1
|
Zhou M, Li TS, Abe H, Akashi H, Suzuki R, Bando Y. Expression levels of K ATP channel subunits and morphological changes in the mouse liver after exposure to radiation. World J Exp Med 2024; 14:90374. [PMID: 38948415 PMCID: PMC11212743 DOI: 10.5493/wjem.v14.i2.90374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/28/2024] [Accepted: 03/27/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND ATP sensitive K+ (KATP) channels are ubiquitously distributed in various of cells and tissues, including the liver. They play a role in the pathogenesis of myocardial and liver ischemia. AIM To evaluate the radiation-induced changes in the expression of KATP channel subunits in the mouse liver to understand the potential role of KATP channels in radiation injury. METHODS Adult C57BL/6 mice were randomly exposed to γ-rays at 0 Gy (control, n = 2), 0.2 Gy (n = 6), 1 Gy (n = 6), or 5 Gy (n = 6). The livers were removed 3 and 24 h after radiation exposure. Hematoxylin and eosin staining was used for morphological observation; immunohistochemical staining was applied to determine the expression of KATP channel subunits in the liver tissue. RESULTS Compared with the control group, the livers exposed to 0.2 Gy γ-ray showed an initial increase in the expression of Kir6.1 at 3 h, followed by recovery at 24 h after exposure. Exposure to a high dose of 5.0 Gy resulted in decreased expression of Kir6.1 and increased expression of SUR2B at 24 h. However, the expression of Kir6.2, SUR1, or SUR2A had no remarkable changes at 3 and 24 h after exposure to any of these doses. CONCLUSION The expression levels of Kir6.1 and SUR2B in mouse liver changed differently in response to different radiation doses, suggesting a potential role for them in radiation-induced liver injury.
Collapse
Affiliation(s)
- Ming Zhou
- Department of Anatomy, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan
| | - Hiroshi Abe
- Sendai Old Age Refresh Station, A Long-term Care Health Facility, Sendai 981-1105, Japan
| | - Hideo Akashi
- Department of Anatomy, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Ryoji Suzuki
- Department of Anatomy, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Yoshio Bando
- Department of Anatomy, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| |
Collapse
|
2
|
Selvaraj C, Selvaraj G, Kaliamurthi S, Cho WC, Wei DQ, Singh SK. Ion Channels as Therapeutic Targets for Type 1 Diabetes Mellitus. Curr Drug Targets 2020; 21:132-147. [PMID: 31538892 DOI: 10.2174/1389450119666190920152249] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 02/07/2023]
Abstract
Ion channels are integral proteins expressed in almost all living cells and are involved in muscle contraction and nutrient transport. They play a critical role in the normal functioning of the excitable tissues of the nervous system and regulate the action potential and contraction events. Dysfunction of genes encodes ion channel proteins, which disrupt the channel function and lead to a number of diseases, among which is type 1 diabetes mellitus (T1DM). Therefore, understanding the complex mechanism of ion channel receptors is necessary to facilitate the diagnosis and management of treatment. In this review, we summarize the mechanism of important ion channels and their potential role in the regulation of insulin secretion along with the limitations of ion channels as therapeutic targets. Furthermore, we discuss the recent investigations of the mechanism regulating the ion channels in pancreatic beta cells, which suggest that ion channels are active participants in the regulation of insulin secretion.
Collapse
Affiliation(s)
- Chandrabose Selvaraj
- Department of Bioinformatics, Computer-Aided Drug Design, and Molecular Modeling Lab, Science Block, Alagappa University, Karaikudi, Tamil Nadu, 630004, India
| | - Gurudeeban Selvaraj
- Center of Interdisciplinary Sciences-Computational Life Sciences, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Satyavani Kaliamurthi
- Center of Interdisciplinary Sciences-Computational Life Sciences, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong, 518055, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Dong-Qing Wei
- Center of Interdisciplinary Sciences-Computational Life Sciences, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong, 518055, China
- Department of Bioinformatics, The State Key Laboratory of Microbial Metabolism, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Sanjeev Kumar Singh
- Department of Bioinformatics, Computer-Aided Drug Design, and Molecular Modeling Lab, Science Block, Alagappa University, Karaikudi, Tamil Nadu, 630004, India
| |
Collapse
|
3
|
Zhou M, Yoshikawa K, Akashi H, Miura M, Suzuki R, Li TS, Abe H, Bando Y. Localization of ATP-sensitive K + channel subunits in rat liver. World J Exp Med 2019; 9:14-31. [PMID: 31938690 PMCID: PMC6955576 DOI: 10.5493/wjem.v9.i2.14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/05/2019] [Accepted: 11/21/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND ATP-sensitive K+ (KATP) channels were originally found in cardiac myocytes by Noma in 1983. KATP channels were formed by potassium ion-passing pore-forming subunits (Kir6.1, Kir6.2) and regulatory subunits SUR1, SU2A and SUR2B. A number of cells and tissues have been revealed to contain these channels including hepatocytes, but detailed localization of these subunits in different types of liver cells was still uncertain.
AIM To investigate the expression of KATP channel subunits in rat liver and their localization in different cells of the liver.
