1
|
Pondelick AM, Moncayo LV, Donvito G, McLane VD, Gillespie JC, Hauser KF, Spiegel S, Lichtman AH, Sim-Selley LJ, Selley DE. Dissociation between the anti-allodynic effects of fingolimod (FTY720) and desensitization of S1P 1 receptor-mediated G-protein activation in a mouse model of sciatic nerve injury. Neuropharmacology 2024; 261:110165. [PMID: 39303855 DOI: 10.1016/j.neuropharm.2024.110165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/28/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Sphingosine-1-phosphate (S1P) receptor (S1PR) agonists, such as fingolimod (FTY720), alleviate nociception in preclinical pain models by either activation (agonism) or inhibition (functional antagonism) of S1PR type-1 (S1PR1). However, the dose-dependence and temporal relationship between reversal of nociception and modulation of S1PR1 signaling has not been systematically investigated. This study examined the relationship between FTY720-induced antinociception and S1PR1 adaptation using a sciatic nerve chronic constriction injury (CCI) model of neuropathic pain in male and female C57Bl/6J mice. Daily injections of FTY720 for 14 days dose-dependently reversed CCI-induced mechanical allodynia without tolerance development, and concomitantly resulted in a dose-dependent reduction of G-protein activation by the S1PR1-selective agonist SEW2871 in the lumbar spinal cord and brain. These findings indicate FTY720-induced desensitization of S1PR1 signaling coincides with its anti-allodynic effects. Consistent with this finding, a single injection of FTY720 reversed mechanical allodynia while concomitantly producing partial desensitization of S1PR1-stimulated G-protein activation in the CNS. However, mechanical allodynia returned 24-hr post injection, despite S1PR1 desensitization at that time, demonstrating a dissociation between these measures. Furthermore, CCI surgery led to elevations of sphingolipid metabolites, including S1P, which were unaffected by daily FTY720 administration, suggesting FTY720 reversed mechanical allodynia by targeting S1PR1 rather than sphingolipid metabolism. Supporting this hypothesis, acute administration of the S1PR1-selective agonist CYM-5442 mimicked the anti-allodynic effect of FTY720. In contrast, the S1PR1-selective antagonist NIBR-0213 prevented the anti-allodynic effect of FTY720, but NIBR-0213 given alone did not affect nociception. These results indicate that FTY720 alleviates CCI-induced allodynia through a mechanism distinct from functional antagonism.
Collapse
Affiliation(s)
- Abby M Pondelick
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Lauren V Moncayo
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Giulia Donvito
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Virginia D McLane
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - James C Gillespie
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Laura J Sim-Selley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Dana E Selley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
2
|
Winner G J, Jain S, Gupta D. Unveiling novel molecules and therapeutic targets in hypertension - A narrative review. Eur J Pharmacol 2024; 984:177053. [PMID: 39393666 DOI: 10.1016/j.ejphar.2024.177053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/18/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
Hypertension is a prevalent non-communicable disease with serious cardiovascular complications, including heart failure, myocardial infarction, and stroke, often resulting from uncontrolled hypertension. While current treatments primarily target the renin-angiotensin-aldosterone pathway, the therapeutic response remains modest in many patients, with some developing resistant hypertension. Newer therapeutic approaches aim to address hypertension from various aspects beyond conventional drugs, including targeting central nervous system pathways, inflammatory pathways, vascular smooth muscle function, and baroreceptors. Despite these advancements, each therapy faces unique clinical and mechanistic challenges that influence its clinical translatability and long-term viability. This review explores the mechanisms of novel molecules in preclinical and clinical development, highlights potential therapeutic targets, and discusses the challenges and ethical considerations related to hypertension therapeutics and their development.
Collapse
Affiliation(s)
| | - Surbhi Jain
- Aligarh Muslim University, Uttar Pradesh, India
| | | |
Collapse
|
3
|
Aljobaily N, Allard D, Perkins B, Raugh A, Galland T, Jing Y, Stephens WZ, Bettini ML, Hale JS, Bettini M. Autoimmune CD4 + T cells fine-tune TCF1 expression to maintain function and survive persistent antigen exposure during diabetes. Immunity 2024; 57:2583-2596.e6. [PMID: 39396521 PMCID: PMC11563894 DOI: 10.1016/j.immuni.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/21/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024]
Abstract
Self-reactive T cells experience chronic antigen exposure but do not exhibit signs of exhaustion. Here, we investigated the mechanisms for sustained, functioning autoimmune CD4+ T cells despite chronic stimulation. Examination of T cell priming showed that CD4+ T cells activated in the absence of infectious signals retained TCF1 expression. At later time points and during blockade of new T cell recruitment, most islet-infiltrating autoimmune CD4+ T cells were TCF1+, although expression was reduced on a per T cell basis. The Tcf7 locus was epigenetically modified in circulating autoimmune CD4+ T cells, suggesting a pre-programmed de novo methylation of the locus in early stages of autoimmune CD4+ T cell differentiation. This mirrored the epigenetic profile of recently recruited CD4+CD62L+ T cells in the pancreas. Collectively, these data reveal a unique environment during autoimmune CD4+ T cell priming that allows T cells to fine-tune TCF1 expression and maintain long-term survival and function.
Collapse
Affiliation(s)
- Nouf Aljobaily
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | - Denise Allard
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | - Bryant Perkins
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | - Arielle Raugh
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | - Tessa Galland
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | - Yi Jing
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | - W Zac Stephens
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | - Matthew L Bettini
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | - J Scott Hale
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | - Maria Bettini
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
4
|
Sudhadevi T, Annadi A, Basa P, Jafri A, Natarajan V, Harijith A. Fingolimod, a sphingosine-1-phosphate receptor modulator, prevents neonatal bronchopulmonary dysplasia and subsequent airway remodeling in a murine model. J Appl Physiol (1985) 2024; 137:1231-1242. [PMID: 39262336 PMCID: PMC11563639 DOI: 10.1152/japplphysiol.00311.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/01/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024] Open
Abstract
Neonatal bronchopulmonary dysplasia (BPD) is associated with alveolar simplification and airway remodeling. Airway remodeling leads to deformation of airways characterized by peribronchial collagen deposition and hypertrophy of airway smooth muscle, which contribute to the narrowing of airways. Poorly developed lungs contribute to reduced lung function that deteriorates with the passage of time. We have earlier shown that sphingosine kinase 1 (SPHK 1)/sphingosine-1-phosphate (S1P)/S1P receptor1 (S1PR1) signaling plays a role in the pathogenesis of BPD. In this study, we investigated the role of fingolimod or FTY720, a known S1PR1 modulator approved for the treatment of multiple sclerosis in the treatment of BPD. Fingolimod promotes the degradation of S1PR1 by preventing its recycling, thus serving as the equivalent of an inhibitor. Exposure of neonatal mice to hyperoxia enhanced the expression of S1PR1 in both airways and alveoli as compared with normoxia. This increased expression of S1PR1 in the airways persisted into adulthood, accompanied by airway remodeling and airway hyperreactivity (AHR) after neonatal hyperoxia. Intranasal fingolimod at a much lower dose compared with the intraperitoneal route of administration during neonatal hyperoxia improved alveolarization in neonates and reduced airway remodeling and AHR in adult mice associated with improved lung function. The intranasal route was not associated with the lymphopenia seen with the intraperitoneal route of administration of the drug. An increase in S1PR1 expression in the airways was associated with an increase in the expression of enzyme lysyl oxidase (LOX) in the airways following hyperoxia, which was suppressed by fingolimod. This association warrants further investigation.NEW & NOTEWORTHY The role of the S1P receptor1 modulator, fingolimod, as an FDA-approved drug in preventing the recurrence of multiple sclerosis is established. Fingolimod prevented bronchopulmonary dysplasia (BPD) and its sequela of airway remodeling in a neonatal murine model. This protection was associated with the downregulation of lysyl oxidase signaling pathway. Fingolimod could be repurposed for the therapy of BPD.
Collapse
Affiliation(s)
- Tara Sudhadevi
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States
| | - Akanksha Annadi
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States
| | - Prathima Basa
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States
| | - Anjum Jafri
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States
| | - Viswanathan Natarajan
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Anantha Harijith
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States
| |
Collapse
|
5
|
Martínez-Gardeazabal J, Pereira-Castelo G, Moreno-Rodríguez M, Llorente-Ovejero A, Fernández M, Fernández-Vega I, Manuel I, Rodríguez-Puertas R. Sphingosine 1-phosphate receptor subtype 1 (S1P 1) activity in the course of Alzheimer's disease. Neurobiol Dis 2024; 202:106713. [PMID: 39448041 DOI: 10.1016/j.nbd.2024.106713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024] Open
Abstract
Some specific lipid molecules in the brain act as signaling molecules, neurotransmitters, or neuromodulators, by binding to specific G protein-coupled receptors (GPCR) for neurolipids. One such receptor, sphingosine 1-phosphate receptor subtype 1 (S1P1), is coupled to Gi/o proteins and is involved in cell proliferation, growth, and neuroprotection. S1P1 constitutes an interesting target for neurodegenerative diseases like multiple sclerosis and Alzheimer's disease (AD), in which changes in the sphingolipid metabolism have been observed. This study analyzes S1P1 receptor-mediated activity in healthy brains and during AD progression using postmortem samples from controls and patients at different Braak's stages. Additionally, the distribution of S1P1 receptor activity in human brains is compared to that in commonly used rodent models, rats and mice, through functional autoradiography, measuring [35S]GTPγS binding stimulated by the S1P1 receptor selective agonist CYM-5442 to obtain the distribution of functional activity of S1P1 receptors. S1P1 receptor-mediated activity, along with that of the cannabinoid CB1 receptor, is one of the highest recorded for any GPCR in many gray matter areas of the brain, reaching maximum values in the cerebellar cortex, specific areas of the hippocampus and the basal forebrain. S1P1 signaling is crucial in areas that regulate learning, memory, motor control, and nociception, such as the basal forebrain and basal ganglia. In AD, S1P1 receptor activity is increased in the inner layers of the frontal cortex and underlying cortical white matter at early stages, but decreases in the hippocampus in advanced stages, indicating ongoing brain impairment. Importantly, we identified significant correlations between S1P1 receptor activity and Braak stages, suggesting that S1P1 receptor dysfunction is associated to disease progression, particularly in memory-related regions. The S1P signaling via S1P1 receptor is a promising neurological target due to its role in key neurophysiological functions and its potential to modify the progression of neurodegenerative diseases. Finally, rats are suggested as a preferred experimental model for studying S1P1 receptor-mediated responses in the human brain.
Collapse
Affiliation(s)
- Jonatan Martínez-Gardeazabal
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain; Neurodegenerative Diseases, BioBizkaia Health Research Institute, Bizkaia, Spain, 48903 Barakaldo, Spain
| | - Gorka Pereira-Castelo
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain
| | - Marta Moreno-Rodríguez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain
| | - Alberto Llorente-Ovejero
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain
| | - Manuel Fernández
- Neurodegenerative Diseases, BioBizkaia Health Research Institute, Bizkaia, Spain, 48903 Barakaldo, Spain; Department of Neurology, Hospital Universitario de Cruces, 48903 Barakaldo, Spain
| | - Iván Fernández-Vega
- Department of Pathology, Hospital Universitario Central de Asturias, Avda. Roma, s/n, 33011 Oviedo, Spain; Health Research Institute of Principality of Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Spain
| | - Iván Manuel
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain; Neurodegenerative Diseases, BioBizkaia Health Research Institute, Bizkaia, Spain, 48903 Barakaldo, Spain.
| | - Rafael Rodríguez-Puertas
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain; Neurodegenerative Diseases, BioBizkaia Health Research Institute, Bizkaia, Spain, 48903 Barakaldo, Spain
| |
Collapse
|
6
|
Antoniu S, Rascu S. Protein phosphatase 2A activators under investigation for smoking-related chronic obstructive pulmonary disease and related disorders. Expert Opin Investig Drugs 2024:1-8. [PMID: 39394816 DOI: 10.1080/13543784.2024.2416982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/14/2024]
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) is characterized by progressive inflammation during therapy. Cystic fibrosis (CF), alpha-one antitrypsin deficiency (AATD), and non-CF bronchiectasis are also chronic respiratory disorders with inflammation and progression that share many similarities with COPD. Therefore, various anti-inflammatory approaches are currently being investigated, and protein phosphatase 2A (PP2A) activators may represent one such approach. AREAS COVERED Systematic review of papers published from 2000-to date on the anti-inflammatory role of endogenous PP2A, the consequences of its inhibition by smoking, and the beneficial effects of its activation in COPD. EXPERT OPINION PP2A activation is a plausible therapeutic approach in COPD and related disorders, such as CF, AATD, and non-CF bronchiectasis, although the available evidence is still mostly experimental. Metformin repurposing and consideration of inhalation for some of the molecules discussed in this study are promising approaches.
Collapse
Affiliation(s)
- Sabina Antoniu
- Department Medicine II/Nursing, University of Medicine and Pharmacy, Grigore T Popa Iasi, Iasi, Romania
| | - Setfan Rascu
- Faculty of Medicine, 3rd Department, University of Medicine and Pharmacy, Carol Davila Bucuresti, Bucuresti, Romania
| |
Collapse
|
7
|
Kim Y, Kim J, Kim B, Kim R, Kim HJ, Lee EH, Kim J, Park J, Jeong Y, Park SI, Kim H, Kang M, Lee J, Bahn YS, Choi JW, Park JH, Park KD. Discovery and Optimization of a Series of Vinyl Sulfoximine-Based Analogues as Potent Nrf2 Activators for the Treatment of Multiple Sclerosis. J Med Chem 2024; 67:17866-17892. [PMID: 39323296 PMCID: PMC11472819 DOI: 10.1021/acs.jmedchem.4c01907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
Multiple sclerosis (MS) is an immune-mediated neurodegenerative disease of the central nervous system (CNS), which leads to demyelination, axonal loss, and neurodegeneration. Increased oxidative stress and neurodegeneration have been implicated in all stages of MS, making neuroprotective therapeutics a promising strategy for its treatment. We previously have reported vinyl sulfones with antioxidative and anti-inflammatory properties that activate nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor that induces the expression of cytoprotective genes against oxidative stress. In this study, we synthesized vinyl sulfoximine derivatives by modifying the core structure and determined therapeutic potential as Nrf2 activators. Among them, 10v effectively activated Nrf2 (EC50 = 83.5 nM) and exhibited favorable drug-like properties. 10v successfully induced expression of Nrf2-dependent antioxidant enzymes and suppressed lipopolysaccharide (LPS)-induced inflammatory responses in BV-2 microglial cells. We also confirmed that 10v effectively reversed disease progression and attenuated demyelination in an experimental autoimmune encephalitis (EAE) mouse model of MS.
