1
|
Kochetov AV. Evaluation of Eukaryotic mRNA Coding Potential. Methods Mol Biol 2025; 2859:319-331. [PMID: 39436610 DOI: 10.1007/978-1-0716-4152-1_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
It is widely discussed that eukaryotic mRNAs can encode several functional polypeptides. Recent progress in NGS and proteomics techniques has resulted in a huge volume of information on potential alternative translation initiation sites and open reading frames (altORFs). However, these data are still incomprehensive, and the vast majority of eukaryotic mRNAs annotated in conventional databases (e.g., GenBank) contain a single ORF (CDS) encoding a protein larger than some arbitrary threshold (commonly 100 amino acid residues). Indeed, some gene functions may relate to the polypeptides encoded by unannotated altORFs, and insufficient information in nucleotide sequence databanks may limit the interpretation of genomics and transcriptomics data. However, despite the need for special experiments to predict altORFs accurately, there are some simple methods for their preliminary mapping.
Collapse
Affiliation(s)
- Alex V Kochetov
- Institute of Cytology and Genetics, SB RAS, Novosibirsk, Russia.
- Novosibirsk State Agrarian University, Novosibirsk, Russia.
- Novosibirsk State University, Novosibirsk, Russia.
| |
Collapse
|
2
|
Pai VJ, Lau CJ, Garcia-Ruiz A, Donaldson C, Vaughan JM, Miller B, De Souza EV, Pinto AM, Diedrich J, Gavva NR, Yu S, DeBoever C, Horman SR, Saghatelian A. Microprotein-encoding RNA regulation in cells treated with pro-inflammatory and pro-fibrotic stimuli. BMC Genomics 2024; 25:1034. [PMID: 39497054 PMCID: PMC11536906 DOI: 10.1186/s12864-024-10948-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/24/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Recent analysis of the human proteome via proteogenomics and ribosome profiling of the transcriptome revealed the existence of thousands of previously unannotated microprotein-coding small open reading frames (smORFs). Most functional microproteins were chosen for characterization because of their evolutionary conservation. However, one example of a non-conserved immunomodulatory microprotein in mice suggests that strict sequence conservation misses some intriguing microproteins. RESULTS We examine the ability of gene regulation to identify human microproteins with potential roles in inflammation or fibrosis of the intestine. To do this, we collected ribosome profiling data of intestinal cell lines and peripheral blood mononuclear cells and used gene expression of microprotein-encoding transcripts to identify strongly regulated microproteins, including several examples of microproteins that are only conserved with primates. CONCLUSION This approach reveals a number of new microproteins worthy of additional functional characterization and provides a dataset that can be queried in different ways to find additional gut microproteins of interest.
Collapse
Affiliation(s)
- Victor J Pai
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| | - Calvin J Lau
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Almudena Garcia-Ruiz
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Cynthia Donaldson
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Joan M Vaughan
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Brendan Miller
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Eduardo V De Souza
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Antonio M Pinto
- Mass Spectrometry Core, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Jolene Diedrich
- Mass Spectrometry Core, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Narender R Gavva
- Takeda Development Center Americas, Inc, San Diego, CA, 92121, USA
| | - Shan Yu
- Takeda Development Center Americas, Inc, San Diego, CA, 92121, USA
| | | | - Shane R Horman
- Takeda Development Center Americas, Inc, San Diego, CA, 92121, USA.
| | - Alan Saghatelian
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
3
|
Vasylieva V, Arefiev I, Bourassa F, Trifiro FA, Brunet MA. Proteomics Can Rise to the Challenge of Pseudogenes' Coding Nature. J Proteome Res 2024. [PMID: 39486438 DOI: 10.1021/acs.jproteome.4c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Throughout the past decade, technological advances in genomics and transcriptomics have revealed pervasive translation throughout mammalian genomes. These putative proteins are usually excluded from proteomics analyses, as they are absent from common protein repositories. A sizable portion of these noncanonical proteins is translated from pseudogenes. Pseudogenes are commonly termed defective copies of coding genes unable to produce proteins. Here, we suggest that proteomics can help in their annotation. First, we define important terms and review specific examples underlining the caveats in pseudogene annotation and their coding potential. Then, we will discuss the challenges inherent to pseudogenes that have thus far rendered complex their confidence in omics data. Finally, we identify recent developments in experimental procedures, instrumentation, and computational methods in proteomics that put the field in a unique position to solve the pseudogene annotation conundrum.
Collapse
Affiliation(s)
- Valeriia Vasylieva
- Pediatrics Department, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
- Centre de Recherche du Centre hospitalier de l'université de Sherbrooke (CRCHUS), Sherbrooke, Québec J1E 4K8, Canada
| | - Ihor Arefiev
- Pediatrics Department, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
- Centre de Recherche du Centre hospitalier de l'université de Sherbrooke (CRCHUS), Sherbrooke, Québec J1E 4K8, Canada
| | - Francis Bourassa
- Pediatrics Department, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
- Centre de Recherche du Centre hospitalier de l'université de Sherbrooke (CRCHUS), Sherbrooke, Québec J1E 4K8, Canada
| | - Félix-Antoine Trifiro
- Pediatrics Department, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
- Centre de Recherche du Centre hospitalier de l'université de Sherbrooke (CRCHUS), Sherbrooke, Québec J1E 4K8, Canada
| | - Marie A Brunet
- Pediatrics Department, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
- Centre de Recherche du Centre hospitalier de l'université de Sherbrooke (CRCHUS), Sherbrooke, Québec J1E 4K8, Canada
| |
Collapse
|
4
|
Hofman DA, Prensner JR, van Heesch S. Microproteins in cancer: identification, biological functions, and clinical implications. Trends Genet 2024:S0168-9525(24)00211-7. [PMID: 39379206 DOI: 10.1016/j.tig.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/19/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
Cancer continues to be a major global health challenge, accounting for 10 million deaths annually worldwide. Since the inception of genome-wide cancer sequencing studies 20 years ago, a core set of ~700 oncogenes and tumor suppressor genes has become the basis for cancer research. However, this research has been based largely on an understanding that the human genome encodes ~19 500 protein-coding genes. Complementing this genomic landscape, recent advances have described numerous microproteins which are now poised to redefine our understanding of oncogenic processes and open new avenues for therapeutic intervention. This review explores the emerging evidence for microprotein involvement in cancer mechanisms and discusses potential therapeutic applications, with an emphasis on highlighting recent advances in the field.
Collapse
Affiliation(s)
- Damon A Hofman
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584, CS, Utrecht, The Netherlands; Oncode Institute, Utrecht, The Netherlands
| | - John R Prensner
- Department of Pediatrics, Division of Pediatric Hematology/Oncology and Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Sebastiaan van Heesch
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584, CS, Utrecht, The Netherlands; Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|
5
|
Tzani I, Castro-Rivadeneyra M, Kelly P, Strasser L, Zhang L, Clynes M, Karger BL, Barron N, Bones J, Clarke C. Detection of host cell microprotein impurities in antibody drug products. Nat Commun 2024; 15:8605. [PMID: 39366928 PMCID: PMC11452709 DOI: 10.1038/s41467-024-51870-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/21/2024] [Indexed: 10/06/2024] Open
Abstract
Chinese hamster ovary (CHO) cells are used to produce almost 90% of therapeutic monoclonal antibodies (mAbs) and antibody fusion proteins (Fc-fusion). The annotation of non-canonical translation events in these cellular factories remains incomplete, limiting our ability to study CHO cell biology and detect host cell protein (HCP) impurities in the final antibody drug product. We utilised ribosome footprint profiling (Ribo-seq) to identify novel open reading frames (ORFs) including N-terminal extensions and thousands of short ORFs (sORFs) predicted to encode microproteins. Mass spectrometry-based HCP analysis of eight commercial antibody drug products (7 mAbs and 1 Fc-fusion protein) using the extended protein sequence database revealed the presence of microprotein impurities. We present evidence that microprotein abundance varies with growth phase and can be affected by the cell culture environment. In addition, our work provides a vital resource to facilitate future studies of non-canonical translation and the regulation of protein synthesis in CHO cell lines.
Collapse
Affiliation(s)
- Ioanna Tzani
- National Institute for Bioprocessing Research and Training, Fosters Avenue, Blackrock, Co, Dublin, Ireland
| | - Marina Castro-Rivadeneyra
- National Institute for Bioprocessing Research and Training, Fosters Avenue, Blackrock, Co, Dublin, Ireland
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin, Ireland
| | - Paul Kelly
- National Institute for Bioprocessing Research and Training, Fosters Avenue, Blackrock, Co, Dublin, Ireland
| | - Lisa Strasser
- National Institute for Bioprocessing Research and Training, Fosters Avenue, Blackrock, Co, Dublin, Ireland
| | - Lin Zhang
- Bioprocess R&D, Pfizer Inc. Andover, Massachusetts, USA
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Barry L Karger
- Barnett Institute, Northeastern University, 360 Huntington Ave, Boston, MA, USA
| | - Niall Barron
- National Institute for Bioprocessing Research and Training, Fosters Avenue, Blackrock, Co, Dublin, Ireland
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin, Ireland
| | - Jonathan Bones
- National Institute for Bioprocessing Research and Training, Fosters Avenue, Blackrock, Co, Dublin, Ireland
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin, Ireland
| | - Colin Clarke
- National Institute for Bioprocessing Research and Training, Fosters Avenue, Blackrock, Co, Dublin, Ireland.
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin, Ireland.
| |
Collapse
|
6
|
Garcia-Del Rio DF, Derhourhi M, Bonnefond A, Leblanc S, Guilloy N, Roucou X, Eyckerman S, Gevaert K, Salzet M, Cardon T. Deciphering the ghost proteome in ovarian cancer cells by deep proteogenomic characterization. Cell Death Dis 2024; 15:712. [PMID: 39349928 PMCID: PMC11442847 DOI: 10.1038/s41419-024-07046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024]
Abstract
Proteogenomics is becoming a powerful tool in personalized medicine by linking genomics, transcriptomics and mass spectrometry (MS)-based proteomics. Due to increasing evidence of alternative open reading frame-encoded proteins (AltProts), proteogenomics has a high potential to unravel the characteristics, variants, expression levels of the alternative proteome, in addition to already annotated proteins (RefProts). To obtain a broader view of the proteome of ovarian cancer cells compared to ovarian epithelial cells, cell-specific total RNA-sequencing profiles and customized protein databases were generated. In total, 128 RefProts and 30 AltProts were identified exclusively in SKOV-3 and PEO-4 cells. Among them, an AltProt variant of IP_715944, translated from DHX8, was found mutated (p.Leu44Pro). We show high variation in protein expression levels of RefProts and AltProts in different subcellular compartments. The presence of 117 RefProt and two AltProt variants was described, along with their possible implications in the different physiological/pathological characteristics. To identify the possible involvement of AltProts in cellular processes, cross-linking-MS (XL-MS) was performed in each cell line to identify AltProt-RefProt interactions. This approach revealed an interaction between POLD3 and the AltProt IP_183088, which after molecular docking, was placed between POLD3-POLD2 binding sites, highlighting its possibility of the involvement in DNA replication and repair.
