.B., J.S.D.), and Nephrology (A.T., R.H.), and Vanderbilt Institute of Chemical Biology (J.A.B., G.S., C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin (E.I.); and Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida (A.S.)
| | - Caitlin N Kent
- Departments of Anesthesiology (S.J.M., S.V.K., R.G., R.M.L., J.S.D.), Biochemistry (J.A.B.), Chemistry (C.N.K., J.C.W., I.M.R., C.D.W., G.A.S., C.W.L.), Pharmacology (E.L.D., C.D.W., C.W.L., C.H., O.B., J.S.D.), and Nephrology (A.T., R.H.), and Vanderbilt Institute of Chemical Biology (J.A.B., G.S., C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin (E.I.); and Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida (A.S.)
| | - Sujay V Kharade
- Departments of Anesthesiology (S.J.M., S.V.K., R.G., R.M.L., J.S.D.), Biochemistry (J.A.B.), Chemistry (C.N.K., J.C.W., I.M.R., C.D.W., G.A.S., C.W.L.), Pharmacology (E.L.D., C.D.W., C.W.L., C.H., O.B., J.S.D.), and Nephrology (A.T., R.H.), and Vanderbilt Institute of Chemical Biology (J.A.B., G.S., C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin (E.I.); and Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida (A.S.)
| | - Elena Isaeva
- Departments of Anesthesiology (S.J.M., S.V.K., R.G., R.M.L., J.S.D.), Biochemistry (J.A.B.), Chemistry (C.N.K., J.C.W., I.M.R., C.D.W., G.A.S., C.W.L.), Pharmacology (E.L.D., C.D.W., C.W.L., C.H., O.B., J.S.D.), and Nephrology (A.T., R.H.), and Vanderbilt Institute of Chemical Biology (J.A.B., G.S., C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin (E.I.); and Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida (A.S.)
| | - Jade C Williams
- Departments of Anesthesiology (S.J.M., S.V.K., R.G., R.M.L., J.S.D.), Biochemistry (J.A.B.), Chemistry (C.N.K., J.C.W., I.M.R., C.D.W., G.A.S., C.W.L.), Pharmacology (E.L.D., C.D.W., C.W.L., C.H., O.B., J.S.D.), and Nephrology (A.T., R.H.), and Vanderbilt Institute of Chemical Biology (J.A.B., G.S., C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin (E.I.); and Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida (A.S.)
| | - Changho Han
- Departments of Anesthesiology (S.J.M., S.V.K., R.G., R.M.L., J.S.D.), Biochemistry (J.A.B.), Chemistry (C.N.K., J.C.W., I.M.R., C.D.W., G.A.S., C.W.L.), Pharmacology (E.L.D., C.D.W., C.W.L., C.H., O.B., J.S.D.), and Nephrology (A.T., R.H.), and Vanderbilt Institute of Chemical Biology (J.A.B., G.S., C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin (E.I.); and Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida (A.S.)
| | - Andrew Terker
- Departments of Anesthesiology (S.J.M., S.V.K., R.G., R.M.L., J.S.D.), Biochemistry (J.A.B.), Chemistry (C.N.K., J.C.W., I.M.R., C.D.W., G.A.S., C.W.L.), Pharmacology (E.L.D., C.D.W., C.W.L., C.H., O.B., J.S.D.), and Nephrology (A.T., R.H.), and Vanderbilt Institute of Chemical Biology (J.A.B., G.S., C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin (E.I.); and Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida (A.S.)
| | - Robert Gresham
- Departments of Anesthesiology (S.J.M., S.V.K., R.G., R.M.L., J.S.D.), Biochemistry (J.A.B.), Chemistry (C.N.K., J.C.W., I.M.R., C.D.W., G.A.S., C.W.L.), Pharmacology (E.L.D., C.D.W., C.W.L., C.H., O.B., J.S.D.), and Nephrology (A.T., R.H.), and Vanderbilt Institute of Chemical Biology (J.A.B., G.S., C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin (E.I.); and Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida (A.S.)
| | - Roman M Lazarenko
- Departments of Anesthesiology (S.J.M., S.V.K., R.G., R.M.L., J.S.D.), Biochemistry (J.A.B.), Chemistry (C.N.K., J.C.W., I.M.R., C.D.W., G.A.S., C.W.L.), Pharmacology (E.L.D., C.D.W., C.W.L., C.H., O.B., J.S.D.), and Nephrology (A.T., R.H.), and Vanderbilt Institute of Chemical Biology (J.A.B., G.S., C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin (E.I.); and Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida (A.S.)
| | - Emily L Days
- Departments of Anesthesiology (S.J.M., S.V.K., R.G., R.M.L., J.S.D.), Biochemistry (J.A.B.), Chemistry (C.N.K., J.C.W., I.M.R., C.D.W., G.A.S., C.W.L.), Pharmacology (E.L.D., C.D.W., C.W.L., C.H., O.B., J.S.D.), and Nephrology (A.T., R.H.), and Vanderbilt Institute of Chemical Biology (J.A.B., G.S., C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin (E.I.); and Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida (A.S.)
| | - Ian M Romaine
- Departments of Anesthesiology (S.J.M., S.V.K., R.G., R.M.L., J.S.D.), Biochemistry (J.A.B.), Chemistry (C.N.K., J.C.W., I.M.R., C.D.W., G.A.S., C.W.L.), Pharmacology (E.L.D., C.D.W., C.W.L., C.H., O.B., J.S.D.), and Nephrology (A.T., R.H.), and Vanderbilt Institute of Chemical Biology (J.A.B., G.S., C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin (E.I.); and Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida (A.S.)
| | - Joshua A Bauer
- Departments of Anesthesiology (S.J.M., S.V.K., R.G., R.M.L., J.S.D.), Biochemistry (J.A.B.), Chemistry (C.N.K., J.C.W., I.M.R., C.D.W., G.A.S., C.W.L.), Pharmacology (E.L.D., C.D.W., C.W.L., C.H., O.B., J.S.D.), and Nephrology (A.T., R.H.), and Vanderbilt Institute of Chemical Biology (J.A.B., G.S., C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin (E.I.); and Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida (A.S.)
| | - Olivier Boutaud
- Departments of Anesthesiology (S.J.M., S.V.K., R.G., R.M.L., J.S.D.), Biochemistry (J.A.B.), Chemistry (C.N.K., J.C.W., I.M.R., C.D.W., G.A.S., C.W.L.), Pharmacology (E.L.D., C.D.W., C.W.L., C.H., O.B., J.S.D.), and Nephrology (A.T., R.H.), and Vanderbilt Institute of Chemical Biology (J.A.B., G.S., C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin (E.I.); and Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida (A.S.)
| | - Gary A Sulikowski
- Departments of Anesthesiology (S.J.M., S.V.K., R.G., R.M.L., J.S.D.), Biochemistry (J.A.B.), Chemistry (C.N.K., J.C.W., I.M.R., C.D.W., G.A.S., C.W.L.), Pharmacology (E.L.D., C.D.W., C.W.L., C.H., O.B., J.S.D.), and Nephrology (A.T., R.H.), and Vanderbilt Institute of Chemical Biology (J.A.B., G.S., C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin (E.I.); and Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida (A.S.)
| | - Raymond Harris
- Departments of Anesthesiology (S.J.M., S.V.K., R.G., R.M.L., J.S.D.), Biochemistry (J.A.B.), Chemistry (C.N.K., J.C.W., I.M.R., C.D.W., G.A.S., C.W.L.), Pharmacology (E.L.D., C.D.W., C.W.L., C.H., O.B., J.S.D.), and Nephrology (A.T., R.H.), and Vanderbilt Institute of Chemical Biology (J.A.B., G.S., C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin (E.I.); and Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida (A.S.)
| | - C David Weaver
- Departments of Anesthesiology (S.J.M., S.V.K., R.G., R.M.L., J.S.D.), Biochemistry (J.A.B.), Chemistry (C.N.K., J.C.W., I.M.R., C.D.W., G.A.S., C.W.L.), Pharmacology (E.L.D., C.D.W., C.W.L., C.H., O.B., J.S.D.), and Nephrology (A.T., R.H.), and Vanderbilt Institute of Chemical Biology (J.A.B., G.S., C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin (E.I.); and Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida (A.S.)
| | - Alexander Staruschenko
- Departments of Anesthesiology (S.J.M., S.V.K., R.G., R.M.L., J.S.D.), Biochemistry (J.A.B.), Chemistry (C.N.K., J.C.W., I.M.R., C.D.W., G.A.S., C.W.L.), Pharmacology (E.L.D., C.D.W., C.W.L., C.H., O.B., J.S.D.), and Nephrology (A.T., R.H.), and Vanderbilt Institute of Chemical Biology (J.A.B., G.S., C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin (E.I.); and Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida (A.S.)
| | - Craig W Lindsley
- Departments of Anesthesiology (S.J.M., S.V.K., R.G., R.M.L., J.S.D.), Biochemistry (J.A.B.), Chemistry (C.N.K., J.C.W., I.M.R., C.D.W., G.A.S., C.W.L.), Pharmacology (E.L.D., C.D.W., C.W.L., C.H., O.B., J.S.D.), and Nephrology (A.T., R.H.), and Vanderbilt Institute of Chemical Biology (J.A.B., G.S., C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin (E.I.); and Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida (A.S.)
| | - Jerod S Denton
- Departments of Anesthesiology (S.J.M., S.V.K., R.G., R.M.L., J.S.D.), Biochemistry (J.A.B.), Chemistry (C.N.K., J.C.W., I.M.R., C.D.W., G.A.S., C.W.L.), Pharmacology (E.L.D., C.D.W., C.W.L., C.H., O.B., J.S.D.), and Nephrology (A.T., R.H.), and Vanderbilt Institute of Chemical Biology (J.A.B., G.S., C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin (E.I.); and Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida (A.S.)
| |
Collapse
|
13
|
Lo J, Forst AL, Warth R, Zdebik AA. EAST/SeSAME Syndrome and Beyond: The Spectrum of Kir4.1- and Kir5.1-Associated Channelopathies. Front Physiol 2022; 13:852674. [PMID: 35370765 PMCID: PMC8965613 DOI: 10.3389/fphys.2022.852674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/08/2022] [Indexed: 12/13/2022] Open
Abstract
In 2009, two groups independently linked human mutations in the inwardly rectifying K+ channel Kir4.1 (gene name KCNJ10) to a syndrome affecting the central nervous system (CNS), hearing, and renal tubular salt reabsorption. The autosomal recessive syndrome has been named EAST (epilepsy, ataxia, sensorineural deafness, and renal tubulopathy) or SeSAME syndrome (seizures, sensorineural deafness, ataxia, intellectual disability, and electrolyte imbalance), accordingly. Renal dysfunction in EAST/SeSAME patients results in loss of Na+, K+, and Mg2+ with urine, activation of the renin-angiotensin-aldosterone system, and hypokalemic metabolic alkalosis. Kir4.1 is highly expressed in affected organs: the CNS, inner ear, and kidney. In the kidney, it mostly forms heteromeric channels with Kir5.1 (KCNJ16). Biallelic loss-of-function mutations of Kir5.1 can also have disease significance, but the clinical symptoms differ substantially from those of EAST/SeSAME syndrome: although sensorineural hearing loss and hypokalemia are replicated, there is no alkalosis, but rather acidosis of variable severity; in contrast to EAST/SeSAME syndrome, the CNS is unaffected. This review provides a framework for understanding some of these differences and will guide the reader through the growing literature on Kir4.1 and Kir5.1, discussing the complex disease mechanisms and the variable expression of disease symptoms from a molecular and systems physiology perspective. Knowledge of the pathophysiology of these diseases and their multifaceted clinical spectrum is an important prerequisite for making the correct diagnosis and forms the basis for personalized therapies.
Collapse
Affiliation(s)
- Jacky Lo
- Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Anna-Lena Forst
- Medical Cell Biology, Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Richard Warth
- Medical Cell Biology, Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Anselm A. Zdebik
- Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
- Centre for Nephrology, University College London, London, United Kingdom
| |
Collapse
|
14
|
Polidoro JZ, Luchi WM, Seguro AC, Malnic G, Girardi ACC. Paracrine and endocrine regulation of renal potassium secretion. Am J Physiol Renal Physiol 2022; 322:F360-F377. [DOI: 10.1152/ajprenal.00251.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The seminal studies conducted by Giebisch and colleagues in the 1960s paved the way for understanding the renal mechanisms involved in K+ homeostasis. It was demonstrated that differential handling of K+ in the distal segments of the nephron is crucial for proper K+ balance. Although aldosterone had been classically ascribed as the major ion transport regulator in the distal nephron, thereby contributing to K+ homeostasis, it became clear that aldosterone per se could not explain the kidney's ability to modulate kaliuresis in both acute and chronic settings. The existence of alternative kaliuretic and antikaliuretic mechanisms was suggested by physiological studies in the 1980s but only gained form and shape with the advent of molecular biology. It is now established that the kidneys recruit several endocrine and paracrine mechanisms for adequate kaliuretic response. These mechanisms include the direct effects of peritubular K+, a gut-kidney regulatory axis sensing dietary K+ levels, the kidney secretion of kallikrein during postprandial periods, the upregulation of angiotensin II receptors in the distal nephron during chronic changes in the K+ diet, and the local increase of prostaglandins by low K+ diet. This review discusses recent advances in the understanding of endocrine and paracrine mechanisms underlying the modulation of K+ secretion and how these mechanisms impact kaliuresis and K+ balance. We also highlight important unknowns about the regulation of renal K+ excretion under physiological circumstances.