METHODS Rabbit anti-rat SUR1 peptide antibody was raised and purified by antigen immunoaffinity column chromatography. Four of Sprague-Dawley rats were used for liver protein extraction for immunoblot analysis, seven of them were used for immunohistochemistry both for the ABC method and immunofluorescence staining. Four of Wistar rats were used for the isolation of hepatic stellate cells (HSCs) and Kupffer cells for both primary culture and immunocytochemistry.
RESULTS Immunoblot analysis showed that the five kinds of KATP channel subunits, i.e. Kir6.1, Kir6.2, SUR1, SUR2A, and SUR2B, were detected in liver. Immunohistochemical staining showed that Kir6.1 and Kir6.2 were weakly to moderately expressed in parenchymal cells and sinusoidal lining cells, while SUR1, SUR2A, and SUR2B were mainly localized to sinusoidal lining cells, such as HSCs, Kupffer cells, and sinusoidal endothelial cells. Immunoreactivity for SUR2A and SUR2B was expressed in the hepatocyte membrane. Double immunofluorescence staining further showed that the pore-forming subunits Kir6.1 and/or Kir6.2 colocalized with GFAP in rat liver sections and primary cultured HSCs. These KATP channel subunits also colocalized with CD68 in liver sections and primary cultured Kupffer cells. The SUR subunits colocalized with GFAP in liver sections and colocalized with CD68 both in liver sections and primary cultured Kupffer cells. In addition, five KATP channel subunits colocalized with SE-1 in sinusoidal endothelial cells.
CONCLUSION Observations from the present study indicated that KATP channel subunits expressed in rat liver and the diversity of KATP channel subunit composition might form different types of KATP channels. This is applicable to hepatocytes, HSCs, various types of Kupffer cells and sinusoidal endothelial cells.
Collapse
Affiliation(s)
- Ming Zhou
- Department of Anatomy, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Kiwamu Yoshikawa
- Department of Cell Biology and Morphology, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Hideo Akashi
- Department of Anatomy, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Mitsutaka Miura
- Department of Cell Biology and Morphology, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Ryoji Suzuki
- Department of Anatomy, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan
| | - Hiroshi Abe
- TRUST, A Long-Term Care Health Facility, Sendai 980-0011, Japan
| | - Yoshio Bando
- Department of Anatomy, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| |
Collapse
|
4
|
Abstract
The field of mitochondrial ion channels has recently seen substantial progress, including the molecular identification of some of the channels. An integrative approach using genetics, electrophysiology, pharmacology, and cell biology to clarify the roles of these channels has thus become possible. It is by now clear that many of these channels are important for energy supply by the mitochondria and have a major impact on the fate of the entire cell as well. The purpose of this review is to provide an up-to-date overview of the electrophysiological properties, molecular identity, and pathophysiological functions of the mitochondrial ion channels studied so far and to highlight possible therapeutic perspectives based on current information.
Collapse
|
5
|
Predmore BL, Lefer DJ. Hydrogen sulfide-mediated myocardial pre- and post-conditioning. Expert Rev Clin Pharmacol 2012; 4:83-96. [PMID: 21373204 DOI: 10.1586/ecp.10.56] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Coronary artery disease is a major cause of morbidity and mortality in the Western world. Acute myocardial infarction, resulting from coronary artery atherosclerosis, is a serious and often fatal consequence of coronary artery disease, resulting in cell death in the myocardium. Pre- and post-conditioning of the myocardium are two treatment strategies that reduce the amount of cell death significantly. Hydrogen sulfide has recently been identified as a potent cardioprotective signaling molecule, which is a highly effective pre- and post-conditioning agent. The cardioprotective signaling pathways involved in hydrogen sulfide-based pre- and post-conditioning will be explored in this article.
Collapse
Affiliation(s)
- Benjamin L Predmore
- Department of Surgery, Division of Cardiothoracic Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | | |
Collapse
|
6
|
Bao L, Kefaloyianni E, Lader J, Hong M, Morley G, Fishman GI, Sobie EA, Coetzee WA. Unique properties of the ATP-sensitive K⁺ channel in the mouse ventricular cardiac conduction system. Circ Arrhythm Electrophysiol 2011; 4:926-35. [PMID: 21984445 DOI: 10.1161/circep.111.964643] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background- The specialized cardiac conduction system (CCS) expresses a unique complement of ion channels that confer a specific electrophysiological profile. ATP-sensitive potassium (K(ATP)) channels in these myocytes have not been systemically investigated. Methods and Results- We recorded K(ATP) channels in isolated CCS myocytes using Cntn2-EGFP reporter mice. The CCS K(ATP) channels were less sensitive to inhibitory cytosolic ATP compared with ventricular channels and more strongly activated by MgADP. They also had a smaller slope conductance. The 2 types of channels had similar intraburst open and closed times, but the CCS K(ATP) channel had a prolonged interburst closed time. CCS K(ATP) channels were strongly activated by diazoxide and less by levcromakalim, whereas the ventricular K(ATP) channel had a reverse pharmacological profile. CCS myocytes express elevated levels of Kir6.1 but reduced Kir6.2 and SUR2A mRNA compared with ventricular myocytes (SUR1 expression was negligible). SUR2B mRNA expression was higher in CCS myocytes relative to SUR2A. Canine Purkinje fibers expressed higher levels of Kir6.1 and SUR2B protein relative to the ventricle. Numeric simulation predicts a high sensitivity of the Purkinje action potential to changes in ATP:ADP ratio. Cardiac conduction time was prolonged by low-flow ischemia in isolated, perfused mouse hearts, which was prevented by glibenclamide. Conclusions- These data imply a differential electrophysiological response (and possible contribution to arrhythmias) of the ventricular CCS to K(ATP) channel opening during periods of ischemia.