Collapse
Affiliation(s)
- Diego Fernando Garcia-Del Rio
- Univ. Lille, Inserm, CHU Lille, U1192, Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000, Lille, France
- VIB Center for Medical Biotechnology, VIB, Ghent, 9052, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, 9052, Belgium
| | - Mehdi Derhourhi
- Université de Lille, Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, EGID, Lille, France University of Lille, Lille, France
| | - Amelie Bonnefond
- Université de Lille, Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, EGID, Lille, France University of Lille, Lille, France
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Sébastien Leblanc
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, J1E4K8, Canada
| | - Noé Guilloy
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, J1E4K8, Canada
| | - Xavier Roucou
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, J1E4K8, Canada
| | - Sven Eyckerman
- VIB Center for Medical Biotechnology, VIB, Ghent, 9052, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, 9052, Belgium
| | - Kris Gevaert
- VIB Center for Medical Biotechnology, VIB, Ghent, 9052, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, 9052, Belgium
| | - Michel Salzet
- Univ. Lille, Inserm, CHU Lille, U1192, Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000, Lille, France.
| | - Tristan Cardon
- Univ. Lille, Inserm, CHU Lille, U1192, Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000, Lille, France.
| |
Collapse
|
7
|
Das D, Podder S. Microscale marvels: unveiling the macroscopic significance of micropeptides in human health. Brief Funct Genomics 2024; 23:624-638. [PMID: 38706311 DOI: 10.1093/bfgp/elae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024] Open
Abstract
Non-coding RNA encodes micropeptides from small open reading frames located within the RNA. Interestingly, these micropeptides are involved in a variety of functions within the body. They are emerging as the resolving piece of the puzzle for complex biomolecular signaling pathways within the body. Recent studies highlight the pivotal role of small peptides in regulating important biological processes like DNA repair, gene expression, muscle regeneration, immune responses, etc. On the contrary, altered expression of micropeptides also plays a pivotal role in the progression of various diseases like cardiovascular diseases, neurological disorders and several types of cancer, including colorectal cancer, hepatocellular cancer, lung cancer, etc. This review delves into the dual impact of micropeptides on health and pathology, exploring their pivotal role in preserving normal physiological homeostasis and probing their involvement in the triggering and progression of diseases.
Collapse
Affiliation(s)
- Deepyaman Das
- Computational and Systems Biology Laboratory, Department of Microbiology, Raiganj University, Raiganj, Uttar Dinajpur, West Bengal-733134, India
| | - Soumita Podder
- Computational and Systems Biology Laboratory, Department of Microbiology, Raiganj University, Raiganj, Uttar Dinajpur, West Bengal-733134, India
| |
Collapse
|
8
|
Whited AM, Jungreis I, Allen J, Cleveland CL, Mudge JM, Kellis M, Rinn JL, Hough LE. Biophysical characterization of high-confidence, small human proteins. BIOPHYSICAL REPORTS 2024; 4:100167. [PMID: 38909903 PMCID: PMC11305224 DOI: 10.1016/j.bpr.2024.100167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/09/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Significant efforts have been made to characterize the biophysical properties of proteins. Small proteins have received less attention because their annotation has historically been less reliable. However, recent improvements in sequencing, proteomics, and bioinformatics techniques have led to the high-confidence annotation of small open reading frames (smORFs) that encode for functional proteins, producing smORF-encoded proteins (SEPs). SEPs have been found to perform critical functions in several species, including humans. While significant efforts have been made to annotate SEPs, less attention has been given to the biophysical properties of these proteins. We characterized the distributions of predicted and curated biophysical properties, including sequence composition, structure, localization, function, and disease association of a conservative list of previously identified human SEPs. We found significant differences between SEPs and both larger proteins and control sets. In addition, we provide an example of how our characterization of biophysical properties can contribute to distinguishing protein-coding smORFs from noncoding ones in otherwise ambiguous cases.
Collapse
Affiliation(s)
- A M Whited
- BioFrontiers Institute, University of Colorado, Boulder, Colorado
| | - Irwin Jungreis
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts; MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, Massachusetts
| | - Jeffre Allen
- BioFrontiers Institute, University of Colorado, Boulder, Colorado; Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado
| | | | - Jonathan M Mudge
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Manolis Kellis
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts; MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, Massachusetts
| | - John L Rinn
- BioFrontiers Institute, University of Colorado, Boulder, Colorado; Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado
| | - Loren E Hough
- BioFrontiers Institute, University of Colorado, Boulder, Colorado; Department of Physics, University of Colorado Boulder, Boulder, Colorado.
| |
Collapse
|
9
|
Nichols C, Do-Thi VA, Peltier DC. Noncanonical microprotein regulation of immunity. Mol Ther 2024; 32:2905-2929. [PMID: 38734902 PMCID: PMC11403233 DOI: 10.1016/j.ymthe.2024.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/19/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024] Open
Abstract
The immune system is highly regulated but, when dysregulated, suboptimal protective or overly robust immune responses can lead to immune-mediated disorders. The genetic and molecular mechanisms of immune regulation are incompletely understood, impeding the development of more precise diagnostics and therapeutics for immune-mediated disorders. Recently, thousands of previously unrecognized noncanonical microprotein genes encoded by small open reading frames have been identified. Many of these microproteins perform critical functions, often in a cell- and context-specific manner. Several microproteins are now known to regulate immunity; however, the vast majority are uncharacterized. Therefore, illuminating what is often referred to as the "dark proteome," may present opportunities to tune immune responses more precisely. Here, we review noncanonical microprotein biology, highlight recently discovered examples regulating immunity, and discuss the potential and challenges of modulating dysregulated immune responses by targeting microproteins.
Collapse
Affiliation(s)
- Cydney Nichols
- Morris Green Scholars Program, Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Van Anh Do-Thi
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Daniel C Peltier
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
10
|
Daisy Precilla S, Biswas I, Anitha TS, Agieshkumar B. Microproteins unveiling new dimensions in cancer. Funct Integr Genomics 2024; 24:152. [PMID: 39223429 DOI: 10.1007/s10142-024-01426-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
In the complex landscape of cancer biology, the discovery of microproteins has triggered a paradigm shift, thereby, challenging the conventional conceptions of gene regulation. Though overlooked for years, these entities encoded by the small open reading frames (100-150 codons), have a significant impact on various cellular processes. As precision medicine pioneers delve deeper into the genome and proteome, microproteins have come into the limelight. Typically characterized by a single protein domain that directly binds to the target protein complex and regulates their assembly, these microproteins have been shown to play a key role in fundamental biological processes such as RNA processing, DNA repair, and metabolism regulation. Techniques for identification and characterization, such as ribosome profiling and proteogenomic approaches, have unraveled unique mechanisms by which these microproteins regulate cell signaling or pathological processes in most diseases including cancer. However, the functional relevance of these microproteins in cancer remains unclear. In this context, the current review aims to "rethink the essence of these genes" and explore "how these hidden players-microproteins orchestrate the signaling cascades of cancer, both as accelerators and brakes.".
Collapse
Affiliation(s)
- S Daisy Precilla
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth, Puducherry, 607 402, India.
| | - Indrani Biswas
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth, Puducherry, 607 402, India
| | - T S Anitha
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, 605 014, India
| | - B Agieshkumar
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth, Puducherry, 607 402, India
| |
Collapse
|
11
|
Cisneros-Aguirre M, Lopezcolorado FW, Ping X, Chen R, Stark JM. Distinct functions of PAXX and MRI during chromosomal end joining. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.607864. [PMID: 39229097 PMCID: PMC11370355 DOI: 10.1101/2024.08.21.607864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
A key step of Canonical Nonhomologous End Joining (C-NHEJ) is synapsis of DNA double strand break (DSB) ends for ligation. The DNA-PKcs dimer mediates synapsis in a long-range complex with DSB ends remaining apart, whereas the XLF homodimer can mediate synapsis in both long-range and short-range complexes. Recent structural studies found the PAXX homodimer may also facilitate synapsis in long-range complexes with DNA-PKcs via its interactions with Ku70. Thus, we examined the influence of PAXX in C-NHEJ of chromosomal DSBs, which we compared to another Ku-binding factor, MRI. Using EJ of blunt DSBs with Cas9 reporters as a readout for C-NHEJ, we found that PAXX and/or MRI are dispensable. However, when combined with disruption of DNA-PKcs, particularly with DNA-PKcs kinase inhibition, PAXX becomes important for blunt DSB EJ. In contrast, while DNA-PKcs is also important to suppress short deletion mutations with microhomology, this effect is not magnified with PAXX loss. MRI loss had no effect combined with DNA-PKcs disruption, but becomes important for blunt DSB EJ when combined with disruption of XLF, as is PAXX. Finally, XLF loss causes an increase in larger deletions compared to DNA-PKcs inhibition, which is magnified with combined loss of MRI. Altogether, we suggest that PAXX promotes DSB end synapsis during C-NHEJ in a manner that is partially redundant with DNA-PKcs and XLF, whereas MRI appears to be mainly important in the context of XLF disruption.
Collapse
Affiliation(s)
- Metztli Cisneros-Aguirre
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, CA 91010 USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, CA 91010 USA
| | - Felicia Wednesday Lopezcolorado
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, CA 91010 USA
| | - Xiaoli Ping
- Department of Diabetes Complications & Metabolism, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, CA 91010 USA
| | - Ruby Chen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, CA 91010 USA
| | - Jeremy M. Stark
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, CA 91010 USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, CA 91010 USA
| |
Collapse
|
12
|
Abstract
How did specific useful protein sequences arise from simpler molecules at the origin of life? This seemingly needle-in-a-haystack problem has remarkably close resemblance to the old Protein Folding Problem, for which the solution is now known from statistical physics. Based on the logic that Origins must have come only after there was an operative evolution mechanism-which selects on phenotype, not genotype-we give a perspective that proteins and their folding processes are likely to have been the primary driver of the early stages of the origin of life.