Collapse
Affiliation(s)
- Yoowon Kim
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Department
of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Jaehwan Kim
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Division
of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Byungeun Kim
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Division
of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Rium Kim
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Division
of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Hyeon Jeong Kim
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
| | - Elijah Hwejin Lee
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Division
of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Jushin Kim
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Department
of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Jiwoo Park
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Division
of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Yeeun Jeong
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Division
of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Sang In Park
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Division
of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Hyemin Kim
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Division
of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Minsik Kang
- Doping
Control Center, KIST, Seoul 02792, Republic of Korea
| | - Jaeick Lee
- Doping
Control Center, KIST, Seoul 02792, Republic of Korea
| | - Yong-Sun Bahn
- Department
of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Ji Won Choi
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Cureverse
Co., Ltd., Seoul Biohub, Seoul 02455, Republic
of Korea
| | - Jong-Hyun Park
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Division
of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Ki Duk Park
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Division
of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
8
|
Hilz MJ, Canavese F, de Rojas-Leal C, Lee DH, Linker RA, Wang R. Pre-existing parasympathetic dominance seems to cause persistent heart rate slowing after 6 months of fingolimod treatment in patients with multiple sclerosis. Clin Auton Res 2024:10.1007/s10286-024-01073-w. [PMID: 39382757 DOI: 10.1007/s10286-024-01073-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 09/21/2024] [Indexed: 10/10/2024]
Abstract
PURPOSE Vagomimetic fingolimod effects cause heart rate (HR) slowing upon treatment initiation but wear off with sphingosine-1-phosphate receptor downregulation. Yet, prolonged HR slowing may persist after months of fingolimod treatment. We evaluated whether cardiovascular autonomic modulation differs before and 6 months after fingolimod initiation between patients with RRMS with and without initially prolonged HR slowing upon fingolimod initiation. METHODS In 34 patients with RRMS, we monitored RR intervals (RRI) and blood pressure (BP), at rest and upon standing up before fingolimod initiation. Six hours and 6 months after fingolimod initiation, we repeated recordings at rest. At the three time points, we calculated autonomic parameters, including RRI standard deviation (RRI-SD), RRI-total-powers, RMSSD, RRI high-frequency [HF] powers, RRI and BP low-frequency (LF) powers, and baroreflex sensitivity (BRS). Between and among patients with and without prolonged HR slowing upon fingolimod initiation, we compared all parameters assessed at the three time points (analysis of variance [ANOVA] with post hoc testing; significance: p < 0.05). RESULTS Six hours after fingolimod initiation, all patients had decreased HRs but increased RRIs, RRI-SDs, RMSSDs, RRI-HF-powers, RRI-total-powers, and BRS; 11 patients had prolonged HR slowing. Before fingolimod initiation, these 11 patients did not decrease parasympathetic RMSSDs and RRI-HF-powers upon standing up. After 6 months, all parameters had reapproached pretreatment values but the 11 patients with prolonged HR slowing had lower HRs while the other 23 patients had lower parasympathetic RMSSDs and RRI-HF-powers, and BRS than before fingolimod initiation. CONCLUSION Our patients with prolonged HR slowing upon fingolimod initiation could not downregulate cardiovagal modulation upon standing up even before fingolimod initiation, and 6 months after fingolimod initiation still had more parasympathetic effect on HR while cardiovagal modulation and BRS were attenuated in the other 23 patients. Pre-existing parasympathetic predominance may cause prolonged HR slowing upon fingolimod initiation.
Collapse
Affiliation(s)
- Max J Hilz
- Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany.
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Francesca Canavese
- Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Carmen de Rojas-Leal
- Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany
- Department of Neurology, Hospital Universitario Virgen de La Victoria, Malaga, Spain
| | - De-Hyung Lee
- Department of Neurology, University Hospital Regensburg, University of Regensburg, Regensburg, Germany
| | - Ralf A Linker
- Department of Neurology, University Hospital Regensburg, University of Regensburg, Regensburg, Germany
| | - Ruihao Wang
- Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany
| |
Collapse
|
9
|
Doyle CA, Busey GW, Iobst WH, Kiessling V, Renken C, Doppalapudi H, Stremska ME, Manjegowda MC, Arish M, Wang W, Naphade S, Kennedy J, Bloyet LM, Thompson CE, Rothlauf PW, Stipes EJ, Whelan SPJ, Tamm LK, Kreutzberger AJB, Sun J, Desai BN. Endosomal fusion of pH-dependent enveloped viruses requires ion channel TRPM7. Nat Commun 2024; 15:8479. [PMID: 39353909 PMCID: PMC11445543 DOI: 10.1038/s41467-024-52773-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024] Open
Abstract
The majority of viruses classified as pandemic threats are enveloped viruses which enter the cell through receptor-mediated endocytosis and take advantage of endosomal acidification to activate their fusion machinery. Here we report that the endosomal fusion of low pH-requiring viruses is highly dependent on TRPM7, a widely expressed TRP channel that is located on the plasma membrane and in intracellular vesicles. Using several viral infection systems expressing the envelope glycoproteins of various viruses, we find that loss of TRPM7 protects cells from infection by Lassa, LCMV, Ebola, Influenza, MERS, SARS-CoV-1, and SARS-CoV-2. TRPM7 ion channel activity is intrinsically necessary to acidify virus-laden endosomes but is expendable for several other endosomal acidification pathways. We propose a model wherein TRPM7 ion channel activity provides a countercurrent of cations from endosomal lumen to cytosol necessary to sustain the pumping of protons into these virus-laden endosomes. This study demonstrates the possibility of developing a broad-spectrum, TRPM7-targeting antiviral drug to subvert the endosomal fusion of low pH-dependent enveloped viruses.
Collapse
Affiliation(s)
- Catherine A Doyle
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Gregory W Busey
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Wesley H Iobst
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Volker Kiessling
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
| | - Chloe Renken
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Hansa Doppalapudi
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Marta E Stremska
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
- Department of Pathology and Immunology, Washington University, St. Louis, MO, USA
| | - Mohan C Manjegowda
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Mohd Arish
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Weiming Wang
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Nikegen Inc., Shanghai, China
| | - Shardul Naphade
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Joel Kennedy
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Louis-Marie Bloyet
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Cassandra E Thompson
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Paul W Rothlauf
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Program in Virology, Harvard Medical School, Boston, MA, USA
| | - Eric J Stipes
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lukas K Tamm
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
| | - Alex J B Kreutzberger
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Boston Children's Hospital, Boston, MA, USA
| | - Jie Sun
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Bimal N Desai
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA.
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA.
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
10
|
Rahmati-Dehkordi F, Khanifar H, Najari N, Tamtaji Z, Talebi Taheri A, Aschner M, Shafiee Ardestani M, Mirzaei H, Dadgostar E, Nabavizadeh F, Tamtaji OR. Therapeutic Potential of Fingolimod on Psychological Symptoms and Cognitive Function in Neuropsychiatric and Neurological Disorders. Neurochem Res 2024; 49:2668-2681. [PMID: 38918332 DOI: 10.1007/s11064-024-04199-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/04/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
Neuropsychiatric and neurological disorders pose a significant global health burden, highlighting the need for innovative therapeutic approaches. Fingolimod (FTY720), a common drug to treat multiple sclerosis, has shown promising efficacy against various neuropsychiatric and neurological disorders. Fingolimod exerts its neuroprotective effects by targeting multiple cellular and molecular processes, such as apoptosis, oxidative stress, neuroinflammation, and autophagy. By modulating Sphingosine-1-Phosphate Receptor activity, a key regulator of immune cell trafficking and neuronal function, it also affects synaptic activity and strengthens memory formation. In the hippocampus, fingolimod decreases glutamate levels and increases GABA levels, suggesting a potential role in modulating synaptic transmission and neuronal excitability. Taken together, fingolimod has emerged as a promising neuroprotective agent for neuropsychiatric and neurological disorders. Its broad spectrum of cellular and molecular effects, including the modulation of apoptosis, oxidative stress, neuroinflammation, autophagy, and synaptic plasticity, provides a comprehensive therapeutic approach for these debilitating conditions. Further research is warranted to fully elucidate the mechanisms of action of fingolimod and optimize its use in the treatment of neuropsychiatric and neurological disorders.
Collapse
Affiliation(s)
- Fatemeh Rahmati-Dehkordi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadi Khanifar
- Department of Internal Medicine, Shahre-kord University of Medical Sciences, Shahre-kord, Iran
| | - Nazanin Najari
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zeinab Tamtaji
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Abdolkarim Talebi Taheri
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Mehdi Shafiee Ardestani
- Department of Radio Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Ehsan Dadgostar
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Fatemeh Nabavizadeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Omid Reza Tamtaji
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Binish F, Xiao J. Deciphering the role of sphingosine 1-phosphate in central nervous system myelination and repair. J Neurochem 2024. [PMID: 39290063 DOI: 10.1111/jnc.16228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive lipid of the sphingolipid family and plays a pivotal role in the mammalian nervous system. Indeed, S1P is a therapeutic target for treating demyelinating diseases such as multiple sclerosis. Being part of an interconnected sphingolipid metabolic network, the amount of S1P available for signalling is equilibrated between its synthetic (sphingosine kinases 1 and 2) and degradative (sphingosine 1-phosphate lyase) enzymes. Once produced, S1P exerts its biological roles via signalling to a family of five G protein-coupled S1P receptors 1-5 (S1PR1-5). Despite significant progress, the precise roles that S1P metabolism and downstream signalling play in regulating myelin formation and repair remain largely opaque and somewhat controversial. Genetic or pharmacological studies adopting various model systems identify that stimulating S1P-S1PR signalling protects myelin-forming oligodendrocytes after central nervous system (CNS) injury and attenuates demyelination in vivo. However, evidence to support its role in remyelination of the mammalian CNS is limited, although blocking S1P synthesis sheds light on the role of endogenous S1P in promoting CNS remyelination. This review focuses on summarising the current understanding of S1P in CNS myelin formation and repair, discussing the complexity of S1P-S1PR interaction and the underlying mechanism by which S1P biosynthesis and signalling regulates oligodendrocyte myelination in the healthy and injured mammalian CNS, raising new questions for future investigation.
Collapse
Affiliation(s)
- Fatima Binish
- Department of Health Sciences and Biostatistics, School of Health Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Junhua Xiao
- Department of Health Sciences and Biostatistics, School of Health Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia
| |
Collapse
|
12
|
Birgbauer E. Lysophospholipid receptors in neurodegeneration and neuroprotection. EXPLORATION OF NEUROPROTECTIVE THERAPY 2024; 4:349-365. [PMID: 39247084 PMCID: PMC11379401 DOI: 10.37349/ent.2024.00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/11/2024] [Indexed: 09/10/2024]
Abstract
The central nervous system (CNS) is one of the most complex physiological systems, and treatment of CNS disorders represents an area of major medical need. One critical aspect of the CNS is its lack of regeneration, such that damage is often permanent. The damage often leads to neurodegeneration, and so strategies for neuroprotection could lead to major medical advances. The G protein-coupled receptor (GPCR) family is one of the major receptor classes, and they have been successfully targeted clinically. One class of GPCRs is those activated by bioactive lysophospholipids as ligands, especially sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA). Research has been increasingly demonstrating the important roles that S1P and LPA, and their receptors, play in physiology and disease. In this review, I describe the role of S1P and LPA receptors in neurodegeneration and potential roles in neuroprotection. Much of our understanding of the role of S1P receptors has been through pharmacological tools. One such tool, fingolimod (also known as FTY720), which is a S1P receptor agonist but a functional antagonist in the immune system, is clinically efficacious in multiple sclerosis by producing a lymphopenia to reduce autoimmune attacks; however, there is evidence that fingolimod is also neuroprotective. Furthermore, fingolimod is neuroprotective in many other neuropathologies, including stroke, Parkinson's disease, Huntington's disease, Rett syndrome, Alzheimer's disease, and others that are discussed here. LPA receptors also appear to be involved, being upregulated in a variety of neuropathologies. Antagonists or mutations of LPA receptors, especially LPA1, are neuroprotective in a variety of conditions, including cortical development, traumatic brain injury, spinal cord injury, stroke and others discussed here. Finally, LPA receptors may interact with other receptors, including a functional interaction with plasticity related genes.
Collapse
Affiliation(s)
- Eric Birgbauer
- Department of Biology, Winthrop University, Rock Hill, SC 29733, USA
| |
Collapse
|
13
|
Pouzol L, Sassi A, Tunis M, Zurbach A, Baumlin N, Gnerre C, Strasser DS, Marrie J, Vezzali E, Martinic MM. ACKR3 Antagonism Enhances the Repair of Demyelinated Lesions Through Both Immunomodulatory and Remyelinating Effects. Neurochem Res 2024; 49:2087-2104. [PMID: 38819698 PMCID: PMC11233362 DOI: 10.1007/s11064-024-04173-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/16/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024]
Abstract
Addressing inflammation, demyelination, and associated neurodegeneration in inflammatory demyelinating diseases like multiple sclerosis (MS) remains challenging. ACT-1004-1239, a first-in-class and potent ACKR3 antagonist, currently undergoing clinical development, showed promise in preclinical MS models, reducing neuroinflammation and demyelination. However, its effectiveness in treating established disease and impact on remyelination after the occurrence of demyelinated lesions remain unexplored. This study assessed the therapeutic effect of ACT-1004-1239 in two demyelinating disease models. In the proteolipid protein (PLP)-induced experimental autoimmune encephalomyelitis (EAE) model, ACT-1004-1239 administered upon the detection of the first signs of paralysis, resulted in a dose-dependent reduction in EAE disease severity, concomitant with diminished immune cell infiltrates in the CNS and reduced demyelination. Notably, efficacy correlated with elevated plasma concentrations of CXCL11 and CXCL12, two pharmacodynamic biomarkers of ACKR3 antagonism. Combining ACT-1004-1239 with siponimod, an approved immunomodulatory treatment for MS, synergistically reduced EAE severity. In the cuprizone-induced demyelination model, ACT-1004-1239 administered after 5 weeks of cuprizone exposure, significantly accelerated remyelination, already quantifiable one week after cuprizone withdrawal. Additionally, ACT-1004-1239 penetrated the CNS, elevating brain CXCL12 concentrations. These results demonstrate that ACKR3 antagonism significantly reduces the severity of experimental demyelinating diseases, even when treatment is initiated therapeutically, after the occurrence of lesions. It confirms the dual mode of action of ACT-1004-1239, exhibiting both immunomodulatory effects by reducing neuroinflammation and promyelinating effects by accelerating myelin repair. The results further strengthen the rationale for evaluating ACT-1004-1239 in clinical trials for patients with demyelinating diseases.