Collapse
Affiliation(s)
- Li Bao
- Department of Pediatrics, NYU School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Akrouh A, Halcomb SE, Nichols CG, Sala-Rabanal M. Molecular biology of K(ATP) channels and implications for health and disease. IUBMB Life 2009; 61:971-8. [PMID: 19787700 DOI: 10.1002/iub.246] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The ATP-sensitive potassium (K(ATP)) channel is expressed in most excitable tissues and plays a critical role in numerous physiological processes by coupling intracellular energetics to electrical activity. The channel is comprised of four Kir6.x subunits associated with four regulatory sulfonylurea receptors (SUR). Intracellular ATP acts on Kir6.x to inhibit channel activity, while MgADP stimulates channel activity through SUR. Changes in the cytosolic [ATP] to [ADP] ratio thus determine channel activity. Multiple mutations in Kir6.x and SUR genes have implicated K(ATP) channels in various diseases ranging from diabetes and hyperinsulinism to cardiac arrhythmias and cardiovascular disease. Continuing studies of channel physiology and pathology will bring new insights to the molecular basis of K(ATP) channel function, leading to a better understanding of the role that K(ATP) channels play in both health and disease.
Collapse
Affiliation(s)
- Alejandro Akrouh
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
8
|
Teramoto N, Zhu HL, Shibata A, Aishima M, Walsh EJ, Nagao M, Cole WC. ATP-sensitive K+ channels in pig urethral smooth muscle cells are heteromultimers of Kir6.1 and Kir6.2. Am J Physiol Renal Physiol 2008; 296:F107-17. [PMID: 18945825 DOI: 10.1152/ajprenal.90440.2008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The inwardly rectifying properties and molecular basis of ATP-sensitive K(+) channels (K(ATP) channels) have now been established for several cell types. However, these aspects of nonvascular smooth muscle K(ATP) channels still remain to be defined. In this study, we investigated the molecular basis of the pore of K(ATP) channels of pig urethral smooth muscle cells through a comparative study of the inwardly rectifying properties, conductance, and regulation by PKC of native and homo- and heteroconcatemeric recombinant Kir6.x channels coexpressed with sulfonylurea receptor subunit SUR2B in human embryonic kidney (HEK) 293 cells by the patch-clamp technique (conventional whole-cell and cell-attached modes). In conventional whole-cell clamp recordings, levcromakalim (> or = 1 microM) caused a concentration-dependent increase in current that demonstrated strong inward rectification at positive membrane potentials. In cell-attached mode, the unitary amplitude of levcromakalim-induced native and recombinant heteroconcatemeric Kir6.1-Kir6.2 K(ATP) channels also showed strong inward rectification at positive membrane potentials. Phorbol 12,13-dibutyrate, but not the inactive phorbol ester, 4alpha-phorbol 12,13-didecanoate, enhanced the activity of native and heteroconcatemeric K(ATP) channels at -50 mV. The conductance of the native channels at approximately 43 pS was consistent with that of heteroconcatemeric channels with a pore-forming subunit composition of (Kir6.1)(3)-(Kir6.2). RT-PCR analysis revealed the expression of Kir6.1 and Kir6.2 transcripts in pig urethral myocytes. Our findings provide the first evidence that the predominant K(ATP) channel expressed in pig urethral smooth muscle possesses a unique, heteromeric pore structure that differs from the homomeric Kir6.1 channels of vascular myocytes and is responsible for the differences in inward rectification, conductance, and PKC regulation exhibited by the channels in these smooth muscle cell types.
Collapse
Affiliation(s)
- Noriyoshi Teramoto
- Dept. of Pharmacology, Graduate School of Medical Sciences, Kyushu Univ., 3-1-1 Maidashi, Higashi Ward, Fukuoka, 812-8582, Japan.
| | | | | | | | | | | | | |
Collapse
|
9
|
Wheeler A, Wang C, Yang K, Fang K, Davis K, Styer AM, Mirshahi U, Moreau C, Revilloud J, Vivaudou M, Liu S, Mirshahi T, Chan KW. Coassembly of different sulfonylurea receptor subtypes extends the phenotypic diversity of ATP-sensitive potassium (KATP) channels. Mol Pharmacol 2008; 74:1333-44. [PMID: 18723823 DOI: 10.1124/mol.108.048355] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
K(ATP) channels are metabolic sensors and targets of potassium channel openers (KCO; e.g., diazoxide and pinacidil). They comprise four sulfonylurea receptors (SUR) and four potassium channel subunits (Kir6) and are critical in regulating insulin secretion. Different SUR subtypes (SUR1, SUR2A, SUR2B) largely determine the metabolic sensitivities and the pharmacological profiles of K(ATP) channels. SUR1- but not SUR2-containing channels are highly sensitive to metabolic inhibition and diazoxide, whereas SUR2 channels are sensitive to pinacidil. It is generally believed that SUR1 and SUR2 are incompatible in channel coassembly. We used triple tandems, T1 and T2, each containing one SUR (SUR1 or SUR2A) and two Kir6.2Delta26 (last 26 residues are deleted) to examine the coassembly of different SUR. When T1 or T2 was expressed in Xenopus laevis oocytes, small whole-cell currents were activated by metabolic inhibition (induced by azide) plus a KCO (diazoxide for T1, pinacidil for T2). When coexpressed with any SUR subtype, the activated-currents were increased by 2- to 13-fold, indicating that different SUR can coassemble. Consistent with this, heteromeric SUR1+SUR2A channels were sensitive to azide, diazoxide, and pinacidil, and their single-channel burst duration was 2-fold longer than that of the T1 channels. Furthermore, SUR2A was coprecipitated with SUR1. Using whole-cell recording and immunostaining, heteromeric channels could also be detected when T1 and SUR2A were coexpressed in mammalian cells. Finally, the response of the SUR1+SUR2A channels to azide was found to be intermediate to those of the homomeric channels. Therefore, different SUR subtypes can coassemble into K(ATP) channels with distinct metabolic sensitivities and pharmacological profiles.