Collapse
Affiliation(s)
- Juliano Z. Polidoro
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Weverton Machado Luchi
- Department of Internal Medicine, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
| | - Antonio Carlos Seguro
- Department of Nephrology (LIM 12), University of São Paulo Medical School, São Paulo, São Paulo, Brazil
| | - Gerhard Malnic
- Department of Physiology and Biophysics, University of São Paulo Medical School, São Paulo, Brazil
| | | |
Collapse
|
15
|
Kir Channel Molecular Physiology, Pharmacology, and Therapeutic Implications. Handb Exp Pharmacol 2021; 267:277-356. [PMID: 34345939 DOI: 10.1007/164_2021_501] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
For the past two decades several scholarly reviews have appeared on the inwardly rectifying potassium (Kir) channels. We would like to highlight two efforts in particular, which have provided comprehensive reviews of the literature up to 2010 (Hibino et al., Physiol Rev 90(1):291-366, 2010; Stanfield et al., Rev Physiol Biochem Pharmacol 145:47-179, 2002). In the past decade, great insights into the 3-D atomic resolution structures of Kir channels have begun to provide the molecular basis for their functional properties. More recently, computational studies are beginning to close the time domain gap between in silico dynamic and patch-clamp functional studies. The pharmacology of these channels has also been expanding and the dynamic structural studies provide hope that we are heading toward successful structure-based drug design for this family of K+ channels. In the present review we focus on placing the physiology and pharmacology of this K+ channel family in the context of atomic resolution structures and in providing a glimpse of the promising future of therapeutic opportunities.
Collapse
|
16
|
Abstract
K+ channels enable potassium to flow across the membrane with great selectivity. There are four K+ channel families: voltage-gated K (Kv), calcium-activated (KCa), inwardly rectifying K (Kir), and two-pore domain potassium (K2P) channels. All four K+ channels are formed by subunits assembling into a classic tetrameric (4x1P = 4P for the Kv, KCa, and Kir channels) or tetramer-like (2x2P = 4P for the K2P channels) architecture. These subunits can either be the same (homomers) or different (heteromers), conferring great diversity to these channels. They share a highly conserved selectivity filter within the pore but show different gating mechanisms adapted for their function. K+ channels play essential roles in controlling neuronal excitability by shaping action potentials, influencing the resting membrane potential, and responding to diverse physicochemical stimuli, such as a voltage change (Kv), intracellular calcium oscillations (KCa), cellular mediators (Kir), or temperature (K2P).
Collapse
|
17
|
Boscia F, Elkjaer ML, Illes Z, Kukley M. Altered Expression of Ion Channels in White Matter Lesions of Progressive Multiple Sclerosis: What Do We Know About Their Function? Front Cell Neurosci 2021; 15:685703. [PMID: 34276310 PMCID: PMC8282214 DOI: 10.3389/fncel.2021.685703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/23/2021] [Indexed: 12/19/2022] Open
Abstract
Despite significant advances in our understanding of the pathophysiology of multiple sclerosis (MS), knowledge about contribution of individual ion channels to axonal impairment and remyelination failure in progressive MS remains incomplete. Ion channel families play a fundamental role in maintaining white matter (WM) integrity and in regulating WM activities in axons, interstitial neurons, glia, and vascular cells. Recently, transcriptomic studies have considerably increased insight into the gene expression changes that occur in diverse WM lesions and the gene expression fingerprint of specific WM cells associated with secondary progressive MS. Here, we review the ion channel genes encoding K+, Ca2+, Na+, and Cl- channels; ryanodine receptors; TRP channels; and others that are significantly and uniquely dysregulated in active, chronic active, inactive, remyelinating WM lesions, and normal-appearing WM of secondary progressive MS brain, based on recently published bulk and single-nuclei RNA-sequencing datasets. We discuss the current state of knowledge about the corresponding ion channels and their implication in the MS brain or in experimental models of MS. This comprehensive review suggests that the intense upregulation of voltage-gated Na+ channel genes in WM lesions with ongoing tissue damage may reflect the imbalance of Na+ homeostasis that is observed in progressive MS brain, while the upregulation of a large number of voltage-gated K+ channel genes may be linked to a protective response to limit neuronal excitability. In addition, the altered chloride homeostasis, revealed by the significant downregulation of voltage-gated Cl- channels in MS lesions, may contribute to an altered inhibitory neurotransmission and increased excitability.
Collapse
Affiliation(s)
- Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", Naples, Italy
| | - Maria Louise Elkjaer
- Neurology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Zsolt Illes
- Neurology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Maria Kukley
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,Ikerbasque Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
18
|
Schlingmann KP, Renigunta A, Hoorn EJ, Forst AL, Renigunta V, Atanasov V, Mahendran S, Barakat TS, Gillion V, Godefroid N, Brooks AS, Lugtenberg D, Lake J, Debaix H, Rudin C, Knebelmann B, Tellier S, Rousset-Rouvière C, Viering D, de Baaij JHF, Weber S, Palygin O, Staruschenko A, Kleta R, Houillier P, Bockenhauer D, Devuyst O, Vargas-Poussou R, Warth R, Zdebik AA, Konrad M. Defects in KCNJ16 Cause a Novel Tubulopathy with Hypokalemia, Salt Wasting, Disturbed Acid-Base Homeostasis, and Sensorineural Deafness. J Am Soc Nephrol 2021; 32:1498-1512. [PMID: 33811157 PMCID: PMC8259640 DOI: 10.1681/asn.2020111587] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/04/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The transepithelial transport of electrolytes, solutes, and water in the kidney is a well-orchestrated process involving numerous membrane transport systems. Basolateral potassium channels in tubular cells not only mediate potassium recycling for proper Na+,K+-ATPase function but are also involved in potassium and pH sensing. Genetic defects in KCNJ10 cause EAST/SeSAME syndrome, characterized by renal salt wasting with hypokalemic alkalosis associated with epilepsy, ataxia, and sensorineural deafness. METHODS A candidate gene approach and whole-exome sequencing determined the underlying genetic defect in eight patients with a novel disease phenotype comprising a hypokalemic tubulopathy with renal salt wasting, disturbed acid-base homeostasis, and sensorineural deafness. Electrophysiologic studies and surface expression experiments investigated the functional consequences of newly identified gene variants. RESULTS We identified mutations in the KCNJ16 gene encoding KCNJ16, which along with KCNJ15 and KCNJ10, constitutes the major basolateral potassium channel of the proximal and distal tubules, respectively. Coexpression of mutant KCNJ16 together with KCNJ15 or KCNJ10 in Xenopus oocytes significantly reduced currents. CONCLUSIONS Biallelic variants in KCNJ16 were identified in patients with a novel disease phenotype comprising a variable proximal and distal tubulopathy associated with deafness. Variants affect the function of heteromeric potassium channels, disturbing proximal tubular bicarbonate handling as well as distal tubular salt reabsorption.
Collapse
Affiliation(s)
- Karl P. Schlingmann
- Department of General Pediatrics, Pediatric Nephrology, University Children’s Hospital, Munster, Germany
| | - Aparna Renigunta
- Department of Pediatric Nephrology, Marburg Kidney Research Center, Philipps University, Marburg, Germany
| | - Ewout J. Hoorn
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Anna-Lena Forst
- Department of Physiology, Medical Cell Biology, University of Regensburg, Regensburg, Germany
| | - Vijay Renigunta
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University, Marburg, Germany
| | - Velko Atanasov
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Sinthura Mahendran
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | | | - Valentine Gillion
- Division of Nephrology, Saint-Luc Academic Hospital, Université Catholique Louvain, Brussels, Belgium
| | - Nathalie Godefroid
- Division of Pediatric Nephrology, Saint-Luc Academic Hospital, Université Catholique Louvain, Brussels, Belgium
| | - Alice S. Brooks
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Dorien Lugtenberg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jennifer Lake
- Department of Physiology, Mechanism of Inherited Kidney Disorders, University of Zurich, Zurich, Switzerland
| | - Huguette Debaix
- Department of Physiology, Mechanism of Inherited Kidney Disorders, University of Zurich, Zurich, Switzerland
| | - Christoph Rudin
- Department of Pediatric Nephrology, University Children’s Hospital, Basel, Switzerland
| | - Bertrand Knebelmann
- Department of Nephrology-Transplantation, Assistance Publique Hôpitaux de Paris, Hôpital Necker, Paris, France,Reference Center for Hereditary Kidney and Childhood Diseases (MAladies Renales Hereditaires de l'Enfant et de l'Adulte), Paris, France
| | - Stephanie Tellier
- Department of Pediatric Nephrology, and Rheumatology, French Reference Center of Rare Renal Diseases (SORARE), CHU Toulouse, Toulouse, France,Division of Rheumatology, Department of Pediatrics, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Caroline Rousset-Rouvière
- Department of Multidisciplinary Pediatrics, Pediatric Nephrology Unit, La Timone, University Hospital of Marseille, Marseille, France
| | - Daan Viering
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeroen H. F. de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stefanie Weber
- Department of Pediatric Nephrology, Marburg Kidney Research Center, Philipps University, Marburg, Germany
| | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin
| | - Robert Kleta
- Department of Renal Medicine, University College London, London, United Kingdom,Department of Paediatric Nephrology, Great Ormond Street Hospital for Children National Health Service Foundation Trust, London, United Kingdom
| | - Pascal Houillier
- Reference Center for Hereditary Kidney and Childhood Diseases (MAladies Renales Hereditaires de l'Enfant et de l'Adulte), Paris, France,Department of Physiology, Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, Paris, France,Department of Renal Physiology, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université de Paris, Centre National de la Recherche Scientifique, Paris, France
| | - Detlef Bockenhauer
- Department of Renal Medicine, University College London, London, United Kingdom,Department of Paediatric Nephrology, Great Ormond Street Hospital for Children National Health Service Foundation Trust, London, United Kingdom
| | - Olivier Devuyst
- Division of Nephrology, Saint-Luc Academic Hospital, Université Catholique Louvain, Brussels, Belgium,Department of Physiology, Mechanism of Inherited Kidney Disorders, University of Zurich, Zurich, Switzerland
| | - Rosa Vargas-Poussou
- Reference Center for Hereditary Kidney and Childhood Diseases (MAladies Renales Hereditaires de l'Enfant et de l'Adulte), Paris, France,Department of Renal Physiology, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université de Paris, Centre National de la Recherche Scientifique, Paris, France,Department of Genetics, Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, Paris, France
| | - Richard Warth
- Department of Physiology, Medical Cell Biology, University of Regensburg, Regensburg, Germany
| | - Anselm A. Zdebik
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom,Department of Renal Medicine, University College London, London, United Kingdom
| | - Martin Konrad
- Department of General Pediatrics, Pediatric Nephrology, University Children’s Hospital, Munster, Germany
| |
Collapse
|
19
|
Poli G, Hasan S, Belia S, Cenciarini M, Tucker SJ, Imbrici P, Shehab S, Pessia M, Brancorsini S, D’Adamo MC. Kcnj16 (Kir5.1) Gene Ablation Causes Subfertility and Increases the Prevalence of Morphologically Abnormal Spermatozoa. Int J Mol Sci 2021; 22:5972. [PMID: 34205849 PMCID: PMC8199489 DOI: 10.3390/ijms22115972] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/16/2022] Open
Abstract
The ability of spermatozoa to swim towards an oocyte and fertilize it depends on precise K+ permeability changes. Kir5.1 is an inwardly-rectifying potassium (Kir) channel with high sensitivity to intracellular H+ (pHi) and extracellular K+ concentration [K+]o, and hence provides a link between pHi and [K+]o changes and membrane potential. The intrinsic pHi sensitivity of Kir5.1 suggests a possible role for this channel in the pHi-dependent processes that take place during fertilization. However, despite the localization of Kir5.1 in murine spermatozoa, and its increased expression with age and sexual maturity, the role of the channel in sperm morphology, maturity, motility, and fertility is unknown. Here, we confirmed the presence of Kir5.1 in spermatozoa and showed strong expression of Kir4.1 channels in smooth muscle and epithelial cells lining the epididymal ducts. In contrast, Kir4.2 expression was not detected in testes. To examine the possible role of Kir5.1 in sperm physiology, we bred mice with a deletion of the Kcnj16 (Kir5.1) gene and observed that 20% of Kir5.1 knock-out male mice were infertile. Furthermore, 50% of knock-out mice older than 3 months were unable to breed. By contrast, 100% of wild-type (WT) mice were fertile. The genetic inactivation of Kcnj16 also resulted in smaller testes and a greater percentage of sperm with folded flagellum compared to WT littermates. Nevertheless, the abnormal sperm from mutant animals displayed increased progressive motility. Thus, ablation of the Kcnj16 gene identifies Kir5.1 channel as an important element contributing to testis development, sperm flagellar morphology, motility, and fertility. These findings are potentially relevant to the understanding of the complex pHi- and [K+]o-dependent interplay between different sperm ion channels, and provide insight into their role in fertilization and infertility.