Collapse
Affiliation(s)
- Laetitia Pouzol
- Idorsia Pharmaceuticals Ltd, Hegenheimermattweg 91, Allschwil 4123, Basel-Landschaft, Switzerland.
| | - Anna Sassi
- Idorsia Pharmaceuticals Ltd, Hegenheimermattweg 91, Allschwil 4123, Basel-Landschaft, Switzerland
| | - Mélanie Tunis
- Idorsia Pharmaceuticals Ltd, Hegenheimermattweg 91, Allschwil 4123, Basel-Landschaft, Switzerland
| | - Anaïs Zurbach
- Idorsia Pharmaceuticals Ltd, Hegenheimermattweg 91, Allschwil 4123, Basel-Landschaft, Switzerland
| | - Nadège Baumlin
- Idorsia Pharmaceuticals Ltd, Hegenheimermattweg 91, Allschwil 4123, Basel-Landschaft, Switzerland
| | - Carmela Gnerre
- Idorsia Pharmaceuticals Ltd, Hegenheimermattweg 91, Allschwil 4123, Basel-Landschaft, Switzerland
| | - Daniel S Strasser
- Idorsia Pharmaceuticals Ltd, Hegenheimermattweg 91, Allschwil 4123, Basel-Landschaft, Switzerland
| | - Julia Marrie
- Idorsia Pharmaceuticals Ltd, Hegenheimermattweg 91, Allschwil 4123, Basel-Landschaft, Switzerland
| | - Enrico Vezzali
- Idorsia Pharmaceuticals Ltd, Hegenheimermattweg 91, Allschwil 4123, Basel-Landschaft, Switzerland
| | - Marianne M Martinic
- Idorsia Pharmaceuticals Ltd, Hegenheimermattweg 91, Allschwil 4123, Basel-Landschaft, Switzerland
| |
Collapse
|
14
|
Yang Y, Liu Y, Tang H, Zhou Q, Li H, Song E. FTY720 Suppresses Pathogenic Retinal Müller Cell Activation and Chronic Progression by Inhibiting the mTOR/NF-κB Signaling Pathway and Regulating Autophagy. Curr Eye Res 2024; 49:862-871. [PMID: 38577836 DOI: 10.1080/02713683.2024.2337301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
PURPOSE FTY720 is an agonist of the Sphingosine-1-phosphate (S1P) receptor 1, 3, 4, and 5 and a functional antagonist of the S1P1 receptor; it can inhibit the activation of mTOR/NF-κB and has therapeutic potential in inflammatory disease. This study was designed to determine the role of the inflammatory process in diabetic retinopathy and investigate the effect of FTY720 on high glucose (HG)-induced rat retinal Müller cells (rMC-1 cells). METHODS In the present study, the role of FTY720 in inhibiting inflammation and its underlying mechanism were investigated. rMC-1 cells were treated without or with HG, FTY720, CQ, or RAP. Cell viability was examined by CCK-8 assay; cell activation was assessed by western blot analysis and IF staining; and cell migration was evaluated by a scratch wound healing assay. The expression of inflammation-associated proteins and autophagy-related proteins was evaluated by transmission electron microscopy, AO staining, MDC-labeled autophagic vacuoles, western blot analysis and ELISA. RESULTS Western blot analysis and IF staining showed that the level of the rMC-1 cell marker GFAP was decreased, while GS was increased in FTY720 groups compared to that in the HG group. The healing assay results showed that compared with HG treatment, FTY720 treatment significantly reduced cell migration. Western blot analysis, ELISA and IF staining showed that compared with HG, FTY720 reduced proinflammatory proteins by inhibiting the mechanistic target of the mTOR/NF-κB signaling pathway and regulating autophagy. CONCLUSIONS This study suggests that in an HG-induced rMC-1 cell model, FTY720 significantly inhibited the production of inflammatory cytokines by inhibiting mTOR/NF-κB signaling and regulating autophagy. These findings were associated with a decrease in rMC-1 cell injury, suggesting that FTY720 or related compounds may be valuable modulators of HG-induced retinal injury.
Collapse
Affiliation(s)
- Yanting Yang
- Department of Ophthalmology, Suzhou Medical College of Soochow University, Suzhou, China
- Department of Ophthalmology, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, China
| | - Yan Liu
- Department of Ophthalmology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Huan Tang
- Department of Ophthalmology, Changzhou Municipal Hospital of Traditional Chinese Medicine, Changzhou, China
| | - Qing Zhou
- Department of Ophthalmology, Changzhou Municipal Hospital of Traditional Chinese Medicine, Changzhou, China
| | - Huanhuan Li
- Department of Ophthalmology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - E Song
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, China
| |
Collapse
|
15
|
Stefanović M, Jovanović I, Živković M, Stanković A. Pathway analysis of peripheral blood CD8+ T cell transcriptome shows differential regulation of sphingolipid signaling in multiple sclerosis and glioblastoma. PLoS One 2024; 19:e0305042. [PMID: 38861512 PMCID: PMC11166308 DOI: 10.1371/journal.pone.0305042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/22/2024] [Indexed: 06/13/2024] Open
Abstract
Multiple sclerosis (MS) and glioblastoma (GBM) are CNS diseases in whose development and progression immune privilege is intimately important, but in a relatively opposite manner. Maintenance and strengthening of immune privilege have been shown to be an important mechanism in glioblastoma immune evasion, while the breakdown of immune privilege leads to MS initiation and exacerbation. We hypothesize that molecular signaling pathways can be oppositely regulated in peripheral blood CD8+ T cells of MS and glioblastoma patients at a transcriptional level. We analyzed publicly available data of the peripheral blood CD8+ T cell MS vs. control (MSvsCTRL) and GBM vs. control (GBMvsCTRL) differentially expressed gene (DEG) contrasts with Qiagen's Ingenuity pathway analysis software (IPA). We have identified sphingolipid signaling pathway which was significantly downregulated in the GBMvsCTRL and upregulated in the MSvsCTRL. As the pathway is important for the CD8+ T lymphocytes CNS infiltration, this result is in line with our previously stated hypothesis. Comparing publicly available lists of differentially expressed serum exosomal miRNAs from MSvsCTRL and GBMvsCTRL contrasts, we have identified that hsa-miR-182-5p has the greatest potential effect on sphingolipid signaling regarding the number of regulated DEGs in the GBMvsCTRL contrast, while not being able to find any relevant potential sphingolipid signaling target transcripts in the MSvsCTRL contrast. We conclude that the sphingolipid signaling pathway is a top oppositely regulated pathway in peripheral blood CD8+ T cells from GBM and MS, and might be crucial for the differences in CNS immune privilege maintenance of investigated diseases, but further experimental research is necessary.
Collapse
Affiliation(s)
- Milan Stefanović
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Ivan Jovanović
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Maja Živković
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Stanković
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
16
|
Ito T, Ishida Y, Zhang Y, Guichard V, Zhang W, Han R, Guckian K, Chun J, Que J, Smith A, Urban JF, Huang Y. ILC2s navigate tissue redistribution during infection using stage-specific S1P receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.12.592576. [PMID: 38798480 PMCID: PMC11118432 DOI: 10.1101/2024.05.12.592576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Lymphocytes can circulate as well as take residence within tissues. While the mechanisms by which circulating populations are recruited to infection sites have been extensively characterized, the molecular basis for the recirculation of tissue-resident cells is less understood. Here, we show that helminth infection- or IL-25-induced redistribution of intestinal group 2 innate lymphoid cells (ILC2s) requires access to the lymphatic vessel network. Although the secondary lymphoid structure is an essential signal hub for adaptive lymphocyte differentiation and dispatch, it is redundant for ILC2 migration and effector function. Upon IL-25 stimulation, a dramatic change in epigenetic landscape occurs in intestinal ILC2s, leading to the expression of sphingosine-1-phosphate receptors (S1PRs). Among the various S1PRs, we found that S1PR5 is critical for ILC2 exit from intestinal tissue to lymph. By contrast, S1PR1 plays a dominant role in ILC2 egress from mesenteric lymph nodes to blood circulation and then to distal tissues including the lung where the redistributed ILC2s contribute to tissue repair. The requirement of two S1PRs for ILC2 migration is largely due to the dynamic expression of the tissue-retention marker CD69, which mediates S1PR1 internalization. Thus, our study demonstrates a stage-specific requirement of different S1P receptors for ILC2 redistribution during infection. We therefore propose a fundamental paradigm that innate and adaptive lymphocytes utilize a shared vascular network frame and specialized navigation cues for migration.
Collapse
|
17
|
Qiu L, Jiang H, Cho K, Yu Y, Jones LA, Huang T, Perlmutter JS, Gropler RJ, Brier MR, Patti GJ, Benzinger TLS, Tu Z. Metabolite Study and Structural Authentication for the First-in-Human Use Sphingosine-1-phosphate Receptor 1 Radiotracer. ACS Chem Neurosci 2024; 15:1882-1892. [PMID: 38634759 PMCID: PMC11103254 DOI: 10.1021/acschemneuro.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
The sphingosine-1-phosphate receptor 1 (S1PR1) radiotracer [11C]CS1P1 has shown promise in proof-of-concept PET imaging of neuroinflammation in multiple sclerosis (MS). Our HPLC radiometabolite analysis of human plasma samples collected during PET scans with [11C]CS1P1 detected a radiometabolite peak that is more lipophilic than [11C]CS1P1. Radiolabeled metabolites that cross the blood-brain barrier complicate quantitative modeling of neuroimaging tracers; thus, characterizing such radiometabolites is important. Here, we report our detailed investigation of the metabolite profile of [11C]CS1P1 in rats, nonhuman primates, and humans. CS1P1 is a fluorine-containing ligand that we labeled with C-11 or F-18 for preclinical studies; the brain uptake was similar for both radiotracers. The same lipophilic radiometabolite found in human studies also was observed in plasma samples of rats and NHPs for CS1P1 labeled with either C-11 or F-18. We characterized the metabolite in detail using rats after injection of the nonradioactive CS1P1. To authenticate the molecular structure of this radiometabolite, we injected rats with 8 mg/kg of CS1P1 to collect plasma for solvent extraction and HPLC injection, followed by LC/MS analysis of the same metabolite. The LC/MS data indicated in vivo mono-oxidation of CS1P1 produces the metabolite. Subsequently, we synthesized three different mono-oxidized derivatives of CS1P1 for further investigation. Comparing the retention times of the mono-oxidized derivatives with the metabolite observed in rats injected with CS1P1 identified the metabolite as N-oxide 1, also named TZ82121. The MS fragmentation pattern of N-oxide 1 also matched that of the major metabolite in rat plasma. To confirm that metabolite TZ82121 does not enter the brain, we radiosynthesized [18F]TZ82121 by the oxidation of [18F]FS1P1. Radio-HPLC analysis confirmed that [18F]TZ82121 matched the radiometabolite observed in rat plasma post injection of [18F]FS1P1. Furthermore, the acute biodistribution study in SD rats and PET brain imaging in a nonhuman primate showed that [18F]TZ82121 does not enter the rat or nonhuman primate brain. Consequently, we concluded that the major lipophilic radiometabolite N-oxide [11C]TZ82121, detected in human plasma post injection of [11C]CS1P1, does not enter the brain to confound quantitative PET data analysis. [11C]CS1P1 is a promising S1PR1 radiotracer for detecting S1PR1 expression in the CNS.
Collapse
Affiliation(s)
- Lin Qiu
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Hao Jiang
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Kevin Cho
- Center for Mass Spectrometry and Metabolic Tracing, Department of Chemistry, Department of Medicine, Washington University, Saint Louis, Missouri 63130, United States
| | - Yanbo Yu
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Lynne A Jones
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Tianyu Huang
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Joel S Perlmutter
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
- Departments of Neurology, Neuroscience, Physical Therapy and Occupational Therapy, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Robert J Gropler
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Matthew R Brier
- Departments of Neurology, Neuroscience, Physical Therapy and Occupational Therapy, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Gary J Patti
- Center for Mass Spectrometry and Metabolic Tracing, Department of Chemistry, Department of Medicine, Washington University, Saint Louis, Missouri 63130, United States
| | - Tammie L S Benzinger
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Zhude Tu
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| |
Collapse
|
18
|
Modak A, Mishra SR, Awasthi M, Aravind A, Singh S, Sreekumar E. Fingolimod (FTY720), an FDA-approved sphingosine 1-phosphate (S1P) receptor agonist, restores endothelial hyperpermeability in cellular and animal models of dengue virus serotype 2 infection. IUBMB Life 2024; 76:267-285. [PMID: 38031996 DOI: 10.1002/iub.2795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
Extensive vascular leakage and shock is a major cause of dengue-associated mortality. At present, there are no specific treatments available. Sphingolipid pathway is a key player in the endothelial barrier integrity; and is mediated through the five sphingosine-1-phosphate receptors (S1PR1-S1PR5). Signaling through S1PR2 promotes barrier disruption; and in Dengue virus (DENV)-infection, there is overexpression of this receptor. Fingolimod (FTY720) is a specific agonist that targets the remaining barrier-protective S1P receptors, without targeting S1PR2. In the present study, we explored whether FTY720 treatment can alleviate DENV-induced endothelial hyperpermeability. In functional assays, in both in vitro systems and in AG129 animal models, FTY720 treatment was found effective. Upon treatment, there was complete restoration of the monolayer integrity in DENV serotype 2-infected human microvascular endothelial cells (HMEC-1). At the molecular level, the treatment reversed activation of the S1P pathway. It significantly reduced the phosphorylation of the key molecules such as PTEN, RhoA, and VE-Cadherin; and also, the expression levels of S1PR2. In DENV2-infected AG129 mice treated with FTY720, there was significant improvement in weight gain, in overall clinical symptoms, and in survival. Whereas 100% of the DENV2-infected, untreated animals died by day-10 post-infection, 70% of the FTY720-treated animals were alive; and at the end of the 15-day post-infection observation period, 30% of them were still surviving. There was a significant reduction in the Evan's-blue dye permeability in the organs of FTY720-treated, DENV-2 infected animals; and also improvement in the hemogram, with complete restoration of thrombocytopenia and hepatic function. Our results show that the FDA-approved molecule Fingolimod (FTY720) is a promising therapeutic intervention in severe dengue.
