1
|
Mesnard CS, Hays CL, Townsend LE, Barta CL, Gurumurthy CB, Thoreson WB. SYNAPTOTAGMIN-9 IN MOUSE RETINA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.27.546758. [PMID: 37425946 PMCID: PMC10327071 DOI: 10.1101/2023.06.27.546758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Synaptotagmin-9 (Syt9) is a Ca2+ sensor mediating fast synaptic release expressed in various parts of the brain. The presence and role of Syt9 in retina is unknown. We found evidence for Syt9 expression throughout the retina and created mice to conditionally eliminate Syt9 in a cre-dependent manner. We crossed Syt9fl/fl mice with Rho-iCre, HRGP-Cre, and CMV-cre mice to generate mice in which Syt9 was eliminated from rods (rodSyt9CKO), cones (coneSyt9CKO), or whole animals (CMVSyt9). CMVSyt9 mice showed an increase in scotopic electroretinogram (ERG) b-waves evoked by bright flashes with no change in a-waves. Cone-driven photopic ERG b-waves were not significantly different in CMVSyt9 knockout mice and selective elimination of Syt9 from cones had no effect on ERGs. However, selective elimination from rods decreased scotopic and photopic b-waves as well as oscillatory potentials. These changes occurred only with bright flashes where cone responses contribute. Synaptic release was measured in individual rods by recording anion currents activated by glutamate binding to presynaptic glutamate transporters. Loss of Syt9 from rods had no effect on spontaneous or depolarization-evoked release. Our data show that Syt9 is acts at multiple sites in the retina and suggest that it may play a role in regulating transmission of cone signals by rods.
Collapse
Affiliation(s)
- Chris S. Mesnard
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68106, USA
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68106, USA
| | - Cassandra L. Hays
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68106, USA
- Department of Medical Education, Creighton University, Omaha, NE 68178
| | - Lou E. Townsend
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68106, USA
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68106, USA
| | - Cody L. Barta
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68106, USA
| | | | - Wallace B. Thoreson
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68106, USA
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68106, USA
| |
Collapse
|
2
|
Synaptotagmin 9 Modulates Spontaneous Neurotransmitter Release in Striatal Neurons by Regulating Substance P Secretion. J Neurosci 2023; 43:1475-1491. [PMID: 36732068 PMCID: PMC9992334 DOI: 10.1523/jneurosci.1857-22.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 02/04/2023] Open
Abstract
Synaptotagmin 9 (SYT9) is a tandem C2 domain Ca2+ sensor for exocytosis in neuroendocrine cells; its function in neurons remains unclear. Here, we show that, in mixed-sex cultures, SYT9 does not trigger rapid synaptic vesicle exocytosis in mouse cortical, hippocampal, or striatal neurons, unless it is massively overexpressed. In striatal neurons, loss of SYT9 reduced the frequency of spontaneous neurotransmitter release events (minis). We delved into the underlying mechanism and discovered that SYT9 was localized to dense-core vesicles that contain substance P (SP). Loss of SYT9 impaired SP release, causing the observed decrease in mini frequency. This model is further supported by loss of function mutants. Namely, Ca2+ binding to the C2A domain of SYT9 triggered membrane fusion in vitro, and mutations that disrupted this activity abolished the ability of SYT9 to regulate both SP release and mini frequency. We conclude that SYT9 indirectly regulates synaptic transmission in striatal neurons by controlling SP release.SIGNIFICANCE STATEMENT Synaptotagmin 9 (SYT9) has been described as a Ca2+ sensor for dense-core vesicle (DCV) exocytosis in neuroendocrine cells, but its role in neurons remains unclear, despite widespread expression in the brain. This article examines the role of SYT9 in synaptic transmission across cultured cortical, hippocampal, and striatal neuronal preparations. We found that SYT9 regulates spontaneous neurotransmitter release in striatal neurons by serving as a Ca2+ sensor for the release of the neuromodulator substance P from DCVs. This demonstrates a novel role for SYT9 in neurons and uncovers a new field of study into neuromodulation by SYT9, a protein that is widely expressed in the brain.
Collapse
|
3
|
Development of the hypersecretory phenotype in the population of adrenal chromaffin cells from prehypertensive SHRs. Pflugers Arch 2021; 473:1775-1793. [PMID: 34510285 DOI: 10.1007/s00424-021-02614-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
The hypersecretory phenotype of adrenal chromaffin cells (CCs) from early spontaneously hypertensive rats (SHRs) mainly results from enhanced Ca2+-induced Ca2+-release (CICR). A key question is if these abnormalities can be traced to the prehypertensive stage. Spontaneous and stimulus-induced catecholamine exocytosis, intracellular Ca2+ signals, and dense-core granule size and density were examined in CCs from prehypertensive and hypertensive SHRs and compared with age-matched Wistar-Kyoto rats (WKY). During the prehypertensive stage, the depolarization-elicited catecholamine exocytosis was ~ 2.9-fold greater in SHR than in WKY CCs. Interestingly, in half of CCs the exocytosis was indistinguishable from WKY CCs, while it was between 3- and sixfold larger in the other half. Likewise, caffeine-induced exocytosis was ~ twofold larger in prehypertensive SHR. Accordingly, depolarization and caffeine application elicited [Ca2+]i rises ~ 1.5-fold larger in prehypertensive SHR than in WKY CCs. Ryanodine reduced the depolarization-induced secretion in prehypertensive SHR by 57%, compared to 14% in WKY CCs, suggesting a greater contribution of intracellular Ca2+ release to exocytosis. In SHR CCs, the mean spike amplitude and charge per spike were significantly larger than in WKY CCs, regardless of age and stimulus type. This difference in granule content could explain in part the enhanced exocytosis in SHR CCs. However, electron microscopy did not reveal significant differences in granule size between SHRs and WKY rats' adrenal medulla. Nonetheless, preSHR and hypSHR display 63% and 82% more granules than WKY, which could explain in part the enhanced catecholamine secretion. The mechanism responsible for the heterogeneous population of prehypertensive SHR CCs and the bias towards secreting more medium and large granules remains unexplained.
Collapse
|
4
|
van Westen R, Poppinga J, Díez Arazola R, Toonen RF, Verhage M. Neuromodulator release in neurons requires two functionally redundant calcium sensors. Proc Natl Acad Sci U S A 2021; 118:e2012137118. [PMID: 33903230 PMCID: PMC8106342 DOI: 10.1073/pnas.2012137118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neuropeptides and neurotrophic factors secreted from dense core vesicles (DCVs) control many brain functions, but the calcium sensors that trigger their secretion remain unknown. Here, we show that in mouse hippocampal neurons, DCV fusion is strongly and equally reduced in synaptotagmin-1 (Syt1)- or Syt7-deficient neurons, but combined Syt1/Syt7 deficiency did not reduce fusion further. Cross-rescue, expression of Syt1 in Syt7-deficient neurons, or vice versa, completely restored fusion. Hence, both sensors are rate limiting, operating in a single pathway. Overexpression of either sensor in wild-type neurons confirmed this and increased fusion. Syt1 traveled with DCVs and was present on fusing DCVs, but Syt7 supported fusion largely from other locations. Finally, the duration of single DCV fusion events was reduced in Syt1-deficient but not Syt7-deficient neurons. In conclusion, two functionally redundant calcium sensors drive neuromodulator secretion in an expression-dependent manner. In addition, Syt1 has a unique role in regulating fusion pore duration.
Collapse
Affiliation(s)
- Rhodé van Westen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Department of Clinical Genetics, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands
| | - Josse Poppinga
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Rocío Díez Arazola
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Ruud F Toonen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
| | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
- Department of Clinical Genetics, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
5
|
Lenzi C, Stevens J, Osborn D, Hannah MJ, Bierings R, Carter T. Synaptotagmin 5 regulates Ca 2+-dependent Weibel-Palade body exocytosis in human endothelial cells. J Cell Sci 2019; 132:jcs.221952. [PMID: 30659119 DOI: 10.1242/jcs.221952] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 01/09/2019] [Indexed: 12/11/2022] Open
Abstract
Elevations of intracellular free Ca2+ concentration ([Ca2+]i) are a potent trigger for Weibel-Palade body (WPB) exocytosis and secretion of von Willebrand factor (VWF) from endothelial cells; however, the identity of WPB-associated Ca2+-sensors involved in transducing acute increases in [Ca2+]i into granule exocytosis remains unknown. Here, we show that synaptotagmin 5 (SYT5) is expressed in human umbilical vein endothelial cells (HUVECs) and is recruited to WPBs to regulate Ca2+-driven WPB exocytosis. Western blot analysis of HUVECs identified SYT5 protein, and exogenously expressed SYT5-mEGFP localised almost exclusively to WPBs. shRNA-mediated knockdown of endogenous SYT5 (shSYT5) reduced the rate and extent of histamine-evoked WPB exocytosis and reduced secretion of the WPB cargo VWF-propeptide (VWFpp). The shSYT5-mediated reduction in histamine-evoked WPB exocytosis was prevented by expression of shRNA-resistant SYT5-mCherry. Overexpression of SYT5-EGFP increased the rate and extent of histamine-evoked WPB exocytosis, and increased secretion of VWFpp. Expression of a Ca2+-binding defective SYT5 mutant (SYT5-Asp197Ser-EGFP) mimicked depletion of endogenous SYT5. We identify SYT5 as a WPB-associated Ca2+ sensor regulating Ca2+-dependent secretion of stored mediators from vascular endothelial cells.