Collapse
Affiliation(s)
- Charles D. Kocher
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY11794
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY11794
| | - Ken A. Dill
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY11794
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY11794
- Department of Chemistry, Stony Brook University, Stony Brook, NY11794
| |
Collapse
|
13
|
Perdikopanis N, Giannakakis A, Kavakiotis I, Hatzigeorgiou AG. D-sORF: Accurate Ab Initio Classification of Experimentally Detected Small Open Reading Frames (sORFs) Associated with Translational Machinery. BIOLOGY 2024; 13:563. [PMID: 39194501 DOI: 10.3390/biology13080563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
Small open reading frames (sORFs; <300 nucleotides or <100 amino acids) are widespread across all genomes, and an increasing variety of them appear to be translating from non-genic regions. Over the past few decades, peptides produced from sORFs have been identified as functional in various organisms, from bacteria to humans. Despite recent advances in next-generation sequencing and proteomics, accurate annotation and classification of sORFs remain a rate-limiting step toward reliable and high-throughput detection of small proteins from non-genic regions. Additionally, the cost of computational methods utilizing machine learning is lower than that of biological experiments, and they can be employed to detect sORFs, laying the groundwork for biological experiments. We present D-sORF, a machine-learning framework that integrates the statistical nucleotide context and motif information around the start codon to predict coding sORFs. D-sORF scores directly for coding identity and requires only the underlying genomic sequence, without incorporating parameters such as the conservation, which, in the case of sORFs, may increase the dispersion of scores within the significantly less conserved non-genic regions. D-sORF achieves 94.74% precision and 92.37% accuracy for small ORFs (using the 99 nt medium length window). When D-sORF is applied to sORFs associated with ribosomes, the identification of transcripts producing peptides (annotated by the Ensembl IDs) is similar to or superior to experimental methodologies based on ribosome-sequencing (Ribo-Seq) profiling. In parallel, the recognition of putative negative data, such as the intron-containing transcripts that associate with ribosomes, remains remarkably low, indicating that D-sORF could be efficiently applied to filter out false-positive sORFs from Ribo-Seq data because of the non-productive ribosomal binding or noise inherent in these protocols.
Collapse
Affiliation(s)
- Nikos Perdikopanis
- Department of Electrical and Computer Engineering, University of Thessaly, 38221 Volos, Greece
- Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, 15784 Athens, Greece
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 38221 Volos, Greece
| | - Antonis Giannakakis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Ioannis Kavakiotis
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 38221 Volos, Greece
| | - Artemis G Hatzigeorgiou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 38221 Volos, Greece
- Hellenic Pasteur Institute, 11521 Athens, Greece
| |
Collapse
|
14
|
Ge A, Chan C, Yang X. Exploring the Dark Matter of Human Proteome: The Emerging Role of Non-Canonical Open Reading Frame (ncORF) in Cancer Diagnosis, Biology, and Therapy. Cancers (Basel) 2024; 16:2660. [PMID: 39123386 PMCID: PMC11311765 DOI: 10.3390/cancers16152660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Cancer develops from abnormal cell growth in the body, causing significant mortalities every year. To date, potent therapeutic approaches have been developed to eradicate tumor cells, but intolerable toxicity and drug resistance can occur in treated patients, limiting the efficiency of existing treatment strategies. Therefore, searching for novel genes critical for cancer progression and therapeutic response is urgently needed for successful cancer therapy. Recent advances in bioinformatics and proteomic techniques have allowed the identification of a novel category of peptides encoded by non-canonical open reading frames (ncORFs) from historically non-coding genomic regions. Surprisingly, many ncORFs express functional microproteins that play a vital role in human cancers. In this review, we provide a comprehensive description of different ncORF types with coding capacity and technological methods in discovering ncORFs among human genomes. We also summarize the carcinogenic role of ncORFs such as pTINCR and HOXB-AS3 in regulating hallmarks of cancer, as well as the roles of ncORFs such as HOXB-AS3 and CIP2A-BP in cancer diagnosis and prognosis. We also discuss how ncORFs such as AKT-174aa and DDUP are involved in anti-cancer drug response and the underestimated potential of ncORFs as therapeutic targets.
Collapse
Affiliation(s)
| | | | - Xiaolong Yang
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada; (A.G.); (C.C.)
| |
Collapse
|
15
|
Duffy EE, Assad EG, Kalish BT, Greenberg ME. Small but mighty: the rise of microprotein biology in neuroscience. Front Mol Neurosci 2024; 17:1386219. [PMID: 38807924 PMCID: PMC11130481 DOI: 10.3389/fnmol.2024.1386219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/30/2024] [Indexed: 05/30/2024] Open
Abstract
The mammalian central nervous system coordinates a network of signaling pathways and cellular interactions, which enable a myriad of complex cognitive and physiological functions. While traditional efforts to understand the molecular basis of brain function have focused on well-characterized proteins, recent advances in high-throughput translatome profiling have revealed a staggering number of proteins translated from non-canonical open reading frames (ncORFs) such as 5' and 3' untranslated regions of annotated proteins, out-of-frame internal ORFs, and previously annotated non-coding RNAs. Of note, microproteins < 100 amino acids (AA) that are translated from such ncORFs have often been neglected due to computational and biochemical challenges. Thousands of putative microproteins have been identified in cell lines and tissues including the brain, with some serving critical biological functions. In this perspective, we highlight the recent discovery of microproteins in the brain and describe several hypotheses that have emerged concerning microprotein function in the developing and mature nervous system.
Collapse
Affiliation(s)
- Erin E. Duffy
- Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Elena G. Assad
- Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Brian T. Kalish
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Division of Neonatology, Department of Paediatrics, Hospital for Sick Children, Toronto, ON, Canada
| | | |
Collapse
|
16
|
Yang J, Zhuang H, Li J, Nunez-Nescolarde AB, Luo N, Chen H, Li A, Qu X, Wang Q, Fan J, Bai X, Ye Z, Gu B, Meng Y, Zhang X, Wu D, Sia Y, Jiang X, Chen W, Combes AN, Nikolic-Paterson DJ, Yu X. The secreted micropeptide C4orf48 enhances renal fibrosis via an RNA-binding mechanism. J Clin Invest 2024; 134:e178392. [PMID: 38625739 PMCID: PMC11093611 DOI: 10.1172/jci178392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/27/2024] [Indexed: 04/17/2024] Open
Abstract
Renal interstitial fibrosis is an important mechanism in the progression of chronic kidney disease (CKD) to end-stage kidney disease. However, we lack specific treatments to slow or halt renal fibrosis. Ribosome profiling identified upregulation of a secreted micropeptide, C4orf48 (Cf48), in mouse diabetic nephropathy. Cf48 RNA and protein levels were upregulated in tubular epithelial cells in human and experimental CKD. Serum Cf48 levels were increased in human CKD and correlated with loss of kidney function, increasing CKD stage, and the degree of active interstitial fibrosis. Cf48 overexpression in mice accelerated renal fibrosis, while Cf48 gene deletion or knockdown by antisense oligonucleotides significantly reduced renal fibrosis in CKD models. In vitro, recombinant Cf48 (rCf48) enhanced TGF-β1-induced fibrotic responses in renal fibroblasts and epithelial cells independently of Smad3 phosphorylation. Cellular uptake of Cf48 and its profibrotic response in fibroblasts operated via the transferrin receptor. RNA immunoprecipitation-sequencing identified Cf48 binding to mRNA of genes involved in the fibrotic response, including Serpine1, Acta2, Ccn2, and Col4a1. rCf48 binds to the 3'UTR of Serpine1 and increases mRNA half-life. We identify the secreted Cf48 micropeptide as a potential enhancer of renal fibrosis that operates as an RNA-binding peptide to promote the production of extracellular matrix.
Collapse
Affiliation(s)
- Jiayi Yang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Hongjie Zhuang
- Department of Paediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinhua Li
- Department of Nephrology and
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People’s Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second Clinical College, Guangdong Medical University, Dongguan, Guangdong, China
- Department of Nephrology, Monash Health and Department of Medicine and
| | - Ana B. Nunez-Nescolarde
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Ning Luo
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Huiting Chen
- The Second Clinical College, Guangdong Medical University, Dongguan, Guangdong, China
| | - Andy Li
- Department of Nephrology, Monash Health and Department of Medicine and
| | - Xinli Qu
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Qing Wang
- Department of Nephrology and
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People’s Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jinjin Fan
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Xiaoyan Bai
- Department of Nephrology and
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People’s Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhiming Ye
- Department of Nephrology and
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People’s Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Bing Gu
- Department of Clinical Laboratory, Guangdong Provincial People’s Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yue Meng
- Department of Clinical Laboratory, Guangdong Provincial People’s Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xingyuan Zhang
- Department of Biostatistics, UNC Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Di Wu
- Department of Biostatistics, UNC Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Youyang Sia
- School of Life Science, Tsinghua University, Beijing, China
| | - Xiaoyun Jiang
- Department of Paediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Alexander N. Combes
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | | | - Xueqing Yu
- Department of Nephrology and
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People’s Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
17
|
Whited AM, Jungreis I, Allen J, Cleveland CL, Mudge JM, Kellis M, Rinn JL, Hough LE. Biophysical characterization of high-confidence, small human proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.589296. [PMID: 38659920 PMCID: PMC11042228 DOI: 10.1101/2024.04.12.589296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Significant efforts have been made to characterize the biophysical properties of proteins. Small proteins have received less attention because their annotation has historically been less reliable. However, recent improvements in sequencing, proteomics, and bioinformatics techniques have led to the high-confidence annotation of small open reading frames (smORFs) that encode for functional proteins, producing smORF-encoded proteins (SEPs). SEPs have been found to perform critical functions in several species, including humans. While significant efforts have been made to annotate SEPs, less attention has been given to the biophysical properties of these proteins. We characterized the distributions of predicted and curated biophysical properties, including sequence composition, structure, localization, function, and disease association of a conservative list of previously identified human SEPs. We found significant differences between SEPs and both larger proteins and control sets. Additionally, we provide an example of how our characterization of biophysical properties can contribute to distinguishing protein-coding smORFs from non-coding ones in otherwise ambiguous cases.
Collapse
Affiliation(s)
- A M Whited
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Irwin Jungreis
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
| | - Jeffre Allen
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA
- Department of Biochemistry, University of Colorado Boulder, CO, USA
| | | | - Jonathan M Mudge
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Manolis Kellis
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
| | - John L Rinn
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA
- Department of Biochemistry, University of Colorado Boulder, CO, USA
| | - Loren E Hough
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA
- Department of Physics, University of Colorado Boulder, CO, USA
| |
Collapse
|
18
|
Kore H, Datta KK, Nagaraj SH, Gowda H. Protein-coding potential of non-canonical open reading frames in human transcriptome. Biochem Biophys Res Commun 2023; 684:149040. [PMID: 37897910 DOI: 10.1016/j.bbrc.2023.09.068] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/09/2023] [Accepted: 09/23/2023] [Indexed: 10/30/2023]
Abstract
In recent years, proteogenomics and ribosome profiling studies have identified a large number of proteins encoded by noncoding regions in the human genome. They are encoded by small open reading frames (sORFs) in the untranslated regions (UTRs) of mRNAs and long non-coding RNAs (lncRNAs). These sORF encoded proteins (SEPs) are often <150AA and show poor evolutionary conservation. A subset of them have been functionally characterized and shown to play an important role in fundamental biological processes including cardiac and muscle function, DNA repair, embryonic development and various human diseases. How many novel protein-coding regions exist in the human genome and what fraction of them are functionally important remains a mystery. In this review, we discuss current progress in unraveling SEPs, approaches used for their identification, their limitations and reliability of these identifications. We also discuss functionally characterized SEPs and their involvement in various biological processes and diseases. Lastly, we provide insights into their distinctive features compared to canonical proteins and challenges associated with annotating these in protein reference databases.