Collapse
Affiliation(s)
- Ayan Modak
- Molecular Virology Laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
- Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad, Haryana (NCR Delhi), India
| | - Srishti Rajkumar Mishra
- Molecular Virology Laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
- Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad, Haryana (NCR Delhi), India
| | - Mansi Awasthi
- Molecular Virology Laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
- Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad, Haryana (NCR Delhi), India
| | - Arya Aravind
- Animal Research Facility, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
| | - Sneha Singh
- Molecular Virology Laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
| | - Easwaran Sreekumar
- Molecular Virology Laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
- Molecular Bioassay Laboratory, Institute of Advanced Virology (IAV), Thiruvananthapuram, Kerala, India
| |
Collapse
|
19
|
Yang X, Wang K, Shen P, Zhou T, Xu Y, Chen Y, Li Y, Yao Y, Gong Z, Duan R, Jing L, Jia Y. Association of plasma sphingosine-1-phosphate levels with disease severity and prognosis after intracerebral hemorrhage. Front Neurol 2024; 15:1365902. [PMID: 38633536 PMCID: PMC11021779 DOI: 10.3389/fneur.2024.1365902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
Purpose Sphingosine-1-phosphate (S1P) is a signaling lipid involved in many biological processes, including inflammatory and immune regulatory responses. The study aimed to determine whether admission S1P levels are associated with disease severity and prognosis after spontaneous intracerebral hemorrhage (ICH). Methods Data of 134 patients with spontaneous ICH and 120 healthy controls were obtained from Biological Resource Sample Database of Intracerebral Hemorrhage at the First Affiliated Hospital of Zhengzhou University. Plasma S1P levels were measured. Regression analyses were used to analyze the association between S1P levels and admission and 90-day modified Rankin scale (mRS) scores. Receiver operating characteristic (ROC) curves assessed the predictive value of S1P levels for ICH severity and prognosis. Results Patients with ICH exhibited elevated plasma S1P levels compared to the control group (median 286.95 vs. 239.80 ng/mL, p < 0.001). When divided patients into mild-to-moderate and severe groups according to their mRS scores both at admission and discharge, S1P levels were significantly elevated in the severe group compared to the mild-to-moderate group (admission 259.30 vs. 300.54, p < 0.001; 90-day 275.24 vs. 303.25, p < 0.001). The patients were divided into three groups with different concentration gradients, which showed significant statistical differences in admission mRS scores (3 vs. 4 vs. 5, p < 0.001), 90-day mRS scores (2.5 vs. 3 vs. 4, p < 0.001), consciousness disorders (45.5% vs. 68.2% vs. 69.6%, p = 0.033), ICU admission (29.5% vs. 59.1% vs. 89.1%, p < 0.001), surgery (15.9% vs. 47.7% vs. 82.6%, p < 0.001), intraventricular hemorrhages (27.3% vs. 61.4% vs. 65.2%, p < 0.001) and pulmonary infection (25% vs. 47.7% vs. 84.8%, p < 0.001). Multivariate analysis displayed that S1P level was an independent risk factor for disease severity (OR = 1.037, 95% CI = 1.020-1.054, p < 0.001) and prognosis (OR = 1.018, 95% CI = 1.006-1.030, p = 0.003). ROC curves revealed a predictive value of S1P levels with an area under the curve of 0.7952 (95% CI = 0.7144-0.8759, p < 0.001) for disease severity and 0.7105 (95% CI = 0.6227-0.7983, p < 0.001) for prognosis. Conclusion Higher admission S1P is associated with worse initial disease severity and 90-day functional outcomes in intracerebral hemorrhage.
Collapse
Affiliation(s)
- Xuan Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kaixin Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ping Shen
- Department of Neurology, Xinzheng Huaxin Minsheng Hospital, Zhengzhou, Henan, China
| | - Tong Zhou
- Department of Neurology, Huaiyang County People’s Hospital, Zhoukou, Henan, China
| | - Yudi Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yufei Chen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanfei Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yaobing Yao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhe Gong
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ranran Duan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lijun Jing
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanjie Jia
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
20
|
Wu X, Wang S, Xue T, Tan X, Li J, Chen Z, Wang Z. Disease-modifying therapy in progressive multiple sclerosis: a systematic review and network meta-analysis of randomized controlled trials. Front Neurol 2024; 15:1295770. [PMID: 38529035 PMCID: PMC10962394 DOI: 10.3389/fneur.2024.1295770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/06/2024] [Indexed: 03/27/2024] Open
Abstract
Background Currently, disease-modifying therapies (DMTs) for progressive multiple sclerosis (PMS) are widely used in clinical practice. At the same time, there are a variety of drug options for DMTs, but the effect of the drugs that can better relieve symptoms and improve the prognosis are still inconclusive. Objectives This systematic review aimed to evaluate the efficacy and safety of DMTs for PMS and to identify the best among these drugs. Methods MEDLINE, EMBASE, the Cochrane Library, and clinicaltrials.gov were systematically searched to identify relevant studies published before 30 January, 2023. We assessed the certainty of the evidence using the confidence in the network meta-analysis (CINeMA) framework. We estimated the summary risk ratio (RR) for dichotomous outcomes and mean differences (MD) for continuous outcomes with 95% credible intervals (CrIs). Results We included 18 randomized controlled trials (RCTs) involving 9,234 patients in the study. DMT can effectively control the disease progression of MS. Among them, mitoxantrone, siponimod, and ocrelizumab are superior to other drug options in delaying disease progression (high certainty). Mitoxantrone was the best (with high certainty) for mitigating deterioration (progression of disability). Ocrelizumab performed best on the pre- and post-treatment Timed 25-Foot Walk test (T25FW; low certainty), as did all other agents (RR range: 1.12-1.05). In the 9-Hole Peg Test (9HPT), natalizumab performed the best (high certainty), as did all other agents (RR range: 1.59-1.09). In terms of imaging, IFN-beta-1b performed better on the new T2 hypointense lesion on contrast, before and after treatment (high certainty), while siponimod performed best on the change from baseline in the total volume of lesions on T2-weighted image contrast before and after treatment (high certainty), and sWASO had the highest area under the curve (SUCRA) value (100%). In terms of adverse events (AEs), rituximab (RR 1.01), and laquinimod (RR 1.02) were more effective than the placebo (high certainty). In terms of serious adverse events (SAEs), natalizumab (RR 1.09), and ocrelizumab (RR 1.07) were safer than placebo (high certainty). Conclusion DMTs can effectively control disease progression and reduce disease deterioration during the treatment of PMS. Systematic review registration https://inplasy.com/?s=202320071, identifier: 202320071.
Collapse
Affiliation(s)
- Xin Wu
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Shixin Wang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Tao Xue
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xin Tan
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Jiaxuan Li
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhouqing Chen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhong Wang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
21
|
Wang F, Fu K, Wang Y, Pan C, Wang X, Liu Z, Yang C, Zheng Y, Li X, Lu Y, To KKW, Xia C, Zhang J, Shi Z, Hu Z, Huang M, Fu L. Small-molecule agents for cancer immunotherapy. Acta Pharm Sin B 2024; 14:905-952. [PMID: 38486980 PMCID: PMC10935485 DOI: 10.1016/j.apsb.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 03/17/2024] Open
Abstract
Cancer immunotherapy, exemplified by the remarkable clinical benefits of the immune checkpoint blockade and chimeric antigen receptor T-cell therapy, is revolutionizing cancer therapy. They induce long-term tumor regression and overall survival benefit in many types of cancer. With the advances in our knowledge about the tumor immune microenvironment, remarkable progress has been made in the development of small-molecule drugs for immunotherapy. Small molecules targeting PRR-associated pathways, immune checkpoints, oncogenic signaling, metabolic pathways, cytokine/chemokine signaling, and immune-related kinases have been extensively investigated. Monotherapy of small-molecule immunotherapeutic drugs and their combinations with other antitumor modalities are under active clinical investigations to overcome immune tolerance and circumvent immune checkpoint inhibitor resistance. Here, we review the latest development of small-molecule agents for cancer immunotherapy by targeting defined pathways and highlighting their progress in recent clinical investigations.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Kai Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yujue Wang
- School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| | - Can Pan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xueping Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zeyu Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Chuan Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ying Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaopeng Li
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yu Lu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Kenneth Kin Wah To
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Chenglai Xia
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, China
| | - Jianye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhi Shi
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zeping Hu
- School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| | - Min Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
22
|
Sun G, Wang B, Wu X, Cheng J, Ye J, Wang C, Zhu H, Liu X. How do sphingosine-1-phosphate affect immune cells to resolve inflammation? Front Immunol 2024; 15:1362459. [PMID: 38482014 PMCID: PMC10932966 DOI: 10.3389/fimmu.2024.1362459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/06/2024] [Indexed: 04/17/2024] Open
Abstract
Inflammation is an important immune response of the body. It is a physiological process of self-repair and defense against pathogens taken up by biological tissues when stimulated by damage factors such as trauma and infection. Inflammation is the main cause of high morbidity and mortality in most diseases and is the physiological basis of the disease. Targeted therapeutic strategies can achieve efficient toxicity clearance at the inflammatory site, reduce complications, and reduce mortality. Sphingosine-1-phosphate (S1P), a lipid signaling molecule, is involved in immune cell transport by binding to S1P receptors (S1PRs). It plays a key role in innate and adaptive immune responses and is closely related to inflammation. In homeostasis, lymphocytes follow an S1P concentration gradient from the tissues into circulation. One widely accepted mechanism is that during the inflammatory immune response, the S1P gradient is altered, and lymphocytes are blocked from entering the circulation and are, therefore, unable to reach the inflammatory site. However, the full mechanism of its involvement in inflammation is not fully understood. This review focuses on bacterial and viral infections, autoimmune diseases, and immunological aspects of the Sphks/S1P/S1PRs signaling pathway, highlighting their role in promoting intradial-adaptive immune interactions. How S1P signaling is regulated in inflammation and how S1P shapes immune responses through immune cells are explained in detail. We teased apart the immune cell composition of S1P signaling and the critical role of S1P pathway modulators in the host inflammatory immune system. By understanding the role of S1P in the pathogenesis of inflammatory diseases, we linked the genomic studies of S1P-targeted drugs in inflammatory diseases to provide a basis for targeted drug development.
Collapse
Affiliation(s)
- Gehui Sun
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Bin Wang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xiaoyu Wu
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jiangfeng Cheng
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junming Ye
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Clinical College, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Chunli Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Hongquan Zhu
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xiaofeng Liu
- Clinical College, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Emergency, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
23
|
Ti R, Pang B, Yu L, Gan B, Ma W, Warshel A, Ren R, Zhu L. Fine-tuning activation specificity of G-protein-coupled receptors via automated path searching. Proc Natl Acad Sci U S A 2024; 121:e2317893121. [PMID: 38346183 PMCID: PMC10895267 DOI: 10.1073/pnas.2317893121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024] Open
Abstract
Physics-based simulation methods can grant atomistic insights into the molecular origin of the function of biomolecules. However, the potential of such approaches has been hindered by their low efficiency, including in the design of selective agonists where simulations of myriad protein-ligand combinations are necessary. Here, we describe an automated input-free path searching protocol that offers (within 14 d using Graphics Processing Unit servers) a minimum free energy path (MFEP) defined in high-dimension configurational space for activating sphingosine-1-phosphate receptors (S1PRs) by arbitrary ligands. The free energy distributions along the MFEP for four distinct ligands and three S1PRs reached a remarkable agreement with Bioluminescence Resonance Energy Transfer (BRET) measurements of G-protein dissociation. In particular, the revealed transition state structures pointed out toward two S1PR3 residues F263/I284, that dictate the preference of existing agonists CBP307 and BAF312 on S1PR1/5. Swapping these residues between S1PR1 and S1PR3 reversed their response to the two agonists in BRET assays. These results inspired us to design improved agonists with both strong polar head and bulky hydrophobic tail for higher selectivity on S1PR1. Through merely three in silico iterations, our tool predicted a unique compound scaffold. BRET assays confirmed that both chiral forms activate S1PR1 at nanomolar concentration, 1 to 2 orders of magnitude less than those for S1PR3/5. Collectively, these results signify the promise of our approach in fine agonist design for G-protein-coupled receptors.
Collapse
Affiliation(s)
- Rujuan Ti
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Bin Pang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200437, China
| | - Leiye Yu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200437, China
| | - Bing Gan
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Wenzhuo Ma
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089
| | - Ruobing Ren
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200437, China
- Shanghai Qi Zhi Institute, Shanghai 200030, China
| | - Lizhe Zhu
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
24
|
Součková I, Souček O, Krejsek J, Vyšata O, Matyáš D, Peterka M, Novotný M, Kunc P, Pavelek Z. Quantiferon Monitor Testing Sheds Light on Immune System Disparities between Multiple Sclerosis Patients and Healthy Individuals. Int J Mol Sci 2024; 25:2179. [PMID: 38396856 PMCID: PMC10889671 DOI: 10.3390/ijms25042179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/27/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The aim of this study was to conduct QuantiFERON Monitor (QFM) testing in patients with multiple sclerosis (MS), which is used to monitor the state of the immune system through the non-specific stimulation of leukocytes followed by determining the level of interferon-gamma (IFN-γ) released from activated cells. Additionally, we tested the level of selected cytokines (IFN-α, IFN-γ, IL-1α, IL-1β, IL-1ra, IL-2, IL-3, IL-4, IL-6, IL-7, IL-10, IL-15, IL-33, VEGF) from stimulated blood samples to further understand the immune response. This study builds upon a previously published study, utilizing activated serum samples that were initially used for IFN-γ determination. However, our current focus shifts from IFN-γ to exploring other cytokines that could provide further insights into the immune response. A screening was conducted using Luminex technology, which yielded promising results. These results were then further elaborated upon using ELISA to provide a more detailed understanding of the cytokine profiles involved. This study, conducted from August 2019 to June 2023, included 280 participants: 98 RRMS patients treated with fingolimod (fMS), 96 untreated patients with progressive MS (pMS), and 86 healthy controls (HC). Our results include Violin plots showing elevated IL-1α in pMS and fMS. Statistical analysis indicated significant differences in the interleukin levels between groups, with IL-1ra and age as key predictors in differentiating HC from pMS and IL-1ra, IL-1α, age, and EDSS in distinguishing pMS from fMS. These findings suggest cytokines' potential as biomarkers in MS progression and treatment response.
Collapse
Affiliation(s)
- Ilona Součková
- Department of Clinical Immunology and Allergology, University Hospital Hradec Kralove, 50005 Hradec Kralove, Czech Republic
- Faculty of Medicine in Hradec Králové, Charles University, 50003 Hradec Kralove, Czech Republic (Z.P.)
| | - Ondřej Souček
- Department of Clinical Immunology and Allergology, University Hospital Hradec Kralove, 50005 Hradec Kralove, Czech Republic
- Faculty of Medicine in Hradec Králové, Charles University, 50003 Hradec Kralove, Czech Republic (Z.P.)
| | - Jan Krejsek
- Department of Clinical Immunology and Allergology, University Hospital Hradec Kralove, 50005 Hradec Kralove, Czech Republic
- Faculty of Medicine in Hradec Králové, Charles University, 50003 Hradec Kralove, Czech Republic (Z.P.)
| | - Oldřich Vyšata
- Faculty of Medicine in Hradec Králové, Charles University, 50003 Hradec Kralove, Czech Republic (Z.P.)