Collapse
Affiliation(s)
- Camille Lenzi
- Molecular and Clinical Sciences Research Institute, St George's, University of London, London SW18 ORE, UK
| | | | - Daniel Osborn
- Molecular and Clinical Sciences Research Institute, St George's, University of London, London SW18 ORE, UK
| | - Matthew J Hannah
- Microbiology Services Colindale, Public Health England, London, NW9 5EQ, UK
| | - Ruben Bierings
- Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, 1006 AD Amsterdam, PO Box 9190, The Netherlands
| | - Tom Carter
- Molecular and Clinical Sciences Research Institute, St George's, University of London, London SW18 ORE, UK
| |
Collapse
|
6
|
Bello OD, Jouannot O, Chaudhuri A, Stroeva E, Coleman J, Volynski KE, Rothman JE, Krishnakumar SS. Synaptotagmin oligomerization is essential for calcium control of regulated exocytosis. Proc Natl Acad Sci U S A 2018; 115:E7624-E7631. [PMID: 30038018 PMCID: PMC6094142 DOI: 10.1073/pnas.1808792115] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Regulated exocytosis, which underlies many intercellular signaling events, is a tightly controlled process often triggered by calcium ion(s) (Ca2+). Despite considerable insight into the central components involved, namely, the core fusion machinery [soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)] and the principal Ca2+ sensor [C2-domain proteins like synaptotagmin (Syt)], the molecular mechanism of Ca2+-dependent release has been unclear. Here, we report that the Ca2+-sensitive oligomers of Syt1, a conserved structural feature among several C2-domain proteins, play a critical role in orchestrating Ca2+-coupled vesicular release. This follows from pHluorin-based imaging of single-vesicle exocytosis in pheochromocytoma (PC12) cells showing that selective disruption of Syt1 oligomerization using a structure-directed mutation (F349A) dramatically increases the normally low levels of constitutive exocytosis to effectively occlude Ca2+-stimulated release. We propose a parsimonious model whereby Ca2+-sensitive oligomers of Syt (or a similar C2-domain protein) assembled at the site of docking physically block spontaneous fusion until disrupted by Ca2+ Our data further suggest Ca2+-coupled vesicular release is triggered by removal of the inhibition, rather than by direct activation of the fusion machinery.
Collapse
Affiliation(s)
- Oscar D Bello
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, WC1N 3BG London, United Kingdom
| | - Ouardane Jouannot
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
| | - Arunima Chaudhuri
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
| | - Ekaterina Stroeva
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
| | - Jeff Coleman
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
| | - Kirill E Volynski
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, WC1N 3BG London, United Kingdom
| | - James E Rothman
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520;
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, WC1N 3BG London, United Kingdom
| | - Shyam S Krishnakumar
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520;
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, WC1N 3BG London, United Kingdom
| |
Collapse
|
7
|
Yeoh CJ, Ng SY, Goh BKP. Pheochromocytoma Multisystem Crisis Triggered by Glucocorticoid Administration and Aggravated by Citrate Dialysis. ACTA ACUST UNITED AC 2017; 8:58-60. [PMID: 27828782 DOI: 10.1213/xaa.0000000000000423] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Pheochromocytoma multisystem crisis is the most severe presentation of pheochromocytoma. We report on a 68-year-old survivor of pheochromocytoma multisystem crisis, whose clinical course was triggered inadvertently by a short innocuous course of oral dexamethasone to suppress inflammation and swelling after a left orbital floor fracture repair. He presented first with severe epigastric pain and headache, and subsequently experienced insults to neurological, cardiac, respiratory, hepatobiliary, renal, and immune system in his prolonged intensive care unit stay. We believe an episode of unexpected hypertensive crisis in the intensive care unit was set off iatrogenically during citrate protocol dialysis.
Collapse
Affiliation(s)
- Chuen Jye Yeoh
- From the Departments of *Anaesthesiology and †Hepato-Pancreato-Biliary and Transplant Surgery, Singapore General Hospital, Singapore
| | | | | |
Collapse
|
8
|
Shim YJ, Kim JE, Hwang SK, Choi BS, Choi BH, Cho EM, Jang KM, Ko CW. Identification of Candidate Gene Variants in Korean MODY Families by Whole-Exome Sequencing. Horm Res Paediatr 2016; 83:242-51. [PMID: 25765181 DOI: 10.1159/000368657] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 09/22/2014] [Indexed: 12/15/2022] Open
Abstract
AIMS To date, 13 genes causing maturity-onset diabetes of the young (MODY) have been identified. However, there is a big discrepancy in the genetic locus between Asian and Caucasian patients with MODY. Thus, we conducted whole-exome sequencing in Korean MODY families to identify causative gene variants. METHODS Six MODY probands and their family members were included. Variants in the dbSNP135 and TIARA databases for Koreans and the variants with minor allele frequencies >0.5% of the 1000 Genomes database were excluded. We selected only the functional variants (gain of stop codon, frameshifts and nonsynonymous single-nucleotide variants) and conducted a case-control comparison in the family members. The selected variants were scanned for the previously introduced gene set implicated in glucose metabolism. RESULTS Three variants c.620C>T:p.Thr207Ile in PTPRD, c.559C>G:p.Gln187Glu in SYT9, and c.1526T>G:p.Val509Gly in WFS1 were respectively identified in 3 families. We could not find any disease-causative alleles of known MODY 1-13 genes. Based on the predictive program, Thr207Ile in PTPRD was considered pathogenic. CONCLUSIONS Whole-exome sequencing is a valuable method for the genetic diagnosis of MODY. Further evaluation is necessary about the role of PTPRD, SYT9 and WFS1 in normal insulin release from pancreatic beta cells.
Collapse
Affiliation(s)
- Ye Jee Shim
- Department of Pediatrics, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Wang H, Han S, Siao W, Song C, Xiang Y, Wu X, Cheng P, Li H, Jásik J, Mičieta K, Turňa J, Voigt B, Baluška F, Liu J, Wang Y, Zhao H. Arabidopsis Synaptotagmin 2 Participates in Pollen Germination and Tube Growth and Is Delivered to Plasma Membrane via Conventional Secretion. MOLECULAR PLANT 2015; 8:1737-50. [PMID: 26384245 DOI: 10.1016/j.molp.2015.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 08/18/2015] [Accepted: 09/05/2015] [Indexed: 05/15/2023]
Abstract
Arabidopsis synaptotagmin 2 (SYT2) has been reported to participate in an unconventional secretory pathway in somatic cells. Our results showed that SYT2 was expressed mainly in the pollen of Arabidopsis thaliana. The pollen of syt2 T-DNA and RNA interference mutant lines exhibited reduced total germination and impeded pollen tube growth. Analysis of the expression of SYT2-GFP fusion protein in the pollen tube indicates that SYT2 was localized to distinct, patchy compartments but could co-localize with the Golgi markers, BODIPY TR C5 ceramide and GmMan1-mCherry. However, SYT2-DsRed-E5 was localized to the plasma membrane in Arabidopsis suspension cells, in addition to the Golgi apparatus. The localization of SYT2 at the plasma membrane was further supported by immunofluorescence staining in pollen tubes. Moreover, brefeldin A treatment inhibited the transport of SYT2 to the plasma membrane and caused SYT2 to aggregate and form enlarged compartments. Truncation of the SYT2-C2AB domains also resulted in retention of SYT2 in the Golgi apparatus. An in vitro phospholipid-binding assay showed that SYT2-C2AB domains bind to the phospholipid membrane in a calcium-dependent manner. Take together, our results indicated that SYT2 was required for pollen germination and pollen tube growth, and was involved in conventional exocytosis.
Collapse
Affiliation(s)
- Hui Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Shengcheng Han
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Wei Siao
- Department of Plant Cell Biology, IZMB, University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Chunqing Song
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Yun Xiang
- School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Xiaorong Wu
- School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Pengyu Cheng
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Hongjuan Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Ján Jásik
- Comenius University Science Park, Comenius University, Bratislava, Mlynská dolina, 842 15 Bratislava 4, Slovakia
| | - Karol Mičieta
- Department of Botany, Faculty of Natural Sciences, Comenius University, Révová 39, 811 02 Bratislava 1, Slovakia
| | - Ján Turňa
- Department of Molecular Biology, Comenius University, Faculty of Natural Sciences, Mlynská dolina, pavilion B-2, 842 15 Bratislava 4, Slovakia
| | - Boris Voigt
- Department of Plant Cell Biology, IZMB, University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - František Baluška
- Department of Plant Cell Biology, IZMB, University of Bonn, Kirschallee 1, 53115 Bonn, Germany; Institute of Botany, Slovak Academy of Sciences, Dubravska cesta 9, SK-84523 Bratislava, Slovak Republic.
| | - Jin Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Yingdian Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Heping Zhao
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
10
|
Garcia-Manteiga JM, Bonfiglio S, Folladori L, Malosio ML, Lazarevic D, Stupka E, Cittaro D, Meldolesi J. REST-Governed Gene Expression Profiling in a Neuronal Cell Model Reveals Novel Direct and Indirect Processes of Repression and Up-Regulation. Front Cell Neurosci 2015; 9:438. [PMID: 26617488 PMCID: PMC4639699 DOI: 10.3389/fncel.2015.00438] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/22/2015] [Indexed: 11/23/2022] Open
Abstract
The role of REST changes in neurons, including the rapid decrease of its level during differentiation and its fluctuations during many mature functions and diseases, is well established. However, identification of many thousand possible REST-target genes, mostly based on indirect criteria, and demonstration of their operative dependence on the repressor have been established for only a relatively small fraction. In the present study, starting from our recently published work, we have expanded the identification of REST-dependent genes, investigated in two clones of the PC12 line, a recognized neuronal cell model, spontaneously expressing different levels of REST: very low as in neurons and much higher as in most non-neural cells. The molecular, structural and functional differences of the two PC12 clones were shown to depend largely on their different REST level and the ensuing variable expression of some dependent genes. Comprehensive RNA-Seq analyses of the 13,700 genes expressed, validated by parallel RT-PCR and western analyses of mRNAs and encoded proteins, identified in the high-REST clone two groups of almost 900 repressed and up-regulated genes. Repression is often due to direct binding of REST to target genes; up-regulation to indirect mechanism(s) mostly mediated by REST repression of repressive transcription factors. Most, but not all, genes governing neurosecretion, excitability, and receptor channel signaling were repressed in the high REST clone. The genes governing expression of non-channel receptors (G protein-coupled and others), although variably affected, were often up-regulated together with the genes of intracellular kinases, small G proteins, cytoskeleton, cell adhesion, and extracellular matrix proteins. Expression of REST-dependent genes governing functions other than those mentioned so far were also identified. The results obtained by the parallel investigation of the two PC12 clones revealed the complexity of the REST molecular and functional role, deciphering new aspects of its participation in neuronal functions. The new findings could be relevant for further investigation and interpretation of physiological processes typical of neurons. Moreover, they could be employed as tools in the study of neuronal diseases recently shown to depend on REST for their development.