Collapse
Affiliation(s)
- Adam Wheeler
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, Ohio, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Chan KW, Wheeler A, Csanády L. Sulfonylurea receptors type 1 and 2A randomly assemble to form heteromeric KATP channels of mixed subunit composition. ACTA ACUST UNITED AC 2007; 131:43-58. [PMID: 18079561 PMCID: PMC2174157 DOI: 10.1085/jgp.200709894] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
ATP-sensitive potassium (KATP) channels play important roles in regulating insulin secretion, controlling vascular tone, and protecting cells against metabolic stresses. KATP channels are heterooctamers of four pore-forming inwardly rectifying (Kir6.2) subunits and four sulfonylurea receptor (SUR) subunits. KATP channels containing SUR1 (e.g. pancreatic) and SUR2A (e.g. cardiac) display distinct metabolic sensitivities and pharmacological profiles. The reported expression of both SUR1 and SUR2 together with Kir6.2 in some cells raises the possibility that heteromeric channels containing both SUR subtypes might exist. To test whether SUR1 can coassemble with SUR2A to form functional KATP channels, we made tandem constructs by fusing SUR to either a wild-type (WT) or a mutant N160D Kir6.2 subunit. The latter mutation greatly increases the sensitivity of KATP channels to block by intracellular spermine. We expressed, individually and in combinations, tandem constructs SUR1-Kir6.2 (S1-WT), SUR1-Kir6.2[N160D] (S1-ND), and SUR2A-Kir6.2[N160D] (S2-ND) in Xenopus oocytes, and studied the voltage dependence of spermine block in inside-out macropatches over a range of spermine concentrations and RNA mixing ratios. Each tandem construct expressed alone supported macroscopic K+ currents with pharmacological properties indistinguishable from those of the respective native channel types. Spermine sensitivity was low for S1-WT but high for S1-ND and S2-ND. Coexpression of S1-WT and S1-ND generated current components with intermediate spermine sensitivities indicating the presence of channel populations containing both types of Kir subunits at all possible stoichiometries. The relative abundances of these populations, determined by global fitting over a range of conditions, followed binomial statistics, suggesting that WT and N160D Kir6.2 subunits coassemble indiscriminately. Coexpression of S1-WT with S2-ND also yielded current components with intermediate spermine sensitivities, suggesting that SUR1 and SUR2A randomly coassemble into functional KATP channels. Further pharmacological characterization confirmed coassembly of not only S1-WT and S2-ND, but also of coexpressed free SUR1, SUR2A, and Kir6.2 into functional heteromeric channels.
Collapse
Affiliation(s)
- Kim W Chan
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | |
Collapse
|
11
|
Abstract
The ATP-sensitive K+ channel (K ATP channel) senses metabolic changes in the pancreatic beta-cell, thereby coupling metabolism to electrical activity and ultimately to insulin secretion. When K ATP channels open, beta-cells hyperpolarize and insulin secretion is suppressed. The prediction that K ATP channel "overactivity" should cause a diabetic state due to undersecretion of insulin has been dramatically borne out by recent genetic studies implicating "activating" mutations in the Kir6.2 subunit of K ATP channel as causal in human diabetes. This article summarizes the emerging picture of K ATP channel as a major cause of neonatal diabetes and of a polymorphism in K ATP channel (E23K) as a type 2 diabetes risk factor. The degree of K ATP channel "overactivity" correlates with the severity of the diabetic phenotype. At one end of the spectrum, polymorphisms that result in a modest increase in K ATP channel activity represent a risk factor for development of late-onset diabetes. At the other end, severe "activating" mutations underlie syndromic neonatal diabetes, with multiple organ involvement and complete failure of glucose-dependent insulin secretion, reflecting K ATP channel "overactivity" in both pancreatic and extrapancreatic tissues.