- Department of Neurology, University Hospital Hradec Kralove, 50005 Hradec Kralove, Czech Republic
| | - David Matyáš
- Faculty of Medicine in Hradec Králové, Charles University, 50003 Hradec Kralove, Czech Republic (Z.P.)
- Department of Neurology, University Hospital Hradec Kralove, 50005 Hradec Kralove, Czech Republic
| | - Marek Peterka
- Faculty of Medicine in Hradec Králové, Charles University, 50003 Hradec Kralove, Czech Republic (Z.P.)
- Department of Neurology, University Hospital Hradec Kralove, 50005 Hradec Kralove, Czech Republic
| | - Michal Novotný
- Department of Neurology, University Hospital Hradec Kralove, 50005 Hradec Kralove, Czech Republic
| | - Pavel Kunc
- Faculty of Medicine in Hradec Králové, Charles University, 50003 Hradec Kralove, Czech Republic (Z.P.)
- Department of Neurology, University Hospital Hradec Kralove, 50005 Hradec Kralove, Czech Republic
| | - Zbyšek Pavelek
- Faculty of Medicine in Hradec Králové, Charles University, 50003 Hradec Kralove, Czech Republic (Z.P.)
- Department of Neurology, University Hospital Hradec Kralove, 50005 Hradec Kralove, Czech Republic
| |
Collapse
|
25
|
Jeantin L, Shor N, Pallix-Guyot M, Roos-Weil D, Bellanger A, Le Garff-Tavernier M, Papeix C, Weiss N, Pourcher V. Halting progressive multifocal leukoencephalopathy with pembrolizumab: the case of a patient with multiple sclerosis under fingolimod. J Neurol 2024; 271:729-732. [PMID: 37910249 DOI: 10.1007/s00415-023-12055-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023]
Affiliation(s)
- Lina Jeantin
- Département de neurologie, unité de Médecine Intensive Réanimation à orientation neurologique, Sorbonne Université, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Natalia Shor
- Department of Neuroradiology, Sorbonne Université, AP-HP, Hôpital de la Pitié-Salpêtrière, 47-83 Bd de l'Hôpital, Paris, France
| | - Maud Pallix-Guyot
- Department of Neurology, Orléans Hospital, 14 avenue de l'Hôpital, Orléans, France
| | - Damien Roos-Weil
- Department of Clinical Hematology, Pitié-Salpétrière University Hospital, 47-83 Bd de l'Hôpital, Paris, France
| | - Agnès Bellanger
- Département de Santé Publique, Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, IPLESP, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | - Magali Le Garff-Tavernier
- Department of Biological Hematology, Sorbonne Université, AP-HP, Hôpital de la Pitié-Salpêtrière, 47-83 Bd de l'Hôpital, 75013, Paris, France
| | - Caroline Papeix
- Department of Neurology, Hospital Foundation Adolphe de Rothschild, 25-29 rue Manin, Paris, France
| | - Nicolas Weiss
- Département de neurologie, unité de Médecine Intensive Réanimation à orientation neurologique, Sorbonne Université, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
- Brain Liver Pitié-Salpêtrière (BLIPS) Study Group, INSERM UMR_S 938, Centre de recherche Saint-Antoine, Maladies métaboliques, biliaires et fibro-inflammatoire du foie, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France & Groupe de Recherche Clinique en REanimation et Soins intensifs du Patient en Insuffisance Respiratoire aiguE (GRC-RESPIRE) Sorbonne Université, Paris, France
| | - Valérie Pourcher
- Service des Maladies infectieuses et tropicales, Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (IPLESP UMRS 1136), AP-HP, Hôpital Pitié Salpêtrière, Paris, France.
| |
Collapse
|
26
|
Sutter PA, Willis CM, Menoret A, Nicaise AM, Sacino A, Sikkema AH, Jellison ER, Win KK, Han DK, Church W, Baron W, Vella AT, Crocker SJ. Astrocytic TIMP-1 regulates production of Anastellin, an inhibitor of oligodendrocyte differentiation and FTY720 responses. Proc Natl Acad Sci U S A 2024; 121:e2306816121. [PMID: 38266047 PMCID: PMC10835138 DOI: 10.1073/pnas.2306816121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/27/2023] [Indexed: 01/26/2024] Open
Abstract
Astrocyte activation is associated with neuropathology and the production of tissue inhibitor of metalloproteinase-1 (TIMP1). TIMP1 is a pleiotropic extracellular protein that functions both as a protease inhibitor and as a growth factor. Astrocytes that lack expression of Timp1 do not support rat oligodendrocyte progenitor cell (rOPC) differentiation, and adult global Timp1 knockout (Timp1KO) mice do not efficiently remyelinate following a demyelinating injury. Here, we performed an unbiased proteomic analysis and identified a fibronectin-derived peptide called Anastellin (Ana) that was unique to the Timp1KO astrocyte secretome. Ana was found to block rOPC differentiation in vitro and enhanced the inhibitory influence of fibronectin on rOPC differentiation. Ana is known to act upon the sphingosine-1-phosphate receptor 1, and we determined that Ana also blocked the pro-myelinating effect of FTY720 (or fingolimod) on rOPC differentiation in vitro. Administration of FTY720 to wild-type C57BL/6 mice during MOG35-55-experimental autoimmune encephalomyelitis ameliorated clinical disability while FTY720 administered to mice lacking expression of Timp1 (Timp1KO) had no effect. Analysis of Timp1 and fibronectin (FN1) transcripts from primary human astrocytes from healthy and multiple sclerosis (MS) donors revealed lower TIMP1 expression was coincident with elevated FN1 in MS astrocytes. Last, analyses of proteomic databases of MS samples identified Ana peptides to be more abundant in the cerebrospinal fluid (CSF) of human MS patients with high disease activity. A role for Ana in MS as a consequence of a lack of astrocytic TIMP-1 production could influence both the efficacy of fingolimod responses and innate remyelination potential in the MS brain.
Collapse
Affiliation(s)
- Pearl A. Sutter
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT06030
| | - Cory M. Willis
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT06030
| | - Antoine Menoret
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT06030
| | - Alexandra M. Nicaise
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT06030
| | - Anthony Sacino
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT06030
| | - Arend. H. Sikkema
- Department of Biomedical Sciences of Cells & Systems, Section Neurobiology, University of Groningen, University Medical Center Groningen, Groningen9700RB, the Netherlands
| | - Evan R. Jellison
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT06030
| | - Kyaw K. Win
- Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT06030
| | - David K. Han
- Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT06030
| | - William Church
- Department of Chemistry and Neuroscience Program, Trinity College, Hartford, CT06106
| | - Wia Baron
- Department of Biomedical Sciences of Cells & Systems, Section Neurobiology, University of Groningen, University Medical Center Groningen, Groningen9700RB, the Netherlands
| | - Anthony T. Vella
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT06030
| | - Stephen J. Crocker
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT06030
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT06030
| |
Collapse
|
27
|
Sánchez-Sanz A, Muñoz-Viana R, Sabín-Muñoz J, Moreno-Torres I, Brea-Álvarez B, Rodríguez-De la Fuente O, García-Merino A, Sánchez-López AJ. Response to Fingolimod in Multiple Sclerosis Patients Is Associated with a Differential Transcriptomic Regulation. Int J Mol Sci 2024; 25:1372. [PMID: 38338652 PMCID: PMC10855583 DOI: 10.3390/ijms25031372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Fingolimod is an immunomodulatory sphingosine-1-phosphate (S1P) analogue approved for the treatment of relapsing-remitting multiple sclerosis (RRMS). The identification of biomarkers of clinical responses to fingolimod is a major necessity in MS to identify optimal responders and avoid the risk of disease progression in non-responders. With this aim, we used RNA sequencing to study the transcriptomic changes induced by fingolimod in peripheral blood mononuclear cells of MS-treated patients and their association with clinical response. Samples were obtained from 10 RRMS patients (five responders and five non-responders) at baseline and at 12 months of fingolimod therapy. Fingolimod exerted a vast impact at the transcriptional level, identifying 7155 differentially expressed genes (DEGs) compared to baseline that affected the regulation of numerous signaling pathways. These DEGs were predominantly immune related, including genes associated with S1P metabolism, cytokines, lymphocyte trafficking, master transcription factors of lymphocyte functions and the NF-kB pathway. Responder and non-responder patients exhibited a differential transcriptomic regulation during treatment, with responders presenting a higher number of DEGs (6405) compared to non-responders (2653). The S1P, NF-kB and TCR signaling pathways were differentially modulated in responder and non-responder patients. These transcriptomic differences offer the potential of being exploited as biomarkers of a clinical response to fingolimod.
Collapse
Affiliation(s)
- Alicia Sánchez-Sanz
- Neuroimmunology Unit, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, 28222 Madrid, Spain;
| | - Rafael Muñoz-Viana
- Bioinformatics Unit, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, 28222 Madrid, Spain;
| | - Julia Sabín-Muñoz
- Department of Neurology, Hospital Universitario Puerta de Hierro Majadahonda, 28222 Madrid, Spain; (J.S.-M.); (O.R.-D.l.F.)
| | - Irene Moreno-Torres
- Demyelinating Diseases Unit, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain;
| | - Beatriz Brea-Álvarez
- Radiodiagnostic Division, Hospital Universitario Puerta de Hierro Majadahonda, 28222 Madrid, Spain;
| | - Ofir Rodríguez-De la Fuente
- Department of Neurology, Hospital Universitario Puerta de Hierro Majadahonda, 28222 Madrid, Spain; (J.S.-M.); (O.R.-D.l.F.)
| | - Antonio García-Merino
- Neuroimmunology Unit, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, 28222 Madrid, Spain;
- Department of Neurology, Hospital Universitario Puerta de Hierro Majadahonda, 28222 Madrid, Spain; (J.S.-M.); (O.R.-D.l.F.)
- Department of Medicine, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Red Española de Esclerosis Múltiple (REEM), 08028 Barcelona, Spain
| | - Antonio J. Sánchez-López
- Neuroimmunology Unit, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, 28222 Madrid, Spain;
- Red Española de Esclerosis Múltiple (REEM), 08028 Barcelona, Spain
- Biobank, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, 28222 Madrid, Spain
| |
Collapse
|
28
|
Kulkarni DH, Talati K, Joyce EL, Kousik H, Harris DL, Floyd AN, Vavrinyuk V, Barrios B, Udayan S, McDonald K, John V, Hsieh CS, Newberry RD. Small Intestinal Goblet Cells Control Humoral Immune Responses and Mobilization During Enteric Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.06.573891. [PMID: 38260555 PMCID: PMC10802374 DOI: 10.1101/2024.01.06.573891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Humoral immune responses within the gut play diverse roles including pathogen clearance during enteric infections, maintaining tolerance, and facilitating the assemblage and stability of the gut microbiota. How these humoral immune responses are initiated and contribute to these processes are well studied. However, the signals promoting the expansion of these responses and their rapid mobilization to the gut mucosa are less well understood. Intestinal goblet cells form goblet cell-associated antigen passages (GAPs) to deliver luminal antigens to the underlying immune system and facilitate tolerance. GAPs are rapidly inhibited during enteric infection to prevent inflammatory responses to innocuous luminal antigens. Here we interrogate GAP inhibition as a key physiological response required for effective humoral immunity. Independent of infection, GAP inhibition resulted in enrichment of transcripts representing B cell recruitment, expansion, and differentiation into plasma cells in the small intestine (SI), which were confirmed by flow cytometry and ELISpot assays. Further we observed an expansion of isolated lymphoid follicles within the SI, as well as expansion of plasma cells in the bone marrow upon GAP inhibition. S1PR1-induced blockade of leukocyte trafficking during GAP inhibition resulted in a blunting of SI plasma cell expansion, suggesting that mobilization of plasma cells from the bone marrow contributes to their expansion in the gut. However, luminal IgA secretion was only observed in the presence of S. typhimurium infection, suggesting that although GAP inhibition mobilizes a mucosal humoral immune response, a second signal is required for full effector function. Overriding GAP inhibition during enteric infection abrogated the expansion of laminar propria IgA+ plasma cells. We conclude that GAP inhibition is a required physiological response for efficiently mobilizing mucosal humoral immunity in response to enteric infection.
Collapse
Affiliation(s)
- Devesha H. Kulkarni
- Division of Gastroenterology, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Khushi Talati
- Division of Gastroenterology, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Elisabeth L. Joyce
- Division of Gastroenterology, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Hrishi Kousik
- Division of Gastroenterology, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Dalia L. Harris
- Division of Gastroenterology, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Alexandria N. Floyd
- Division of Gastroenterology, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Vitaly Vavrinyuk
- Division of Gastroenterology, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Bibianna Barrios
- Division of Gastroenterology, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Sreeram Udayan
- Division of Gastroenterology, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Keely McDonald
- Division of Gastroenterology, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Vini John
- Division of Gastroenterology, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Chyi-Song Hsieh
- Division of Rheumatology John T. Milliken Department of Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Rodney D. Newberry
- Division of Gastroenterology, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| |
Collapse
|
29
|
Busey GW, Manjegowda MC, Huang T, Iobst WH, Naphade SS, Kennedy JA, Doyle CA, Seegren PV, Lynch KR, Desai BN. Analogs of FTY720 inhibit TRPM7 but not S1PRs and exert multimodal anti-inflammatory effects. J Gen Physiol 2024; 156:e202313419. [PMID: 37943249 PMCID: PMC10635799 DOI: 10.1085/jgp.202313419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/04/2023] [Accepted: 10/20/2023] [Indexed: 11/10/2023] Open
Abstract
TRPM7, a TRP channel with ion conductance and kinase activities, has emerged as an attractive drug target for immunomodulation. Reverse genetics and cell biological studies have already established a key role for TRPM7 in the inflammatory activation of macrophages. Advancing TRPM7 as a viable molecular target for immunomodulation requires selective TRPM7 inhibitors with in vivo tolerability and efficacy. Such inhibitors have the potential to interdict inflammatory cascades mediated by systemic and tissue-specialized macrophages. FTY720, an FDA-approved drug for multiple sclerosis inhibits TRPM7. However, FTY720 is a prodrug and its metabolite, FTY720-phosphate, is a potent agonist of sphingosine-1-phosphate (S1P) receptors. In this study, we test non-phosphorylatable FTY720 analogs, which are inert against S1PRs and well tolerated in vivo, for activity against TRPM7 and tissue bioavailability. Using patch clamp electrophysiology, we show that VPC01091.4 and AAL-149 block TRPM7 current at low micromolar concentrations. In culture, they act directly on macrophages to blunt LPS-induced inflammatory cytokine expression, though this likely occurrs through multiple molecular targets. We found that VPC01091.4 has significant and rapid accumulation in the brain and lungs, along with direct anti-inflammatory action on alveolar macrophages and microglia. Finally, using a mouse model of endotoxemia, we show VPC01091.4 to be an efficacious anti-inflammatory agent that arrests systemic inflammation in vivo. Together, these findings identify novel small molecule inhibitors that allow TRPM7 channel inhibition independent of S1P receptor targeting which demonstrate potent, polymodal anti-inflammatory activities ex vivo and in vivo.