Collapse
Affiliation(s)
- Giulia Poli
- Section of Pathology, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (G.P.); (S.B.)
| | - Sonia Hasan
- Department of Physiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait;
| | - Silvia Belia
- Department of Chemistry Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy;
| | - Marta Cenciarini
- Section of Physiology & Biochemistry, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy;
| | - Stephen J. Tucker
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK;
| | - Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari ‘‘Aldo Moro”, 70125 Bari, Italy;
| | - Safa Shehab
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates;
| | - Mauro Pessia
- Department of Physiology & Biochemistry, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Stefano Brancorsini
- Section of Pathology, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (G.P.); (S.B.)
| | - Maria Cristina D’Adamo
- Department of Physiology & Biochemistry, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
| |
Collapse
|
20
|
Xiao Y, Duan XP, Zhang DD, Wang WH, Lin DH. Deletion of renal Nedd4-2 abolishes the effect of high K + intake on Kir4.1/Kir5.1 and NCC activity in the distal convoluted tubule. Am J Physiol Renal Physiol 2021; 321:F1-F11. [PMID: 34029145 DOI: 10.1152/ajprenal.00072.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
High-dietary K+ (HK) intake inhibits basolateral Kir4.1/Kir5.1 activity in the distal convoluted tubule (DCT), and HK-induced inhibition of Kir4.1/Kir5.1 is essential for HK-induced inhibition of NaCl cotransporter (NCC). Here, we examined whether neural precursor cell expressed developmentally downregulated 4-2 (Nedd4-2) deletion compromises the effect of HK on basolateral Kir4.1/Kir5.1 and NCC in the DCT. Single-channel recording and whole cell recording showed that neither HK decreased nor low-dietary K+ (LK) increased basolateral Kir4.1/Kir5.1 activity of the DCT in kidney tubule-specific Nedd4-2 knockout (Ks-Nedd4-2 KO) mice. In contrast, HK inhibited and LK increased Kir4.1/Kir5.1 activity in control mice [neural precursor cell expressed developmentally downregulated 4-like (Nedd4l)flox/flox]. Also, HK intake decreased the negativity of K+ current reversal potential in the DCT (depolarization) only in control mice but not in Ks-Nedd4-2 KO mice. Renal clearance experiments showed that HK intake decreased, whereas LK intake increased, hydrochlorothiazide-induced renal Na+ excretion only in control mice, but this effect was absent in Ks-Nedd4-2 KO mice. Western blot analysis also demonstrated that HK-induced inhibition of phosphorylated NCC (Thr53) and total NCC was observed only in control mice but not in Ks-Nedd4-2 KO mice. Furthermore, expression of all three subunits of the epithelial Na+ channel in Ks-Nedd4-2 KO mice on HK was higher than in control mice. Thus, plasma K+ concentrations were similar between Nedd4lflox/flox and Ks-Nedd4-2 KO mice on HK for 7 days despite high NCC expression. We conclude that Nedd4-2 plays a role in regulating HK-induced inhibition of Kir4.1/Kir5.1 and NCC in the DCT.NEW & NOTEWORTHY Basolateral Kir4.1/Kir5.1 in the distal convoluted tubule plays an important role as a "K+ sensor" in the regulation of renal K+ excretion after high K+ intake. We found that neural precursor cell expressed developmentally downregulated 4-2 (Nedd4-2) a role in mediating the effect of K+ diet on Kir4.1/Kir5.1 and NaCl cotransporter because high K+ intake failed to inhibit basolateral Kir4.1/Kir5.1 and NaCl cotransporter in kidney tubule-specific Nedd4-2 knockout mice.
Collapse
Affiliation(s)
- Yu Xiao
- Department of Physiology, Qiqihar Medical College, Heilongjiang, China.,Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Xin-Peng Duan
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Dan-Dan Zhang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Dao-Hong Lin
- Department of Pharmacology, New York Medical College, Valhalla, New York
| |
Collapse
|
21
|
Duan XP, Wu P, Zhang DD, Gao ZX, Xiao Y, Ray EC, Wang WH, Lin DH. Deletion of Kir5.1 abolishes the effect of high Na + intake on Kir4.1 and Na +-Cl - cotransporter. Am J Physiol Renal Physiol 2021; 320:F1045-F1058. [PMID: 33900854 DOI: 10.1152/ajprenal.00004.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
High sodium (HS) intake inhibited epithelial Na+ channel (ENaC) in the aldosterone-sensitive distal nephron and Na+-Cl- cotransporter (NCC) by suppressing basolateral Kir4.1/Kir5.1 in the distal convoluted tubule (DCT), thereby increasing renal Na+ excretion but not affecting K+ excretion. The aim of the present study was to explore whether deletion of Kir5.1 compromises the inhibitory effect of HS on NCC expression/activity and renal K+ excretion. Patch-clamp experiments demonstrated that HS failed to inhibit DCT basolateral K+ channels and did not depolarize K+ current reversal potential of the DCT in Kir5.1 knockout (KO) mice. Moreover, deletion of Kir5.1 not only increased the expression of Kir4.1, phospho-NCC, and total NCC but also abolished the inhibitory effect of HS on the expression of Kir4.1, phospho-NCC, and total NCC and thiazide-induced natriuresis. Also, low sodium-induced stimulation of NCC expression/activity and basolateral K+ channels in the DCT were absent in Kir5.1 KO mice. Deletion of Kir5.1 decreased ENaC currents in the late DCT, and HS further inhibited ENaC activity in Kir5.1 KO mice. Finally, measurement of the basal renal K+ excretion rate with the modified renal clearance method demonstrated that long-term HS inhibited the renal K+ excretion rate and steadily increased plasma K+ levels in Kir5.1 KO mice but not in wild-type mice. We conclude that Kir5.1 plays an important role in mediating the effect of HS intake on basolateral K+ channels in the DCT and NCC activity/expression. Kir5.1 is involved in maintaining renal ability of K+ excretion during HS intake. NEW & NOTEWORTHY Kir5.1 plays an important role in mediating the effect of high sodium intake on basolateral K+ channels in the distal convoluted tubule and Na+-Cl- cotransporter activity/expression.
Collapse
Affiliation(s)
- Xin-Peng Duan
- Department of Pharmacology, New York Medical College, Valhalla, New York.,Department of Histology and Embryology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Peng Wu
- Department of Pharmacology, New York Medical College, Valhalla, New York.,Institute of Hypertension and Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Dan-Dan Zhang
- Department of Pharmacology, New York Medical College, Valhalla, New York.,Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, People's Republic of China
| | - Zhong-Xiuzi Gao
- Department of Pharmacology, New York Medical College, Valhalla, New York.,Institute of Hypertension and Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yu Xiao
- Department of Pharmacology, New York Medical College, Valhalla, New York.,Department of Physiology, Qiqihar Medical University, Qiqihar, People's Republic of China
| | - Evan C Ray
- Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Dao-Hong Lin
- Department of Pharmacology, New York Medical College, Valhalla, New York
| |
Collapse
|
22
|
Zhang DD, Duan XP, Xiao Y, Wu P, Gao ZX, Wang WH, Lin DH. Deletion of renal Nedd4-2 abolishes the effect of high sodium intake (HS) on Kir4.1, ENaC, and NCC and causes hypokalemia during high HS. Am J Physiol Renal Physiol 2021; 320:F883-F896. [PMID: 33818128 DOI: 10.1152/ajprenal.00555.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Neural precursor cell expressed developmentally downregulated protein 4-2 (Nedd4-2) regulates the expression of Kir4.1, thiazide-sensitive NaCl cotransporter (NCC), and epithelial Na+ channel (ENaC) in the aldosterone-sensitive distal nephron (ASDN), and Nedd4-2 deletion causes salt-sensitive hypertension. We now examined whether Nedd4-2 deletion compromises the effect of high-salt (HS) diet on Kir4.1, NCC, ENaC, and renal K+ excretion. Immunoblot analysis showed that HS diet decreased the expression of Kir4.1, Ca2+-activated large-conductance K+ channel subunit-α (BKα), ENaCβ, ENaCγ, total NCC, and phospho-NCC (at Thr53) in floxed neural precursor cell expressed developmentally downregulated gene 4-like (Nedd4lfl/fl) mice, whereas these effects were absent in kidney-specific Nedd4-2 knockout (Ks-Nedd4-2 KO) mice. Renal clearance experiments also demonstrated that Nedd4-2 deletion abolished the inhibitory effect of HS diet on hydrochlorothiazide-induced natriuresis. Patch-clamp experiments showed that neither HS diet nor low-salt diet had an effect on Kir4.1/Kir5.1 currents of the distal convoluted tubule in Nedd4-2-deficient mice, whereas we confirmed that HS diet inhibited and low-salt diet increased Kir4.1/Kir5.1 activity in Nedd4lflox/flox mice. Nedd4-2 deletion increased ENaC currents in the ASDN, and this increase was more robust in the cortical collecting duct than in the distal convoluted tubule. Also, HS-induced inhibition of ENaC currents in the ASDN was absent in Nedd4-2-deficient mice. Renal clearance experiments showed that HS intake for 2 wk increased the basal level of renal K+ excretion and caused hypokalemia in Ks-Nedd4-2-KO mice but not in Nedd4lflox/flox mice. In contrast, plasma Na+ concentrations were similar in Nedd4lflox/flox and Ks-Nedd4-2 KO mice on HS diet. We conclude that Nedd4-2 plays an important role in mediating the inhibitory effect of HS diet on Kir4.1, ENaC, and NCC and is essential for maintaining normal renal K+ excretion and plasma K+ ranges during long-term HS diet.NEW & NOTEWORTHY The present study suggests that Nedd4-2 is involved in mediating the inhibitory effect of high salt (HS) diet on Kir4.1/kir5.1 in the distal convoluted tubule, NaCl cotransporter function, and epithelial Na+ channel activity and that Nedd4-2 plays an essential role in maintaining K+ homeostasis in response to a long-term HS diet. This suggests the possibility that HS intake could lead to hypokalemia in subjects lacking proper Nedd4-2 E3 ubiquitin ligase activity in aldosterone-sensitive distal nephron.
Collapse
Affiliation(s)
- Dan-Dan Zhang
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China.,Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Xin-Peng Duan
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Yu Xiao
- Department of Physiology, Qiqihar Medical College, Heilongjiang, China.,Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Peng Wu
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Zhong-Xiuzi Gao
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Dao-Hong Lin
- Department of Pharmacology, New York Medical College, Valhalla, New York
| |
Collapse
|
23
|
Lv J, Fu X, Li Y, Hong G, Li P, Lin J, Xun Y, Fang L, Weng W, Yue R, Li GL, Guan B, Li H, Huang Y, Chai R. Deletion of Kcnj16 in Mice Does Not Alter Auditory Function. Front Cell Dev Biol 2021; 9:630361. [PMID: 33693002 PMCID: PMC7937937 DOI: 10.3389/fcell.2021.630361] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/26/2021] [Indexed: 01/13/2023] Open
Abstract
Endolymphatic potential (EP) is the main driving force behind the sensory transduction of hearing, and K+ is the main charge carrier. Kir5.1 is a K+ transporter that plays a significant role in maintaining EP homeostasis, but the expression pattern and role of Kir5.1 (which is encoded by the Kcnj16 gene) in the mouse auditory system has remained unclear. In this study, we found that Kir5.1 was expressed in the mouse cochlea. We checked the inner ear morphology and measured auditory function in Kcnj16–/– mice and found that loss of Kcnj16 did not appear to affect the development of hair cells. There was no significant difference in auditory function between Kcnj16–/– mice and wild-type littermates, although the expression of Kcnma1, Kcnq4, and Kcne1 were significantly decreased in the Kcnj16–/– mice. Additionally, no significant differences were found in the number or distribution of ribbon synapses between the Kcnj16–/– and wild-type mice. In summary, our results suggest that the Kcnj16 gene is not essential for auditory function in mice.
Collapse
Affiliation(s)
- Jun Lv
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaolong Fu
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Yige Li
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Guodong Hong
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Peipei Li
- School of Life Sciences and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| | - Jing Lin
- Waksman Institute, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Youfang Xun
- Department of Otolaryngology, Head and Neck Surgery, Xiangya School of Medicine, Central South University, Changsha, China.,Department of Otolaryngology, Head and Neck Surgery, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Lucheng Fang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weibin Weng
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rongyu Yue
- Department of Otolaryngology-Head and Neck Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Geng-Lin Li
- Department of Otorhinolaryngology and ENT Institute, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Bing Guan
- Department of Otolaryngology, Head and Neck Surgery, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - He Li
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yideng Huang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Otolaryngology-Head and Neck Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Renjie Chai
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
24
|
Patterson KC, Kahanovitch U, Gonçalves CM, Hablitz JJ, Staruschenko A, Mulkey DK, Olsen ML. K ir 5.1-dependent CO 2 /H + -sensitive currents contribute to astrocyte heterogeneity across brain regions. Glia 2021; 69:310-325. [PMID: 32865323 PMCID: PMC8665280 DOI: 10.1002/glia.23898] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 09/19/2023]
Abstract
Astrocyte heterogeneity is an emerging concept in which astrocytes within or between brain regions show variable morphological and/or gene expression profiles that presumably reflect different functional roles. Recent evidence indicates that retrotrapezoid nucleus (RTN) astrocytes sense changes in tissue CO2/ H+ to regulate respiratory activity; however, mechanism(s) by which they do so remain unclear. Alterations in inward K+ currents represent a potential mechanism by which CO2 /H+ signals may be conveyed to neurons. Here, we use slice electrophysiology in rats of either sex to show that RTN astrocytes intrinsically respond to CO2 /H+ by inhibition of an inward rectifying potassium (Kir ) conductance and depolarization of the membrane, while cortical astrocytes do not exhibit such CO2 /H+ -sensitive properties. Application of Ba2+ mimics the effect of CO2 /H+ on RTN astrocytes as measured by reductions in astrocyte Kir -like currents and increased RTN neuronal firing. These CO2 /H+ -sensitive currents increase developmentally, in parallel to an increased expression in Kir 4.1 and Kir 5.1 in the brainstem. Finally, the involvement of Kir 5.1 in the CO2 /H+ -sensitive current was verified using a Kir5.1 KO rat. These data suggest that Kir inhibition by CO2 /H+ may govern the degree to which astrocytes mediate downstream chemoreceptive signaling events through cell-autonomous mechanisms. These results identify Kir channels as potentially important regional CO2 /H+ sensors early in development, thus expanding our understanding of how astrocyte heterogeneity may uniquely support specific neural circuits and behaviors.