Collapse
Affiliation(s)
- Hitesh Kore
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland, 4059, Australia; Cancer Precision Medicine Group, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Queensland, 4006, Australia; Faculty of Health, Queensland University of Technology, Brisbane, Queensland, 4059, Australia.
| | - Keshava K Datta
- Proteomics and Metabolomics Platform, La Trobe University, Melbourne, VIC, 3083, Australia
| | - Shivashankar H Nagaraj
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland, 4059, Australia; Faculty of Health, Queensland University of Technology, Brisbane, Queensland, 4059, Australia
| | - Harsha Gowda
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland, 4059, Australia; Cancer Precision Medicine Group, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Queensland, 4006, Australia; Faculty of Health, Queensland University of Technology, Brisbane, Queensland, 4059, Australia; Faculty of Medicine, The University of Queensland, Queensland, 4072, Australia.
| |
Collapse
|
19
|
Mohsen JJ, Martel AA, Slavoff SA. Microproteins-Discovery, structure, and function. Proteomics 2023; 23:e2100211. [PMID: 37603371 PMCID: PMC10841188 DOI: 10.1002/pmic.202100211] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023]
Abstract
Advances in proteogenomic technologies have revealed hundreds to thousands of translated small open reading frames (sORFs) that encode microproteins in genomes across evolutionary space. While many microproteins have now been shown to play critical roles in biology and human disease, a majority of recently identified microproteins have little or no experimental evidence regarding their functionality. Computational tools have some limitations for analysis of short, poorly conserved microprotein sequences, so additional approaches are needed to determine the role of each member of this recently discovered polypeptide class. A currently underexplored avenue in the study of microproteins is structure prediction and determination, which delivers a depth of functional information. In this review, we provide a brief overview of microprotein discovery methods, then examine examples of microprotein structures (and, conversely, intrinsic disorder) that have been experimentally determined using crystallography, cryo-electron microscopy, and NMR, which provide insight into their molecular functions and mechanisms. Additionally, we discuss examples of predicted microprotein structures that have provided insight or context regarding their function. Analysis of microprotein structure at the angstrom level, and confirmation of predicted structures, therefore, has potential to identify translated microproteins that are of biological importance and to provide molecular mechanism for their in vivo roles.
Collapse
Affiliation(s)
- Jessica J. Mohsen
- Department of Chemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA
| | - Alina A. Martel
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA
| | - Sarah A. Slavoff
- Department of Chemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| |
Collapse
|
20
|
Xie L, Bowman ME, Louie GV, Zhang C, Ardejani MS, Huang X, Chu Q, Donaldson CJ, Vaughan JM, Shan H, Powers ET, Kelly JW, Lyumkis D, Noel JP, Saghatelian A. Biochemistry and Protein Interactions of the CYREN Microprotein. Biochemistry 2023; 62:3050-3060. [PMID: 37813856 DOI: 10.1021/acs.biochem.3c00397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Over the past decade, advances in genomics have identified thousands of additional protein-coding small open reading frames (smORFs) missed by traditional gene finding approaches. These smORFs encode peptides and small proteins, commonly termed micropeptides or microproteins. Several of these newly discovered microproteins have biological functions and operate through interactions with proteins and protein complexes within the cell. CYREN1 is a characterized microprotein that regulates double-strand break repair in mammalian cells through interaction with Ku70/80 heterodimer. Ku70/80 binds to and stabilizes double-strand breaks and recruits the machinery needed for nonhomologous end join repair. In this study, we examined the biochemical properties of CYREN1 to better understand and explain its cellular protein interactions. Our findings support that CYREN1 is an intrinsically disordered microprotein and this disordered structure allows it to enriches several proteins, including a newly discovered interaction with SF3B1 via a distinct short linear motif (SLiMs) on CYREN1. Since many microproteins are predicted to be disordered, CYREN1 is an exemplar of how microproteins interact with other proteins and reveals an unknown scaffolding function of this microprotein that may link NHEJ and splicing.
Collapse
Affiliation(s)
- Lina Xie
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Marianne E Bowman
- Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Gordon V Louie
- Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Cheng Zhang
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Maziar S Ardejani
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Xuemei Huang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92037, United States
| | - Qian Chu
- Department of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Cynthia J Donaldson
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Joan M Vaughan
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Huanqi Shan
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Evan T Powers
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jeffery W Kelly
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Dimitry Lyumkis
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Joseph P Noel
- Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Alan Saghatelian
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
21
|
Sherlock ME, Baquero Galvis L, Vicens Q, Kieft JS, Jagannathan S. Principles, mechanisms, and biological implications of translation termination-reinitiation. RNA (NEW YORK, N.Y.) 2023; 29:865-884. [PMID: 37024263 PMCID: PMC10275272 DOI: 10.1261/rna.079375.122] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/28/2023] [Indexed: 06/11/2023]
Abstract
The gene expression pathway from DNA sequence to functional protein is not as straightforward as simple depictions of the central dogma might suggest. Each step is highly regulated, with complex and only partially understood molecular mechanisms at play. Translation is one step where the "one gene-one protein" paradigm breaks down, as often a single mature eukaryotic mRNA leads to more than one protein product. One way this occurs is through translation reinitiation, in which a ribosome starts making protein from one initiation site, translates until it terminates at a stop codon, but then escapes normal recycling steps and subsequently reinitiates at a different downstream site. This process is now recognized as both important and widespread, but we are only beginning to understand the interplay of factors involved in termination, recycling, and initiation that cause reinitiation events. There appear to be several ways to subvert recycling to achieve productive reinitiation, different types of stresses or signals that trigger this process, and the mechanism may depend in part on where the event occurs in the body of an mRNA. This perspective reviews the unique characteristics and mechanisms of reinitiation events, highlights the similarities and differences between three major scenarios of reinitiation, and raises outstanding questions that are promising avenues for future research.
Collapse
Affiliation(s)
- Madeline E Sherlock
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Laura Baquero Galvis
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Quentin Vicens
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Sujatha Jagannathan
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| |
Collapse
|
22
|
Chen Y, Cao X, Loh KH, Slavoff SA. Chemical labeling and proteomics for characterization of unannotated small and alternative open reading frame-encoded polypeptides. Biochem Soc Trans 2023; 51:1071-1082. [PMID: 37171061 PMCID: PMC10317152 DOI: 10.1042/bst20221074] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/27/2023] [Accepted: 04/13/2023] [Indexed: 05/13/2023]
Abstract
Thousands of unannotated small and alternative open reading frames (smORFs and alt-ORFs, respectively) have recently been revealed in mammalian genomes. While hundreds of mammalian smORF- and alt-ORF-encoded proteins (SEPs and alt-proteins, respectively) affect cell proliferation, the overwhelming majority of smORFs and alt-ORFs remain uncharacterized at the molecular level. Complicating the task of identifying the biological roles of smORFs and alt-ORFs, the SEPs and alt-proteins that they encode exhibit limited sequence homology to protein domains of known function. Experimental techniques for the functionalization of these gene classes are therefore required. Approaches combining chemical labeling and quantitative proteomics have greatly advanced our ability to identify and characterize functional SEPs and alt-proteins in high throughput. In this review, we briefly describe the principles of proteomic discovery of SEPs and alt-proteins, then summarize how these technologies interface with chemical labeling for identification of SEPs and alt-proteins with specific properties, as well as in defining the interactome of SEPs and alt-proteins.
Collapse
Affiliation(s)
- Yanran Chen
- Department of Chemistry, Yale University, New Haven, CT, U.S.A
- Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT, U.S.A
| | - Xiongwen Cao
- Department of Chemistry, Yale University, New Haven, CT, U.S.A
- Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT, U.S.A
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, U.S.A
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Ken H. Loh
- Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT, U.S.A
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, U.S.A
| | - Sarah A. Slavoff
- Department of Chemistry, Yale University, New Haven, CT, U.S.A
- Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT, U.S.A
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, U.S.A
| |
Collapse
|
23
|
Hassel KR, Brito-Estrada O, Makarewich CA. Microproteins: Overlooked regulators of physiology and disease. iScience 2023; 26:106781. [PMID: 37213226 PMCID: PMC10199267 DOI: 10.1016/j.isci.2023.106781] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023] Open
Abstract
Ongoing efforts to generate a complete and accurate annotation of the genome have revealed a significant blind spot for small proteins (<100 amino acids) originating from short open reading frames (sORFs). The recent discovery of numerous sORF-encoded proteins, termed microproteins, that play diverse roles in critical cellular processes has ignited the field of microprotein biology. Large-scale efforts are currently underway to identify sORF-encoded microproteins in diverse cell-types and tissues and specialized methods and tools have been developed to aid in their discovery, validation, and functional characterization. Microproteins that have been identified thus far play important roles in fundamental processes including ion transport, oxidative phosphorylation, and stress signaling. In this review, we discuss the optimized tools available for microprotein discovery and validation, summarize the biological functions of numerous microproteins, outline the promise for developing microproteins as therapeutic targets, and look forward to the future of the field of microprotein biology.
Collapse
Affiliation(s)
- Keira R. Hassel
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Omar Brito-Estrada
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Catherine A. Makarewich
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
24
|
Inchingolo MA, Diman A, Adamczewski M, Humphreys T, Jaquier-Gubler P, Curran JA. TP53BP1, a dual-coding gene, uses promoter switching and translational reinitiation to express a smORF protein. iScience 2023; 26:106757. [PMID: 37216125 PMCID: PMC10193022 DOI: 10.1016/j.isci.2023.106757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 03/07/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
The complexity of the metazoan proteome is significantly increased by the expression of small proteins (<100 aa) derived from smORFs within lncRNAs, uORFs, 3' UTRs and, reading frames overlapping the CDS. These smORF encoded proteins (SEPs) have diverse roles, ranging from the regulation of cellular physiological to essential developmental functions. We report the characterization of a new member of this protein family, SEP53BP1, derived from a small internal ORF that overlaps the CDS encoding 53BP1. Its expression is coupled to the utilization of an alternative, cell-type specific promoter coupled to translational reinitiation events mediated by a uORF in the alternative 5' TL of the mRNA. This uORF-mediated reinitiation at an internal ORF is also observed in zebrafish. Interactome studies indicate that the human SEP53BP1 associates with components of the protein turnover pathway including the proteasome, and the TRiC/CCT chaperonin complex, suggesting that it may play a role in cellular proteostasis.