Collapse
Affiliation(s)
- Gregory W. Busey
- Pharmacology Department, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Mohan C. Manjegowda
- Pharmacology Department, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Tao Huang
- Pharmacology Department, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Wesley H. Iobst
- Pharmacology Department, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Shardul S. Naphade
- Pharmacology Department, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Joel A. Kennedy
- Pharmacology Department, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Catherine A. Doyle
- Pharmacology Department, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Philip V. Seegren
- Pharmacology Department, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Kevin R. Lynch
- Pharmacology Department, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Bimal N. Desai
- Pharmacology Department, University of Virginia School of Medicine, Charlottesville, VA, USA
- Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
30
|
Bellanca CM, Augello E, Mariottini A, Bonaventura G, La Cognata V, Di Benedetto G, Cantone AF, Attaguile G, Di Mauro R, Cantarella G, Massacesi L, Bernardini R. Disease Modifying Strategies in Multiple Sclerosis: New Rays of Hope to Combat Disability? Curr Neuropharmacol 2024; 22:1286-1326. [PMID: 38275058 PMCID: PMC11092922 DOI: 10.2174/1570159x22666240124114126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/21/2023] [Accepted: 09/22/2023] [Indexed: 01/27/2024] Open
Abstract
Multiple sclerosis (MS) is the most prevalent chronic autoimmune inflammatory- demyelinating disorder of the central nervous system (CNS). It usually begins in young adulthood, mainly between the second and fourth decades of life. Usually, the clinical course is characterized by the involvement of multiple CNS functional systems and by different, often overlapping phenotypes. In the last decades, remarkable results have been achieved in the treatment of MS, particularly in the relapsing- remitting (RRMS) form, thus improving the long-term outcome for many patients. As deeper knowledge of MS pathogenesis and respective molecular targets keeps growing, nowadays, several lines of disease-modifying treatments (DMT) are available, an impressive change compared to the relative poverty of options available in the past. Current MS management by DMTs is aimed at reducing relapse frequency, ameliorating symptoms, and preventing clinical disability and progression. Notwithstanding the relevant increase in pharmacological options for the management of RRMS, research is now increasingly pointing to identify new molecules with high efficacy, particularly in progressive forms. Hence, future efforts should be concentrated on achieving a more extensive, if not exhaustive, understanding of the pathogenetic mechanisms underlying this phase of the disease in order to characterize novel molecules for therapeutic intervention. The purpose of this review is to provide a compact overview of the numerous currently approved treatments and future innovative approaches, including neuroprotective treatments as anti-LINGO-1 monoclonal antibody and cell therapies, for effective and safe management of MS, potentially leading to a cure for this disease.
Collapse
Affiliation(s)
- Carlo Maria Bellanca
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
- Clinical Toxicology Unit, University Hospital, University of Catania, 95123 Catania, Italy
| | - Egle Augello
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
- Clinical Toxicology Unit, University Hospital, University of Catania, 95123 Catania, Italy
| | - Alice Mariottini
- Department of Neurosciences Drugs and Child Health, University of Florence, Florence, Italy
| | - Gabriele Bonaventura
- Institute for Biomedical Research and Innovation (IRIB), Italian National Research Council, 95126 Catania, Italy
| | - Valentina La Cognata
- Institute for Biomedical Research and Innovation (IRIB), Italian National Research Council, 95126 Catania, Italy
| | - Giulia Di Benedetto
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
- Clinical Toxicology Unit, University Hospital, University of Catania, 95123 Catania, Italy
| | - Anna Flavia Cantone
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
| | - Giuseppe Attaguile
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
| | - Rosaria Di Mauro
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
| | - Giuseppina Cantarella
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
| | - Luca Massacesi
- Department of Neurosciences Drugs and Child Health, University of Florence, Florence, Italy
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
- Clinical Toxicology Unit, University Hospital, University of Catania, 95123 Catania, Italy
| |
Collapse
|
31
|
Jonnalagadda D, Kihara Y, Groves A, Ray M, Saha A, Ellington C, Lee-Okada HC, Furihata T, Yokomizo T, Quadros EV, Rivera R, Chun J. FTY720 requires vitamin B 12-TCN2-CD320 signaling in astrocytes to reduce disease in an animal model of multiple sclerosis. Cell Rep 2023; 42:113545. [PMID: 38064339 PMCID: PMC11066976 DOI: 10.1016/j.celrep.2023.113545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/24/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023] Open
Abstract
Vitamin B12 (B12) deficiency causes neurological manifestations resembling multiple sclerosis (MS); however, a molecular explanation for the similarity is unknown. FTY720 (fingolimod) is a sphingosine 1-phosphate (S1P) receptor modulator and sphingosine analog approved for MS therapy that can functionally antagonize S1P1. Here, we report that FTY720 suppresses neuroinflammation by functionally and physically regulating the B12 pathways. Genetic and pharmacological S1P1 inhibition upregulates a transcobalamin 2 (TCN2)-B12 receptor, CD320, in immediate-early astrocytes (ieAstrocytes; a c-Fos-activated astrocyte subset that tracks with experimental autoimmune encephalomyelitis [EAE] severity). CD320 is also reduced in MS plaques. Deficiency of CD320 or dietary B12 restriction worsens EAE and eliminates FTY720's efficacy while concomitantly downregulating type I interferon signaling. TCN2 functions as a chaperone for FTY720 and sphingosine, whose complex induces astrocytic CD320 internalization, suggesting a delivery mechanism of FTY720/sphingosine via the TCN2-CD320 pathway. Taken together, the B12-TCN2-CD320 pathway is essential for the mechanism of action of FTY720.
Collapse
Affiliation(s)
- Deepa Jonnalagadda
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Yasuyuki Kihara
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Aran Groves
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA; Neuroscience Graduate Program, School of Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Manisha Ray
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Arjun Saha
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Clayton Ellington
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Hyeon-Cheol Lee-Okada
- Department of Biochemistry, Graduate School of Medicine, Juntendo University, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Tomomi Furihata
- Laboratory of Clinical Pharmacy and Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Graduate School of Medicine, Juntendo University, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Edward V Quadros
- Department of Medicine, SUNY-Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA
| | - Richard Rivera
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
32
|
Ludwig R, Malla B, Höhrhan M, Infante-Duarte C, Anderhalten L. Investigating the Mitoprotective Effects of S1P Receptor Modulators Ex Vivo Using a Novel Semi-Automated Live Imaging Set-Up. Int J Mol Sci 2023; 25:261. [PMID: 38203434 PMCID: PMC10778583 DOI: 10.3390/ijms25010261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
In multiple sclerosis (MS), mitochondrial alterations appear to contribute to disease progression. The sphingosine-1-phosphate receptor modulator siponimod is approved for treating secondary progressive MS. Its preceding compound fingolimod was shown to prevent oxidative stress-induced alterations in mitochondrial morphology. Here, we assessed the effects of siponimod, compared to fingolimod, on neuronal mitochondria in oxidatively stressed hippocampal slices. We have also advanced the model of chronic organotypic hippocampal slices for live imaging, enabling semi-automated monitoring of mitochondrial alterations. The slices were prepared from B6.Cg-Tg(Thy1-CFP/COX8A)S2Lich/J mice that display fluorescent neuronal mitochondria. They were treated with hydrogen peroxide (oxidative stress paradigm) ± 1 nM siponimod or fingolimod for 24 h. Afterwards, mitochondrial dynamics were investigated. Under oxidative stress, the fraction of motile mitochondria decreased and mitochondria were shorter, smaller, and covered smaller distances. Siponimod partly prevented oxidatively induced alterations in mitochondrial morphology; for fingolimod, a similar trend was observed. Siponimod reduced the decrease in mitochondrial track displacement, while both compounds significantly increased track speed and preserved motility. The novel established imaging and analysis tools are suitable for assessing the dynamics of neuronal mitochondria ex vivo. Using these approaches, we showed that siponimod at 1 nM partially prevented oxidatively induced mitochondrial alterations in chronic brain slices.
Collapse
Affiliation(s)
- Rebecca Ludwig
- Experimental and Clinical Research Center (ECRC), 13125 Berlin, Germany; (R.L.); (L.A.)
- Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, 13125 Berlin, Germany
| | - Bimala Malla
- Experimental and Clinical Research Center (ECRC), 13125 Berlin, Germany; (R.L.); (L.A.)
- Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, 13125 Berlin, Germany
| | - Maria Höhrhan
- Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
- Institute for Medical Immunology, 13353 Berlin, Germany
| | - Carmen Infante-Duarte
- Experimental and Clinical Research Center (ECRC), 13125 Berlin, Germany; (R.L.); (L.A.)
- Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, 13125 Berlin, Germany
| | - Lina Anderhalten
- Experimental and Clinical Research Center (ECRC), 13125 Berlin, Germany; (R.L.); (L.A.)
- Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, 13125 Berlin, Germany
| |
Collapse
|
33
|
Thoma G, Markert C, Lueoend R, Miltz W, Spanka C, Bollbuck B, Wolf RM, Srinivas H, Penno CA, Kiffe M, Gajewska M, Bednarczyk D, Wieczorek G, Evans A, Beerli C, Röhn TA. Discovery of Amino Alcohols as Highly Potent, Selective, and Orally Efficacious Inhibitors of Leukotriene A4 Hydrolase. J Med Chem 2023; 66:16410-16425. [PMID: 38015154 DOI: 10.1021/acs.jmedchem.3c01866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The discovery of chiral amino alcohols derived from our previously disclosed clinical LTA4H inhibitor LYS006 is described. In a biochemical assay, their optical antipodes showed similar potencies, which could be rationalized by the cocrystal structures of these compounds bound to LTA4H. Despite comparable stabilities in liver microsomes, they showed distinct in vivo PK properties. Selective O-phosphorylation of the (R)-enantiomers in blood led to clearance values above the hepatic blood flow, whereas the (S)-enantiomers were unaffected and exhibited satisfactory metabolic stabilities in vivo. Introduction of two pyrazole rings led to compound (S)-2 with a more balanced distribution of polarity across the molecule, exhibiting high selectivity and excellent potency in vitro and in vivo. Furthermore, compound (S)-2 showed favorable profiles in 16-week IND-enabling toxicology studies in dogs and rats. Based on allometric scaling and potency in whole blood, compound (S)-2 has the potential for a low oral efficacious dose administered once daily.
Collapse
Affiliation(s)
- Gebhard Thoma
- Global Discovery Chemistry, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Christian Markert
- Global Discovery Chemistry, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Rainer Lueoend
- Global Discovery Chemistry, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Wolfgang Miltz
- Global Discovery Chemistry, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Carsten Spanka
- Global Discovery Chemistry, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Birgit Bollbuck
- Global Discovery Chemistry, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Romain M Wolf
- Global Discovery Chemistry, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Honnappa Srinivas
- Chemical Biology & Therapeutics, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Carlos A Penno
- Chemical Biology & Therapeutics, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Michael Kiffe
- PK Sciences, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Monika Gajewska
- PK Sciences, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Dallas Bednarczyk
- Discovery & Translational Lab, Biomedical Research, Novartis Pharma AG, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Grazyna Wieczorek
- Immunology Disease Area, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Amanda Evans
- Immunology Disease Area, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Christian Beerli
- Immunology Disease Area, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Till A Röhn
- Immunology Disease Area, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| |
Collapse
|
34
|
Proschmann U, Mueller-Enz M, Woopen C, Katoul Al Rahbani G, Haase R, Dillenseger A, Dunsche M, Atta Y, Ziemssen T, Akgün K. Differential effects of selective versus unselective sphingosine 1-phosphate receptor modulators on T- and B-cell response to SARS-CoV-2 vaccination. Mult Scler 2023; 29:1849-1859. [PMID: 37776101 PMCID: PMC10687795 DOI: 10.1177/13524585231200719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/07/2023] [Accepted: 08/25/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND Sphingosine 1-phosphat receptor modulators (S1PRMs) have been linked to attenuated immune response to SARS-CoV-2 vaccines. OBJECTIVE To characterize differences in the immune response to SARS-CoV-2 vaccines in patients on selective versus unselective S1PRMs. METHODS Monocentric, longitudinal study on people with multiple sclerosis (pwMS) on fingolimod (FTY), siponimod (SIP), ozanimod (OZA), or without disease-modifying therapy (DMT) following primary and booster SARS-CoV-2 vaccination. Anti-SARS-CoV-2 antibodies and T-cell response was measured with electro-chemiluminescent immunoassay and interferon-γ release assay. RESULTS Primary vaccination induced a significant antibody response in pwMS without DMT while S1PRM patients exhibited reduced antibody titers. The lowest antibodies were found in patients on FTY, whereas patients on OZA and SIP presented significantly higher levels. Booster vaccinations induced increased antibody levels in untreated patients and comparable titers in patients on OZA and SIP, but no increase in FTY-treated patients. While untreated pwMS developed a T-cell response, patients on S1PRMs presented a diminished/absent response. Patients undergoing SARS-CoV-2 vaccination before onset of S1PRMs presented a preserved, although attenuated humoral response, while T-cellular response was blunted. CONCLUSION Our data confirm differential effects of selective versus unselective S1PRMs on T- and B-cell response to SARS-CoV-2 vaccination and suggest association with S1PRM selectivity rather than lymphocyte redistribution.