Collapse
Affiliation(s)
- Kelsey C Patterson
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Uri Kahanovitch
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | | | - John J Hablitz
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Daniel K Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Michelle L Olsen
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
25
|
Manis AD, Palygin O, Isaeva E, Levchenko V, LaViolette PS, Pavlov TS, Hodges MR, Staruschenko A. Kcnj16 knockout produces audiogenic seizures in the Dahl salt-sensitive rat. JCI Insight 2021; 6:143251. [PMID: 33232300 PMCID: PMC7821607 DOI: 10.1172/jci.insight.143251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/19/2020] [Indexed: 01/08/2023] Open
Abstract
Kir5.1 is an inwardly rectifying potassium (Kir) channel subunit abundantly expressed in the kidney and brain. We previously established the physiologic consequences of a Kcnj16 (gene encoding Kir5.1) knockout in the Dahl salt-sensitive rat (SSKcnj16-/-), which caused electrolyte/pH dysregulation and high-salt diet-induced mortality. Since Kir channel gene mutations may alter neuronal excitability and are linked to human seizure disorders, we hypothesized that SSKcnj16-/- rats would exhibit neurological phenotypes, including increased susceptibility to seizures. SSKcnj16-/- rats exhibited increased light sensitivity (fMRI) and reproducible sound-induced tonic-clonic audiogenic seizures confirmed by electroencephalography. Repeated seizure induction altered behavior, exacerbated hypokalemia, and led to approximately 38% mortality in male SSKcnj16-/- rats. Dietary potassium supplementation did not prevent audiogenic seizures but mitigated hypokalemia and prevented mortality induced by repeated seizures. These results reveal a distinct, nonredundant role for Kir5.1 channels in the brain, introduce a rat model of audiogenic seizures, and suggest that yet-to-be identified mutations in Kcnj16 may cause or contribute to seizure disorders.
Collapse
MESH Headings
- Acoustic Stimulation/adverse effects
- Animals
- Disease Models, Animal
- Electroencephalography
- Epilepsy, Reflex/etiology
- Epilepsy, Reflex/genetics
- Epilepsy, Reflex/physiopathology
- Female
- Gene Knockout Techniques
- Humans
- Hypokalemia/etiology
- Hypokalemia/genetics
- Male
- Mutation
- Potassium Channels, Inwardly Rectifying/deficiency
- Potassium Channels, Inwardly Rectifying/genetics
- Potassium Channels, Inwardly Rectifying/physiology
- Potassium, Dietary/administration & dosage
- Rats
- Rats, Inbred Dahl
- Rats, Transgenic
- Seizures/etiology
- Seizures/genetics
- Seizures/physiopathology
- Severity of Illness Index
- Kir5.1 Channel
Collapse
Affiliation(s)
| | - Oleg Palygin
- Department of Physiology
- Cardiovascular Center, and
| | | | | | - Peter S. LaViolette
- Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | | | - Alexander Staruschenko
- Department of Physiology
- Cardiovascular Center, and
- Clement J. Zablocki VA Medical Center, Milwaukee, Wisconsin, USA
| |
Collapse
|
26
|
Murillo-de-Ozores AR, Chávez-Canales M, de los Heros P, Gamba G, Castañeda-Bueno M. Physiological Processes Modulated by the Chloride-Sensitive WNK-SPAK/OSR1 Kinase Signaling Pathway and the Cation-Coupled Chloride Cotransporters. Front Physiol 2020; 11:585907. [PMID: 33192599 PMCID: PMC7606576 DOI: 10.3389/fphys.2020.585907] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
The role of Cl- as an intracellular signaling ion has been increasingly recognized in recent years. One of the currently best described roles of Cl- in signaling is the modulation of the With-No-Lysine (K) (WNK) - STE20-Proline Alanine rich Kinase (SPAK)/Oxidative Stress Responsive Kinase 1 (OSR1) - Cation-Coupled Cl- Cotransporters (CCCs) cascade. Binding of a Cl- anion to the active site of WNK kinases directly modulates their activity, promoting their inhibition. WNK activation due to Cl- release from the binding site leads to phosphorylation and activation of SPAK/OSR1, which in turn phosphorylate the CCCs. Phosphorylation by WNKs-SPAK/OSR1 of the Na+-driven CCCs (mediating ions influx) promote their activation, whereas that of the K+-driven CCCs (mediating ions efflux) promote their inhibition. This results in net Cl- influx and feedback inhibition of WNK kinases. A wide variety of alterations to this pathway have been recognized as the cause of several human diseases, with manifestations in different systems. The understanding of WNK kinases as Cl- sensitive proteins has allowed us to better understand the mechanistic details of regulatory processes involved in diverse physiological phenomena that are reviewed here. These include cell volume regulation, potassium sensing and intracellular signaling in the renal distal convoluted tubule, and regulation of the neuronal response to the neurotransmitter GABA.
Collapse
Affiliation(s)
- Adrián Rafael Murillo-de-Ozores
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María Chávez-Canales
- Unidad de Investigación UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Paola de los Heros
- Unidad de Investigación UNAM-INC, Research Division, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gerardo Gamba
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María Castañeda-Bueno
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
27
|
Sancho M, Welsh DG. K IR channels in the microvasculature: Regulatory properties and the lipid-hemodynamic environment. CURRENT TOPICS IN MEMBRANES 2020; 85:227-259. [PMID: 32402641 DOI: 10.1016/bs.ctm.2020.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Basal tone and perfusion control is set in cerebral arteries by the sensing of pressure and flow, key hemodynamic stimuli. These forces establish a contractile foundation within arterial networks upon which local neurovascular stimuli operate. This fundamental process is intimately tied to arterial VM and the rise in cytosolic [Ca2+] by the graded opening of voltage-operated Ca2+ channels. Arterial VM is in turn controlled by a dynamic interaction among several resident ion channels, KIR being one of particular significance. As the name suggests, KIR displays strong inward rectification, retains a small outward component, potentiated by extracellular K+ and blocked by micromolar Ba2+. Cerebrovascular KIR is unique from other K+ currents as it is present in both smooth muscle and endothelium yet lacking in classical regulatory modulation. Such observations have fostered the view that KIR is nothing more than a background conductance, activated by extracellular K+ and which passively facilitates dilation. Recent work in cell model systems has; however, identified two membrane lipids, phosphatidylinositol 4,5-bisphosphate (PIP2) and cholesterol, that interact with KIR2.x, to stabilize the channel in the preferred open or silent state, respectively. Translating this unique form of regulation, recent studies have demonstrated that specific lipid-protein interactions enable unique KIR populations to sense distinct hemodynamic stimuli and set basal tone. This review summarizes the current knowledge of vascular KIR channels and how the lipid and hemodynamic impact their activity.
Collapse
Affiliation(s)
- Maria Sancho
- Robarts Research Institute and the Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada
| | - Donald G Welsh
- Robarts Research Institute and the Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
28
|
Wu P, Su XT, Gao ZX, Zhang DD, Duan XP, Xiao Y, Staub O, Wang WH, Lin DH. Renal Tubule Nedd4-2 Deficiency Stimulates Kir4.1/Kir5.1 and Thiazide-Sensitive NaCl Cotransporter in Distal Convoluted Tubule. J Am Soc Nephrol 2020; 31:1226-1242. [PMID: 32295826 DOI: 10.1681/asn.2019090923] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 03/07/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The potassium channel Kir4.1 forms the Kir4.1/Kir5.1 heterotetramer in the basolateral membrane of the distal convoluted tubule (DCT) and plays an important role in the regulation of the thiazide-sensitive NaCl cotransporter (NCC). Kidney-specific deletion of the ubiquitin ligase Nedd4-2 increases expression of NCC, and coexpression of Nedd4-2 inhibits Kir4.1/Kir5.1 in vitro. Whether Nedd4-2 regulates NCC expression in part by regulating Kir4.1/Kir5.1 channel activity in the DCT is unknown. METHODS We used electrophysiology studies, immunoblotting, immunostaining, and renal clearance to examine Kir4.1/Kir5.1 activity in the DCT and NCC expression/activity in wild-type mice and mice with kidney-specific knockout of Nedd4-2, Kir4.1, or both. RESULTS Deletion of Nedd4-2 increased the activity/expression of Kir4.1 in the DCT and also, hyperpolarized the DCT membrane. Expression of phosphorylated NCC/total NCC and thiazide-induced natriuresis were significantly increased in the Nedd4-2 knockout mice, but these mice were normokalemic. Double-knockout mice lacking both Kir4.1/Kir5.1 and Nedd4-2 in the kidney exhibited increased expression of the epithelial sodium channel α-subunit, largely abolished basolateral potassium ion conductance (to a degree similar to that of kidney-specific Kir4.1 knockout mice), and depolarization of the DCT membrane. Compared with wild-type mice, the double-knockout mice displayed inhibited expression of phosphorylated NCC and total NCC and had significantly blunted thiazide-induced natriuresis as well as renal potassium wasting and hypokalemia. However, NCC expression/activity was higher in the double-knockout mice than in Kir4.1 knockout mice. CONCLUSIONS Nedd4-2 regulates Kir4.1/Kir5.1 expression/activity in the DCT and modulates NCC expression by Kir4.1-dependent and Kir4.1-independent mechanisms. Basolateral Kir4.1/Kir5.1 activity in the DCT partially accounts for the stimulation of NCC activity/expression induced by deletion of Nedd4-2.
Collapse
Affiliation(s)
- Peng Wu
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Xiao-Tong Su
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Zhong-Xiuzi Gao
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Dan-Dan Zhang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Xin-Peng Duan
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Yu Xiao
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Olivier Staub
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Dao-Hong Lin
- Department of Pharmacology, New York Medical College, Valhalla, New York
| |
Collapse
|
29
|
Zhang J, Han J, Li L, Zhang Q, Feng Y, Jiang Y, Deng F, Zhang Y, Wu Q, Chen B, Hu J. Inwardly rectifying potassium channel 5.1: Structure, function, and possible roles in diseases. Genes Dis 2020; 8:272-278. [PMID: 33997174 PMCID: PMC8093645 DOI: 10.1016/j.gendis.2020.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/02/2020] [Accepted: 03/13/2020] [Indexed: 11/30/2022] Open
Abstract
Inwardly rectifying potassium (Kir) channels make it easier for K+ to enter into a cell and subsequently regulate cellular biological functions. Kir5.1 (encoded by KCNJ16) alone can form a homotetramer and can form heterotetramers with Kir4.1 (encoded by KCNJ10) or Kir4.2 (encoded by KCNJ15). In most cases, homomeric Kir5.1 is non-functional, while heteromeric Kir5.1 on the cell membrane contributes to the inward flow of K+ ions, which can be regulated by intracellular pH and a variety of signaling mechanisms. In the form of a heterotetramer, Kir5.1 regulates Kir4.1/4.2 activity and is involved in the maintenance of nephron function. Actually, homomeric Kir5.1 may also play a very important role in diseases, including in the ventilatory response to hypoxia and hypercapnia, hearing impairment, cardiovascular disease and cancer. With an increase in the number of studies into the roles of Kir channels, researchers are paying more attention to the pathophysiological functions of Kir5.1. This minireview provides an overview regarding these Kir5.1 roles.
Collapse
Affiliation(s)
- Junhui Zhang
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China.,State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China.,Department of Endocrinology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Jian Han
- Department of Obstetrics and Gynecology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, 400042, PR China
| | - Lingfei Li
- Department of Dermatology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, 400042, PR China
| | - Qiong Zhang
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China.,State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Yanhai Feng
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China.,State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Youzhao Jiang
- Department of Endocrinology, People's Hospital of Banan District, Chongqing, 401320, PR China
| | - Fang Deng
- Department of Endocrinology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Yuping Zhang
- Department of Endocrinology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Qinan Wu
- Department of Endocrinology, Chongqing Cancer Hospital (Chongqing University Cancer Hospital), Chongqing, 40030, PR China
| | - Bing Chen
- Department of Endocrinology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Jiongyu Hu
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China.,State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China.,Department of Endocrinology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| |
Collapse
|
30
|
Manis AD, Hodges MR, Staruschenko A, Palygin O. Expression, localization, and functional properties of inwardly rectifying K + channels in the kidney. Am J Physiol Renal Physiol 2020; 318:F332-F337. [PMID: 31841387 PMCID: PMC7052651 DOI: 10.1152/ajprenal.00523.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022] Open
Abstract
Inwardly rectifying K+ (Kir) channels are expressed in multiple organs and cell types and play critical roles in cellular function. Most notably, Kir channels are major determinants of the resting membrane potential and K+ homeostasis. The renal outer medullary K+ channel (Kir1.1) was the first renal Kir channel identified and cloned in the kidney over two decades ago. Since then, several additional members, including classical and ATP-regulated Kir family classes, have been identified to be expressed in the kidney and to contribute to renal ion transport. Although the ATP-regulated Kir channel class remains the most well known due to severe pathological phenotypes associated with their mutations, progress is being made in defining the properties, localization, and physiological functions of other renal Kir channels, including those localized to the basolateral epithelium. This review is primarily focused on the current knowledge of the expression and localization of renal Kir channels but will also briefly describe their proposed functions in the kidney.