Collapse
Affiliation(s)
- Marta A. Inchingolo
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Aurélie Diman
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Maxime Adamczewski
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Faculté de Médecine et Pharmacie, Université Grenoble Alpes, Grenoble, France
| | - Tom Humphreys
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Pascale Jaquier-Gubler
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Joseph A. Curran
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| |
Collapse
|
25
|
Yang J, Liu M, Fang X, Zhang H, Ren Q, Zheng Y, Wang Y, Zhou Y. Advances in peptides encoded by non-coding RNAs: A cargo in exosome. Front Oncol 2022; 12:1081997. [PMID: 36620552 PMCID: PMC9822543 DOI: 10.3389/fonc.2022.1081997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
The metastasis of malignant tumors determines patient prognosis. This is the main reason for the poor prognosis of patients with cancer and the most challenging aspect of treating malignant tumors. Therefore, it is important to identify early tumor markers and molecules that can predict patient prognosis. However, there are currently no molecular markers with good clinical accuracy and specificity. Many non-coding RNA (ncRNAs)have been identified, which can regulate the process of tumor development at multiple levels. Interestingly, some ncRNAs are translated to produce functional peptides. Exosomes act as signal carriers, are encapsulated in nucleic acids and proteins, and play a messenger role in cell-to-cell communication. Recent studies have identified exosome peptides with potential diagnostic roles. This review aims to provide a theoretical basis for ncRNA-encoded peptides or proteins transported by exosomes and ultimately to provide ideas for further development of new diagnostic and prognostic cancer markers.
Collapse
Affiliation(s)
- Jing Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China,Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Mengxiao Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China,Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xidong Fang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China,Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Huiyun Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China,Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Qian Ren
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Ya Zheng
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yuping Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China,*Correspondence: Yongning Zhou, ; Yuping Wang,
| | - Yongning Zhou
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China,*Correspondence: Yongning Zhou, ; Yuping Wang,
| |
Collapse
|
26
|
Treichel AJ, Bazzini AA. Casting CRISPR-Cas13d to fish for microprotein functions in animal development. iScience 2022; 25:105547. [PMID: 36444300 PMCID: PMC9700322 DOI: 10.1016/j.isci.2022.105547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Protein coding genes were originally identified with sequence-based definitions that included a 100-codon cutoff to avoid annotating irrelevant open reading frames. However, many active proteins contain less than 100 amino acids. Indeed, functional genetics, ribosome profiling, and proteomic profiling have identified many short, translated open reading frames, including those with biologically active peptide products (microproteins). Yet, functions for most of these peptide products remain unknown. Because microproteins often act as key signals or fine-tune processes, animal development has already revealed functions for a handful of microproteins and provides an ideal context to uncover additional microprotein functions. However, many mRNAs during early development are maternally provided and hinder targeted mutagenesis approaches to characterize developmental microprotein functions. The recently established, RNA-targeting CRISPR-Cas13d system in zebrafish overcomes this barrier and produces potent knockdown of targeted mRNA, including maternally provided mRNA, and enables flexible, efficient interrogation of microprotein functions in animal development.
Collapse
Affiliation(s)
| | - Ariel Alejandro Bazzini
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
27
|
Ventroux M, Noirot-Gros MF. Prophage-encoded small protein YqaH counteracts the activities of the replication initiator DnaA in Bacillus subtilis. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36748575 DOI: 10.1099/mic.0.001268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Bacterial genomes harbour cryptic prophages that are mostly transcriptionally silent with many unannotated genes. Still, cryptic prophages may contribute to their host fitness and phenotypes. In Bacillus subtilis, the yqaF-yqaN operon belongs to the prophage element skin, and is tightly repressed by the Xre-like repressor SknR. This operon contains several small ORFs (smORFs) potentially encoding small-sized proteins. The smORF-encoded peptide YqaH was previously reported to bind to the replication initiator DnaA. Here, using a yeast two-hybrid assay, we found that YqaH binds to the DNA binding domain IV of DnaA and interacts with Spo0A, a master regulator of sporulation. We isolated single amino acid substitutions in YqaH that abolished the interaction with DnaA but not with Spo0A. Then, using a plasmid-based inducible system to overexpress yqaH WT and mutant derivatives, we studied in B. subtilis the phenotypes associated with the specific loss-of-interaction with DnaA (DnaA_LOI). We found that expression of yqaH carrying DnaA_LOI mutations abolished the deleterious effects of yqaH WT expression on chromosome segregation, replication initiation and DnaA-regulated transcription. When YqaH was induced after vegetative growth, DnaA_LOI mutations abolished the drastic effects of YqaH WT on sporulation and biofilm formation. Thus, YqaH inhibits replication, sporulation and biofilm formation mainly by antagonizing DnaA in a manner that is independent of the cell cycle checkpoint Sda.
Collapse
Affiliation(s)
- Magali Ventroux
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | | |
Collapse
|
28
|
Tan HW, Xu YM, Liang ZL, Cai NL, Wu YY, Lau ATY. Single-gene knockout-coupled omics analysis identifies C9orf85 and CXorf38 as two uncharacterized human proteins associated with ZIP8 malfunction. Front Mol Biosci 2022; 9:991308. [PMID: 36330220 PMCID: PMC9623088 DOI: 10.3389/fmolb.2022.991308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/13/2022] [Indexed: 02/05/2023] Open
Abstract
Human transmembrane protein metal cation symporter ZIP8 (SLC39A8) is a member of the solute carrier gene family responsible for intracellular transportation of essential micronutrients, including manganese, selenium, and zinc. Previously, we established a ZIP8-knockout (KO) human cell model using the CRISPR/Cas9 system and explored how the expression of ZIP8 could possibly contribute to a wide range of human diseases. To further assess the biophysiological role of ZIP8, in the current study, we employed isobaric tags for relative and absolute quantitation (iTRAQ) and detected the changes of the proteome in ZIP8-KO cells (proteomic data are available via ProteomeXchange with identifier PXD036680). A total of 286 differentially expressed proteins (206 downregulated and 80 upregulated proteins) were detected in the ZIP8-KO cell model, and subsequent bioinformatics analyses (GO, KEGG, KOG, and PPI) were performed on these proteins. Interestingly, four "uncharacterized" proteins (proteins with unknown biological function) were identified in the differentially expressed proteins: C1orf198, C9orf85, C17orf75, and CXorf38-all of which were under-expressed in the ZIP8-KO cells. Notably, C9orf85 and CXorf38 were amongst the top-10 most downregulated proteins, and their expressions could be selectively induced by essential micronutrients. Furthermore, clinical-based bioinformatic analysis indicated that positive correlations between the gene expressions of ZIP8 and C9orf85 or CXorf38 were observed in multiple cancer types. Overall, this study reveals the proteomic landscape of cells with impaired ZIP8 and uncovers the potential relationships between essential micronutrients and uncharacterized proteins C9orf85 and CXorf38. The differentially expressed proteins identified in ZIP8-KO cells could be the potential targets for diagnosing and/or treating human ZIP8-associated diseases, including but not limited to malnutrition, viral infection, and cancers.
Collapse
Affiliation(s)
- Heng Wee Tan
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, China
| | | | | | | | | | - Andy T. Y. Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
29
|
Probing the sORF-Encoded Peptides of Deinococcus radiodurans in Response to Extreme Stress. Mol Cell Proteomics 2022; 21:100423. [PMID: 36210010 PMCID: PMC9650054 DOI: 10.1016/j.mcpro.2022.100423] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/09/2022] Open
Abstract
Organisms have developed different mechanisms to respond to stresses. However, the roles of small ORF-encoded peptides (SEPs) in these regulatory systems remain elusive, which is partially because of the lack of comprehensive knowledge regarding these biomolecules. We chose the extremophile Deinococcus radiodurans R1 as a model species and conducted large-scale profiling of the SEPs related to the stress response. The integrated workflow consisting of multiple omics approaches for SEP identification was streamlined, and an SEPome of D. radiodurans containing 109 novel and high-confidence SEPs was drafted. Forty-four percent of these SEPs were predicted to function as antimicrobial peptides. Quantitative peptidomics analysis indicated that the expression of SEP068184 was upregulated upon oxidative treatment and gamma irradiation of the bacteria. SEP068184 was conserved in Deinococcus and exhibited negative regulation of oxidative stress resistance in a comparative phenotypic assay of its mutants. Further quantitative and interactive proteomics analyses suggested that SEP068184 might function through metabolic pathways and interact with cytoplasmic proteins. Collectively, our findings demonstrate that SEPs are involved in the regulation of oxidative resistance, and the SEPome dataset provides a rich resource for research on the molecular mechanisms of the response to extreme stress in organisms.
Collapse
|
30
|
Duffy EE, Finander B, Choi G, Carter AC, Pritisanac I, Alam A, Luria V, Karger A, Phu W, Sherman MA, Assad EG, Pajarillo N, Khitun A, Crouch EE, Ganesh S, Chen J, Berger B, Sestan N, O'Donnell-Luria A, Huang EJ, Griffith EC, Forman-Kay JD, Moses AM, Kalish BT, Greenberg ME. Developmental dynamics of RNA translation in the human brain. Nat Neurosci 2022; 25:1353-1365. [PMID: 36171426 PMCID: PMC10198132 DOI: 10.1038/s41593-022-01164-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 08/12/2022] [Indexed: 01/27/2023]
Abstract
The precise regulation of gene expression is fundamental to neurodevelopment, plasticity and cognitive function. Although several studies have profiled transcription in the developing human brain, there is a gap in understanding of accompanying translational regulation. In this study, we performed ribosome profiling on 73 human prenatal and adult cortex samples. We characterized the translational regulation of annotated open reading frames (ORFs) and identified thousands of previously unknown translation events, including small ORFs that give rise to human-specific and/or brain-specific microproteins, many of which we independently verified using proteomics. Ribosome profiling in stem-cell-derived human neuronal cultures corroborated these findings and revealed that several neuronal activity-induced non-coding RNAs encode previously undescribed microproteins. Physicochemical analysis of brain microproteins identified a class of proteins that contain arginine-glycine-glycine (RGG) repeats and, thus, may be regulators of RNA metabolism. This resource expands the known translational landscape of the human brain and illuminates previously unknown brain-specific protein products.
Collapse
Affiliation(s)
- Erin E Duffy
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| | | | - GiHun Choi
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Ava C Carter
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Iva Pritisanac
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Aqsa Alam
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Victor Luria
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Department of Pediatrics, Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Amir Karger
- IT-Research Computing, Harvard Medical School, Boston, MA, USA
| | - William Phu
- Department of Pediatrics, Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Maxwell A Sherman
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Elena G Assad
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Naomi Pajarillo
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Alexandra Khitun
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Elizabeth E Crouch
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Sanika Ganesh
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Jin Chen
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, UT Southwestern Medical Center, Dallas, TX, USA
| | - Bonnie Berger
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Anne O'Donnell-Luria
- Department of Pediatrics, Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Eric J Huang
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Pathology Service 113B, San Francisco Veterans Affairs Healthcare System, San Francisco, CA, USA
| | - Eric C Griffith
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Julie D Forman-Kay
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Alan M Moses
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Brian T Kalish
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
- Department of Paediatrics, Division of Neonatology, Hospital for Sick Children, Toronto, ON, Canada.