Collapse
Affiliation(s)
- Undine Proschmann
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Technical University of Dresden, Dresden, Germany
| | - Magdalena Mueller-Enz
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Technical University of Dresden, Dresden, Germany
| | - Christina Woopen
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Technical University of Dresden, Dresden, Germany
| | - Georges Katoul Al Rahbani
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Technical University of Dresden, Dresden, Germany
| | - Rocco Haase
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Technical University of Dresden, Dresden, Germany
| | - Anja Dillenseger
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Technical University of Dresden, Dresden, Germany
| | - Marie Dunsche
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Technical University of Dresden, Dresden, Germany
| | - Yassin Atta
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Technical University of Dresden, Dresden, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Technical University of Dresden, Dresden, Germany
| | - Katja Akgün
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Technical University of Dresden, Dresden, Germany
| |
Collapse
|
35
|
Tatsumi R, Aihara S, Matsune S, Aoki J, Inoue A, Shimizu T, Nakamura M. Stepwise phosphorylation of BLT1 defines complex assemblies with β-arrestin serving distinct functions. FASEB J 2023; 37:e23213. [PMID: 37795742 DOI: 10.1096/fj.202301440r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 10/06/2023]
Abstract
G protein-coupled receptors (GPCRs) utilize complex cellular systems to respond to diverse ligand concentrations. By taking BLT1, a GPCR for leukotriene B4 (LTB4 ), as a model, our previous work elucidated that this system functions through the modulation of phosphorylation status on two specific residues: Thr308 and Ser310 . Ser310 phosphorylation occurs at a lower LTB4 concentration than Thr308 , leading to a shift in ligand affinity from a high-to-low state. However, the implications of BLT1 phosphorylation in signal transduction processes or the underlying mechanisms have remained unclear. Here, we identify the sequential BLT1-engaged conformations of β-arrestin and subsequent alterations in signal transduction. Stimulation of the high-affinity BLT1 with LTB4 induces phosphorylation at Ser310 via the ERK1/2-GRK pathway, resulting in a β-arrestin-bound low-affinity state. This configuration, referred to as the "low-LTB4 -induced complex," necessitates the finger loop region and the phosphoinositide-binding motif of β-arrestins to interact with BLT1 and deactivates the ERK1/2 signaling. Under high LTB4 concentrations, the low-affinity BLT1 again binds to the ligand and triggers the generation of the low-LTB4 -induced complex into a different form termed "high-LTB4 -induced complex." This change is propelled by The308 -phosphorylation-dependent basal phosphorylation by PKCs. Within the high-LTB4 -induced complex, β-arrestin adapts a unique configuration that involves additional N domain interaction to the low-affinity BLT1 and stimulates the PI3K/AKT pathway. We propose that the stepwise phosphorylation of BLT1 defines the formation of complex assemblies, wherein β-arrestins perform distinct functions.
Collapse
Affiliation(s)
- Riko Tatsumi
- Department of Bioscience, Graduate School of Life Science, Okayama University of Science, Okayama, Japan
| | - Saki Aihara
- Department of Bioscience, Graduate School of Life Science, Okayama University of Science, Okayama, Japan
| | - Seiya Matsune
- Department of Bioscience, Graduate School of Life Science, Okayama University of Science, Okayama, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
- Japan Agency for Medical Research and Development (AMED), Core Research for Evolutional Science and Technology (AMED-CREST), Graduate School of Pharmaceutical Science, University of Tokyo, Tokyo, Japan
| | - Asuka Inoue
- Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Takao Shimizu
- Department of Lipid Signaling, National Center for Global Health and Medicine, National Center for Global Health and Medicine, Tokyo, Japan
- Institute of Microbial Chemistry, Tokyo, Japan
| | - Motonao Nakamura
- Department of Bioscience, Graduate School of Life Science, Okayama University of Science, Okayama, Japan
| |
Collapse
|
36
|
Gassama S, Garmendia A, Lejeune FX, Boudot de la Motte M, Louapre C, Papeix C, Maillart E, Roux T. A short washout period from fingolimod to anti-CD20 therapy is safe and decreases the risk of reactivation. Rev Neurol (Paris) 2023; 179:1035-1038. [PMID: 37633735 DOI: 10.1016/j.neurol.2023.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/10/2023] [Accepted: 03/27/2023] [Indexed: 08/28/2023]
Abstract
The frequency of switches between Disease Modifying Therapies (DMTs) in Multiple Sclerosis (MS) has increased considerably over previous years. Between fingolimod and anti-CD20 therapies, a 1-month washout period is usually recommended. However, disease reactivations are frequent after fingolimod (Fg) cessation. Using a retrospective observational monocentric exposed/non-exposed cohort study, we investigated the efficacy and the safety of a shorter washout period (WP) between Fg and anti-CD20. We compared two groups: 25 patients with a short WP (<21 days) and 20 patients with a longer WP (>21 days). We observed no reactivation during WP in patients with a short WP against a relapse in 55% of patients in the longer group. Moreover, clinical and biological safety was excellent. Based on these findings, we recommend a shorter WP between fingolimod and anti-CD20 therapies in MS.
Collapse
Affiliation(s)
- S Gassama
- Department of Neurology, centre de ressources et de compétences SEP - Paris, Pitié-Salpêtrière University Hospital, AP-HP, 47, boulevard de l'Hôpital, 75013 Paris, France
| | - A Garmendia
- Department of Neurology, centre de ressources et de compétences SEP - Paris, Pitié-Salpêtrière University Hospital, AP-HP, 47, boulevard de l'Hôpital, 75013 Paris, France
| | - F X Lejeune
- Paris-Brain Institute (ICM), Paris Brain Institute's Data and Analysis Core, Pitié-Salpêtrière Hospital, Sorbonne université, Inserm U1127, CNRS UMR 7225, Paris, France
| | - M Boudot de la Motte
- Department of Neurology, Fondation Adolphe-de-Rothschild Hospital, Paris, France
| | - C Louapre
- Department of Neurology, centre de ressources et de compétences SEP - Paris, Pitié-Salpêtrière University Hospital, AP-HP, 47, boulevard de l'Hôpital, 75013 Paris, France
| | - C Papeix
- Department of Neurology, centre de ressources et de compétences SEP - Paris, Pitié-Salpêtrière University Hospital, AP-HP, 47, boulevard de l'Hôpital, 75013 Paris, France
| | - E Maillart
- Department of Neurology, centre de ressources et de compétences SEP - Paris, Pitié-Salpêtrière University Hospital, AP-HP, 47, boulevard de l'Hôpital, 75013 Paris, France
| | - T Roux
- Department of Neurology, centre de ressources et de compétences SEP - Paris, Pitié-Salpêtrière University Hospital, AP-HP, 47, boulevard de l'Hôpital, 75013 Paris, France.
| |
Collapse
|
37
|
Docken SS, McCormick K, Pampena MB, Samer S, Lindemuth E, Pinkevych M, Viox EG, Wu Y, Schlub TE, Cromer D, Keele BF, Paiardini M, Betts MR, Bar KJ, Davenport MP. Preferential selection of viral escape mutants by CD8+ T cell 'sieving' of SIV reactivation from latency. PLoS Pathog 2023; 19:e1011755. [PMID: 38032851 PMCID: PMC10688670 DOI: 10.1371/journal.ppat.1011755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/15/2023] [Indexed: 12/02/2023] Open
Abstract
HIV rapidly rebounds after interruption of antiretroviral therapy (ART). HIV-specific CD8+ T cells may act to prevent early events in viral reactivation. However, the presence of viral immune escape mutations may limit the effect of CD8+ T cells on viral rebound. Here, we studied the impact of CD8 immune pressure on post-treatment rebound of barcoded SIVmac293M in 14 Mamu-A*01 positive rhesus macaques that initiated ART on day 14, and subsequently underwent two analytic treatment interruptions (ATIs). Rebound following the first ATI (seven months after ART initiation) was dominated by virus that retained the wild-type sequence at the Mamu-A*01 restricted Tat-SL8 epitope. By the end of the two-month treatment interruption, the replicating virus was predominantly escaped at the Tat-SL8 epitope. Animals reinitiated ART for 3 months prior to a second treatment interruption. Time-to-rebound and viral reactivation rate were significantly slower during the second treatment interruption compared to the first. Tat-SL8 escape mutants dominated early rebound during the second treatment interruption, despite the dominance of wild-type virus in the proviral reservoir. Furthermore, the escape mutations detected early in the second treatment interruption were well predicted by those replicating at the end of the first, indicating that escape mutant virus in the second interruption originated from the latent reservoir as opposed to evolving de novo post rebound. SL8-specific CD8+ T cell levels in blood prior to the second interruption were marginally, but significantly, higher (median 0.73% vs 0.60%, p = 0.016). CD8+ T cell depletion approximately 95 days after the second treatment interruption led to the reappearance of wild-type virus. This work suggests that CD8+ T cells can actively suppress the rebound of wild-type virus, leading to the dominance of escape mutant virus after treatment interruption.
Collapse
Affiliation(s)
- Steffen S. Docken
- Infection Analytics Program, Kirby Institute, UNSW Sydney, Sydney, New South Wales, Australia
| | - Kevin McCormick
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - M. Betina Pampena
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Center for AIDS Research and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sadia Samer
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Emily Lindemuth
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mykola Pinkevych
- Infection Analytics Program, Kirby Institute, UNSW Sydney, Sydney, New South Wales, Australia
| | - Elise G. Viox
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Yuhuang Wu
- Infection Analytics Program, Kirby Institute, UNSW Sydney, Sydney, New South Wales, Australia
| | - Timothy E. Schlub
- Sydney School of Public Health, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Deborah Cromer
- Infection Analytics Program, Kirby Institute, UNSW Sydney, Sydney, New South Wales, Australia
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Michael R. Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Center for AIDS Research and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Katharine J. Bar
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Miles P. Davenport
- Infection Analytics Program, Kirby Institute, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
38
|
Grasso G, Sommella EM, Merciai F, Abouhany R, Shinde SA, Campiglia P, Sellergren B, Crescenzi C. Enhanced selective capture of phosphomonoester lipids enabling highly sensitive detection of sphingosine 1-phosphate. Anal Bioanal Chem 2023; 415:6573-6582. [PMID: 37736841 PMCID: PMC10567913 DOI: 10.1007/s00216-023-04937-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/09/2023] [Accepted: 08/24/2023] [Indexed: 09/23/2023]
Abstract
Sphingolipids play crucial roles in cellular membranes, myelin stability, and signalling responses to physiological cues and stress. Among them, sphingosine 1-phosphate (S1P) has been recognized as a relevant biomarker for neurodegenerative diseases, and its analogue FTY-720 has been approved by the FDA for the treatment of relapsing-remitting multiple sclerosis. Focusing on these targets, we here report three novel polymeric capture phases for the selective extraction of the natural biomarker and its analogue drug. To enhance analytical performance, we employed different synthetic approaches using a cationic monomer and a hydrophobic copolymer of styrene-DVB. Results have demonstrated high affinity of the sorbents towards S1P and fingolimod phosphate (FTY-720-P, FP). This evidence proved that lipids containing phosphate diester moiety in their structures did not constitute obstacles for the interaction of phosphate monoester lipids when loaded into an SPE cartridge. Our suggested approach offers a valuable tool for developing efficient analytical procedures.
Collapse
Affiliation(s)
- Giuliana Grasso
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
- Biofilm Research Center for Biointerfaces, Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, 23014, Malmö, Sweden
| | - Eduardo M Sommella
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Fabrizio Merciai
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Rahma Abouhany
- Biofilm Research Center for Biointerfaces, Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, 23014, Malmö, Sweden
| | - Sudhirkumar A Shinde
- Biofilm Research Center for Biointerfaces, Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, 23014, Malmö, Sweden
- School of Consciousness, Dr. Vishwanath Karad MIT World Peace University, 411038, Pune, India
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Börje Sellergren
- Biofilm Research Center for Biointerfaces, Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, 23014, Malmö, Sweden
| | - Carlo Crescenzi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy.
| |
Collapse
|
39
|
Kim KM, Shin EJ, Yang JH, Ki SH. Integrative roles of sphingosine kinase in liver pathophysiology. Toxicol Res 2023; 39:549-564. [PMID: 37779595 PMCID: PMC10541397 DOI: 10.1007/s43188-023-00193-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 10/03/2023] Open
Abstract
Bioactive sphingolipids and enzymes that metabolize sphingolipid-related substances have been considered as critical messengers in various signaling pathways. One such enzyme is the crucial lipid kinase, sphingosine kinase (SphK), which mediates the conversion of sphingosine to the potent signaling substance, sphingosine-1-phosphate. Several studies have demonstrated that SphK metabolism is strictly regulated to maintain the homeostatic balance of cells. Here, we summarize the role of SphK in the course of liver disease and illustrate its effects on both physiological and pathological conditions of the liver. SphK has been implicated in a variety of liver diseases, such as steatosis, liver fibrosis, hepatocellular carcinoma, and hepatic failure. This study may advance the understanding of the cellular and molecular foundations of liver disease and establish therapeutic approaches via SphK modulation.
Collapse
Affiliation(s)
- Kyu Min Kim
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, 61452 Republic of Korea
| | - Eun Jin Shin
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, 61452 Republic of Korea
| | - Ji Hye Yang
- College of Korean Medicine, Dongshin University, Naju, Jeollanam-Do 58245 Republic of Korea
| | - Sung Hwan Ki
- College of Pharmacy, Chosun University, 309 Pilmun-Daero, Dong-Gu, Gwangju, 61452 Republic of Korea
| |
Collapse
|
40
|
Ino Y, Maruyama M, Shimizu M, Morita R, Sakamoto A, Suzuki H, Sakai A. TSLP in DRG neurons causes the development of neuropathic pain through T cells. J Neuroinflammation 2023; 20:200. [PMID: 37660072 PMCID: PMC10474733 DOI: 10.1186/s12974-023-02882-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023] Open
Abstract
BACKGROUND Peripheral nerve injury to dorsal root ganglion (DRG) neurons develops intractable neuropathic pain via induction of neuroinflammation. However, neuropathic pain is rare in the early life of rodents. Here, we aimed to identify a novel therapeutic target for neuropathic pain in adults by comprehensively analyzing the difference of gene expression changes between infant and adult rats after nerve injury. METHODS A neuropathic pain model was produced in neonatal and young adult rats by spared nerve injury. Nerve injury-induced gene expression changes in the dorsal root ganglion (DRG) were examined using RNA sequencing. Thymic stromal lymphopoietin (TSLP) and its siRNA were intrathecally injected. T cells were examined using immunofluorescence and were reduced by systemic administration of FTY720. RESULTS Differences in changes in the transcriptome in injured DRG between infant and adult rats were most associated with immunological functions. Notably, TSLP was markedly upregulated in DRG neurons in adult rats, but not in infant rats. TSLP caused mechanical allodynia in adult rats, whereas TSLP knockdown suppressed the development of neuropathic pain. TSLP promoted the infiltration of T cells into the injured DRG and organized the expressions of multiple factors that regulate T cells. Accordingly, TSLP caused mechanical allodynia through T cells in the DRG. CONCLUSION This study demonstrated that TSLP is causally involved in the development of neuropathic pain through T cell recruitment.