Collapse
Affiliation(s)
- Anna D Manis
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Matthew R Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin
| | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
31
|
Wu P, Gao ZX, Zhang DD, Su XT, Wang WH, Lin DH. Deletion of Kir5.1 Impairs Renal Ability to Excrete Potassium during Increased Dietary Potassium Intake. J Am Soc Nephrol 2019; 30:1425-1438. [PMID: 31239388 PMCID: PMC6683724 DOI: 10.1681/asn.2019010025] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/24/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The basolateral potassium channel in the distal convoluted tubule (DCT), comprising the inwardly rectifying potassium channel Kir4.1/Kir5.1 heterotetramer, plays a key role in mediating the effect of dietary potassium intake on the thiazide-sensitive NaCl cotransporter (NCC). The role of Kir5.1 (encoded by Kcnj16) in mediating effects of dietary potassium intake on the NCC and renal potassium excretion is unknown. METHODS We used electrophysiology, renal clearance, and immunoblotting to study Kir4.1 in the DCT and NCC in Kir5.1 knockout (Kcnj16-/- ) and wild-type (Kcnj16+/+ ) mice fed with normal, high, or low potassium diets. RESULTS We detected a 40-pS and 20-pS potassium channel in the basolateral membrane of the DCT in wild-type and knockout mice, respectively. Compared with wild-type, Kcnj16-/- mice fed a normal potassium diet had higher basolateral potassium conductance, a more negative DCT membrane potential, higher expression of phosphorylated NCC (pNCC) and total NCC (tNCC), and augmented thiazide-induced natriuresis. Neither high- nor low-potassium diets affected the basolateral DCT's potassium conductance and membrane potential in Kcnj16-/- mice. Although high potassium reduced and low potassium increased the expression of pNCC and tNCC in wild-type mice, these effects were absent in Kcnj16-/- mice. High potassium intake inhibited and low intake augmented thiazide-induced natriuresis in wild-type but not in Kcnj16-/- mice. Compared with wild-type, Kcnj16-/- mice with normal potassium intake had slightly lower plasma potassium but were more hyperkalemic with prolonged high potassium intake and more hypokalemic during potassium restriction. CONCLUSIONS Kir5.1 is essential for dietary potassium's effect on NCC and for maintaining potassium homeostasis.
Collapse
Affiliation(s)
- Peng Wu
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Zhong-Xiuzi Gao
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Dan-Dan Zhang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Xiao-Tong Su
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Dao-Hong Lin
- Department of Pharmacology, New York Medical College, Valhalla, New York
| |
Collapse
|
32
|
Su XT, Ellison DH, Wang WH. Kir4.1/Kir5.1 in the DCT plays a role in the regulation of renal K + excretion. Am J Physiol Renal Physiol 2019; 316:F582-F586. [PMID: 30623727 PMCID: PMC6459306 DOI: 10.1152/ajprenal.00412.2018] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/31/2018] [Accepted: 01/02/2019] [Indexed: 02/03/2023] Open
Abstract
The aim of this mini review is to provide an overview regarding the role of inwardly rectifying potassium channel 4.1 (Kir4.1)/Kir5.1 in regulating renal K+ excretion. Deletion of Kir4.1 in the kidney inhibited thiazide-sensitive NaCl cotransporter (NCC) activity in the distal convoluted tubule (DCT) and slightly suppressed Na-K-2Cl cotransporter (NKCC2) function in the thick ascending limb (TAL). Moreover, increased dietary K+ intake inhibited, whereas decreased dietary K+ intake stimulated, the basolateral potassium channel (a Kir4.1/Kir5.1 heterotetramer) in the DCT. The alteration of basolateral potassium conductance is essential for the effect of dietary K+ intake on NCC because deletion of Kir4.1 in the DCT abolished the effect of dietary K+ intake on NCC. Since potassium intake-mediated regulation of NCC plays a key role in regulating renal K+ excretion and potassium homeostasis, the deletion of Kir4.1 caused severe hypokalemia and metabolic alkalosis under control conditions and even during increased dietary K+ intake. Finally, recent studies have suggested that the angiotensin II type 2 receptor (AT2R) and bradykinin-B2 receptor (BK2R) are involved in mediating the effect of high dietary K+ intake on Kir4.1/Kir5.1 in the DCT.
Collapse
Affiliation(s)
- Xiao-Tong Su
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - David H Ellison
- Division of Nephrology and Hypertension, School of Medicine, Oregon Health and Science University , Portland, Oregon
- Renal Section, Veterans Administration Portland Health Care System , Portland, Oregon
| | - Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| |
Collapse
|
33
|
Gonzalez-Vicente A, Saez F, Monzon CM, Asirwatham J, Garvin JL. Thick Ascending Limb Sodium Transport in the Pathogenesis of Hypertension. Physiol Rev 2019; 99:235-309. [PMID: 30354966 DOI: 10.1152/physrev.00055.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The thick ascending limb plays a key role in maintaining water and electrolyte balance. The importance of this segment in regulating blood pressure is evidenced by the effect of loop diuretics or local genetic defects on this parameter. Hormones and factors produced by thick ascending limbs have both autocrine and paracrine effects, which can extend prohypertensive signaling to other structures of the nephron. In this review, we discuss the role of the thick ascending limb in the development of hypertension, not as a sole participant, but one that works within the rich biological context of the renal medulla. We first provide an overview of the basic physiology of the segment and the anatomical considerations necessary to understand its relationship with other renal structures. We explore the physiopathological changes in thick ascending limbs occurring in both genetic and induced animal models of hypertension. We then discuss the racial differences and genetic defects that affect blood pressure in humans through changes in thick ascending limb transport rates. Throughout the text, we scrutinize methodologies and discuss the limitations of research techniques that, when overlooked, can lead investigators to make erroneous conclusions. Thus, in addition to advancing an understanding of the basic mechanisms of physiology, the ultimate goal of this work is to understand our research tools, to make better use of them, and to contextualize research data. Future advances in renal hypertension research will require not only collection of new experimental data, but also integration of our current knowledge.
Collapse
Affiliation(s)
| | - Fara Saez
- Department of Physiology and Biophysics, Case Western Reserve University , Cleveland, Ohio
| | - Casandra M Monzon
- Department of Physiology and Biophysics, Case Western Reserve University , Cleveland, Ohio
| | - Jessica Asirwatham
- Department of Physiology and Biophysics, Case Western Reserve University , Cleveland, Ohio
| | - Jeffrey L Garvin
- Department of Physiology and Biophysics, Case Western Reserve University , Cleveland, Ohio
| |
Collapse
|
34
|
Kharade SV, Kurata H, Bender AM, Blobaum AL, Figueroa EE, Duran A, Kramer M, Days E, Vinson P, Flores D, Satlin LM, Meiler J, Weaver CD, Lindsley CW, Hopkins CR, Denton JS. Discovery, Characterization, and Effects on Renal Fluid and Electrolyte Excretion of the Kir4.1 Potassium Channel Pore Blocker, VU0134992. Mol Pharmacol 2018; 94:926-937. [PMID: 29895592 DOI: 10.1124/mol.118.112359] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/30/2018] [Indexed: 12/28/2022] Open
Abstract
The inward rectifier potassium (Kir) channel Kir4.1 (KCNJ10) carries out important physiologic roles in epithelial cells of the kidney, astrocytes in the central nervous system, and stria vascularis of the inner ear. Loss-of-function mutations in KCNJ10 lead to EAST/SeSAME syndrome, which is characterized by epilepsy, ataxia, renal salt wasting, and sensorineural deafness. Although genetic approaches have been indispensable for establishing the importance of Kir4.1 in the normal function of these tissues, the availability of pharmacological tools for acutely manipulating the activity of Kir4.1 in genetically normal animals has been lacking. We therefore carried out a high-throughput screen of 76,575 compounds from the Vanderbilt Institute of Chemical Biology library for small-molecule modulators of Kir4.1. The most potent inhibitor identified was 2-(2-bromo-4-isopropylphenoxy)-N-(2,2,6,6-tetramethylpiperidin-4-yl)acetamide (VU0134992). In whole-cell patch-clamp electrophysiology experiments, VU0134992 inhibits Kir4.1 with an IC50 value of 0.97 µM and is 9-fold selective for homomeric Kir4.1 over Kir4.1/5.1 concatemeric channels (IC50 = 9 µM) at -120 mV. In thallium (Tl+) flux assays, VU0134992 is greater than 30-fold selective for Kir4.1 over Kir1.1, Kir2.1, and Kir2.2; is weakly active toward Kir2.3, Kir6.2/SUR1, and Kir7.1; and is equally active toward Kir3.1/3.2, Kir3.1/3.4, and Kir4.2. This potency and selectivity profile is superior to Kir4.1 inhibitors amitriptyline, nortriptyline, and fluoxetine. Medicinal chemistry identified components of VU0134992 that are critical for inhibiting Kir4.1. Patch-clamp electrophysiology, molecular modeling, and site-directed mutagenesis identified pore-lining glutamate 158 and isoleucine 159 as critical residues for block of the channel. VU0134992 displayed a large free unbound fraction (fu) in rat plasma (fu = 0.213). Consistent with the known role of Kir4.1 in renal function, oral dosing of VU0134992 led to a dose-dependent diuresis, natriuresis, and kaliuresis in rats. Thus, VU0134992 represents the first in vivo active tool compound for probing the therapeutic potential of Kir4.1 as a novel diuretic target for the treatment of hypertension.
Collapse
Affiliation(s)
- Sujay V Kharade
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee (S.V.K., M.K., J.S.D.); Center for Neuroscience Drug Discovery and the Vanderbilt Specialized Chemistry Center for Accelerated Probe Development (H.K., A.M.B., A.L.B., C.W.L., C.R.H.), Departments of Pharmacology (H.K., A.M.B., E.E.F., J.M., C.D.W., C.W.L., J.S.D.) and Chemistry (A.D., J.M., C.D.W., C.W.L.), High-Throughput Screening Center (E.D., P.V.), and Institute of Chemical Biology (C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York (D.F., L.M.S.); and Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.)
| | - Haruto Kurata
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee (S.V.K., M.K., J.S.D.); Center for Neuroscience Drug Discovery and the Vanderbilt Specialized Chemistry Center for Accelerated Probe Development (H.K., A.M.B., A.L.B., C.W.L., C.R.H.), Departments of Pharmacology (H.K., A.M.B., E.E.F., J.M., C.D.W., C.W.L., J.S.D.) and Chemistry (A.D., J.M., C.D.W., C.W.L.), High-Throughput Screening Center (E.D., P.V.), and Institute of Chemical Biology (C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York (D.F., L.M.S.); and Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.)
| | - Aaron M Bender
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee (S.V.K., M.K., J.S.D.); Center for Neuroscience Drug Discovery and the Vanderbilt Specialized Chemistry Center for Accelerated Probe Development (H.K., A.M.B., A.L.B., C.W.L., C.R.H.), Departments of Pharmacology (H.K., A.M.B., E.E.F., J.M., C.D.W., C.W.L., J.S.D.) and Chemistry (A.D., J.M., C.D.W., C.W.L.), High-Throughput Screening Center (E.D., P.V.), and Institute of Chemical Biology (C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York (D.F., L.M.S.); and Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.)
| | - Anna L Blobaum
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee (S.V.K., M.K., J.S.D.); Center for Neuroscience Drug Discovery and the Vanderbilt Specialized Chemistry Center for Accelerated Probe Development (H.K., A.M.B., A.L.B., C.W.L., C.R.H.), Departments of Pharmacology (H.K., A.M.B., E.E.F., J.M., C.D.W., C.W.L., J.S.D.) and Chemistry (A.D., J.M., C.D.W., C.W.L.), High-Throughput Screening Center (E.D., P.V.), and Institute of Chemical Biology (C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York (D.F., L.M.S.); and Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.)
| | - Eric E Figueroa
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee (S.V.K., M.K., J.S.D.); Center for Neuroscience Drug Discovery and the Vanderbilt Specialized Chemistry Center for Accelerated Probe Development (H.K., A.M.B., A.L.B., C.W.L., C.R.H.), Departments of Pharmacology (H.K., A.M.B., E.E.F., J.M., C.D.W., C.W.L., J.S.D.) and Chemistry (A.D., J.M., C.D.W., C.W.L.), High-Throughput Screening Center (E.D., P.V.), and Institute of Chemical Biology (C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York (D.F., L.M.S.); and Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.)
| | - Amanda Duran
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee (S.V.K., M.K., J.S.D.); Center for Neuroscience Drug Discovery and the Vanderbilt Specialized Chemistry Center for Accelerated Probe Development (H.K., A.M.B., A.L.B., C.W.L., C.R.H.), Departments of Pharmacology (H.K., A.M.B., E.E.F., J.M., C.D.W., C.W.L., J.S.D.) and Chemistry (A.D., J.M., C.D.W., C.W.L.), High-Throughput Screening Center (E.D., P.V.), and Institute of Chemical Biology (C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York (D.F., L.M.S.); and Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.)