Collapse
Affiliation(s)
- Jose M Garcia-Manteiga
- Center for Translational Genomics and Bioinformatics, Scientific Institute San Raffaele Milan, Italy
| | - Silvia Bonfiglio
- Center for Translational Genomics and Bioinformatics, Scientific Institute San Raffaele Milan, Italy
| | - Lucrezia Folladori
- CNR Institute of Neuroscience and Humanitas Clinical and Research Centre Milan, Italy
| | - Maria L Malosio
- CNR Institute of Neuroscience and Humanitas Clinical and Research Centre Milan, Italy
| | - Dejan Lazarevic
- Center for Translational Genomics and Bioinformatics, Scientific Institute San Raffaele Milan, Italy
| | - Elia Stupka
- Center for Translational Genomics and Bioinformatics, Scientific Institute San Raffaele Milan, Italy
| | - Davide Cittaro
- Center for Translational Genomics and Bioinformatics, Scientific Institute San Raffaele Milan, Italy
| | - Jacopo Meldolesi
- Division of Neurosciences, Vita-Salute San Raffaele University and Scientific Institute San Raffaele Milan, Italy
| |
Collapse
|
11
|
Sex-specific regulation of follicle-stimulating hormone secretion by synaptotagmin 9. Nat Commun 2015; 6:8645. [PMID: 26482442 PMCID: PMC4620939 DOI: 10.1038/ncomms9645] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 09/11/2015] [Indexed: 12/24/2022] Open
Abstract
The anterior pituitary releases six different hormones that control virtually all aspects of vertebrate physiology, yet the molecular mechanisms underlying their Ca(2+)-triggered release remain unknown. A subset of the synaptotagmin (syt) family of proteins serve as Ca(2+) sensors for exocytosis in neurons and neuroendocrine cells, and are thus likely to regulate pituitary hormone secretion. Here we show that numerous syt isoforms are highly expressed in the pituitary gland in a lobe, and sex-specific manner. We further investigated a Ca(2+)-activated isoform, syt-9, and found that it is expressed in a subpopulation of anterior pituitary cells, the gonadotropes. Follicle-stimulating hormone (FSH) and syt-9 are highly co-localized in female, but not male, mice. Loss of syt-9 results in diminished basal and stimulated FSH secretion only in females, resulting in alterations in the oestrus cycle. This work uncovers a new function for syt-9 and reveals a novel sex difference in reproductive hormone secretion.
Collapse
|
12
|
Mori Y, Fukuda M. Assay of Rab17 and its guanine nucleotide exchange factor Rabex-5 in the dendrites of hippocampal neurons. Methods Mol Biol 2015; 1298:233-43. [PMID: 25800847 DOI: 10.1007/978-1-4939-2569-8_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Neurons are functionally and morphologically compartmentalized into axons and dendrites, and the localization of specific proteins within these compartments is critical to the proper formation of neuronal networks, which includes neurite morphogenesis and synapse formation. The small GTPase Rab17 is specifically localized in dendrites and is not found in axons, and it regulates the dendrite morphogenesis and postsynaptic development of mouse hippocampal neurons. However, the spatiotemporal regulation of Rab17 is poorly understood. We recently identified Rabex-5, originally described as a Rab5-guanine nucleotide exchange factor (GEF), as a physiological Rab17-GEF that promotes translocation of Rab17 from the cell body to the dendrites of developing hippocampal neurons. Knockdown of Rab17 in mouse hippocampal neurons resulted in reductions in dendrite growth, branch numbers, filopodium density, and active synapse numbers. Knockdown of Rab17-GEF Rabex-5 in hippocampal neurons resulted in decreased targeting of Rab17 to the dendrites, which led to a reduction in dendrite growth. In this chapter we describe the assay procedures for analyzing Rab17 and Rabex-5 in cultured mouse hippocampal neurons, and we particularly focus on the measurement of total dendrite (or axon) length and total dendrite (or axon) branch numbers, filopodium density, number of active synapses, and dendritic Rab17 signals.
Collapse
Affiliation(s)
- Yasunori Mori
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | | |
Collapse
|
13
|
Abstract
Synaptic vesicles release their vesicular contents to the extracellular space by Ca(2+)-triggered exocytosis. The Ca(2+)-triggered exocytotic process is regulated by synaptotagmin (Syt), a vesicular Ca(2+)-binding C2 domain protein. Synaptotagmin 1 (Syt1), the most studied major isoform among 16 Syt isoforms, mediates Ca(2+)-triggered synaptic vesicle exocytosis by interacting with the target membranes and SNARE/complexin complex. In synapses of the central nervous system, synaptobrevin 2, a major vesicular SNARE protein, forms a ternary SNARE complex with the plasma membrane SNARE proteins, syntaxin 1 and SNAP25. The affinities of Ca(2+)-dependent interactions between Syt1 and its targets (i.e., SNARE complexes and membranes) are well correlated with the efficacies of the corresponding exocytotic processes. Therefore, different SNARE protein isoforms and membrane lipids, which interact with Syt1 with various affinities, are capable of regulating the efficacy of Syt1-mediated exocytosis. Otoferlin, another type of vesicular C2 domain protein that binds to the membrane in a Ca(2+)-dependent manner, is also involved in the Ca(2+)-triggered synaptic vesicle exocytosis in auditory hair cells. However, the functions of otoferlin in the exocytotic process are not well understood. In addition, at least five different types of synaptic vesicle proteins such as synaptic vesicle protein 2, cysteine string protein α, rab3, synapsin, and a group of proteins containing four transmembrane regions, which includes synaptophysin, synaptogyrin, and secretory carrier membrane protein, are involved in modulating the exocytotic process by regulating the formation and trafficking of synaptic vesicles.
Collapse
Affiliation(s)
- Ok-Ho Shin
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
14
|
Rao TC, Passmore DR, Peleman AR, Das M, Chapman ER, Anantharam A. Distinct fusion properties of synaptotagmin-1 and synaptotagmin-7 bearing dense core granules. Mol Biol Cell 2014; 25:2416-27. [PMID: 24943843 PMCID: PMC4142614 DOI: 10.1091/mbc.e14-02-0702] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Adrenal chromaffin cells express two synaptotagmin isoforms, Syt-1 and Syt-7. Isoforms are usually sorted to separate secretory granules, are differentially activated by depolarizing stimuli, and favor discrete modes of exocytosis. It is proposed that stimulus/Ca+-dependent secretion in the chromaffin cell relies on selective Syt isoform activation. Adrenal chromaffin cells release hormones and neuropeptides that are essential for physiological homeostasis. During this process, secretory granules fuse with the plasma membrane and deliver their cargo to the extracellular space. It was once believed that fusion was the final regulated step in exocytosis, resulting in uniform and total release of granule cargo. Recent evidence argues for nonuniform outcomes after fusion, in which cargo is released with variable kinetics and selectivity. The goal of this study was to identify factors that contribute to the different outcomes, with a focus on the Ca2+-sensing synaptotagmin (Syt) proteins. Two Syt isoforms are expressed in chromaffin cells: Syt-1 and Syt-7. We find that overexpressed and endogenous Syt isoforms are usually sorted to separate secretory granules and are differentially activated by depolarizing stimuli. In addition, overexpressed Syt-1 and Syt-7 impose distinct effects on fusion pore expansion and granule cargo release. Syt-7 pores usually fail to expand (or reseal), slowing the dispersal of lumenal cargo proteins and granule membrane proteins. On the other hand, Syt-1 diffuses from fusion sites and promotes the release of lumenal cargo proteins. These findings suggest one way in which chromaffin cells may regulate cargo release is via differential activation of synaptotagmin isoforms.
Collapse
Affiliation(s)
- Tejeshwar C Rao
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202
| | - Daniel R Passmore
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202
| | - Andrew R Peleman
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202
| | - Madhurima Das
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202
| | - Edwin R Chapman
- Howard Hughes Medical Institute, Department of Neuroscience, University of Wisconsin, Madison, WI 53705
| | - Arun Anantharam
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202
| |
Collapse
|
15
|
Moghadam PK, Jackson MB. The functional significance of synaptotagmin diversity in neuroendocrine secretion. Front Endocrinol (Lausanne) 2013; 4:124. [PMID: 24065953 PMCID: PMC3776153 DOI: 10.3389/fendo.2013.00124] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 08/31/2013] [Indexed: 11/25/2022] Open
Abstract
Synaptotagmins (syts) are abundant, evolutionarily conserved integral membrane proteins that play essential roles in regulated exocytosis in nervous and endocrine systems. There are at least 17 syt isoforms in mammals, all with tandem C-terminal C2 domains with highly variable capacities for Ca(2+) binding. Many syts play roles in neurotransmitter release or hormone secretion or both, and a growing body of work supports a role for some syts as Ca(2+) sensors of exocytosis. Work in many types of endocrine cells has documented the presence of a number of syt isoforms on dense-core vesicles containing various hormones. Syts can influence the kinetics of exocytotic fusion pores and the choice of release mode between kiss-and-run and full-fusion. Vesicles harboring different syt isoforms can preferentially undergo distinct modes of exocytosis with different forms of stimulation. The diverse properties of syt isoforms enable these proteins to shape Ca(2+) sensing in endocrine cells, thus contributing to the regulation of hormone release and the organization of complex endocrine functions.
Collapse
Affiliation(s)
| | - Meyer B. Jackson
- Department of Neuroscience, University of Wisconsin, Madison, WI, USA
- *Correspondence: Meyer B. Jackson, Department of Neuroscience, University of Wisconsin, 1300 University Avenue, Madison, WI 53706-1510, USA e-mail:
| |
Collapse
|
16
|
Xie Z, McMillan K, Pike CM, Cahill AL, Herring BE, Wang Q, Fox AP. Interaction of anesthetics with neurotransmitter release machinery proteins. J Neurophysiol 2012; 109:758-67. [PMID: 23136341 DOI: 10.1152/jn.00666.2012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
General anesthetics produce anesthesia by depressing central nervous system activity. Activation of inhibitory GABA(A) receptors plays a central role in the action of many clinically relevant general anesthetics. Even so, there is growing evidence that anesthetics can act at a presynaptic locus to inhibit neurotransmitter release. Our own data identified the neurotransmitter release machinery as a target for anesthetic action. In the present study, we sought to examine the site of anesthetic action more closely. Exocytosis was stimulated by directly elevating the intracellular Ca(2+) concentration at neurotransmitter release sites, thereby bypassing anesthetic effects on channels and receptors, allowing anesthetic effects on the neurotransmitter release machinery to be examined in isolation. Three different PC12 cell lines, which had the expression of different release machinery proteins stably suppressed by RNA interference, were used in these studies. Interestingly, there was still significant neurotransmitter release when these knockdown PC12 cells were stimulated. We have previously shown that etomidate, isoflurane, and propofol all inhibited the neurotransmitter release machinery in wild-type PC12 cells. In the present study, we show that knocking down synaptotagmin I completely prevented etomidate from inhibiting neurotransmitter release. Synaptotagmin I knockdown also diminished the inhibition produced by propofol and isoflurane, but the magnitude of the effect was not as large. Knockdown of SNAP-25 and SNAP-23 expression also changed the ability of these three anesthetics to inhibit neurotransmitter release. Our results suggest that general anesthetics inhibit the neurotransmitter release machinery by interacting with multiple SNARE and SNARE-associated proteins.