Collapse
Affiliation(s)
- Joseph C Koster
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | |
Collapse
|
12
|
Morrissey A, Parachuru L, Leung M, Lopez G, Nakamura TY, Tong X, Yoshida H, Srivastiva S, Chowdhury PD, Artman M, Coetzee WA. Expression of ATP-sensitive K+ channel subunits during perinatal maturation in the mouse heart. Pediatr Res 2005; 58:185-92. [PMID: 16085792 DOI: 10.1203/01.pdr.0000169967.83576.cb] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Prevailing data suggest that sarcolemmal ATP-sensitive (K(ATP)) channels in the adult heart consist of Kir6.2 and SUR2A subunits, but the expression of other K(ATP) channel subunits (including SUR1, SUR2B, and Kir6.1) is poorly defined. The situation is even less clear for the immature heart, which shows a remarkable resistance to hypoxia and metabolic stress. The hypoxia-induced action potential shortening and opening of sarcolemmal K(ATP) channels that occurs in adults is less prominent in the immature heart. This might be due in part to the different biophysical and pharmacological properties of K(ATP) channels of immature and adult K(ATP) channels. Because these properties are largely conferred by subunit composition, it is important to examine the relative expression levels of the various K(ATP) channel subunits during maturation. We therefore used RNAse protection assays, reverse transcription-PCR approaches, and Western blotting to characterize the mRNA and protein expression profiles of K(ATP) channel subunits in fetal, neonatal, and adult mouse heart. Our data indicate that each of the K(ATP) channel subunits (Kir6.1, Kir6.2, SUR1, SUR2A, and SUR2B) is expressed in the mouse heart at all of the developmental time points studied. However, the expression level of each of the subunits is low in the fetal heart and progressively increases with maturation. Each of the subunits seems to be expressed in ventricular myocytes with a subcellular expression pattern matching that found in the adult. Our data suggest that the K(ATP) channel composition may change during maturation, which has important implications for K(ATP) channel function in the developing heart.
Collapse
Affiliation(s)
- Alison Morrissey
- Department of Pediatrics, NYU School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Thomzig A, Laube G, Prüss H, Veh RW. Pore-forming subunits of K-ATP channels, Kir6.1 and Kir6.2, display prominent differences in regional and cellular distribution in the rat brain. J Comp Neurol 2005; 484:313-30. [PMID: 15739238 DOI: 10.1002/cne.20469] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
K-ATP channels consist of two structurally different subunits: a pore-forming subunit of the Kir6.0-family (Kir6.1 or Kir6.2) and a sulfonylurea receptor (SUR1, SUR2, SUR2A, SUR2B) with regulatory activity. The functional diversity of K-ATP channels in brain is broad and of fundamental importance for neuronal activity. Here, using immunocytochemistry with monospecific antibodies against the Kir6.1 and Kir6.2 subunits, we analyze the regional and cellular distribution of both proteins in the adult rat brain. We find Kir6.2 to be widely expressed in all brain regions, suggesting that the Kir6.2 subunit forms the pore of the K-ATP channels in most neurons, presumably protecting the cells during cellular stress conditions such as hypoglycemia or ischemia. Especially in hypothalamic nuclei, in particular the ventromedial and arcuate nucleus, neurons display Kir6.2 immunoreactivity only, suggesting that Kir6.2 is the pore-forming subunit of the K-ATP channels in the glucose-responsive neurons of the hypothalamus. In contrast, Kir6.1-like immunolabeling is restricted to astrocytes (Thomzig et al. [2001] Mol Cell Neurosci 18:671-690) in most areas of the rat brain and very weak or absent in neurons. Only in distinct nuclei or neuronal subpopulations is a moderate or even strong Kir6.1 staining detected. The biological functions of these K-ATP channels still need to be elucidated.
Collapse
Affiliation(s)
- Achim Thomzig
- Centrum für Anatomie, Charité, Universitätsmedizin Berlin, D-10115 Berlin, Germany
| | | | | | | |
Collapse
|
14
|
Bryan J, Vila-Carriles WH, Zhao G, Babenko AP, Aguilar-Bryan L. Toward linking structure with function in ATP-sensitive K+ channels. Diabetes 2004; 53 Suppl 3:S104-12. [PMID: 15561897 DOI: 10.2337/diabetes.53.suppl_3.s104] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Advances in understanding the overall structural features of inward rectifiers and ATP-binding cassette (ABC) transporters are providing novel insight into the architecture of ATP-sensitive K+ channels (KATP channels) (KIR6.0/SUR)4. The structure of the K(IR) pore has been modeled on bacterial K+ channels, while the lipid-A exporter, MsbA, provides a template for the MDR-like core of sulfonylurea receptor (SUR)-1. TMD0, an NH2-terminal bundle of five alpha-helices found in SURs, binds to and activates KIR6.0. The adjacent cytoplasmic L0 linker serves a dual function, acting as a tether to link the MDR-like core to the KIR6.2/TMD0 complex and exerting bidirectional control over channel gating via interactions with the NH2-terminus of the KIR. Homology modeling of the SUR1 core offers the possibility of defining the glibenclamide/sulfonylurea binding pocket. Consistent with 30-year-old studies on the pharmacology of hypoglycemic agents, the pocket is bipartite. Elements of the COOH-terminal half of the core recognize a hydrophobic group in glibenclamide, adjacent to the sulfonylurea moiety, to provide selectivity for SUR1, while the benzamido group appears to be in proximity to L0 and the KIR NH2-terminus.