| | - Meghan Kramer
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee (S.V.K., M.K., J.S.D.); Center for Neuroscience Drug Discovery and the Vanderbilt Specialized Chemistry Center for Accelerated Probe Development (H.K., A.M.B., A.L.B., C.W.L., C.R.H.), Departments of Pharmacology (H.K., A.M.B., E.E.F., J.M., C.D.W., C.W.L., J.S.D.) and Chemistry (A.D., J.M., C.D.W., C.W.L.), High-Throughput Screening Center (E.D., P.V.), and Institute of Chemical Biology (C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York (D.F., L.M.S.); and Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.)
| | - Emily Days
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee (S.V.K., M.K., J.S.D.); Center for Neuroscience Drug Discovery and the Vanderbilt Specialized Chemistry Center for Accelerated Probe Development (H.K., A.M.B., A.L.B., C.W.L., C.R.H.), Departments of Pharmacology (H.K., A.M.B., E.E.F., J.M., C.D.W., C.W.L., J.S.D.) and Chemistry (A.D., J.M., C.D.W., C.W.L.), High-Throughput Screening Center (E.D., P.V.), and Institute of Chemical Biology (C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York (D.F., L.M.S.); and Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.)
| | - Paige Vinson
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee (S.V.K., M.K., J.S.D.); Center for Neuroscience Drug Discovery and the Vanderbilt Specialized Chemistry Center for Accelerated Probe Development (H.K., A.M.B., A.L.B., C.W.L., C.R.H.), Departments of Pharmacology (H.K., A.M.B., E.E.F., J.M., C.D.W., C.W.L., J.S.D.) and Chemistry (A.D., J.M., C.D.W., C.W.L.), High-Throughput Screening Center (E.D., P.V.), and Institute of Chemical Biology (C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York (D.F., L.M.S.); and Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.)
| | - Daniel Flores
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee (S.V.K., M.K., J.S.D.); Center for Neuroscience Drug Discovery and the Vanderbilt Specialized Chemistry Center for Accelerated Probe Development (H.K., A.M.B., A.L.B., C.W.L., C.R.H.), Departments of Pharmacology (H.K., A.M.B., E.E.F., J.M., C.D.W., C.W.L., J.S.D.) and Chemistry (A.D., J.M., C.D.W., C.W.L.), High-Throughput Screening Center (E.D., P.V.), and Institute of Chemical Biology (C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York (D.F., L.M.S.); and Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.)
| | - Lisa M Satlin
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee (S.V.K., M.K., J.S.D.); Center for Neuroscience Drug Discovery and the Vanderbilt Specialized Chemistry Center for Accelerated Probe Development (H.K., A.M.B., A.L.B., C.W.L., C.R.H.), Departments of Pharmacology (H.K., A.M.B., E.E.F., J.M., C.D.W., C.W.L., J.S.D.) and Chemistry (A.D., J.M., C.D.W., C.W.L.), High-Throughput Screening Center (E.D., P.V.), and Institute of Chemical Biology (C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York (D.F., L.M.S.); and Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.)
| | - Jens Meiler
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee (S.V.K., M.K., J.S.D.); Center for Neuroscience Drug Discovery and the Vanderbilt Specialized Chemistry Center for Accelerated Probe Development (H.K., A.M.B., A.L.B., C.W.L., C.R.H.), Departments of Pharmacology (H.K., A.M.B., E.E.F., J.M., C.D.W., C.W.L., J.S.D.) and Chemistry (A.D., J.M., C.D.W., C.W.L.), High-Throughput Screening Center (E.D., P.V.), and Institute of Chemical Biology (C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York (D.F., L.M.S.); and Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.)
| | - C David Weaver
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee (S.V.K., M.K., J.S.D.); Center for Neuroscience Drug Discovery and the Vanderbilt Specialized Chemistry Center for Accelerated Probe Development (H.K., A.M.B., A.L.B., C.W.L., C.R.H.), Departments of Pharmacology (H.K., A.M.B., E.E.F., J.M., C.D.W., C.W.L., J.S.D.) and Chemistry (A.D., J.M., C.D.W., C.W.L.), High-Throughput Screening Center (E.D., P.V.), and Institute of Chemical Biology (C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York (D.F., L.M.S.); and Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.)
| | - Craig W Lindsley
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee (S.V.K., M.K., J.S.D.); Center for Neuroscience Drug Discovery and the Vanderbilt Specialized Chemistry Center for Accelerated Probe Development (H.K., A.M.B., A.L.B., C.W.L., C.R.H.), Departments of Pharmacology (H.K., A.M.B., E.E.F., J.M., C.D.W., C.W.L., J.S.D.) and Chemistry (A.D., J.M., C.D.W., C.W.L.), High-Throughput Screening Center (E.D., P.V.), and Institute of Chemical Biology (C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York (D.F., L.M.S.); and Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.)
| | - Corey R Hopkins
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee (S.V.K., M.K., J.S.D.); Center for Neuroscience Drug Discovery and the Vanderbilt Specialized Chemistry Center for Accelerated Probe Development (H.K., A.M.B., A.L.B., C.W.L., C.R.H.), Departments of Pharmacology (H.K., A.M.B., E.E.F., J.M., C.D.W., C.W.L., J.S.D.) and Chemistry (A.D., J.M., C.D.W., C.W.L.), High-Throughput Screening Center (E.D., P.V.), and Institute of Chemical Biology (C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York (D.F., L.M.S.); and Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.)
| | - Jerod S Denton
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee (S.V.K., M.K., J.S.D.); Center for Neuroscience Drug Discovery and the Vanderbilt Specialized Chemistry Center for Accelerated Probe Development (H.K., A.M.B., A.L.B., C.W.L., C.R.H.), Departments of Pharmacology (H.K., A.M.B., E.E.F., J.M., C.D.W., C.W.L., J.S.D.) and Chemistry (A.D., J.M., C.D.W., C.W.L.), High-Throughput Screening Center (E.D., P.V.), and Institute of Chemical Biology (C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York (D.F., L.M.S.); and Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.)
| |
Collapse
|
35
|
|
36
|
Palygin O, Levchenko V, Ilatovskaya DV, Pavlov TS, Pochynyuk OM, Jacob HJ, Geurts AM, Hodges MR, Staruschenko A. Essential role of Kir5.1 channels in renal salt handling and blood pressure control. JCI Insight 2017; 2:92331. [PMID: 28931751 PMCID: PMC5621918 DOI: 10.1172/jci.insight.92331] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 08/08/2017] [Indexed: 01/07/2023] Open
Abstract
Supplementing diets with high potassium helps reduce hypertension in humans. Inwardly rectifying K+ channels Kir4.1 (Kcnj10) and Kir5.1 (Kcnj16) are highly expressed in the basolateral membrane of distal renal tubules and contribute to Na+ reabsorption and K+ secretion through the direct control of transepithelial voltage. To define the importance of Kir5.1 in blood pressure control under conditions of salt-induced hypertension, we generated a Kcnj16 knockout in Dahl salt-sensitive (SS) rats (SSKcnj16-/-). SSKcnj16-/- rats exhibited hypokalemia and reduced blood pressure, and when fed a high-salt diet (4% NaCl), experienced 100% mortality within a few days triggered by salt wasting and severe hypokalemia. Electrophysiological recordings of basolateral K+ channels in the collecting ducts isolated from SSKcnj16-/- rats revealed activity of only homomeric Kir4.1 channels. Kir4.1 expression was upregulated in SSKcnj16-/- rats, but the protein was predominantly localized in the cytosol in SSKcnj16-/- rats. Benzamil, but not hydrochlorothiazide or furosemide, rescued this phenotype from mortality on a high-salt diet. Supplementation of high-salt diet with increased potassium (2% KCl) prevented mortality in SSKcnj16-/- rats and prevented or mitigated hypertension in SSKcnj16-/- or control SS rats, respectively. Our results demonstrate that Kir5.1 channels are key regulators of renal salt handling in SS hypertension.
Collapse
Affiliation(s)
- Oleg Palygin
- Department of Physiology and
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | | | | | - Oleh M. Pochynyuk
- Department of Integrative Biology, University of Texas Health Science Center Medical School, Houston, Texas, USA
| | - Howard J. Jacob
- Department of Physiology and
- Human and Molecular Genetics Center and
| | - Aron M. Geurts
- Department of Physiology and
- Human and Molecular Genetics Center and
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Matthew R. Hodges
- Department of Physiology and
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Alexander Staruschenko
- Department of Physiology and
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
37
|
Hasan S, Balobaid A, Grottesi A, Dabbagh O, Cenciarini M, Rawashdeh R, Al-Sagheir A, Bove C, Macchioni L, Pessia M, Al-Owain M, D'Adamo MC. Lethal digenic mutations in the K + channels Kir4.1 ( KCNJ10) and SLACK ( KCNT1) associated with severe-disabling seizures and neurodevelopmental delay. J Neurophysiol 2017; 118:2402-2411. [PMID: 28747464 DOI: 10.1152/jn.00284.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/05/2017] [Accepted: 07/21/2017] [Indexed: 01/14/2023] Open
Abstract
A 2-yr-old boy presented profound developmental delay, failure to thrive, ataxia, hypotonia, and tonic-clonic seizures that caused the death of the patient. Targeted and whole exome sequencing revealed two heterozygous missense variants: a novel mutation in the KCNJ10 gene that encodes for the inward-rectifying K+ channel Kir4.1 and another previously characterized mutation in KCNT1 that encodes for the Na+-activated K+ channel known as Slo2.2 or SLACK. The objectives of this study were to perform the clinical and genetic characterization of the proband and his family and to examine the functional consequence of the Kir4.1 mutation. The mutant and wild-type KCNJ10 constructs were generated and heterologously expressed in Xenopus laevis oocytes, and whole cell K+ currents were measured using the two-electrode voltage-clamp technique. The KCNJ10 mutation c.652C>T resulted in a p.L218F substitution at a highly conserved residue site. Wild-type KCNJ10 expression yielded robust Kir current, whereas currents from oocytes expressing the mutation were reduced, remarkably. Western Blot analysis revealed reduced protein expression by the mutation. Kir5.1 subunits display selective heteromultimerization with Kir4.1 constituting channels with unique kinetics. The effect of the mutation on Kir4.1/5.1 channel activity was twofold: a reduction in current amplitudes and an increase in the pH-dependent inhibition. We thus report a novel loss-of-function mutation in Kir4.1 found in a patient with a coexisting mutation in SLACK channels that results in a fatal disease.NEW & NOTEWORTHY We present and characterize a novel mutation in KCNJ10 Unlike previously reported EAST/SeSAME patients, our patient was heterozygous, and contrary to previous studies, mimicking the heterozygous state by coexpression resulted in loss of channel function. We report in the same patient co-occurrence of a KCNT1 mutation resulting in a more severe phenotype. This study provides new insights into the phenotypic spectrum and to the genotype-phenotype correlations associated with EAST/SeSAME and MMFSI.
Collapse
Affiliation(s)
- Sonia Hasan
- Department of Physiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | - Ameera Balobaid
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | | | - Omar Dabbagh
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Marta Cenciarini
- Section of Physiology and Biochemistry, Department of Experimental Medicine, School of Medicine, University of Perugia, Perugia, Italy
| | - Rifaat Rawashdeh
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Afaf Al-Sagheir
- Department of Pediatrics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Cecilia Bove
- Section of Physiology and Biochemistry, Department of Experimental Medicine, School of Medicine, University of Perugia, Perugia, Italy
| | - Lara Macchioni
- Section of Physiology and Biochemistry, Department of Experimental Medicine, School of Medicine, University of Perugia, Perugia, Italy
| | - Mauro Pessia
- Section of Physiology and Biochemistry, Department of Experimental Medicine, School of Medicine, University of Perugia, Perugia, Italy.,Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Mohammed Al-Owain
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.,College of Medicine, AlFaisal University, Riyadh, Saudi Arabia; and
| | - Maria Cristina D'Adamo
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; .,Fondazione Santa Lucia, IRCCS, Rome, Italy
| |
Collapse
|
38
|
Kompatscher A, de Baaij JHF, Aboudehen K, Hoefnagels APWM, Igarashi P, Bindels RJM, Veenstra GJC, Hoenderop JGJ. Loss of transcriptional activation of the potassium channel Kir5.1 by HNF1β drives autosomal dominant tubulointerstitial kidney disease. Kidney Int 2017; 92:1145-1156. [PMID: 28577853 DOI: 10.1016/j.kint.2017.03.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 03/08/2017] [Accepted: 03/23/2017] [Indexed: 12/20/2022]
Abstract
Hepatocyte nuclear factor 1 homeobox B (HNF1β) is an essential transcription factor for the development and functioning of the kidney. Mutations in HNF1β cause autosomal dominant tubulointerstitial kidney disease characterized by renal cysts and maturity-onset diabetes of the young (MODY). Moreover, these patients suffer from a severe electrolyte phenotype consisting of hypomagnesemia and hypokalemia. Until now, genes that are regulated by HNF1β are only partially known and do not fully explain the phenotype of the patients. Therefore, we performed chIP-seq in the immortalized mouse kidney cell line mpkDCT to identify HNF1β binding sites on a genome-wide scale. In total 7,421 HNF1β-binding sites were identified, including several genes involved in electrolyte transport and diabetes. A highly specific and conserved HNF1β site was identified in the promoter of Kcnj16 that encodes the potassium channel Kir5.1. Luciferase-promoter assays showed a 2.2-fold increase in Kcnj16 expression when HNF1β was present. Expression of the Hnf1β p.Lys156Glu mutant, previously identified in a patient with autosomal dominant tubulointerstitial kidney disease, did not activate Kcnj16 expression. Knockdown of Hnf1β in mpkDCT cells significantly reduced the appearance of Kcnj16 (Kir5.1) and Kcnj10 (Kir4.1) by 38% and 37%, respectively. These results were confirmed in a HNF1β renal knockout mouse which exhibited downregulation of Kcnj16, Kcnj10 and Slc12a3 transcripts in the kidney by 78%, 83% and 76%, respectively, compared to HNF1β wild-type mice. Thus, HNF1β is a transcriptional activator of Kcnj16. Hence, patients with HNF1β mutations may have reduced Kir5.1 activity in the kidney, resulting in hypokalemia and hypomagnesemia.