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, ON, Canada.
| | | |
Collapse
|
31
|
Chothani SP, Adami E, Widjaja AA, Langley SR, Viswanathan S, Pua CJ, Zhihao NT, Harmston N, D'Agostino G, Whiffin N, Mao W, Ouyang JF, Lim WW, Lim S, Lee CQE, Grubman A, Chen J, Kovalik JP, Tryggvason K, Polo JM, Ho L, Cook SA, Rackham OJL, Schafer S. A high-resolution map of human RNA translation. Mol Cell 2022; 82:2885-2899.e8. [PMID: 35841888 DOI: 10.1016/j.molcel.2022.06.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 03/10/2022] [Accepted: 06/15/2022] [Indexed: 10/17/2022]
Abstract
Translated small open reading frames (smORFs) can have important regulatory roles and encode microproteins, yet their genome-wide identification has been challenging. We determined the ribosome locations across six primary human cell types and five tissues and detected 7,767 smORFs with translational profiles matching those of known proteins. The human genome was found to contain highly cell-type- and tissue-specific smORFs and a subset that encodes highly conserved amino acid sequences. Changes in the translational efficiency of upstream-encoded smORFs (uORFs) and the corresponding main ORFs predominantly occur in the same direction. Integration with 456 mass-spectrometry datasets confirms the presence of 603 small peptides at the protein level in humans and provides insights into the subcellular localization of these small proteins. This study provides a comprehensive atlas of high-confidence translated smORFs derived from primary human cells and tissues in order to provide a more complete understanding of the translated human genome.
Collapse
Affiliation(s)
- Sonia P Chothani
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore 169857, Singapore
| | - Eleonora Adami
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore 169857, Singapore; Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Anissa A Widjaja
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore 169857, Singapore
| | - Sarah R Langley
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, Singapore 308232, Singapore
| | - Sivakumar Viswanathan
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore 169857, Singapore
| | - Chee Jian Pua
- National Heart Research Institute Singapore (NHRIS), National Heart Centre Singapore, Singapore 169609, Singapore
| | - Nevin Tham Zhihao
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, Singapore 308232, Singapore
| | - Nathan Harmston
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore; Science Division, Yale-NUS College, Singapore 138527, Singapore
| | - Giuseppe D'Agostino
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, Singapore 308232, Singapore
| | - Nicola Whiffin
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Wang Mao
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore 169857, Singapore
| | - John F Ouyang
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore 169857, Singapore
| | - Wei Wen Lim
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore 169857, Singapore; National Heart Research Institute Singapore (NHRIS), National Heart Centre Singapore, Singapore 169609, Singapore
| | - Shiqi Lim
- National Heart Research Institute Singapore (NHRIS), National Heart Centre Singapore, Singapore 169609, Singapore
| | - Cheryl Q E Lee
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore 169857, Singapore
| | - Alexandra Grubman
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Wellington Road, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Joseph Chen
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Wellington Road, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - J P Kovalik
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore 169857, Singapore
| | - Karl Tryggvason
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore 169857, Singapore
| | - Jose M Polo
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Wellington Road, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Lena Ho
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore 169857, Singapore
| | - Stuart A Cook
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore 169857, Singapore; National Heart Research Institute Singapore (NHRIS), National Heart Centre Singapore, Singapore 169609, Singapore; London Institute of Medical Sciences, London W12 ONN, UK
| | - Owen J L Rackham
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore 169857, Singapore; School of Biological Sciences, University of Southampton, Southampton, UK.
| | - Sebastian Schafer
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore 169857, Singapore; National Heart Research Institute Singapore (NHRIS), National Heart Centre Singapore, Singapore 169609, Singapore.
| |
Collapse
|
32
|
TRPC5OS induces tumorigenesis by increasing ENO1-mediated glucose uptake in breast cancer. Transl Oncol 2022; 22:101447. [PMID: 35584604 PMCID: PMC9119839 DOI: 10.1016/j.tranon.2022.101447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/17/2022] [Accepted: 05/06/2022] [Indexed: 12/24/2022] Open
|
33
|
Abstract
In eukaryotic organisms, noncoding RNAs (ncRNAs) have been implicated as important regulators of multifaceted biological processes, including transcriptional, posttranscriptional, and epigenetic regulation of gene expression. In recent years, it is becoming clear that protozoan parasites encode diverse ncRNA transcripts; however, little is known about their cellular functions. Recent advances in high-throughput “omic” studies identified many novel long ncRNAs (lncRNAs) in apicomplexan parasites, some of which undergo splicing, polyadenylation, and encode small proteins. To date, only a few of them are characterized, leaving a big gap in our understanding regarding their origin, mode of action, and functions in parasite biology. In this review, we focus on lncRNAs of the human malaria parasite Plasmodium falciparum and highlight their cellular functions and possible mechanisms of action.
Collapse
Affiliation(s)
- Karina Simantov
- Department of Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Manish Goyal
- Department of Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ron Dzikowski
- Department of Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
34
|
Bogaert A, Fijalkowska D, Staes A, Van de Steene T, Demol H, Gevaert K. Limited evidence for protein products of non-coding transcripts in the HEK293T cellular cytosol. Mol Cell Proteomics 2022; 21:100264. [PMID: 35788065 PMCID: PMC9396073 DOI: 10.1016/j.mcpro.2022.100264] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/22/2022] [Accepted: 06/30/2022] [Indexed: 10/25/2022] Open
Abstract
Ribosome profiling has revealed translation outside of canonical coding sequences (CDSs) including translation of short upstream ORFs, long non-coding RNAs, overlapping ORFs, ORFs in UTRs or ORFs in alternative reading frames. Studies combining mass spectrometry, ribosome profiling and CRISPR-based screens showed that hundreds of ORFs derived from non-coding transcripts produce (micro)proteins, while other studies failed to find evidence for such types of non-canonical translation products. Here, we attempted to discover translation products from non-coding regions by strongly reducing the complexity of the sample prior to mass spectrometric analysis. We used an extended database as the search space and applied stringent filtering of the identified peptides to find evidence for novel translation events. We show that, theoretically our strategy facilitates the detection of translation events of transcripts from non-coding regions, but experimentally only find 19 peptides that might originate from such translation events. Finally, Virotrap based interactome analysis of two N-terminal proteoforms originating from non-coding regions finally showed the functional potential of these novel proteins.
Collapse
Affiliation(s)
- Annelies Bogaert
- VIB Center for Medical Biotechnology, VIB, Ghent, 9052, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, 9052, Belgium
| | - Daria Fijalkowska
- VIB Center for Medical Biotechnology, VIB, Ghent, 9052, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, 9052, Belgium
| | - An Staes
- VIB Center for Medical Biotechnology, VIB, Ghent, 9052, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, 9052, Belgium
| | - Tessa Van de Steene
- VIB Center for Medical Biotechnology, VIB, Ghent, 9052, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, 9052, Belgium
| | - Hans Demol
- VIB Center for Medical Biotechnology, VIB, Ghent, 9052, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, 9052, Belgium
| | - Kris Gevaert
- VIB Center for Medical Biotechnology, VIB, Ghent, 9052, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, 9052, Belgium.
| |
Collapse
|
35
|
Liu Y, Zeng S, Wu M. Novel insights into noncanonical open reading frames in cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188755. [PMID: 35777601 DOI: 10.1016/j.bbcan.2022.188755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/11/2022] [Accepted: 06/23/2022] [Indexed: 12/12/2022]
Abstract
With technological advances, previously neglected noncanonical open reading frames (nORFs) are drawing ever-increasing attention. However, the translation potential of numerous putative nORFs remains elusive, and the functions of noncanonical peptides have not been systemically summarized. Moreover, the relationship between noncanonical peptides and their counterpart protein or RNA products remains elusive and the clinical implementation of noncanonical peptides has not been explored. In this review, we highlight how recent technological advances such as ribosome profiling, bioinformatics approaches and CRISPR/Cas9 facilitate the research of noncanonical peptides. We delineate the features of each nORF category and the evolutionary process underneath the nORFs. Most importantly, we summarize the diversified functions of noncanonical peptides in cancer based on their subcellular location, which reflect their extensive participation in key pathways and essential cellular activities in cancer cells. Meanwhile, the equilibrium between noncanonical peptides and their corresponding transcripts or counterpart products may be dysregulated under pathological states, which is essential for their roles in cancer. Lastly, we explore their underestimated potential in clinical application as diagnostic biomarkers and treatment targets against cancer.
Collapse
Affiliation(s)
- Yihan Liu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China; Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Minghua Wu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
36
|
Pan J, Wang R, Shang F, Ma R, Rong Y, Zhang Y. Functional Micropeptides Encoded by Long Non-Coding RNAs: A Comprehensive Review. Front Mol Biosci 2022; 9:817517. [PMID: 35769907 PMCID: PMC9234465 DOI: 10.3389/fmolb.2022.817517] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/24/2022] [Indexed: 12/03/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) were originally defined as non-coding RNAs (ncRNAs) which lack protein-coding ability. However, with the emergence of technologies such as ribosome profiling sequencing and ribosome-nascent chain complex sequencing, it has been demonstrated that most lncRNAs have short open reading frames hence the potential to encode functional micropeptides. Such micropeptides have been described to be widely involved in life-sustaining activities in several organisms, such as homeostasis regulation, disease, and tumor occurrence, and development, and morphological development of animals, and plants. In this review, we focus on the latest developments in the field of lncRNA-encoded micropeptides, and describe the relevant computational tools and techniques for micropeptide prediction and identification. This review aims to serve as a reference for future research studies on lncRNA-encoded micropeptides.
Collapse
Affiliation(s)
- Jianfeng Pan
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Ruijun Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Hohhot, China
- Engineering Research Center for Goat Genetics and Breeding, Hohhot, China
| | - Fangzheng Shang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Rong Ma
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Youjun Rong
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yanjun Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Hohhot, China
- Engineering Research Center for Goat Genetics and Breeding, Hohhot, China
- *Correspondence: Yanjun Zhang,
| |
Collapse
|
37
|
The Emerging Roles of Long Non-Coding RNAs in Intellectual Disability and Related Neurodevelopmental Disorders. Int J Mol Sci 2022; 23:ijms23116118. [PMID: 35682796 PMCID: PMC9181295 DOI: 10.3390/ijms23116118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 02/05/2023] Open
Abstract
In the human brain, long non-coding RNAs (lncRNAs) are widely expressed in an exquisitely temporally and spatially regulated manner, thus suggesting their contribution to normal brain development and their probable involvement in the molecular pathology of neurodevelopmental disorders (NDD). Bypassing the classic protein-centric conception of disease mechanisms, some studies have been conducted to identify and characterize the putative roles of non-coding sequences in the genetic pathogenesis and diagnosis of complex diseases. However, their involvement in NDD, and more specifically in intellectual disability (ID), is still poorly documented and only a few genomic alterations affecting the lncRNAs function and/or expression have been causally linked to the disease endophenotype. Considering that a significant fraction of patients still lacks a genetic or molecular explanation, we expect that a deeper investigation of the non-coding genome will unravel novel pathogenic mechanisms, opening new translational opportunities. Here, we present evidence of the possible involvement of many lncRNAs in the etiology of different forms of ID and NDD, grouping the candidate disease-genes in the most frequently affected cellular processes in which ID-risk genes were previously collected. We also illustrate new approaches for the identification and prioritization of NDD-risk lncRNAs, together with the current strategies to exploit them in diagnosis.