Collapse
Affiliation(s)
- Joseph Bryan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
15
|
Casamassima M, D'Adamo MC, Pessia M, Tucker SJ. Identification of a heteromeric interaction that influences the rectification, gating, and pH sensitivity of Kir4.1/Kir5.1 potassium channels. J Biol Chem 2003; 278:43533-40. [PMID: 12923169 DOI: 10.1074/jbc.m306596200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heteromultimerization between different potassium channel subunits can generate channels with novel functional properties and thus contributes to the rich functional diversity of this gene family. The inwardly rectifying potassium channel subunit Kir5.1 exhibits highly selective heteromultimerization with Kir4.1 to generate heteromeric Kir4.1/Kir5.1 channels with unique rectification and kinetic properties. These novel channels are also inhibited by intracellular pH within the physiological range and are thought to play a key role in linking K+ and H+ homeostasis by the kidney. However, the mechanisms that control heteromeric K+ channel assembly and the structural elements that generate their unique functional properties are poorly understood. In this study we identify residues at an intersubunit interface between the cytoplasmic domains of Kir5.1 and Kir4.1 that influence the novel rectification and gating properties of heteromeric Kir4.1/Kir5.1 channels and that also contribute to their pH sensitivity. Furthermore, this interaction presents a structural mechanism for the functional coupling of these properties and explains how specific heteromeric interactions can contribute to the novel functional properties observed in heteromeric Kir channels. The highly conserved nature of this structural association between Kir subunits also has implications for understanding the general mechanisms of Kir channel gating and their regulation by intracellular pH.
Collapse
Affiliation(s)
- Maria Casamassima
- Istituto di Ricerche Farmacologiche "Mario Negri," Consorzio Mario Negri Sud, 66030 Santa Maria Imbaro (Chieti), Italy
| | | | | | | |
Collapse
|
16
|
Insuk SO, Chae MR, Choi JW, Yang DK, Sim JH, Lee SW. Molecular basis and characteristics of KATP channel in human corporal smooth muscle cells. Int J Impot Res 2003; 15:258-66. [PMID: 12934053 DOI: 10.1038/sj.ijir.3901013] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Relaxation of the corpus cavernosum smooth muscle is an absolute prerequisite for penile erection. Potassium channels play a role in the physiologic regulation of corporal smooth muscle tone. In spite of the physiological importance of K(ATP) channel in the modulation of corporal smooth muscle tone, there is a shortage of information available about the K(ATP) channel subtype(s) present in the corporal smooth muscle. The purpose of this study was to investigate the subunit type of K(ATP) channel, that is, the combinations of the Kir subunit and the SUR subunit in the human corporal smooth muscle and determine whether the electrophysiological kinetics and pharmacological properties of K(ATP) channels meet the subunit characteristics of the ion channel. We used cultured human corporal smooth muscle cells. To determine the presence of Kir and SURs subunits, RT-PCR was performed using Kir6.1, Kir6.2, SUR1, SUR2A, and SUR2B gene-specific primers. For electrophysiological recordings, the whole-cell, inside-out, and cell-attached configurations of the patch-clamp technique were used. We observed transcripts for Kir6.1, Kir6.2, and SUR2B in mRNA isolated from smooth muscle cells of cultured human corpus carvernosum. We recorded the unitary K(ATP) channel under the condition of intracellular and extracellular 140 mM [K(+)], and the slope conductance of the channel was 42.0+/-2.6 pS which is an intermediate conductance between that of either Kir6.1 or Kir6.2. The pinacidil (10 microM) increased the magnitude of the outward K(+) current (214.6+/-89.2%, n=12, < or = 0.05), which was blocked by the subsequent addition of the specific K(ATP) channel subtype selective blocker, glibenclamide (10 microM). The SIN-1(200 microM) induced increases in whole-cell outward K(+) currents (126.0+/-1.4%, n=4). The increased currents by SIN-1 were inhibited by glibenclamide (10 microM). We are the first to show that K(ATP) channel in human corporal smooth muscle is composed of Kir6.1-Kir6.2 construct expressed with SUR2B by RT-PCR. These findings, taken together with the electrophysiological results, suggest that K(ATP) channel in corporal smooth muscle cells is composed of heteromultimers of Kir6.1 and Kir6.2 with the ratio of 3 : 1 or 4 : 0 and SUR2B.
Collapse
Affiliation(s)
- S O Insuk
- Department of Physiology and Biophysics, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
ATP-sensitive potassium channels (K(ATP)) of vascular smooth muscle cells represent potential therapeutic targets for control of abnormal vascular contractility. The biophysical properties, regulation and pharmacology of these channels have received intense scrutiny during the past twenty years, however, the molecular basis of vascular K(ATP) channels remains ill-defined. This review summarizes the recent advancements made in our understanding of the molecular composition of vascular K(ATP) channels with a focus on the evidence that hetero-octameric complexes of Kir6.1 and SUR2B subunits constitute the vascular K(ATP) subtype responsible for control of arterial diameter by vasoactive agonists.
Collapse
Affiliation(s)
- William C Cole
- The Smooth Muscle Research Group, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | | |
Collapse
|
18
|
Hough E, Mair L, Mackenzie W, Sivaprasadarao A. Expression, purification, and evidence for the interaction of the two nucleotide-binding folds of the sulphonylurea receptor. Biochem Biophys Res Commun 2002; 294:191-7. [PMID: 12054762 DOI: 10.1016/s0006-291x(02)00454-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The ATP-sensitive potassium channel is made up of four pore forming Kir6.2 subunits, surrounded by four regulatory sulphonylurea receptor (SUR) subunits. The latter subunit contains two nucleotide-binding folds (NBFs) that confer the ability on the channel to sense changes in the metabolic status ([ATP]/[ADP]) of the cell and couple the changes to the membrane potential of the cell. In an attempt to better understand the mechanisms by which NBFs influence the activity of the channel, we have expressed the NBF domains with C-terminally added epitopes (FLAG to NBF1 and His(6) to NBF2) in Escherichia coli and the rabbit reticulocyte lysate system and examined the ability of these domains to interact with each other and with Kir6.2. Both NBFs could be expressed to high levels in E. coli and purified to homogeneity from inclusion bodies. Re-folding of the proteins proved to be unsuccessful. However, we were able to obtain small amounts of radio-labelled NBFs in a soluble state. Using co-immunoprecipitation, we demonstrate that the radio-labelled NBF1 and NBF2 interact with each other. Neither of the NBFs bound to Kir6.2 expressed in the presence of canine microsomes.