Collapse
Affiliation(s)
- Zheng Xie
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Kasai H, Takahashi N, Tokumaru H. Distinct Initial SNARE Configurations Underlying the Diversity of Exocytosis. Physiol Rev 2012; 92:1915-64. [DOI: 10.1152/physrev.00007.2012] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The dynamics of exocytosis are diverse and have been optimized for the functions of synapses and a wide variety of cell types. For example, the kinetics of exocytosis varies by more than five orders of magnitude between ultrafast exocytosis in synaptic vesicles and slow exocytosis in large dense-core vesicles. However, in all cases, exocytosis is mediated by the same fundamental mechanism, i.e., the assembly of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. It is often assumed that vesicles need to be docked at the plasma membrane and SNARE proteins must be preassembled before exocytosis is triggered. However, this model cannot account for the dynamics of exocytosis recently reported in synapses and other cells. For example, vesicles undergo exocytosis without prestimulus docking during tonic exocytosis of synaptic vesicles in the active zone. In addition, epithelial and hematopoietic cells utilize cAMP and kinases to trigger slow exocytosis of nondocked vesicles. In this review, we summarize the manner in which the diversity of exocytosis reflects the initial configurations of SNARE assembly, including trans-SNARE, binary-SNARE, unitary-SNARE, and cis-SNARE configurations. The initial SNARE configurations depend on the particular SNARE subtype (syntaxin, SNAP25, or VAMP), priming proteins (Munc18, Munc13, CAPS, complexin, or snapin), triggering proteins (synaptotagmins, Doc2, and various protein kinases), and the submembraneous cytomatrix, and they are the key to determining the kinetics of subsequent exocytosis. These distinct initial configurations will help us clarify the common SNARE assembly processes underlying exocytosis and membrane trafficking in eukaryotic cells.
Collapse
Affiliation(s)
- Haruo Kasai
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa, Japan
| | - Noriko Takahashi
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa, Japan
| | - Hiroshi Tokumaru
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa, Japan
| |
Collapse
|
18
|
Mori Y, Matsui T, Furutani Y, Yoshihara Y, Fukuda M. Small GTPase Rab17 regulates dendritic morphogenesis and postsynaptic development of hippocampal neurons. J Biol Chem 2012; 287:8963-73. [PMID: 22291024 DOI: 10.1074/jbc.m111.314385] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Neurons are compartmentalized into two morphologically, molecularly, and functionally distinct domains: axons and dendrites, and precise targeting and localization of proteins within these domains are critical for proper neuronal functions. It has been reported that several members of the Rab family small GTPases that are key mediators of membrane trafficking, regulate axon-specific trafficking events, but little has been elucidated regarding the molecular mechanisms that underlie dendrite-specific membrane trafficking. Here we show that Rab17 regulates dendritic morphogenesis and postsynaptic development in mouse hippocampal neurons. Rab17 is localized at dendritic growth cones, shafts, filopodia, and mature spines, but it is mostly absent in axons. We also found that Rab17 mediates dendrite growth and branching and that it does not regulate axon growth or branching. Moreover, shRNA-mediated knockdown of Rab17 expression resulted in a dramatically reduced number of dendritic spines, probably because of impaired filopodia formation. These findings have revealed the first molecular link between membrane trafficking and dendritogenesis.
Collapse
Affiliation(s)
- Yasunori Mori
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | | | | | | | | |
Collapse
|
19
|
Walter AM, Groffen AJ, Sørensen JB, Verhage M. Multiple Ca2+ sensors in secretion: teammates, competitors or autocrats? Trends Neurosci 2011; 34:487-97. [PMID: 21831459 DOI: 10.1016/j.tins.2011.07.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 06/21/2011] [Accepted: 07/05/2011] [Indexed: 12/25/2022]
Abstract
Regulated neurotransmitter secretion depends on Ca(2+) sensors, C2 domain proteins that associate with phospholipids and soluble N-ethylmaleimide-sensitive fusion attachment protein receptor (SNARE) complexes to trigger release upon Ca(2+) binding. Ca(2+) sensors are thought to prevent spontaneous fusion at rest (clamping) and to promote fusion upon Ca(2+) activation. At least eight, often coexpressed, Ca(2+) sensors have been identified in mammals. Accumulating evidence suggests that multiple Ca(2+) sensors interact, rather than work autonomously, to produce the complex secretory response observed in neurons and secretory cells. In this review, we present several working models to describe how different sensors might be arranged to mediate synchronous, asynchronous and spontaneous neurotransmitter release. We discuss the scenario that different Ca(2+) sensors typically act on one shared vesicle pool and compete for binding the multiple SNARE complexes that are likely to assemble at single vesicles, to exert both clamping and fusion-promoting functions.
Collapse
Affiliation(s)
- Alexander M Walter
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam and VU Medical Center, 1081 HV Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
20
|
Cao P, Maximov A, Südhof TC. Activity-dependent IGF-1 exocytosis is controlled by the Ca(2+)-sensor synaptotagmin-10. Cell 2011; 145:300-11. [PMID: 21496647 PMCID: PMC3102833 DOI: 10.1016/j.cell.2011.03.034] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 12/24/2010] [Accepted: 03/07/2011] [Indexed: 10/18/2022]
Abstract
Synaptotagmins Syt1, Syt2, Syt7, and Syt9 act as Ca(2+)-sensors for synaptic and neuroendocrine exocytosis, but the function of other synaptotagmins remains unknown. Here, we show that olfactory bulb neurons secrete IGF-1 by an activity-dependent pathway of exocytosis, and that Syt10 functions as the Ca(2+)-sensor that triggers IGF-1 exocytosis in these neurons. Deletion of Syt10 impaired activity-dependent IGF-1 secretion in olfactory bulb neurons, resulting in smaller neurons and an overall decrease in synapse numbers. Exogenous IGF-1 completely reversed the Syt10 knockout phenotype. Syt10 colocalized with IGF-1 in somatodendritic vesicles of olfactory bulb neurons, and Ca(2+)-binding to Syt10 caused these vesicles to undergo exocytosis, thereby secreting IGF-1. Thus, Syt10 controls a previously unrecognized pathway of Ca(2+)-dependent exocytosis that is spatially and temporally distinct from Ca(2+)-dependent synaptic vesicle exocytosis controlled by Syt1. Our findings thereby reveal that two different synaptotagmins can regulate functionally distinct Ca(2+)-dependent membrane fusion reactions in the same neuron.
Collapse
Affiliation(s)
- Peng Cao
- Department of Molecular and Cellular Physiology, and Howard Hughes Medical Institute, Stanford University, 1050 Arastradero Rd., Palo Alto, California 94305, USA
| | | | | |
Collapse
|
21
|
Zhang Z, Wu Y, Wang Z, Dunning FM, Rehfuss J, Ramanan D, Chapman ER, Jackson MB. Release mode of large and small dense-core vesicles specified by different synaptotagmin isoforms in PC12 cells. Mol Biol Cell 2011; 22:2324-36. [PMID: 21551071 PMCID: PMC3128534 DOI: 10.1091/mbc.e11-02-0159] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Different synaptotagmin isoforms (syt I, VII, and IX) sort to populations of dense-core vesicles with different sizes. These isoforms differ in their sensitivities to divalent cations and trigger different modes of exocytosis. Exocytosis triggered by these isoforms also differs in its sensitivity to inhibition by another isoform, syt IV. Many cells release multiple substances in different proportions according to the specific character of a stimulus. PC12 cells, a model neuroendocrine cell line, express multiple isoforms of the exocytotic Ca2+ sensor synaptotagmin. We show that these isoforms sort to populations of dense-core vesicles that differ in size. These synaptotagmins differ in their Ca2+ sensitivities, their preference for full fusion or kiss-and-run, and their sensitivity to inhibition by synaptotagmin IV. In PC12 cells, vesicles that harbor these different synaptotagmin isoforms can be preferentially triggered to fuse by different forms of stimulation. The mode of fusion is specified by the synaptotagmin isoform activated, and because kiss-and-run exocytosis can filter small molecules through a size-limiting fusion pore, the activation of isoforms that favor kiss-and-run will select smaller molecules over larger molecules packaged in the same vesicle. Thus synaptotagmin isoforms can provide multiple levels of control in the release of different molecules from the same cell.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Physiology, University of Wisconsin School of Medical and Public Health, Madison, WI 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Matsuoka H, Harada K, Nakamura J, Fukuda M, Inoue M. Differential distribution of synaptotagmin-1, -4, -7, and -9 in rat adrenal chromaffin cells. Cell Tissue Res 2011; 344:41-50. [PMID: 21287204 DOI: 10.1007/s00441-011-1131-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 01/12/2011] [Indexed: 11/27/2022]
Abstract
Neurons and certain kinds of endocrine cells, such as adrenal chromaffin cells, have large dense-core vesicles (LDCVs) and synaptic vesicles or synaptic-like microvesicles (SLMVs). These secretory vesicles exhibit differences in Ca(2+) sensitivity and contain diverse signaling substances. The present work was undertaken to identify the synaptotagmin (Syt) isoforms present in secretory vesicles. Fractionation analysis of lysates of the bovine adrenal medulla and immunocytochemistry in rat chromaffin cells indicated that Syt 1 was localized in LDCVs and SLMVs, whereas Syt 7 was the predominant isoform present in LDCVs. In contrast to PC12 cells and the pancreatic β cell line INS-1, Syt 9 was not immunodetected in LDCVs in rat chromaffin cells. Double-staining revealed that Syt 9-like immunoreactivity was nearly identical with fluorescent thapsigargin binding, suggesting the presence of Syt 9 in the endoplasmic reticulum (ER).The exogenous expression of Syt 1-GFP in INS-1 cells, which had a negligible level of endogenous Syt 1, resulted in an increase in the amount of Syt 9 in the ER, suggesting that Syt 9 competes with Syt 1 for trafficking from the ER to the Golgi complex. We conclude that LDCVs mainly contain Syt 7, whereas SLMVs contain Syt 1, but not Syt 7, in rat and bovine chromaffin cells.