Collapse
Affiliation(s)
- Andreas Kompatscher
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Jeroen H F de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Karam Aboudehen
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Anke P W M Hoefnagels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Peter Igarashi
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - René J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Gertjan J C Veenstra
- Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, Netherlands
| | - Joost G J Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, Netherlands.
| |
Collapse
|
39
|
Li JB, Tang S, Zheng JS, Tian CL, Liu L. Removable Backbone Modification Method for the Chemical Synthesis of Membrane Proteins. Acc Chem Res 2017; 50:1143-1153. [PMID: 28374993 DOI: 10.1021/acs.accounts.7b00001] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Chemical synthesis can produce water-soluble globular proteins bearing specifically designed modifications. These synthetic molecules have been used to study the biological functions of proteins and to improve the pharmacological properties of protein drugs. However, the above advances notwithstanding, membrane proteins (MPs), which comprise 20-30% of all proteins in the proteomes of most eukaryotic cells, remain elusive with regard to chemical synthesis. This difficulty stems from the strong hydrophobic character of MPs, which can cause considerable handling issues during ligation, purification, and characterization steps. Considerable efforts have been made to improve the solubility of transmembrane peptides for chemical ligation. These methods can be classified into two main categories: the manipulation of external factors and chemical modification of the peptide. This Account summarizes our research advances in the development of chemical modification especially the two generations of removable backbone modification (RBM) strategy for the chemical synthesis of MPs. In the first RBM generation, we install a removable modification group at the backbone amide of Gly within the transmembrane peptides. In the second RBM generation, the RBM group can be installed into all primary amino acid residues. The second RBM strategy combines the activated intramolecular O-to-N acyl transfer reaction, in which a phenyl group remains unprotected during the coupling process, which can play a catalytic role to generate the activated phenyl ester to assist in the formation of amide. The key feature of the RBM group is its switchable stability in trifluoroacetic acid. The stability of these backbone amide N-modifications toward TFA can be modified by regulating the electronic effects of phenol groups. The free phenol group is acylated to survive the TFA deprotection step, while the acyl phenyl ester will be quantitatively hydrolyzed in a neutral aqueous solution, and the free phenol group increases the electron density of the benzene ring to make the RBM labile to TFA. The transmembrane peptide segment bearing RBM groups behaves like a water-soluble peptide during fluorenylmethyloxycarbonyl based solid-phase peptide synthesis (Fmoc SPPS), ligation, purification, and characterization. The quantitative removal of the RBM group can be performed to obtain full-length MPs. The RBM strategy was used to prepare the core transmembrane domain Kir5.1[64-179] not readily accessible by recombinant protein expression, the influenza A virus M2 proton channel with phosphorylation, the cation-specific ion channel p7 from the hepatitis C virus with site-specific NMR isotope labels, and so on. The RBM method enables the practical engineering of small- to medium-sized MPs or membrane protein domains to address fundamental questions in the biochemical, biophysical, and pharmaceutical sciences.
Collapse
Affiliation(s)
- Jia-Bin Li
- School of Life Sciences, University of Science and Technology of China , Hefei 230027, China
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University , Beijing 100084, China
| | - Shan Tang
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University , Beijing 100084, China
| | - Ji-Shen Zheng
- School of Life Sciences, University of Science and Technology of China , Hefei 230027, China
| | - Chang-Lin Tian
- School of Life Sciences, University of Science and Technology of China , Hefei 230027, China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University , Beijing 100084, China
| |
Collapse
|
40
|
Brasko C, Hawkins V, De La Rocha IC, Butt AM. Expression of Kir4.1 and Kir5.1 inwardly rectifying potassium channels in oligodendrocytes, the myelinating cells of the CNS. Brain Struct Funct 2017; 222:41-59. [PMID: 26879293 PMCID: PMC5225165 DOI: 10.1007/s00429-016-1199-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 02/01/2016] [Indexed: 12/21/2022]
Abstract
The inwardly rectifying K+ channel subtype Kir5.1 is only functional as a heteromeric channel with Kir4.1. In the CNS, Kir4.1 is localised to astrocytes and is the molecular basis of their strongly negative membrane potential. Oligodendrocytes are the specialised myelinating glia of the CNS and their resting membrane potential provides the driving force for ion and water transport that is essential for myelination. However, little is known about the ion channel profile of mature myelinating oligodendrocytes. Here, we identify for the first time colocalization of Kir5.1 with Kir4.1 in oligodendrocytes in white matter. Immunolocalization with membrane-bound Na+/K+-ATPase and western blot of the plasma membrane fraction of the optic nerve, a typical CNS white matter tract containing axons and the oligodendrocytes that myelinate them, demonstrates that Kir4.1 and Kir5.1 are colocalized on oligodendrocyte cell membranes. Co-immunoprecipitation provides evidence that oligodendrocytes and astrocytes express a combination of homomeric Kir4.1 and heteromeric Kir4.1/Kir5.1 channels. Genetic knock-out and shRNA to ablate Kir4.1 indicates plasmalemmal expression of Kir5.1 in glia is largely dependent on Kir4.1 and the plasmalemmal anchoring protein PSD-95. The results demonstrate that, in addition to astrocytes, oligodendrocytes express both homomeric Kir4.1 and heteromeric Kir4.1/Kir5.1 channels. In astrocytes, these channels are essential to their key functions of K+ uptake and CO2/H+ chemosensation. We propose Kir4.1/Kir5.1 channels have equivalent functions in oligodendrocytes, maintaining myelin integrity in the face of large ionic shifts associated with action potential propagation along myelinated axons.
Collapse
Affiliation(s)
- C Brasko
- Institute of Biology and Biomedical Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK
| | - V Hawkins
- Institute of Biology and Biomedical Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK
| | - I Chacon De La Rocha
- Institute of Biology and Biomedical Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK
| | - A M Butt
- Institute of Biology and Biomedical Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK.
| |
Collapse
|
41
|
Palygin O, Pochynyuk O, Staruschenko A. Role and mechanisms of regulation of the basolateral K ir 4.1/K ir 5.1K + channels in the distal tubules. Acta Physiol (Oxf) 2017; 219:260-273. [PMID: 27129733 PMCID: PMC5086442 DOI: 10.1111/apha.12703] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/28/2016] [Accepted: 04/28/2016] [Indexed: 12/11/2022]
Abstract
Epithelial K+ channels are essential for maintaining electrolyte and fluid homeostasis in the kidney. It is recognized that basolateral inward-rectifying K+ (Kir ) channels play an important role in the control of resting membrane potential and transepithelial voltage, thereby modulating water and electrolyte transport in the distal part of nephron and collecting duct. Monomeric Kir 4.1 (encoded by Kcnj10 gene) and heteromeric Kir 4.1/Kir 5.1 (Kir 4.1 together with Kir 5.1 (Kcnj16)) channels are abundantly expressed at the basolateral membranes of the distal convoluted tubule and the cortical collecting duct cells. Loss-of-function mutations in KCNJ10 cause EAST/SeSAME tubulopathy in humans associated with salt wasting, hypomagnesaemia, metabolic alkalosis and hypokalaemia. In contrast, mice lacking Kir 5.1 have severe renal phenotype that, apart from hypokalaemia, is the opposite of the phenotype seen in EAST/SeSAME syndrome. Experimental advances using genetic animal models provided critical insights into the physiological role of these channels in electrolyte homeostasis and the control of kidney function. Here, we discuss current knowledge about K+ channels at the basolateral membrane of the distal tubules with specific focus on the homomeric Kir 4.1 and heteromeric Kir 4.1/Kir 5.1 channels. Recently identified molecular mechanisms regulating expression and activity of these channels, such as cell acidification, dopamine, insulin and insulin-like growth factor-1, Src family protein tyrosine kinases, as well as the role of these channels in NCC-mediated transport in the distal convoluted tubules, are also described.
Collapse
Affiliation(s)
- Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Oleh Pochynyuk
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | | |
Collapse
|
42
|
Gain-of-function defects of astrocytic Kir4.1 channels in children with autism spectrum disorders and epilepsy. Sci Rep 2016; 6:34325. [PMID: 27677466 PMCID: PMC5039625 DOI: 10.1038/srep34325] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/07/2016] [Indexed: 12/23/2022] Open
Abstract
Dysfunction of the inwardly-rectifying potassium channels Kir4.1 (KCNJ10) represents a pathogenic mechanism contributing to Autism-Epilepsy comorbidity. To define the role of Kir4.1 variants in the disorder, we sequenced KCNJ10 in a sample of affected individuals, and performed genotype-phenotype correlations. The effects of mutations on channel activity, protein trafficking, and astrocyte function were investigated in Xenopus laevis oocytes, and in human astrocytoma cell lines. An in vivo model of the disorder was also explored through generation of kcnj10a morphant zebrafish overexpressing the mutated human KCNJ10. We detected germline heterozygous KCNJ10 variants in 19/175 affected children. Epileptic spasms with dysregulated sensory processing represented the main disease phenotype. When investigated on astrocyte-like cells, the p.R18Q mutation exerted a gain-of-function effect by enhancing Kir4.1 membrane expression and current density. Similarly, the p.R348H variant led to gain of channel function through hindrance of pH-dependent current inhibition. The frequent polymorphism p.R271C seemed, instead, to have no obvious functional effects. Our results confirm that variants in KCNJ10 deserve attention in autism-epilepsy, and provide insight into the molecular mechanisms of autism and seizures. Similar to neurons, astrocyte dysfunction may result in abnormal synaptic transmission and electrical discharge, and should be regarded as a possible pharmacological target in autism-epilepsy.
Collapse
|
43
|
Pan CC, Chu HQ, Lai YB, Sun YB, Du ZH, Liu Y, Chen J, Tong T, Chen QG, Zhou LQ, Bing D, Tao YL. Downregulation of inwardly rectifying potassium channel 5.1 expression in C57BL/6J cochlear lateral wall. JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY. MEDICAL SCIENCES = HUA ZHONG KE JI DA XUE XUE BAO. YI XUE YING DE WEN BAN = HUAZHONG KEJI DAXUE XUEBAO. YIXUE YINGDEWEN BAN 2016; 36:406-409. [PMID: 27376812 DOI: 10.1007/s11596-016-1600-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 04/20/2016] [Indexed: 10/21/2022]
Abstract
Age-related hearing loss (AHL) is one of the most common sensory disorders among elderly persons. The inwardly rectifying potassium channel 5.1 (Kir5.1) plays a vital role in regulating cochlear K(+) circulation which is necessary for normal hearing. The distribution of Kir5.1 in C57BL/6J mice cochleae, and the relationship between the expression of Kir5.1 and the etiology of AHL were investigated. Forty C57BL/6J mice were randomly divided into four groups at 4, 12, 24 and 52 weeks of age respectively. The location of Kir5.1 was detected by immunofluorescence technique. The mRNA and protein expression of Kir5.1 was evaluated in mice cochleae using real-time polymerase-chain reactions (RT-PCR) and Western blotting respectively. Kir5.1 was detected in the type II and IV fibrocytes of the spiral ligament in the cochlear lateral wall of C57BL/6J mice. The expression levels of Kir5.1 mRNA and protein in the cochleae of aging C57BL/6J mice were down-regulated. It was suggested that the age-related decreased expression of Kir5.1 in the lateral wall of C57BL/6J mice was associated with hearing loss. Our results indicated that Kir5.1 may play an important role in the pathogenesis of AHL.
Collapse
Affiliation(s)
- Chun-Chen Pan
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Han-Qi Chu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yan-Bing Lai
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yan-Bo Sun
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhi-Hui Du
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yun Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jin Chen
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ting Tong
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qing-Guo Chen
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Liang-Qiang Zhou
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dan Bing
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yan-Ling Tao
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
44
|
Méndez-González MP, Kucheryavykh YV, Zayas-Santiago A, Vélez-Carrasco W, Maldonado-Martínez G, Cubano LA, Nichols CG, Skatchkov SN, Eaton MJ. Novel KCNJ10 Gene Variations Compromise Function of Inwardly Rectifying Potassium Channel 4.1. J Biol Chem 2016; 291:7716-26. [PMID: 26867573 PMCID: PMC4817196 DOI: 10.1074/jbc.m115.679910] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 02/09/2016] [Indexed: 11/06/2022] Open
Abstract
TheKCNJ10gene encoding Kir4.1 contains numerous SNPs whose molecular effects remain unknown. We investigated the functional consequences of uncharacterized SNPs (Q212R, L166Q, and G83V) on homomeric (Kir4.1) and heteromeric (Kir4.1-Kir5.1) channel function. We compared these with previously characterized EAST/SeSAME mutants (G77R and A167V) in kidney-derived tsA201 cells and in glial cell-derived C6 glioma cells. The membrane potentials of tsA201 cells expressing G77R and G83V were significantly depolarized as compared with WTKir4.1, whereas cells expressing Q212R, L166Q, and A167V were less affected. Furthermore, macroscopic currents from cells expressing WTKir4.1 and Q212R channels did not differ, whereas currents from cells expressing L166Q, G83V, G77R, and A167V were reduced. Unexpectedly, L166Q current responses were rescued when co-expressed with Kir5.1. In addition, we observed notable differences in channel activity between C6 glioma cells and tsA201 cells expressing L166Q and A167V, suggesting that there are underlying differences between cell lines in terms of Kir4.1 protein synthesis, stability, or expression at the surface. Finally, we determined spermine (SPM) sensitivity of these uncharacterized SNPs and found that Q212R-containing channels displayed reduced block by 1 μmSPM. At 100 μmSPM, the block was equal to or greater than WT, suggesting that the greater driving force of SPM allowed achievement of steady state. In contrast, L166Q-Kir5.1 channels achieved a higher block than WT, suggesting a more stable interaction of SPM in the deep pore cavity. Overall, our data suggest that G83V, L166Q, and Q212R residues play a pivotal role in controlling Kir4.1 channel function.