Collapse
Affiliation(s)
- Emma Hough
- School of Biomedical Sciences, Leeds University, Leeds LS2 9JT, UK
| | | | | | | |
Collapse
|
19
|
Sim JH, Yang DK, Kim YC, Park SJ, Kang TM, So I, Kim KW. ATP-sensitive K(+) channels composed of Kir6.1 and SUR2B subunits in guinea pig gastric myocytes. Am J Physiol Gastrointest Liver Physiol 2002; 282:G137-44. [PMID: 11751167 DOI: 10.1152/ajpgi.00057x.2002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This study was designed to identify the single-channel properties and molecular entity of ATP-sensitive K(+) (K(ATP)) channels in guinea pig gastric myocytes with patch-clamp recording and RT-PCR. Pinacidil and diazoxide activated K(ATP) currents in a glibenclamide-sensitive manner. The open probability of channels was enhanced by the application of 10 microM pinacidil from 0.085 +/- 0.04 to 0.20 +/- 0.05 (n = 7) and was completely blocked by 10 microM glibenclamide. Single-channel conductance was 37.3 +/- 2.5 pS (n = 4) between -80 and -20 mV in symmetrical K(+) gradient conditions. In inside-out mode, K(ATP) channels showed no spontaneous openings and were activated by the application of nucleotide diphosphates to the cytoplasmic side. These single-channel properties are similar to those of the nucleotide diphosphate-dependent K(+) channels in vascular smooth muscle, which are composed of Kir6.1 and sulfonylurea receptor (SUR)2B. RT-PCR demonstrated the presence of Kir6.1, Kir6.2, and SUR2B in guinea pig stomach smooth muscle cells. These results suggest that K(ATP) channels in smooth muscle cells of the guinea pig stomach are composed of Kir6.1 and SUR2B.
Collapse
Affiliation(s)
- Jae Hoon Sim
- Department of Physiology and Biophysics, Seoul National University College of Medicine, Seoul 110-799, Korea
| | | | | | | | | | | | | |
Collapse
|
20
|
Babenko AP, Bryan J. A conserved inhibitory and differential stimulatory action of nucleotides on K(IR)6.0/SUR complexes is essential for excitation-metabolism coupling by K(ATP) channels. J Biol Chem 2001; 276:49083-92. [PMID: 11673467 DOI: 10.1074/jbc.m108763200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism by which ubiquitous adenine nucleotide-gated K(IR)6.0(4)/SUR(4) channels link membrane excitability with cellular metabolism is controversial. Is a decreased sensitivity to inhibitory ATP required, or is the Mg-ADP/ATP-dependent stimulatory action of the ATPase, sulfonylurea receptor (SUR), on K(IR) sufficient to elicit a physiologically significant open channel probability? To evaluate the roles of nucleotide inhibition versus stimulation, we compared K(IR)6.1-based K(NDP) channels with K(IR)6.2-based K(ATP) channels and all possible K(IR)6.1/6.2 hybrids. Although K(NDP) channels are thought to be poorly sensitive to inhibitory ATP and to require Mg-nucleotide diphosphates for activity, we demonstrate that, like K(ATP), and hybrid channels, they are inhibited with an IC(50(ATP)) 100-fold lower than [ATP](i). K(IR)6.1 is, however, more efficiently stimulated by SUR than K(IR)6.2, thus providing a mechanism for differential nucleotide regulation, in addition to the known differential interactions of Mg-nucleotides with SUR isoforms. The on-cell and spontaneous activities of K(NDP), K(ATP), and hybrid channels identified in native cells, are different; thus, their similar IC(50(ATP)) values argue the regulatory "beta" SUR subunits play a preeminent role in coupling excitation to metabolism and pose questions about the physiologic significance of models, which assume the ATP insensitivity of open K(IR)s.