Collapse
|
38
|
Zhang Z, Li Y, Yuan W, Wang Z, Wan C. Proteomic-driven identification of short open reading frame-encoded peptides. Proteomics 2022; 22:e2100312. [PMID: 35384297 DOI: 10.1002/pmic.202100312] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/10/2022]
Abstract
Accumulating evidence has shown that a large number of short open reading frames (sORFs) also have the ability to encode proteins. The discovery of sORFs opens up a new research area, leading to the identification and functional study of sORF encoded peptides (SEPs) at the omics level. Besides bioinformatics prediction and ribosomal profiling, mass spectrometry (MS) has become a significant tool as it directly detects the sequence of SEPs. Though MS-based proteomics methods have proved to be effective for qualitative and quantitative analysis of SEPs, the detection of SEPs is still a great challenge due to their low abundance and short sequence. To illustrate the progress in method development, we described and discussed the main steps of large-scale proteomics identification of SEPs, including SEP extraction and enrichment, MS detection, data processing and quality control, quantification, and function prediction and validation methods. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zheng Zhang
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, People's Republic of China
| | - Yujie Li
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, People's Republic of China
| | - Wenqian Yuan
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, People's Republic of China
| | - Zhiwei Wang
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, People's Republic of China
| | - Cuihong Wan
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, People's Republic of China
| |
Collapse
|
39
|
Leong AZX, Lee PY, Mohtar MA, Syafruddin SE, Pung YF, Low TY. Short open reading frames (sORFs) and microproteins: an update on their identification and validation measures. J Biomed Sci 2022; 29:19. [PMID: 35300685 PMCID: PMC8928697 DOI: 10.1186/s12929-022-00802-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/09/2022] [Indexed: 12/17/2022] Open
Abstract
A short open reading frame (sORFs) constitutes ≤ 300 bases, encoding a microprotein or sORF-encoded protein (SEP) which comprises ≤ 100 amino acids. Traditionally dismissed by genome annotation pipelines as meaningless noise, sORFs were found to possess coding potential with ribosome profiling (RIBO-Seq), which unveiled sORF-based transcripts at various genome locations. Nonetheless, the existence of corresponding microproteins that are stable and functional was little substantiated by experimental evidence initially. With recent advancements in multi-omics, the identification, validation, and functional characterisation of sORFs and microproteins have become feasible. In this review, we discuss the history and development of an emerging research field of sORFs and microproteins. In particular, we focus on an array of bioinformatics and OMICS approaches used for predicting, sequencing, validating, and characterizing these recently discovered entities. These strategies include RIBO-Seq which detects sORF transcripts via ribosome footprints, and mass spectrometry (MS)-based proteomics for sequencing the resultant microproteins. Subsequently, our discussion extends to the functional characterisation of microproteins by incorporating CRISPR/Cas9 screen and protein–protein interaction (PPI) studies. Our review discusses not only detection methodologies, but we also highlight on the challenges and potential solutions in identifying and validating sORFs and their microproteins. The novelty of this review lies within its validation for the functional role of microproteins, which could contribute towards the future landscape of microproteomics.
Collapse
Affiliation(s)
- Alyssa Zi-Xin Leong
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Pey Yee Lee
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - M Aiman Mohtar
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Saiful Effendi Syafruddin
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Yuh-Fen Pung
- Division of Biomedical Science, School of Pharmacy, University of Nottingham Malaysia, Semenyih, 43500, Selangor, Malaysia
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia.
| |
Collapse
|
40
|
Liu W, He QY, Brunet MA. Editorial: Emerging Proteins and Polypeptides Expressed by "Non-Coding RNAs". Front Cell Dev Biol 2022; 10:862870. [PMID: 35265627 PMCID: PMC8899286 DOI: 10.3389/fcell.2022.862870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Wanting Liu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Qing-Yu He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Marie A Brunet
- Department of Pediatrics, Medical Genetics Service, Université de Sherbrooke, Sherbrooke, QC, Canada.,Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
41
|
Yuanyuan J, Xinqiang Y. Micropeptides Identified from Human Genomes. J Proteome Res 2022; 21:865-873. [DOI: 10.1021/acs.jproteome.1c00889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jing Yuanyuan
- School of Public Health, North Sichuan Medical College, Nanchong 637000, China
| | - Yin Xinqiang
- School of Basic Medicine and Forensics, North Sichuan Medical College, Nanchong 637000, China
| |
Collapse
|
42
|
The dark proteome: translation from noncanonical open reading frames. Trends Cell Biol 2022; 32:243-258. [PMID: 34844857 PMCID: PMC8934435 DOI: 10.1016/j.tcb.2021.10.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023]
Abstract
Omics-based technologies have revolutionized our understanding of the coding potential of the genome. In particular, these studies revealed widespread unannotated open reading frames (ORFs) throughout genomes and that these regions have the potential to encode novel functional (micro-)proteins and/or hold regulatory roles. However, despite their genomic prevalence, relatively few of these noncanonical ORFs have been functionally characterized, likely in part due to their under-recognition by the broader scientific community. The few that have been investigated in detail have demonstrated their essentiality in critical and divergent biological processes. As such, here we aim to discuss recent advances in understanding the diversity of noncanonical ORFs and their roles, as well as detail biologically important examples within the context of the mammalian genome.
Collapse
|
43
|
Li B, Zhang Z, Wan C. Identification of Microproteins in Hep3B Cells at Different Cell Cycle Stages. J Proteome Res 2022; 21:1052-1060. [PMID: 35199523 DOI: 10.1021/acs.jproteome.1c00926] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Microproteins are generated from small open reading frames and turn out to play various vital biological functions. As an essential biological event of eukaryotic cells, the cell cycle is involved in cell replication and division. For such a highly regulated event, microproteins associated with cell cycle regulation remained unclarified. Utilizing a combination of bottom-up and top-down proteomics, we analyzed microproteins at specific cell cycle stages of Hep3B cells. A total of 657 microproteins were identified under three cell cycle stages, including 151 in the G0/G1 stage, 163 in the S stage, and 132 in the G2/M stage. The annotation of these microproteins showed their cell cycle-specific functions, such as translation, nuclear assembly, chromatin organization, and the G2/M transition of the mitotic cell cycle. Meanwhile, more than 50% of identified microproteins were ncRNA-encoded. These nonannotated novel microproteins contain several function domains, such as the nucleoside diphosphate kinase domain, the high mobility group domain, and the DNA-binding domain. This suggested the potential functions of these novel microproteins in specific cell cycle stages. This study presented a large-scale profile of microproteins at different cell cycle stages from Hep3B and may provide new perspectives on the regulation mechanism of the cell cycle. Liquid chromatography-mass spectrometry data were deposited to ProteomeXchange using the identifier PXD030286.
Collapse
Affiliation(s)
- Bing Li
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Zheng Zhang
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Cuihong Wan
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| |
Collapse
|
44
|
Xiao MH, Lin YF, Xie PP, Chen HX, Deng JW, Zhang W, Zhao N, Xie C, Meng Y, Liu X, Zhuang SM, Zhu Y, Fang JH. Downregulation of a mitochondrial micropeptide, MPM, promotes hepatoma metastasis by enhancing mitochondrial complex I activity. Mol Ther 2022; 30:714-725. [PMID: 34478872 PMCID: PMC8821931 DOI: 10.1016/j.ymthe.2021.08.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/25/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023] Open
Abstract
We and others have shown that MPM (micropeptide in mitochondria) regulates myogenic differentiation and muscle development. However, the roles of MPM in cancer development remain unknown. Here we revealed that MPM was downregulated significantly in human hepatocellular carcinoma (HCC) tissues and its decrease was associated with increased metastasis potential and HCC recurrence. Gain- and loss-of-function investigations disclosed that in vitro migration/invasion and in vivo liver/lung metastasis of hepatoma cells were repressed by restoring MPM expression and increased by silencing MPM. Mechanism investigations revealed that MPM interacted with NDUFA7. Mitochondrial complex I activity was inhibited by overexpressing MPM and enhanced by siMPM, and this effect of siMPM was attenuated by knocking down NDUFA7. The NAD+/NADH ratio, which was regulated by complex I, was reduced by MPM but increased by siMPM. Treatment with the NAD+ precursor nicotinamide abrogated the inhibitory effect of MPM on hepatoma cell migration. Further investigations showed that miR-17-5p bound to MPM and inhibited MPM expression. miR-17-5p upregulation was associated with MPM downregulation in HCC tissues. These findings indicate that a decrease in MPM expression may promote hepatoma metastasis by increasing mitochondrial complex I activity and the NAD+/NADH ratio.
Collapse
Affiliation(s)
- Man-Huan Xiao
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Xin Gang Xi Road #135, Guangzhou 510275, P.R. China
| | - Yi-Fang Lin
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Xin Gang Xi Road #135, Guangzhou 510275, P.R. China
| | - Peng-Peng Xie
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Xin Gang Xi Road #135, Guangzhou 510275, P.R. China
| | - Hua-Xing Chen
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Xin Gang Xi Road #135, Guangzhou 510275, P.R. China
| | - Jun-Wen Deng
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Xin Gang Xi Road #135, Guangzhou 510275, P.R. China
| | - Wei Zhang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Xin Gang Xi Road #135, Guangzhou 510275, P.R. China
| | - Na Zhao
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Xin Gang Xi Road #135, Guangzhou 510275, P.R. China
| | - Chen Xie
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Xin Gang Xi Road #135, Guangzhou 510275, P.R. China
| | - Yu Meng
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Xin Gang Xi Road #135, Guangzhou 510275, P.R. China
| | - Xingguo Liu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
| | - Shi-Mei Zhuang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Xin Gang Xi Road #135, Guangzhou 510275, P.R. China,Corresponding author: Shi-Mei Zhuang, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Xin Gang Xi Road #135, Guangzhou 510275, P.R. China.
| | - Ying Zhu
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Xin Gang Xi Road #135, Guangzhou 510275, P.R. China,Corresponding author: Ying Zhu, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Xin Gang Xi Road #135, Guangzhou 510275, P.R. China.
| | - Jian-Hong Fang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Xin Gang Xi Road #135, Guangzhou 510275, P.R. China,Corresponding author: Jian-Hong Fang, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Xin Gang Xi Road #135, Guangzhou 510275, P.R. China.