Collapse
Affiliation(s)
| | | | | | | | | | - Luis A Cubano
- Anatomy and Cell Biology, Universidad Central del Caribe, Bayamón, Puerto Rico 00960-6032 and
| | - Colin G Nichols
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110-1093
| | | | | |
Collapse
|
45
|
Abstract
More than two dozen types of potassium channels, with different biophysical and regulatory properties, are expressed in the kidney, influencing renal function in many important ways. Recently, a confluence of discoveries in areas from human genetics to physiology, cell biology, and biophysics has cast light on the special function of five different potassium channels in the distal nephron, encoded by the genes KCNJ1, KCNJ10, KCNJ16, KCNMA1, and KCNN3. Research aimed at understanding how these channels work in health and go awry in disease has transformed our understanding of potassium balance and provided new insights into mechanisms of renal sodium handling and the maintenance of blood pressure. This review focuses on recent advances in this rapidly evolving field.
Collapse
Affiliation(s)
- Paul A Welling
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201;
| |
Collapse
|
46
|
Browne JA, Yang R, Leir SH, Eggener SE, Harris A. Expression profiles of human epididymis epithelial cells reveal the functional diversity of caput, corpus and cauda regions. Mol Hum Reprod 2015; 22:69-82. [PMID: 26612782 DOI: 10.1093/molehr/gav066] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/20/2015] [Indexed: 01/01/2023] Open
Abstract
STUDY HYPOTHESIS Region-specific transcriptional profiling of tissues and cultured epithelial cells from the human epididymis will predict functional specialization along the duct. STUDY FINDING We identified the molecular signature driving functions of the caput, corpus and cauda epithelium, and determined how these differ to establish the regional differentiation of the organ. WHAT IS KNOWN ALREADY The epithelium lining the human male genital ducts has a critical role in fertility. In particular, it controls the luminal environment in the epididymis, which is required for normal sperm maturation and reproductive competence. Studies in many animal species have largely informed our understanding of the molecular basis of epididymis function. However, there are substantial differences between species. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Using RNA sequencing on biological replicates, we described gene expression profiles for tissue from each region of the epididymis and cultured epithelial cells derived from these regions. Bioinformatic tools were then utilized to identify differentially expressed genes (DEGs) between tissues and cells from the caput, corpus and cauda. MAIN RESULTS AND THE ROLE OF CHANCE The data showed that the caput is functionally divergent from the corpus and cauda, which have very similar transcriptomes. Interrogation of DEGs using gene ontology process enrichment analyses showed that processes of ion transport, response to hormone stimulus and urogenital tract development are more evident in the caput, while defense response processes are more important in the corpus/cauda. Consistent with these regional differences in epididymis function, we observed differential expression of transcription factors in the caput and corpus/cauda. LIMITATIONS, REASONS FOR CAUTION Cultured caput, corpus and cauda cells may not faithfully represent the same cells in the intact organ, due to loss of hormonal signals from the testis and communication from other cell types. WIDER IMPLICATIONS OF THE FINDINGS Our data provide a molecular characterization that will facilitate advances in understanding human epididymis epithelium biology in health and disease. They may also reveal the mechanisms coordinating epididymis luminal environment and sperm maturation. LARGE SCALE DATA Data deposited at http://www.ncbi.nlm.nih.gov/geo/GSE72986. STUDY FUNDING AND COMPETING INTERESTS This work was supported by the National Institutes of Health: R01HD068901 (PI: A.H.). The authors declare no conflict of interest.
Collapse
Affiliation(s)
- James A Browne
- Human Molecular Genetics Program, Lurie Children's Research Center, 2430 North Halsted Street, Box 211, Chicago, IL 60614, USA Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rui Yang
- Human Molecular Genetics Program, Lurie Children's Research Center, 2430 North Halsted Street, Box 211, Chicago, IL 60614, USA Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Shih-Hsing Leir
- Human Molecular Genetics Program, Lurie Children's Research Center, 2430 North Halsted Street, Box 211, Chicago, IL 60614, USA Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Scott E Eggener
- Section of Urology, University of Chicago Medical Center, Chicago, IL, USA
| | - Ann Harris
- Human Molecular Genetics Program, Lurie Children's Research Center, 2430 North Halsted Street, Box 211, Chicago, IL 60614, USA Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
47
|
Guglielmi L, Servettini I, Caramia M, Catacuzzeno L, Franciolini F, D'Adamo MC, Pessia M. Update on the implication of potassium channels in autism: K(+) channelautism spectrum disorder. Front Cell Neurosci 2015; 9:34. [PMID: 25784856 PMCID: PMC4345917 DOI: 10.3389/fncel.2015.00034] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 01/20/2015] [Indexed: 11/16/2022] Open
Abstract
Autism spectrum disorders (ASDs) are characterized by impaired ability to properly implement environmental stimuli that are essential to achieve a state of social and cultural exchange. Indeed, the main features of ASD are impairments of interpersonal relationships, verbal and non-verbal communication and restricted and repetitive behaviors. These aspects are often accompanied by several comorbidities such as motor delay, praxis impairment, gait abnormalities, insomnia, and above all epilepsy. Genetic analyses of autistic individuals uncovered deleterious mutations in several K+ channel types strengthening the notion that their intrinsic dysfunction may play a central etiologic role in ASD. However, indirect implication of K+ channels in ASD has been also reported. For instance, loss of fragile X mental retardation protein (FMRP) results in K+ channels deregulation, network dysfunction and ASD-like cognitive and behavioral symptoms. This review provides an update on direct and indirect implications of K+ channels in ASDs. Owing to a mounting body of evidence associating a channelopathy pathogenesis to autism and showing that nearly 500 ion channel proteins are encoded by the human genome, we propose to classify ASDs - whose susceptibility is significantly enhanced by ion channels defects, either in a monogenic or multigenic condition - in a new category named “channelAutismSpectrumDisorder” (channelASD; cASD) and introduce a new taxonomy (e.g., Kvx.y-channelASD and likewise Navx.y-channelASD, Cavx.y-channelASD; etc.). This review also highlights some degree of clinical and genetic overlap between K+ channelASDs and K+ channelepsies, whereby such correlation suggests that a subcategory characterized by a channelASD-channelepsy phenotype may be distinguished. Ultimately, this overview aims to further understand the different clinical subgroups and help parse out the distinct biological basis of autism that are essential to establish patient-tailored treatments.
Collapse
Affiliation(s)
- Luca Guglielmi
- Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia School of Medicine, Perugia Italy
| | - Ilenio Servettini
- Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia School of Medicine, Perugia Italy
| | - Martino Caramia
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia Italy
| | - Luigi Catacuzzeno
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia Italy
| | - Fabio Franciolini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia Italy
| | - Maria Cristina D'Adamo
- Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia School of Medicine, Perugia Italy
| | - Mauro Pessia
- Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia School of Medicine, Perugia Italy
| |
Collapse
|
48
|
Sepúlveda FV, Pablo Cid L, Teulon J, Niemeyer MI. Molecular aspects of structure, gating, and physiology of pH-sensitive background K2P and Kir K+-transport channels. Physiol Rev 2015; 95:179-217. [PMID: 25540142 DOI: 10.1152/physrev.00016.2014] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
K(+) channels fulfill roles spanning from the control of excitability to the regulation of transepithelial transport. Here we review two groups of K(+) channels, pH-regulated K2P channels and the transport group of Kir channels. After considering advances in the molecular aspects of their gating based on structural and functional studies, we examine their participation in certain chosen physiological and pathophysiological scenarios. Crystal structures of K2P and Kir channels reveal rather unique features with important consequences for the gating mechanisms. Important tasks of these channels are discussed in kidney physiology and disease, K(+) homeostasis in the brain by Kir channel-equipped glia, and central functions in the hearing mechanism in the inner ear and in acid secretion by parietal cells in the stomach. K2P channels fulfill a crucial part in central chemoreception probably by virtue of their pH sensitivity and are central to adrenal secretion of aldosterone. Finally, some unorthodox behaviors of the selectivity filters of K2P channels might explain their normal and pathological functions. Although a great deal has been learned about structure, molecular details of gating, and physiological functions of K2P and Kir K(+)-transport channels, this has been only scratching at the surface. More molecular and animal studies are clearly needed to deepen our knowledge.
Collapse
Affiliation(s)
- Francisco V Sepúlveda
- Centro de Estudios Científicos, Valdivia, Chile; UPMC Université Paris 06, Team 3, Paris, France; and Institut National de la Santé et de la Recherche Médicale, UMR_S 1138, Paris, France
| | - L Pablo Cid
- Centro de Estudios Científicos, Valdivia, Chile; UPMC Université Paris 06, Team 3, Paris, France; and Institut National de la Santé et de la Recherche Médicale, UMR_S 1138, Paris, France
| | - Jacques Teulon
- Centro de Estudios Científicos, Valdivia, Chile; UPMC Université Paris 06, Team 3, Paris, France; and Institut National de la Santé et de la Recherche Médicale, UMR_S 1138, Paris, France
| | - María Isabel Niemeyer
- Centro de Estudios Científicos, Valdivia, Chile; UPMC Université Paris 06, Team 3, Paris, France; and Institut National de la Santé et de la Recherche Médicale, UMR_S 1138, Paris, France
| |
Collapse
|
49
|
Ramos HE, da Silva MRD, Carré A, Silva JC, Paninka RM, Oliveira TL, Tron E, Castanet M, Polak M. Molecular insights into the possible role of Kir4.1 and Kir5.1 in thyroid hormone biosynthesis. Horm Res Paediatr 2015; 83:141-7. [PMID: 25612510 DOI: 10.1159/000369251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 10/21/2014] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Thyroid morphogenesis is a complex process. Inwardly rectifying potassium (Kir) genes play a role in hormone release, cell excitability, pH and K(+) homeostasis in many tissues. OBJECTIVES To investigate the thyroid developmental expression of three members, Kir4.1, Kir4.2 and Kir5.1, in mice. To postulate the K(+) channel role in thyroid hormone secretion. MATERIAL AND METHODS Quantitative RT-PCR analysis of Kir4.1, Kir4.2 and Kir5.1 in mice of different stages (E13.5-E18.5). RESULTS mRNA for Kir4.1, Kir4.2 and Kir5.1 were identified and increased with age in mice. Both Kir4.1 and Kir4.2 genes are better expressed after E16.5. Kir4.2 greatly increases from E13.5 to E16.5 (p ≤ 0.05). CONCLUSION Quantitative PCR shows that the mouse thyroid presents increased expression for Kir channels during development. The role of Kir in thyroid morphogenesis and differentiation might be understood in future studies. We speculate that thyroglobulin trafficking might be modulated by Kir4.1/5.1.
Collapse
|
50
|
Venglovecz V, Rakonczay Z, Gray MA, Hegyi P. Potassium channels in pancreatic duct epithelial cells: their role, function and pathophysiological relevance. Pflugers Arch 2014; 467:625-40. [PMID: 25074489 DOI: 10.1007/s00424-014-1585-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/09/2014] [Accepted: 07/18/2014] [Indexed: 12/14/2022]
Abstract
Pancreatic ductal epithelial cells play a fundamental role in HCO3 (-) secretion, a process which is essential for maintaining the integrity of the pancreas. Although several studies have implicated impaired HCO3 (-) and fluid secretion as a triggering factor in the development of pancreatitis, the mechanism and regulation of HCO3 (-) secretion is still not completely understood. To date, most studies on the ion transporters that orchestrate ductal HCO3 (-) secretion have focussed on the role of Cl(-)/HCO3 (-) exchangers and Cl(-) channels, whereas much less is known about the role of K(+) channels. However, there is growing evidence that many types of K(+) channels are present in ductal cells where they have an essential role in establishing and maintaining the electrochemical driving force for anion secretion. For this reason, strategies that increase K(+) channel function may help to restore impaired HCO3 (-) and fluid secretion, such as in pancreatitis, and therefore provide novel directions for future pancreatic therapy. In this review, our aims are to summarize the types of K(+) channels found in pancreatic ductal cells and to discuss their individual roles in ductal HCO3 (-) secretion. We will also describe how K(+) channels are involved in pathophysiological conditions and discuss how they could act as new molecular targets for the development of therapeutic approaches to treat pancreatic diseases.
Collapse
Affiliation(s)
- Viktória Venglovecz
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary,
| | | | | | | |
Collapse
|