Collapse
Affiliation(s)
- A P Babenko
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | |
Collapse
|
21
|
Pountney DJ, Sun ZQ, Porter LM, Nitabach MN, Nakamura TY, Holmes D, Rosner E, Kaneko M, Manaris T, Holmes TC, Coetzee WA. Is the molecular composition of K(ATP) channels more complex than originally thought? J Mol Cell Cardiol 2001; 33:1541-6. [PMID: 11448141 DOI: 10.1006/jmcc.2001.1407] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ATP-sensitive K+ (K(ATP)) channels are abundantly expressed in the heart and may be involved in the pathogenesis of myocardial ischemia. These channels are heteromultimeric, consisting of four pore-forming subunits (Kir6.1, Kir6.2) and four sulfonylurea receptor (SUR) subunits in an octameric assembly. Conventionally, the molecular composition of K(ATP) channels in cardiomyocytes and pancreatic beta -cells is thought to include the Kir6.2 subunit and either the SUR2A or SUR1 subunits, respectively. However, Kir6.1 mRNA is abundantly expressed in the heart, suggesting that Kir6.1 and Kir6.2 subunits may co-assemble to form functional heteromeric channel complexes. Here we provide two independent lines of evidence that heteromultimerization between Kir6.1 and Kir6.2 subunits is possible in the presence of SUR2A. We generated dominant negative Kir6 subunits by mutating the GFG residues in the channel pore to a series of alanine residues. The Kir6.1-AAA pore mutant subunit suppressed both wt-Kir6.1/SUR2A and wt-Kir6.2/SUR2A currents in transfected HEK293 cells. Similarly, the dominant negative action of Kir6.2-AAA does not discriminate between either of the wild-type subunits, suggesting an interaction between Kir6.1 and Kir6.2 subunits within the same channel complex. Biochemical data support this concept: immunoprecipitation with Kir6.1 antibodies also co-precipitates Kir6.2 subunits and conversely, immunoprecipitation with Kir6.2 antibodies co-precipitates Kir6.1 subunits. Collectively, our data provide direct electrophysiological and biochemical evidence for heteromultimeric assembly between Kir6.1 and Kir6.2. This paradigm has profound implications for understanding the properties of native K(ATP)channels in the heart and other tissues.
Collapse
Affiliation(s)
- D J Pountney
- Department of Pediatric Cardiology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
A mechanism for ATP-sensitive potassium channel diversity: Functional coassembly of two pore-forming subunits. Proc Natl Acad Sci U S A 2001; 98. [PMID: 11136227 PMCID: PMC14656 DOI: 10.1073/pnas.011370498] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ATP-sensitive potassium channels are an octomeric complex of four pore-forming subunits of the Kir 6.0 family and four sulfonylurea receptors. The Kir 6.0 family consists of two known members, Kir 6.1 and Kir 6.2, with distinct functional properties. The tetrameric structure of the pore-forming domain leads to the possibility that mixed heteromultimers may form. In this study, we examine this by using biochemical and electrophysiological techniques after heterologous expression of these subunits in HEK293 cells. After the coexpression of Kir 6.1 and Kir 6.2, Kir 6.1 can be coimmunoprecipitated with isoform-specific Kir 6.2 antisera and vice versa. Coexpression of SUR2B and Kir 6.2 with Kir 6.1 dominant negatives at a 1:1 expression ratio and vice versa led to a potent suppression of current. Kir 6.1, and Kir 6.2 dominant negative mutants were without effect on an inwardly rectifying potassium channel from a different family, Kir 2.1. Single-channel analysis, after coexpression of SUR2B, Kir 6.1, and Kir 6.2, revealed the existence of five distinct populations with differing single-channel current amplitudes. All channel populations were inhibited by glibenclamide. A dimeric Kir 6.1-Kir 6.2 construct expressed with SUR2B had a single-channel conductance intermediate between that of either Kir 6.2 or Kir 6.1 expressed with SUR2B. In conclusion, Kir 6.1 and Kir 6.2 readily coassemble to produce functional channels, and such phenomena may contribute to the diversity of nucleotide-regulated potassium currents seen in native tissues.
Collapse
|
23
|
Cui Y, Giblin JP, Clapp LH, Tinker A. A mechanism for ATP-sensitive potassium channel diversity: Functional coassembly of two pore-forming subunits. Proc Natl Acad Sci U S A 2001; 98:729-34. [PMID: 11136227 PMCID: PMC14656 DOI: 10.1073/pnas.98.2.729] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ATP-sensitive potassium channels are an octomeric complex of four pore-forming subunits of the Kir 6.0 family and four sulfonylurea receptors. The Kir 6.0 family consists of two known members, Kir 6.1 and Kir 6.2, with distinct functional properties. The tetrameric structure of the pore-forming domain leads to the possibility that mixed heteromultimers may form. In this study, we examine this by using biochemical and electrophysiological techniques after heterologous expression of these subunits in HEK293 cells. After the coexpression of Kir 6.1 and Kir 6.2, Kir 6.1 can be coimmunoprecipitated with isoform-specific Kir 6.2 antisera and vice versa. Coexpression of SUR2B and Kir 6.2 with Kir 6.1 dominant negatives at a 1:1 expression ratio and vice versa led to a potent suppression of current. Kir 6.1, and Kir 6.2 dominant negative mutants were without effect on an inwardly rectifying potassium channel from a different family, Kir 2.1. Single-channel analysis, after coexpression of SUR2B, Kir 6.1, and Kir 6.2, revealed the existence of five distinct populations with differing single-channel current amplitudes. All channel populations were inhibited by glibenclamide. A dimeric Kir 6.1-Kir 6.2 construct expressed with SUR2B had a single-channel conductance intermediate between that of either Kir 6.2 or Kir 6.1 expressed with SUR2B. In conclusion, Kir 6.1 and Kir 6.2 readily coassemble to produce functional channels, and such phenomena may contribute to the diversity of nucleotide-regulated potassium currents seen in native tissues.
Collapse
Affiliation(s)
- Y Cui
- Centre for Clinical Pharmacology, Department of Medicine, University College London, The Rayne Institute, 5 University Street, London WC1E 6JJ, United Kingdom
| | | | | | | |
Collapse
|