Collapse
Affiliation(s)
- Hidetada Matsuoka
- Department of Cell and Systems Physiology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, 807-8555, Japan
| | | | | | | | | |
Collapse
|
23
|
Synaptotagmin IV Acts as a Multi-Functional Regulator of Ca2+-Dependent Exocytosis. Neurochem Res 2010; 36:1222-7. [DOI: 10.1007/s11064-010-0352-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 11/26/2010] [Indexed: 02/06/2023]
|
24
|
Abstract
In chromaffin cells, Ca(2+) binding to synaptotagmin-1 and -7 triggers exocytosis by promoting fusion pore opening and fusion pore expansion. Synaptotagmins contain two C2 domains that both bind Ca(2+) and contribute to exocytosis; however, it remains unknown whether the C2 domains act similarly or differentially to promote opening and expansion of fusion pores. Here, we use patch amperometry measurements in WT and synaptotagmin-7-mutant chromaffin cells to analyze the role of Ca(2+) binding to the two synaptotagmin-7 C2 domains in exocytosis. We show that, surprisingly, Ca(2+) binding to the C2A domain suffices to trigger fusion pore opening but that the resulting fusion pores are unstable and collapse, causing a dramatic increase in kiss-and-run fusion events. Thus, synaptotagmin-7 controls fusion pore dynamics during exocytosis via a push-and-pull mechanism in which Ca(2+) binding to both C2 domains promotes fusion pore opening, but the C2B domain is selectively essential for continuous expansion of an otherwise unstable fusion pore.
Collapse
|
25
|
Abstract
The majority of cells of the immune system are specialized secretory cells, whose function depends on regulated exocytosis. The latter is mediated by vesicular transport involving the sorting of specialized cargo into the secretory granules (SGs), thereby generating the transport vesicles; their transport along the microtubules and eventually their signal-dependent fusion with the plasma membrane. Each of these steps is tightly controlled by mechanisms, which involve the participation of specific sorting signals on the cargo proteins and their recognition by cognate adaptor proteins, posttranslational modifications of the cargo proteins and multiple GTPases and SNARE proteins. In some of the cells (i.e. mast cells, T killer cells) an intimate connection exists between the secretory system and the endocytic one, whereby the SGs are lysosome related organelles (LROs) also referred to as secretory lysosomes. Herein, we discuss these mechanisms in health and disease states.
Collapse
Affiliation(s)
- Anat Benado
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | |
Collapse
|
26
|
Li J, Xiao Y, Zhou W, Wu Z, Zhang R, Xu T. Silence of Synaptotagmin VII inhibits release of dense core vesicles in PC12 cells. ACTA ACUST UNITED AC 2009; 52:1156-63. [PMID: 20016973 DOI: 10.1007/s11427-009-0160-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 08/27/2009] [Indexed: 11/27/2022]
Abstract
Synaptotagmin VII (Syt VII), which has a higher Ca(2+) affinity and slower disassembly kinetics with lipid than Syt I and Syt IX, was regarded as being uninvolved in synaptic vesicle (SV) exocytosis but instead possibly as a calcium sensor for the slower kinetic phase of dense core vesicles (DCVs) release. By using high temporal resolution capacitance and amperometry measurements, it was demonstrated that the knockdown of endogenous Syt VII attenuated the fusion of DCV with the plasma membrane, reduced the amplitude of the exocytotic burst of the Ca(2+)-triggered DCV release without affecting the slope of the sustained component, and blocked the fusion pore expansion. This suggests that Syt VII is the Ca(2+) sensor of DCV fusion machinery and is an essential factor for the establishment and maintenance of the pool size of releasable DCVs in PC12 cells.
Collapse
Affiliation(s)
- JiangLi Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | |
Collapse
|
27
|
Tuvim MJ, Mospan AR, Burns KA, Chua M, Mohler PJ, Melicoff E, Adachi R, Ammar-Aouchiche Z, Davis CW, Dickey BF. Synaptotagmin 2 couples mucin granule exocytosis to Ca2+ signaling from endoplasmic reticulum. J Biol Chem 2009; 284:9781-7. [PMID: 19208631 DOI: 10.1074/jbc.m807849200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synaptotagmin 2 (Syt2) functions as a low affinity, fast exocytic Ca(2+) sensor in neurons, where it is activated by Ca(2+) influx through voltage-gated channels. Targeted insertion of lacZ into the mouse syt2 locus reveals expression in mucin-secreting goblet cells of the airways. In these cells, rapid Ca(2+) entry from the extracellular medium does not contribute significantly to stimulated secretion (Davis, C. W., and Dickey, B. F. (2008) Annu. Rev. Physiol. 70, 487-512). Nonetheless, Syt2(-/-) mice show a severe defect in acute agonist-stimulated airway mucin secretion, and Syt2(+/-) mice show a partial defect. In contrast to Munc13-2(-/-) mice (Zhu, Y., Ehre, C., Abdullah, L. H., Sheehan, J. K., Roy, M., Evans, C. M., Dickey, B. F., and Davis, C. W. (2008) J. Physiol. (Lond.) 586, 1977-1992), Syt2(-/-) mice show no spontaneous mucin accumulation, consistent with the inhibitory action of Syt2 at resting cytoplasmic Ca(2+) in neurons. In human airway goblet cells, inositol trisphosphate receptors are found in rough endoplasmic reticulum that closely invests apical mucin granules, consistent with the known dependence of exocytic Ca(2+) signaling on intracellular stores in these cells. Hence, Syt2 can serve as an exocytic sensor for diverse Ca(2+) signaling systems, and its levels are limiting for stimulated secretory function in airway goblet cells.
Collapse
Affiliation(s)
- Michael J Tuvim
- Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Zhang Z, Bhalla A, Dean C, Chapman ER, Jackson MB. Synaptotagmin IV: a multifunctional regulator of peptidergic nerve terminals. Nat Neurosci 2009; 12:163-71. [PMID: 19136969 PMCID: PMC2710815 DOI: 10.1038/nn.2252] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Accepted: 12/02/2008] [Indexed: 12/31/2022]
Abstract
Many members of the synaptotagmin (Syt) protein family bind Ca(2+) and trigger exocytosis, but some Syt proteins appear to have no Ca(2+)-dependent actions and their biological functions remain obscure. Syt IV is an activity-induced brain protein with no known Ca(2+)-dependent interactions and its subcellular localization and biological functions have sparked considerable controversy. We found Syt IV on both micro- and dense-core vesicles in posterior pituitary nerve terminals in mice. In terminals from Syt IV knockout mice compared with those from wild types, low Ca(2+) entry triggered more exocytosis, high Ca(2+) entry triggered less exocytosis and endocytosis was accelerated. In Syt IV knockouts, dense-core and microvesicle fusion was enhanced in cell-attached patches and dense-core vesicle fusion pores had conductances that were half as large as those in wild types. Given the neuroendocrine functions of the posterior pituitary, changes in Syt IV levels could be involved in endocrine transitions involving alterations in the release of the neuropeptides oxytocin and vasopressin.
Collapse
Affiliation(s)
- Zhenjie Zhang
- Department of Physiology, University of Wisconsin School of Medicine and Public Health, 1300 University Avenue, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
29
|
Lynch KL, Gerona RRL, Kielar DM, Martens S, McMahon HT, Martin TFJ. Synaptotagmin-1 utilizes membrane bending and SNARE binding to drive fusion pore expansion. Mol Biol Cell 2008; 19:5093-103. [PMID: 18799625 DOI: 10.1091/mbc.e08-03-0235] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In regulated vesicle exocytosis, SNARE protein complexes drive membrane fusion to connect the vesicle lumen with the extracellular space. The triggering of fusion pore formation by Ca(2+) is mediated by specific isoforms of synaptotagmin (Syt), which employ both SNARE complex and membrane binding. Ca(2+) also promotes fusion pore expansion and Syts have been implicated in this process but the mechanisms involved are unclear. We determined the role of Ca(2+)-dependent Syt-effector interactions in fusion pore expansion by expressing Syt-1 mutants selectively altered in Ca(2+)-dependent SNARE binding or in Ca(2+)-dependent membrane insertion in PC12 cells that lack vesicle Syts. The release of different-sized fluorescent peptide-EGFP vesicle cargo or the vesicle capture of different-sized external fluorescent probes was used to assess the extent of fusion pore dilation. We found that PC12 cells expressing partial loss-of-function Syt-1 mutants impaired in Ca(2+)-dependent SNARE binding exhibited reduced fusion pore opening probabilities and reduced fusion pore expansion. Cells with gain-of-function Syt-1 mutants for Ca(2+)-dependent membrane insertion exhibited normal fusion pore opening probabilities but the fusion pores dilated extensively. The results indicate that Syt-1 uses both Ca(2+)-dependent membrane insertion and SNARE binding to drive fusion pore expansion.
Collapse
Affiliation(s)
- Kara L Lynch
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
Neurotransmitter release at synapses involves a highly specialized form of membrane fusion that is triggered by Ca(2+) ions and is optimized for speed. These observations were established decades ago, but only recently have the molecular mechanisms that underlie this process begun to come into view. Here, we summarize findings obtained from genetically modified neurons and neuroendocrine cells, as well as from reconstituted systems, which are beginning to reveal the molecular mechanism by which Ca(2+)-acting on the synaptic vesicle (SV) protein synaptotagmin I (syt)-triggers rapid exocytosis. This work sheds light not only on presynaptic aspects of synaptic transmission, but also on the fundamental problem of membrane fusion, which has remained a puzzle that has yet to be solved in any biological system.