| |
Collapse
|
45
|
Zhang C, Zhou B, Gu F, Liu H, Wu H, Yao F, Zheng H, Fu H, Chong W, Cai S, Huang M, Ma X, Guo Z, Li T, Deng W, Zheng M, Ji Q, Zhao Y, Ma Y, Wang QE, Tang TS, Guo C. Micropeptide PACMP inhibition elicits synthetic lethal effects by decreasing CtIP and poly(ADP-ribosyl)ation. Mol Cell 2022; 82:1297-1312.e8. [DOI: 10.1016/j.molcel.2022.01.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 11/19/2021] [Accepted: 01/24/2022] [Indexed: 12/19/2022]
|
46
|
The cardiac-enriched microprotein mitolamban regulates mitochondrial respiratory complex assembly and function in mice. Proc Natl Acad Sci U S A 2022; 119:2120476119. [PMID: 35101990 PMCID: PMC8833175 DOI: 10.1073/pnas.2120476119] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Microproteins are a growing class of versatile small proteins previously overlooked by standard gene annotation methods due to their small size. Here we characterize mitolamban as a cardiac-enriched inner mitochondrial membrane–localized microprotein, which interacts with complex III of the electron transport chain and contributes to complex III assembly and function. Mitolamban gene deletion in mice leads to a reduction in complex III activity and metabolic perturbations in the heart that are consistent with complex III deficiency, as well as altered complex III assembly into respiratory supercomplexes. These findings define a functional role for mitolamban in the heart and highlight the importance of microproteins in regulating mitochondrial function and cardiomyocyte biology. Emerging evidence indicates that a subset of RNA molecules annotated as noncoding contain short open reading frames that code for small functional proteins called microproteins, which have largely been overlooked due to their small size. To search for cardiac-expressed microproteins, we used a comparative genomics approach and identified mitolamban (Mtlbn) as a highly conserved 47-amino acid transmembrane protein that is abundantly expressed in the heart. Mtlbn localizes specifically to the inner mitochondrial membrane where it interacts with subunits of complex III of the electron transport chain and with mitochondrial respiratory supercomplexes. Genetic deletion of Mtlbn in mice altered complex III assembly dynamics and reduced complex III activity. Unbiased metabolomic analysis of heart tissue from Mtlbn knockout mice further revealed an altered metabolite profile consistent with deficiencies in complex III activity. Cardiac-specific Mtlbn overexpression in transgenic (TG) mice induced cardiomyopathy with histological, biochemical, and ultrastructural pathologic features that contributed to premature death. Metabolomic analysis and biochemical studies indicated that hearts from Mtlbn TG mice exhibited increased oxidative stress and mitochondrial dysfunction. These findings reveal Mtlbn as a cardiac-expressed inner mitochondrial membrane microprotein that contributes to mitochondrial electron transport chain activity through direct association with complex III and the regulation of its assembly and function.
Collapse
|
47
|
Camilleri-Robles C, Amador R, Klein CC, Guigó R, Corominas M, Ruiz-Romero M. Genomic and functional conservation of lncRNAs: lessons from flies. Mamm Genome 2022; 33:328-342. [PMID: 35098341 PMCID: PMC9114055 DOI: 10.1007/s00335-021-09939-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 12/09/2021] [Indexed: 12/18/2022]
Abstract
Over the last decade, the increasing interest in long non-coding RNAs (lncRNAs) has led to the discovery of these transcripts in multiple organisms. LncRNAs tend to be specifically, and often lowly, expressed in certain tissues, cell types and biological contexts. Although lncRNAs participate in the regulation of a wide variety of biological processes, including development and disease, most of their functions and mechanisms of action remain unknown. Poor conservation of the DNA sequences encoding for these transcripts makes the identification of lncRNAs orthologues among different species very challenging, especially between evolutionarily distant species such as flies and humans or mice. However, the functions of lncRNAs are unexpectedly preserved among different species supporting the idea that conservation occurs beyond DNA sequences and reinforcing the potential of characterising lncRNAs in animal models. In this review, we describe the features and roles of lncRNAs in the fruit fly Drosophila melanogaster, focusing on genomic and functional comparisons with human and mouse lncRNAs. We also discuss the current state of advances and limitations in the study of lncRNA conservation and future perspectives.
Collapse
|
48
|
Senís E, Esgleas M, Najas S, Jiménez-Sábado V, Bertani C, Giménez-Alejandre M, Escriche A, Ruiz-Orera J, Hergueta-Redondo M, Jiménez M, Giralt A, Nuciforo P, Albà MM, Peinado H, Del Toro D, Hove-Madsen L, Götz M, Abad M. TUNAR lncRNA Encodes a Microprotein that Regulates Neural Differentiation and Neurite Formation by Modulating Calcium Dynamics. Front Cell Dev Biol 2022; 9:747667. [PMID: 35036403 PMCID: PMC8758570 DOI: 10.3389/fcell.2021.747667] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/03/2021] [Indexed: 11/13/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are regulatory molecules which have been traditionally considered as “non-coding”. Strikingly, recent evidence has demonstrated that many non-coding regions, including lncRNAs, do in fact contain small-open reading frames that code for small proteins that have been called microproteins. Only a few of them have been characterized so far, but they display key functions in a wide variety of cellular processes. Here, we show that TUNAR lncRNA encodes an evolutionarily conserved microprotein expressed in the nervous system that we have named pTUNAR. pTUNAR deficiency in mouse embryonic stem cells improves their differentiation potential towards neural lineage both in vitro and in vivo. Conversely, pTUNAR overexpression impairs neuronal differentiation by reduced neurite formation in different model systems. At the subcellular level, pTUNAR is a transmembrane protein that localizes in the endoplasmic reticulum and interacts with the calcium transporter SERCA2. pTUNAR overexpression reduces cytoplasmatic calcium, consistent with a possible role of pTUNAR as an activator of SERCA2. Altogether, our results suggest that our newly discovered microprotein has an important role in neural differentiation and neurite formation through the regulation of intracellular calcium. From a more general point of view, our results provide a proof of concept of the role of lncRNAs-encoded microproteins in neural differentiation.
Collapse
Affiliation(s)
- Elena Senís
- Cellular Plasticity and Cancer Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Miriam Esgleas
- Physiological Genomics, Biomedical Center (BMC), Helmholtz Center Munich, Institute of Stem Cell Research, Großhaderner Str, SyNergy Excellence Cluster, Ludwig-Maximilians-Universitaet (LMU), Munich, Germany
| | - Sonia Najas
- Physiological Genomics, Biomedical Center (BMC), Helmholtz Center Munich, Institute of Stem Cell Research, Großhaderner Str, SyNergy Excellence Cluster, Ludwig-Maximilians-Universitaet (LMU), Munich, Germany
| | - Verónica Jiménez-Sábado
- Instituto de Investigación Biomédica Barcelona (IIBB-CSIC), Instituto de Investigación Biomédica Sant Pau (IIB-Sant Pau) and CIBERCV, Barcelona, Spain
| | - Camilla Bertani
- Cellular Plasticity and Cancer Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Marta Giménez-Alejandre
- Cellular Plasticity and Cancer Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Alba Escriche
- Cellular Plasticity and Cancer Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Jorge Ruiz-Orera
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Marta Hergueta-Redondo
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Mireia Jiménez
- Cellular Plasticity and Cancer Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Albert Giralt
- Department of Biological Sciences, Institute of Neurosciences, IDIBAPS, CIBERNED, University of Barcelona, Barcelona, Spain
| | - Paolo Nuciforo
- Molecular Oncology Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - M Mar Albà
- Evolutionary Genomics Group, Research Programme on Biomedical Informatics, Hospital del Mar Medical Research Institute (IMIM) and Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Héctor Peinado
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Daniel Del Toro
- Department of Biological Sciences, Institute of Neurosciences, IDIBAPS, CIBERNED, University of Barcelona, Barcelona, Spain
| | - Leif Hove-Madsen
- Instituto de Investigación Biomédica Barcelona (IIBB-CSIC), Instituto de Investigación Biomédica Sant Pau (IIB-Sant Pau) and CIBERCV, Barcelona, Spain
| | - Magdalena Götz
- Physiological Genomics, Biomedical Center (BMC), Helmholtz Center Munich, Institute of Stem Cell Research, Großhaderner Str, SyNergy Excellence Cluster, Ludwig-Maximilians-Universitaet (LMU), Munich, Germany
| | - María Abad
- Cellular Plasticity and Cancer Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| |
Collapse
|
49
|
Cardon T, Fournier I, Salzet M. Unveiling a Ghost Proteome in the Glioblastoma Non-Coding RNAs. Front Cell Dev Biol 2022; 9:703583. [PMID: 35004666 PMCID: PMC8733697 DOI: 10.3389/fcell.2021.703583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma is the most common brain cancer in adults. Nevertheless, the median survival time is 15 months, if treated with at least a near total resection and followed by radiotherapy in association with temozolomide. In glioblastoma (GBM), variations of non-coding ribonucleic acid (ncRNA) expression have been demonstrated in tumor processes, especially in the regulation of major signaling pathways. Moreover, many ncRNAs present in their sequences an Open Reading Frame (ORF) allowing their translations into proteins, so-called alternative proteins (AltProt) and constituting the “ghost proteome.” This neglected world in GBM has been shown to be implicated in protein–protein interaction (PPI) with reference proteins (RefProt) reflecting involvement in signaling pathways linked to cellular mobility and transfer RNA regulation. More recently, clinical studies have revealed that AltProt is also involved in the patient’s survival and bad prognosis. We thus propose to review the ncRNAs involved in GBM and highlight their function in the disease.
Collapse
Affiliation(s)
- Tristan Cardon
- University of Lille, Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse-PRISM, Lille, France
| | - Isabelle Fournier
- University of Lille, Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse-PRISM, Lille, France.,Institut Universitaire de France, Paris, France
| | - Michel Salzet
- University of Lille, Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse-PRISM, Lille, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
50
|
De Falco M, De Felice M. Take a Break to Repair: A Dip in the World of Double-Strand Break Repair Mechanisms Pointing the Gaze on Archaea. Int J Mol Sci 2021; 22:ijms222413296. [PMID: 34948099 PMCID: PMC8708640 DOI: 10.3390/ijms222413296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/24/2022] Open
Abstract
All organisms have evolved many DNA repair pathways to counteract the different types of DNA damages. The detection of DNA damage leads to distinct cellular responses that bring about cell cycle arrest and the induction of DNA repair mechanisms. In particular, DNA double-strand breaks (DSBs) are extremely toxic for cell survival, that is why cells use specific mechanisms of DNA repair in order to maintain genome stability. The choice among the repair pathways is mainly linked to the cell cycle phases. Indeed, if it occurs in an inappropriate cellular context, it may cause genome rearrangements, giving rise to many types of human diseases, from developmental disorders to cancer. Here, we analyze the most recent remarks about the main pathways of DSB repair with the focus on homologous recombination. A thorough knowledge in DNA repair mechanisms is pivotal for identifying the most accurate treatments in human diseases.
Collapse
|