Collapse
Affiliation(s)
- Edwin R Chapman
- Howard Hughes Medical Institute and Department of Physiology, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
31
|
Kanno E, Fukuda M. Increased plasma membrane localization of O-glycosylation-deficient mutant of synaptotagmin I in PC12 cells. J Neurosci Res 2008; 86:1036-43. [PMID: 18058942 DOI: 10.1002/jnr.21568] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Synaptotagmin I (Syt I) is a Ca2+-binding protein on synaptic vesicles and presumably functions as a Ca2+ sensor for neurotransmitter release. Native Syt I protein in neuroendocrine PC12 cells undergoes several posttranslational modifications, such as O-glycosylation, N-glycosylation, and fatty acylation, and the latter two modifications have been shown to be required for the proper function of murine Syt I in PC12 cells. However, nothing is known about the physiological significance of the O-glycosylation of Syt I in dense-core vesicle exocytosis in PC12 cells. In this study, we created an O-glycosylation-deficient mutant (named TA = T15A/T16A) and an N-glycosylation-deficient mutant of Syt I (named T26A) and investigated their subcellular distribution in Syt I-deficient PC12 cells, where other Syt isoforms (e.g., IV and IX) and other membrane trafficking proteins (e.g., Rab27A, SNAP-25, syntaxin-1, and VAMP-2) are normally expressed. We found that some cells expressing high level of recombinant wild-type (WT) Syt I protein show mistargeting of Syt I(WT) protein to the plasma membrane, whereas most of the cells show normal dense-core vesicle localization of Syt I(WT) protein. Similar mistargeting was also observed in cells expressing high levels of the Syt I(T26A) and Syt I(TA) mutants, but the mistargeting of the Syt I(TA) mutant to the plasma membrane was much more evident than with the Syt I(WT) or (T26A) mutant. The results indicate that O-glycosylation, not N-glycosylation, is partially involved in efficient targeting of Syt I protein to dense-core vesicles in PC12 cells.
Collapse
Affiliation(s)
- Eiko Kanno
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi, Japan
| | | |
Collapse
|
32
|
Searl TJ, Silinsky EM. Mechanisms of neuromodulation as dissected using Sr2+ at motor nerve endings. J Neurophysiol 2008; 99:2779-88. [PMID: 18385484 DOI: 10.1152/jn.90258.2008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The use of binomial analysis as a tool for determining the sites of action of neuromodulators may be complicated by the nonuniformity of release probability. One of the potential sources for nonuniformity of release probability is the presence of multiple forms of synaptotagmins, the Ca2+ sensors responsible for triggering vesicular exocytosis. In this study we have used Sr2+, an ion whose actions may be restricted to a subpopulation of synaptotagmins, in an attempt to obtain meaningful estimates of the binomial parameters p (the probability of evoked acetylcholine [Ach] release) and n (the immediate available store of ACh quanta, whereby m = np). In contrast to results in Ca2+ solutions, binomial analysis of Sr2+-dependent release reveals a dramatically reduced dependence of n on extracellular Sr2+ concentrations. In Sr2+ solutions, blockade of potassium channels with 3,4-diaminopyridine increased m by an exclusive increase in p, whereas treatment with phorbol ester increased m solely by effects on n. The cyclic adenosine monophosphate (cAMP) analogue CPT-cAMP increased m by increasing both n and p. The effect of CPT-cAMP on p but not on n was blocked by protein kinase A (PKA) inhibitors, whereas the effect on n was mimicked by 8-CPT-2'-O-Me-cAMP, a selective agonist for exchange protein directly activated by cAMP, otherwise known as the cAMP-sensitive guanine nucleotide-exchange protein. The results demonstrate both the utility of the binomial distribution in Sr2+ solutions and the dual effects of cyclic AMP on both PKA-dependent and PKA-independent processes at the amphibian neuromuscular junction.
Collapse
Affiliation(s)
- Timothy J Searl
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, Chicago, IL 60611, USA.
| | | |
Collapse
|
33
|
Roden WH, Papke JB, Moore JM, Cahill AL, Macarthur H, Harkins AB. Stable RNA interference of synaptotagmin I in PC12 cells results in differential regulation of transmitter release. Am J Physiol Cell Physiol 2007; 293:C1742-52. [PMID: 17913838 DOI: 10.1152/ajpcell.00482.2006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In sympathetic neurons, it is well-established that the neurotransmitters, norepinephrine (NE), neuropeptide Y (NPY), and ATP are differentially coreleased from the same neurons. In this study, we determined whether synaptotagmin (syt) I, the primary Ca(2+) sensor for regulated release, could function as the protein that differentially regulates release of these neurotransmitters. Plasmid-based RNA interference was used to specifically and stably silence expression of syt I in a model secretory cell line. Whereas stimulated release of NPY and purines was abolished, stimulated catecholamine (CA) release was only reduced by approximately 50%. Although expression levels of tyrosine hydroxylase, the rate-limiting enzyme in the dopamine synthesis pathway, was unaffected, expression of the vesicular monoamine transporter 1 was reduced by 50%. To evaluate whether NPY and CAs are found within the same vesicles and whether syt I is found localized to each of these NPY- and CA-containing vesicles, we used immunocytochemistry to determine that syt I colocalized with large dense core vesicles, with NPY, and with CAs. Furthermore, both CAs and NPY colocalized with one another and with large dense core vesicles. Electron micrographs show that large dense core vesicles are synthesized and available for release in cells that lack syt I. These results are consistent with syt I regulating differential release of transmitters.
Collapse
Affiliation(s)
- William H Roden
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St Louis, MO 63104, USA
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
We have investigated whether Ca(2+)-binding proteins, which have been implicated in the control of neurons and neuroendocrine secretion, play a role in controlling mast cell function. These studies have identified synaptotagmins (Syts) II, III, and IX as well as neuronal Ca(2+) sensor 1 (NCS-1) as important regulators of mast cell function. Strikingly, we find that these Ca(2+)-binding proteins contribute to mast cell function by regulating specific endocytic pathways. Syt II, the most abundant Syt homologue in mast cells, resides in an amine-free lysosomal compartment. Studying the function of Syt II-knocked down rat basophilic leukemia cells has shown a dual function of this homologue. Syt II is required for the downregulation of protein kinase Calpha, but it negatively regulates lysosomal exocytosis. Syt III, the next most abundant homologue, localizes to early endosomes and is required for the formation of the endocytic recycling compartment (ERC). Syt IX and NCS-1 localize to the ERC and regulate ERC export, NCS-1 by activating phosphatidylinositol 4-kinase beta. Finally, we show that recycling through the ERC is needed for secretory granule protein sorting as well as for the activation of the mitogen-activated protein kinases, extracellular signal-regulated kinase 1 and 2. Accordingly, NCS-1 stimulates Fc epsilon RI-triggered exocytosis and release of arachidonic acid metabolites.
Collapse
Affiliation(s)
- Ronit Sagi-Eisenberg
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
35
|
Xu J, Mashimo T, Südhof TC. Synaptotagmin-1, -2, and -9: Ca2+ Sensors for Fast Release that Specify Distinct Presynaptic Properties in Subsets of Neurons. Neuron 2007; 54:567-81. [PMID: 17521570 DOI: 10.1016/j.neuron.2007.05.004] [Citation(s) in RCA: 254] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 04/05/2007] [Accepted: 05/07/2007] [Indexed: 10/23/2022]
Abstract
Synaptotagmin-1 and -2 are known Ca(2+) sensors for fast synchronous neurotransmitter release, but the potential Ca(2+)-sensor functions of other synaptotagmins in release remain uncharacterized. We now show that besides synaptotagmin-1 and -2, only synaptotagmin-9 (also called synaptotagmin-5) mediates fast Ca(2+) triggering of release. Release induced by the three different synaptotagmin Ca(2+) sensors exhibits distinct kinetics and apparent Ca(2+) sensitivities, suggesting that the synaptotagmin isoform expressed by a neuron determines the release properties of its synapses. Conditional knockout mice producing GFP-tagged synaptotagmin-9 revealed that synaptotagmin-9 is primarily expressed in the limbic system and striatum. Acute deletion of synaptotagmin-9 in striatal neurons severely impaired fast synchronous release without changing the size of the readily-releasable vesicle pool. These data show that in mammalian brain, only synaptotagmin-1, -2, and -9 function as Ca(2+) sensors for fast release, and that these synaptotagmins are differentially expressed to confer distinct release properties onto synapses formed by defined subsets of neurons.
Collapse
Affiliation(s)
- Jun Xu
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas TX 75390, USA
| | | | | |
Collapse
|
36
|
Tsuboi T, Fukuda M. Synaptotagmin VII modulates the kinetics of dense-core vesicle exocytosis in PC12 cells. Genes Cells 2007; 12:511-9. [PMID: 17397398 DOI: 10.1111/j.1365-2443.2007.01070.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In our previous study, we showed that PC12 cell lines stably expressing synaptotagmin (Syt) VII have greater ability to release hormones Ca(2+)-dependently than the original PC12 cells. However, the precise molecular mechanism of the enhancement of hormone secretion by Syt VII has never been elucidated. In this study, we established a PC12 cell line that stably expresses Syt VII-green fluorescent protein (Syt VII-GFP) or its Ca(2+)-binding-site-deficient mutant (D172N/D303N substitutions; Syt VII-DN-GFP), and examined the effect of Syt VII-GFP expression on the kinetics of dense-core vesicle exocytosis by total internal reflection fluorescence (TIRF) microscopy. Both Syt VII-GFP and Syt VII-DN-GFP co-localized well with dense-core vesicle markers, monomeric red fluorescent protein (mRFP)-tagged neuropeptide Y (NPY-mRFP) and cyan fluorescent protein (CFP)-tagged tissue plasminogen activator (tPA-CFP). Expression of Syt VII-GFP enhanced the number of dense-core vesicle exocytotic events, whereas expression of Syt VII-DN-GFP or knockdown of Syt VII-GFP with specific small interfering RNA (siRNA) attenuated the number of exocytotic events. Monitoring individual tPA-CFP release events revealed that "full release" events are increased in Syt VII-GFP-expressing cells, but not in Syt VII-DN-GFP-expressing or Syt VII-silenced cells. Our data indicate that Syt VII modulates the kinetics of Ca(2+)-dependent dense-core vesicle exocytosis in neuroendocrine PC12 cells, possibly by modulating fusion pore opening.
Collapse
Affiliation(s)
- Takashi Tsuboi
- Fukuda Initiative Research Unit, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | |
Collapse
|
37
|
Lynch KL, Martin TFJ. Synaptotagmins I and IX function redundantly in regulated exocytosis but not endocytosis in PC12 cells. J Cell Sci 2007; 120:617-27. [PMID: 17264148 DOI: 10.1242/jcs.03375] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Synaptotagmin I is considered to be a Ca2+ sensor for fast vesicle exocytosis. Because Ca2+-dependent vesicle exocytosis persists in synaptotagmin I mutants, there must be additional Ca2+ sensors. Multiple synaptotagmin isoforms co-reside on vesicles, which suggests that other isoforms complement synaptotagmin I function. We found that full downregulation of synaptotagmins I and IX, which co-reside on vesicles in PC12 cells, completely abolished Ca2+-dependent vesicle exocytosis. By contrast, Ca2+-dependent exocytosis persisted in cells expressing only synaptotagmin I or only synaptotagmin IX, which indicated a redundancy in function for these isoforms. Although either isoform was sufficient to confer Ca2+ regulation on vesicle exocytosis, synaptotagmins I and IX conferred faster and slower release rates, respectively, indicating that individual isoforms impart distinct kinetic properties to vesicle exocytosis. The downregulation of synaptotagmin I but not synaptotagmin IX impaired compensatory vesicle endocytosis, which revealed a lack of isoform redundancy and functional specialization of synaptotagmin I for endocytic retrieval.
Collapse
Affiliation(s)
- Kara L Lynch
- Department of Biochemistry, 433 Babcock Drive, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
38
|
Monterrat C, Grise F, Benassy MN, Hémar A, Lang J. The calcium-sensing protein synaptotagmin 7 is expressed on different endosomal compartments in endocrine, neuroendocrine cells or neurons but not on large dense core vesicles. Histochem Cell Biol 2007; 127:625-32. [PMID: 17277932 DOI: 10.1007/s00418-007-0271-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2007] [Indexed: 11/24/2022]
Abstract
Synaptotagmin (syt) isoforms function as calcium sensor in post-Golgi transport although the precise transport step and compartment(s) concerned are still not fully resolved. As syt7 has been proposed to operate in lysosomal exocytosis and in exocytosis of large dense core vesicles (LDCVs), we have addressed the distribution of endogenous syt7 in insulin-secreting cells. These cells express different syt7 isoforms comparable to neurons. According to subcellular fractionation and quantitative confocal immunocytochemistry, syt7 is not found on LDCVs or on synaptic-like microvesicles but colocalizes with Rab7 on endosomes and to structures near to or at the plasma membrane. Similarly, endogenous syt7 was absent from LDCVs in pheochromocytoma PC12 cells. In contrast, syt7 localised to lysosomes in both, PC12 cells and hippocampal neurons. In conclusion, endogenous syt7 shows a wider distribution than previously reported but does not qualify as vesicular calcium sensor in SLMV or LDCV exocytosis according to its localisation.
Collapse
Affiliation(s)
- Carole Monterrat
- Institut Européen de Chimie et Biologie, Université de Bordeaux 1, JE 2390, 33607, Pessac/Bordeaux, France
| | | | | | | | | |
Collapse
|
39
|
Mattiangeli V, Ryan AW, McManus R, Bradley DG. A genome-wide approach to identify genetic loci with a signature of natural selection in the Irish population. Genome Biol 2006; 7:R74. [PMID: 16904005 PMCID: PMC1779589 DOI: 10.1186/gb-2006-7-8-r74] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Revised: 05/26/2006] [Accepted: 08/11/2006] [Indexed: 11/24/2022] Open
Abstract
A single population test applied in a genomic context reveals evidence of selection on three biologically interesting genes in the Irish population. Background In this study we present a single population test (Ewens-Waterson) applied in a genomic context to investigate the presence of recent positive selection in the Irish population. The Irish population is an interesting focus for the investigation of recent selection since several lines of evidence suggest that it may have a relatively undisturbed genetic heritage. Results We first identified outlier single nucleotide polymorphisms (SNPs), from previously published genome-wide data, with high FST branch specification in a European-American population. Eight of these were chosen for further analysis. Evidence for selective history was assessed using the Ewens-Watterson's statistic calculated using Irish genotypes of microsatellites flanking the eight outlier SNPs. Evidence suggestive of selection was detected in three of these by comparison with a population-specific genome-wide empirical distribution of the Ewens-Watterson's statistic. Conclusion The cystic fibrosis gene, a disease that has a world maximum frequency in Ireland, was among the genes showing evidence of selection. In addition to the demonstrated utility in detecting a signature of natural selection, this approach has the particular advantage of speed. It also illustrates concordance between results drawn from alternative methods implemented in different populations.
Collapse
Affiliation(s)
- Valeria Mattiangeli
- Smurfit Institute of Genetics, Trinity College, Dublin 2, Ireland
- Department of Clinical Medicine, Trinity Centre for Health Science; Institute of Molecular Medicine, Dublin Molecular Medicine Centre, St James's Hospital, Dublin, Ireland
| | - Anthony W Ryan
- Department of Clinical Medicine, Trinity Centre for Health Science; Institute of Molecular Medicine, Dublin Molecular Medicine Centre, St James's Hospital, Dublin, Ireland
- Trinity College, Dublin, Ireland
| | - Ross McManus
- Department of Clinical Medicine, Trinity Centre for Health Science; Institute of Molecular Medicine, Dublin Molecular Medicine Centre, St James's Hospital, Dublin, Ireland
- Trinity College, Dublin, Ireland
| | - Daniel G Bradley
- Smurfit Institute of Genetics, Trinity College, Dublin 2, Ireland
| |
Collapse
|
40
|
Apodaca G. Synaptotagmins: mediators of Ca2+-regulated vesicle fusion. Focus on “Stable gene silencing of synaptotagmin I in rat PC12 cells inhibits Ca2+-evoked release of catecholamine”. Am J Physiol Cell Physiol 2006; 291:C234-6. [PMID: 16738005 DOI: 10.1152/ajpcell.00129.2006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Nagy G, Kim JH, Pang ZP, Matti U, Rettig J, Südhof TC, Sørensen JB. Different effects on fast exocytosis induced by synaptotagmin 1 and 2 isoforms and abundance but not by phosphorylation. J Neurosci 2006; 26:632-43. [PMID: 16407561 PMCID: PMC6674391 DOI: 10.1523/jneurosci.2589-05.2006] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synaptotagmins comprise a large protein family, of which synaptotagmin 1 (Syt1) is a Ca2+ sensor for fast exocytosis, and its close relative, synaptotagmin 2 (Syt2), is assumed to serve similar functions. Chromaffin cells express Syt1 but not Syt2. We compared secretion from chromaffin cells from Syt1 null mice overexpressing either Syt isoform. High time-resolution capacitance measurement showed that Syt1 null cells lack the exocytotic phase corresponding to the readily-releasable pool (RRP) of vesicles. Comparison with the amperometric signal confirmed that the missing phase of exocytosis consists of catecholamine-containing vesicles. Overexpression of Syt1 rescued the RRP and increased its size above wild-type values, whereas the size of the slowly releasable pool decreased, indicating that the availability of Syt1 regulates the relative size of the two releasable pools. The RRP was also rescued by Syt2 overexpression, but the kinetics of fusion was slightly slower than in cells expressing Syt1. Biochemical experiments showed that Syt2 has a slightly lower Ca2+ affinity for phospholipid binding than Syt1 because of a difference in the C2A domain. These data constitute evidence for the function of Syt1 and Syt2 as alternative, but not identical, calcium-sensors for RRP fusion. By overexpression of Syt1 mutated in the shared PKC/calcium/calmodulin-dependent kinase phosphorylation site, we show that phorbol esters act independently and upstream of Syt1 to regulate the size of the releasable pools. We conclude that exocytosis from mouse chromaffin cells can be modified by the differential expression of Syt isoforms and by Syt abundance but not by phosphorylation of Syt1.
Collapse
Affiliation(s)
- Gábor Nagy
- Max-Planck-Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
42
|
Moore JM, Papke JB, Cahill AL, Harkins AB. Stable gene silencing of synaptotagmin I in rat PC12 cells inhibits Ca2+-evoked release of catecholamine. Am J Physiol Cell Physiol 2006; 291:C270-81. [PMID: 16467400 DOI: 10.1152/ajpcell.00539.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Synaptotagmin (syt) I is a Ca2+-binding protein that is well accepted as a major sensor for Ca2+-regulated release of transmitter. However, controversy remains as to whether syt I is the only protein that can function in this role and whether the remaining syt family members also function as Ca2+ sensors. In this study, we generated a PC12 cell line that continuously expresses a short hairpin RNA (shRNA) to silence expression of syt I by RNA interference. Immunoblot and immunocytochemistry experiments demonstrate that expression of syt I was specifically silenced in cells that stably integrate the shRNA-syt I compared with control cells stably transfected with the empty shRNA vector. The other predominantly expressed syt isoform, syt IX, was not affected, nor was the expression of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins when syt I levels were knocked down. Resting Ca2+ and stimulated Ca2+ influx imaged with fura-2 were not altered in syt I knockdown cells. However, evoked release of catecholamine detected by carbon fiber amperometry and HPLC was significantly reduced, although not abolished. Human syt I rescued the release events in the syt I knockdown cells. The reduction of stimulated catecholamine release in the syt I knockdown cells strongly suggests that although syt I is clearly involved in catecholamine release, it is not the only protein to regulate stimulated release in PC12 cells, and another protein likely has a role as a Ca2+ sensor for regulated release of transmitter.
Collapse
Affiliation(s)
- Johnnie M Moore
- Dept. of Pharmacological and Physiological Science, St. Louis Univ. School of Medicine, 1402 S. Grand Blvd., St. Louis, MO 63104, USA
| | | | | | | |
Collapse
|
43
|
Abstract
Synaptotagmin IX has been postulated to function as a major Ca2+ sensor for dense-core vesicle exocytosis in neuroendocrine cells. In this study, we investigated the subcellular localization and developmental expression profile of synaptotagmin IX in the mouse brain and found that it is mainly present in the dense-core vesicle fraction, which is devoid of synaptotagmin I and synaptophysin. We also found that the synaptotagmin IX expression level is constant throughout the postnatal development of the mouse brain, whereas the synaptotagmins I, II, III, VI, and XII are upregulated in parallel with synaptogenesis. These findings suggest that synaptotagmin IX regulates the transport of certain vesicles in the brain other than synaptic vesicles.
Collapse
Affiliation(s)
- Mitsunori Fukuda
- Fukuda Initiative Research Unit, RIKEN (The Institute of Physical and Chemical Research), Wako, Saitama, Japan.
| |
Collapse
|
44
|
Monterrat C, Boal F, Grise F, Hémar A, Lang J. Synaptotagmin 8 is expressed both as a calcium-insensitive soluble and membrane protein in neurons, neuroendocrine and endocrine cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:73-81. [PMID: 16386321 DOI: 10.1016/j.bbamcr.2005.11.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2005] [Revised: 11/12/2005] [Accepted: 11/14/2005] [Indexed: 11/23/2022]
Abstract
Synaptotagmins (syt) form a large family of transmembrane proteins and some of its isoforms are known to regulate calcium-induced membrane fusion during vesicular traffic. In view of the reported implication of the isoform syt8 in exocytosis we investigated the expression, localisation and calcium-sensitivity of syt8 in secretory cells. An immunopurified antipeptide antibody was generated which is directed against a C-terminal sequence and devoid of crossreactivity towards syt1 to 12. Subcellular fractionation and immunocytochemistry revealed two forms of synaptotagmin 8 (50 and 40 kDa). Whereas the 40-kDa was present in the cytosol in brain, in PC12 and in clonal beta-cells, the 50-kDa form was localised in very typical clusters and partially colocalised with the SNARE protein Vti1a. Moreover, in primary hippocampal neurons syt8 was only found within the soma. Amplification of syt8 by RT-PCR indicated that the observed protein variants were not generated by alternative splicing of the 6th exon and are most likely linked to variations in the N-terminal region. In contrast to the established calcium sensor syt2, endogenous cytosolic syt8 and transiently expressed syt8-C2AB-eGFP did not translocate upon a raise in cytosolic calcium in living cells. Syt8 is therefore not a calcium sensor in exocytotic membrane fusion in endocrine cells.
Collapse
Affiliation(s)
- Carole Monterrat
- Institut Européen de Chimie et Biologie, Pôle Biologie Cellulaire et Moléculaire, JE 2390, 33607 Pessac/Bordeaux, France
| | | | | | | | | |
Collapse
|
45
|
Wang P, Chicka MC, Bhalla A, Richards DA, Chapman ER. Synaptotagmin VII is targeted to secretory organelles in PC12 cells, where it functions as a high-affinity calcium sensor. Mol Cell Biol 2005; 25:8693-702. [PMID: 16166648 PMCID: PMC1265757 DOI: 10.1128/mcb.25.19.8693-8702.2005] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Synaptotagmin (syt) I is thought to act as a Ca2+ sensor that regulates neuronal exocytosis. Fifteen additional isoforms of syt have been identified, but their functions are less well understood. Here, we used PC12 cells to test the idea that different isoforms of syt impart cells with distinct metal (i.e., Ca2+, Ba2+, and Sr2+) requirements for secretion. These cells express syt's I and IX (syt IX sometimes referred to as syt V), which have low apparent metal affinities, at much higher levels than syt VII, which we show has a relatively high apparent affinity for metals. We found that syt I and VII partially colocalize on large dense core vesicles and that upregulation of syt VII produces a concomitant increase in the divalent cation sensitivity of catecholamine release from PC12 cells. Furthermore, RNA interference-mediated knockdown of endogenous syt VII reduced the metal sensitivity of release. These data support the hypothesis that the complement of syt's expressed by a cell, in conjunction with their metal affinity, determines the divalent cation sensitivity of exocytosis.
Collapse
Affiliation(s)
- Ping Wang
- Department of Physiology, University of Wisconsin, 1300 University Ave., SMI 129, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
46
|
Iezzi M, Eliasson L, Fukuda M, Wollheim CB. Adenovirus-mediated silencing of Synaptotagmin 9 inhibits Ca2+-dependent insulin secretion in islets. FEBS Lett 2005; 579:5241-6. [PMID: 16165130 DOI: 10.1016/j.febslet.2005.08.047] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 08/18/2005] [Accepted: 08/21/2005] [Indexed: 11/22/2022]
Abstract
Synaptotagmins (Syts) are involved in Ca(2+)-dependent insulin release. However, which Syt isoform is functional in primary beta-cells remains unknown. We demonstrate by electron microscopy of pancreatic islets, the association of Syt 9 with insulin granules. Silencing of Syt 9 by RNA interference adenovirus in islet cells had no effect on the expression of Syt 5, Syt 7 and Syt 3 isoforms. The latter was localized at the plasma membrane of pancreatic polypeptide cells. Insulin release in response to glucose or tolbutamide was strongly inhibited in Syt 9 deficient islets, whereas exocytosis potentiated by raising cAMP levels, was unaltered. Thus, Syt 9 may act as Ca(2+) sensor for beta-cell secretion.
Collapse
Affiliation(s)
- Mariella Iezzi
- Department of Cell Physiology and Metabolism, University Medical Center, 1211 Geneva 4, Switzerland
| | | | | | | |
Collapse
|
47
|
Bhalla A, Tucker WC, Chapman ER. Synaptotagmin isoforms couple distinct ranges of Ca2+, Ba2+, and Sr2+ concentration to SNARE-mediated membrane fusion. Mol Biol Cell 2005; 16:4755-64. [PMID: 16093350 PMCID: PMC1237081 DOI: 10.1091/mbc.e05-04-0277] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Ca2+-triggered exocytosis of synaptic vesicles is controlled by the Ca2+-binding protein synaptotagmin (syt) I. Fifteen additional isoforms of syt have been identified. Here, we compared the abilities of three syt isoforms (I, VII, and IX) to regulate soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-mediated membrane fusion in vitro in response to divalent cations. We found that different isoforms of syt couple distinct ranges of Ca2+, Ba2+, and Sr2+ to membrane fusion; syt VII was approximately 400-fold more sensitive to Ca2+ than was syt I. Omission of phosphatidylserine (PS) from both populations of liposomes completely abrogated the ability of all three isoforms of syt to stimulate fusion. Mutations that selectively inhibit syt.target-SNARE (t-SNARE) interactions reduced syt stimulation of fusion. Using Sr2+ and Ba2+, we found that binding of syt to PS and t-SNAREs can be dissociated from activation of fusion, uncovering posteffector-binding functions for syt. Our data demonstrate that different syt isoforms are specialized to sense different ranges of divalent cations and that PS is an essential effector of Ca2+.syt action.
Collapse
Affiliation(s)
- Akhil Bhalla
- Department of Physiology, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
48
|
Atiya-Nasagi Y, Cohen H, Medalia O, Fukudan M, Sagi-Eisenberg R. O-glycosylation is essential for intracellular targeting of synaptotagmins I and II in non-neuronal specialized secretory cells. J Cell Sci 2005; 118:1363-72. [PMID: 15755799 DOI: 10.1242/jcs.01710] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have examined the trafficking of synaptotagmin (Syt) I and II in the mast cell line rat basophilic leukemia (RBL-2H3). We demonstrate that both Syt I and Syt II travel through the plasma membrane and require endocytosis to reach their final intracellular localization. However, N- or C-terminal tagging of Syt II, but not of Syt I, prevents its internalization, trapping the tagged protein at the plasma membrane. Furthermore, a chimeric protein comprising a tagged luminal domain of Syt II fused with the remaining domains of Syt I also localizes to the plasma membrane, whereas a chimera consisting of tagged luminal domain of Syt I fused with Syt II colocalizes with Syt I on secretory granules. We also show that endocytosis of both Syt I and Syt II is strictly dependent on O-glycosylation processing, whereby O-glycosylation mutants of either protein fail to internalize and remain at the plasma membrane. Our results indicate that the luminal domains of Syt I and Syt II govern their internalization capacity from the plasma membrane and identify O-glycosylation as playing a crucial role in Syt trafficking in non-neuronal secretory cells.
Collapse
Affiliation(s)
- Yafit Atiya-Nasagi
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | |
Collapse
|
49
|
Haberman Y, Ziv I, Gorzalczany Y, Fukuda M, Sagi-Eisenberg R. Classical protein kinase C(s) regulates targeting of synaptotagmin IX to the endocytic recycling compartment. J Cell Sci 2005; 118:1641-9. [PMID: 15784685 DOI: 10.1242/jcs.02276] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neuronal and non-neuronal tissues show distinctly different intracellular localization of synaptotagmin (Syt) homologues. Therefore, cell type-specific mechanisms are likely to direct Syt homologues to their final cellular destinations. Syt IX localizes to dense core vesicles in PC12 cells. However, in the rat basophilic leukemia (RBL-2H3) mast cell line, as well as in CHO cells, Syt IX is localized at the endocytic recycling compartment (ERC). We show that targeting of Syt IX to the ERC involves constitutive trafficking to the plasma membrane followed by internalization and transport to the ERC. We further show that internalization from the plasma membrane and delivery to the ERC are dependent on phosphorylation by Ca(2+)-dependent protein kinase Calpha or beta. As such, correct targeting of Syt IX is facilitated by the phorbol ester TPA but prevented by the cPKC inhibitor Go 6976.
Collapse
Affiliation(s)
- Yael Haberman
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | |
Collapse
|
50
|
Fukuda M, Kanno E. Analysis of the role of Rab27 effector Slp4-a/Granuphilin-a in dense-core vesicle exocytosis. Methods Enzymol 2005; 403:445-57. [PMID: 16473610 DOI: 10.1016/s0076-6879(05)03039-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Slp4-a/granuphilin-a is a member of the synaptotagmin-like protein (Slp) family and consists of an N-terminal Slp homology domain (SHD) and C-terminal tandem C2 domains. Slp4-a is specifically localized on secretory granules in some endocrine and exocrine cells through its SHD, and it attenuates Ca(2+)-dependent dense-core vesicle (DCV) exocytosis when transiently expressed in endocrine cells. Although the SHD of Slp4-a interacts with three distinct Rab species (Rab3A, Rab8A, and Rab27A) in vitro, in contrast to other Slp members, which only recognize Rab27 isoforms, Slp4-a functions as a Rab27A effector during DCV exocytosis under physiological conditions. This chapter describes various approaches that have been used to characterize the function of Slp4-a as a Rab27A effector, rather than a Rab3A or Rab8A effector, both in in vitro and in neuroendocrine PC12 cells. Specifically, the methods that have been used to analyze (1) the physical interaction between Slp4-a and Rab27A, including pull-down assay and cotransfection assay in COS-7 cells; (2) the localization of Slp4-a-Rab27A complex on DCVs in PC12 cells; and (3) the involvement of Slp4-a and Rab27A in DCV exocytosis by neuropeptide Y (NPY) cotransfection assay combined with site-directed mutagenesis are described.
Collapse
|