Collapse
Affiliation(s)
- Yuka Ino
- Department of Anesthesiology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602 Japan
- Department of Pharmacology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602 Japan
| | - Motoyo Maruyama
- Department of Pharmacology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602 Japan
- Division of Laboratory Animal Science, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602 Japan
| | - Masumi Shimizu
- Department of Microbiology and Immunology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602 Japan
| | - Rimpei Morita
- Department of Microbiology and Immunology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602 Japan
| | - Atsuhiro Sakamoto
- Department of Anesthesiology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602 Japan
| | - Hidenori Suzuki
- Department of Pharmacology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602 Japan
| | - Atsushi Sakai
- Department of Pharmacology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602 Japan
| |
Collapse
|
41
|
Kharel Y, Huang T, Santos WL, Lynch KR. Assay of Sphingosine 1-phosphate Transporter Spinster Homolog 2 (Spns2) Inhibitors. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023; 28:284-287. [PMID: 37454972 DOI: 10.1016/j.slasd.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
The sphingosine-1-phosphate (S1P) pathway remains an active area of research for drug discovery because S1P modulators are effective medicine for autoimmune diseases such as multiple sclerosis and ulcerative colitis. As such, other nodes in the pathway can be probed for alternative therapeutic candidates. As S1P elicits its function in an 'outside-in' fashion, targeting the transporter, Spns2, which is upstream of the receptors, is of great interest. To support our medicinal chemistry campaign to inhibit S1P transport, we developed a mammalian cell-based assay. In this protocol, Spns2 inhibition is assessed by treating HeLa, U-937, and THP-1 cells with inhibitors and S1P exported in the extracellular milieu is quantified by LC-MS/MS. Our studies demonstrated that the amount of S1P in the media in inversely proportional to inhibitor concentration. The details of our investigations are described herein.
Collapse
Affiliation(s)
- Yugesh Kharel
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Tao Huang
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Webster L Santos
- Department of Chemistry and VT Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, USA
| | - Kevin R Lynch
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
42
|
Yu H, Zaveri S, Sattar Z, Schaible M, Perez Gandara B, Uddin A, McGarvey LR, Ohlmeyer M, Geraghty P. Protein Phosphatase 2A as a Therapeutic Target in Pulmonary Diseases. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1552. [PMID: 37763671 PMCID: PMC10535831 DOI: 10.3390/medicina59091552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023]
Abstract
New disease targets and medicinal chemistry approaches are urgently needed to develop novel therapeutic strategies for treating pulmonary diseases. Emerging evidence suggests that reduced activity of protein phosphatase 2A (PP2A), a complex heterotrimeric enzyme that regulates dephosphorylation of serine and threonine residues from many proteins, is observed in multiple pulmonary diseases, including lung cancer, smoke-induced chronic obstructive pulmonary disease, alpha-1 antitrypsin deficiency, asthma, and idiopathic pulmonary fibrosis. Loss of PP2A responses is linked to many mechanisms associated with disease progressions, such as senescence, proliferation, inflammation, corticosteroid resistance, enhanced protease responses, and mRNA stability. Therefore, chemical restoration of PP2A may represent a novel treatment for these diseases. This review outlines the potential impact of reduced PP2A activity in pulmonary diseases, endogenous and exogenous inhibitors of PP2A, details the possible PP2A-dependent mechanisms observed in these conditions, and outlines potential therapeutic strategies for treatment. Substantial medicinal chemistry efforts are underway to develop therapeutics targeting PP2A activity. The development of specific activators of PP2A that selectively target PP2A holoenzymes could improve our understanding of the function of PP2A in pulmonary diseases. This may lead to the development of therapeutics for restoring normal PP2A responses within the lung.
Collapse
Affiliation(s)
- Howard Yu
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Sahil Zaveri
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Zeeshan Sattar
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Michael Schaible
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Brais Perez Gandara
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Anwar Uddin
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Lucas R. McGarvey
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | | | - Patrick Geraghty
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| |
Collapse
|
43
|
Busey GW, Manjegowda MC, Huang T, Iobst WH, Naphade SS, Kennedy JA, Doyle CA, Seegren PV, Lynch KR, Desai BN. Novel TRPM7 inhibitors with potent anti-inflammatory effects in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541802. [PMID: 37662207 PMCID: PMC10473597 DOI: 10.1101/2023.05.22.541802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
TRPM7, a TRP channel with ion conductance and kinase activities, has emerged as an attractive drug target for immunomodulation. Reverse genetics and cell biological studies have already established a key role for TRPM7 in the inflammatory activation of macrophages. Advancing TRPM7 as a viable molecular target for immunomodulation requires selective TRPM7 inhibitors with in vivo tolerability and efficacy. Such inhibitors have the potential to interdict inflammatory cascades mediated by systemic and tissue-specialized macrophages. FTY720, an FDA-approved drug for multiple sclerosis inhibits TRPM7. However, FTY720 is a prodrug and its metabolite, FTY720-phosphate, is a potent agonist of sphingosine 1-phosphate (S1P) receptors. In this study, we tested non-phosphorylatable FTY720 analogs, which are inert against S1PRs and well tolerated in vivo , for activity against TRPM7 and tissue bioavailability. Using patch clamp electrophysiology, we show that VPC01091.4 and AAL-149 block TRPM7 current at low micromolar concentrations. In culture, they act directly on macrophages to blunt LPS-induced inflammatory cytokine expression, an effect that is predominantly but not solely mediated by TRPM7. We found that VPC01091.4 has significant and rapid accumulation in the brain and lungs, along with direct anti-inflammatory action on alveolar macrophages and microglia. Finally, using a mouse model of endotoxemia, we show VPC01091.4 to be an efficacious anti-inflammatory agent that arrests systemic inflammation in vivo . Together, these findings identify novel small molecule inhibitors that allow TRPM7 channel inhibition independent of S1P receptor targeting. These inhibitors exhibit potent anti-inflammatory properties that are mediated by TRPM7 and likely other molecular targets that remain to be identified.
Collapse
|
44
|
Cha E, Kim J, Gotina L, Kim J, Kim HJ, Seo SH, Park JE, Joo J, Kang M, Lee J, Hwang H, Kim HJ, Pae AN, Park KD, Park JH, Lim SM. Exploration of Tetrahydroisoquinoline- and Benzo[ c]azepine-Based Sphingosine 1-Phosphate Receptor 1 Agonists for the Treatment of Multiple Sclerosis. J Med Chem 2023; 66:10381-10412. [PMID: 37489798 DOI: 10.1021/acs.jmedchem.3c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Because of the wide use of Fingolimod for the treatment of multiple sclerosis (MS) and its cardiovascular side effects such as bradycardia, second-generation sphingosine 1-phosphate receptor 1 (S1P1) agonist drugs for MS have been developed and approved by FDA. The issue of bradycardia is still present with the new drugs, however, which necessitates further exploration of S1P1 agonists with improved safety profiles for next-generation MS drugs. Herein, we report a tetrahydroisoquinoline or a benzo[c]azepine core-based S1P1 agonists such as 32 and 60 after systematic examination of hydrophilic groups and cores. We investigated the binding modes of our representative compounds and their molecular interactions with S1P1 employing recent S1P1 cryo-EM structures. Also, favorable ADME properties of our compounds were shown. Furthermore, in vivo efficacy of our compounds was clearly demonstrated with PLC and EAE studies. Also, the preliminary in vitro cardiovascular safety of our compound was verified with human iPSC-derived cardiomyocytes.
Collapse
Affiliation(s)
- Eunji Cha
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jushin Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Lizaveta Gotina
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Jaehwan Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hyeon Jeong Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Seon Hee Seo
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Jeong-Eun Park
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, 80 Cheombok-ro, Dong-gu, Daegu 41061, Republic of Korea
| | - Jeongmin Joo
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, 80 Cheombok-ro, Dong-gu, Daegu 41061, Republic of Korea
| | - Minsik Kang
- Doping Control Center, Research Resources Division, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Jaeick Lee
- Doping Control Center, Research Resources Division, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hayoung Hwang
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, 80 Cheombok-ro, Dong-gu, Daegu 41061, Republic of Korea
| | - Hak Joong Kim
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ae Nim Pae
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Ki Duk Park
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Jong-Hyun Park
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Sang Min Lim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
45
|
Ayasoufi K, Wolf DM, Namen SL, Jin F, Tritz ZP, Pfaller CK, Zheng J, Goddery EN, Fain CE, Gulbicki LR, Borchers AL, Reesman RA, Yokanovich LT, Maynes MA, Bamkole MA, Khadka RH, Hansen MJ, Wu LJ, Johnson AJ. Brain resident memory T cells rapidly expand and initiate neuroinflammatory responses following CNS viral infection. Brain Behav Immun 2023; 112:51-76. [PMID: 37236326 PMCID: PMC10527492 DOI: 10.1016/j.bbi.2023.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/25/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
The contribution of circulating verses tissue resident memory T cells (TRMs) to clinical neuropathology is an enduring question due to a lack of mechanistic insights. The prevailing view is TRMs are protective against pathogens in the brain. However, the extent to which antigen-specific TRMs induce neuropathology upon reactivation is understudied. Using the described phenotype of TRMs, we found that brains of naïve mice harbor populations of CD69+ CD103- T cells. Notably, numbers of CD69+ CD103- TRMs rapidly increase following neurological insults of various origins. This TRM expansion precedes infiltration of virus antigen-specific CD8 T cells and is due to proliferation of T cells within the brain. We next evaluated the capacity of antigen-specific TRMs in the brain to induce significant neuroinflammation post virus clearance, including infiltration of inflammatory myeloid cells, activation of T cells in the brain, microglial activation, and significant blood brain barrier disruption. These neuroinflammatory events were induced by TRMs, as depletion of peripheral T cells or blocking T cell trafficking using FTY720 did not change the neuroinflammatory course. Depletion of all CD8 T cells, however, completely abrogated the neuroinflammatory response. Reactivation of antigen-specific TRMs in the brain also induced profound lymphopenia within the blood compartment. We have therefore determined that antigen-specific TRMs can induce significant neuroinflammation, neuropathology, and peripheral immunosuppression. The use of cognate antigen to reactivate CD8 TRMs enables us to isolate the neuropathologic effects induced by this cell type independently of other branches of immunological memory, differentiating this work from studies employing whole pathogen re-challenge. This study also demonstrates the capacity for CD8 TRMs to contribute to pathology associated with neurodegenerative disorders and long-term complications associated with viral infections. Understanding functions of brain TRMs is crucial in investigating their role in neurodegenerative disorders including MS, CNS cancers, and long-term complications associated with viral infections including COVID-19.
Collapse
Affiliation(s)
| | - Delaney M Wolf
- Mayo Clinic Department of Immunology, Rochester, MN, United States
| | - Shelby L Namen
- Mayo Clinic Department of Immunology, Rochester, MN, United States
| | - Fang Jin
- Mayo Clinic Department of Immunology, Rochester, MN, United States
| | - Zachariah P Tritz
- Mayo Clinic Department of Immunology, Rochester, MN, United States; Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, United States
| | - Christian K Pfaller
- Mayo Clinic Department of Molecular Medicine, Rochester, MN, United States; Paul-Ehrlich-Institut, Langen, Germany
| | - Jiaying Zheng
- Mayo Clinic Department of Immunology, Rochester, MN, United States; Mayo Clinic Department of Neurology, Rochester, MN, United States; Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, United States
| | - Emma N Goddery
- Mayo Clinic Department of Immunology, Rochester, MN, United States; Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, United States
| | - Cori E Fain
- Mayo Clinic Department of Immunology, Rochester, MN, United States; Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, United States
| | | | - Anna L Borchers
- Mayo Clinic Department of Immunology, Rochester, MN, United States; Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, United States
| | | | - Lila T Yokanovich
- Mayo Clinic Department of Immunology, Rochester, MN, United States; Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, United States
| | - Mark A Maynes
- Mayo Clinic Department of Immunology, Rochester, MN, United States; Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, United States
| | - Michael A Bamkole
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, United States
| | - Roman H Khadka
- Mayo Clinic Department of Immunology, Rochester, MN, United States; Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, United States
| | - Michael J Hansen
- Mayo Clinic Department of Immunology, Rochester, MN, United States
| | - Long-Jun Wu
- Mayo Clinic Department of Immunology, Rochester, MN, United States; Mayo Clinic Department of Neurology, Rochester, MN, United States
| | - Aaron J Johnson
- Mayo Clinic Department of Immunology, Rochester, MN, United States; Mayo Clinic Department of Molecular Medicine, Rochester, MN, United States; Mayo Clinic Department of Neurology, Rochester, MN, United States.
| |
Collapse
|
46
|
Hallisey VM, Schwab SR. Get me out of here: Sphingosine 1-phosphate signaling and T cell exit from tissues during an immune response. Immunol Rev 2023; 317:8-19. [PMID: 37212181 DOI: 10.1111/imr.13219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/23/2023]
Abstract
During an immune response, the duration of T cell residence in lymphoid and non-lymphoid tissues likely affects T cell activation, differentiation, and memory development. The factors that govern T cell transit through inflamed tissues remain incompletely understood, but one important determinant of T cell exit from tissues is sphingosine 1-phosphate (S1P) signaling. In homeostasis, S1P levels are high in blood and lymph compared to lymphoid organs, and lymphocytes follow S1P gradients out of tissues into circulation using varying combinations of five G-protein coupled S1P receptors. During an immune response, both the shape of S1P gradients and the expression of S1P receptors are dynamically regulated. Here we review what is known, and key questions that remain unanswered, about how S1P signaling is regulated in inflammation and in turn how S1P shapes immune responses.
Collapse
Affiliation(s)
- Victoria M Hallisey
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York, USA
| | - Susan R Schwab
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
47
|
Horitani S, Ueda Y, Kamioka Y, Kondo N, Ikeda Y, Naganuma M, Kinashi T. The critical role of Rap1-GAPs Rasa3 and Sipa1 in T cells for pulmonary transit and egress from the lymph nodes. Front Immunol 2023; 14:1234747. [PMID: 37545505 PMCID: PMC10399222 DOI: 10.3389/fimmu.2023.1234747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023] Open
Abstract
Rap1-GTPase activates integrins and plays an indispensable role in lymphocyte trafficking, but the importance of Rap1 inactivation in this process remains unknown. Here we identified the Rap1-inactivating proteins Rasa3 and Sipa1 as critical regulators of lymphocyte trafficking. The loss of Rasa3 and Sipa1 in T cells induced spontaneous Rap1 activation and adhesion. As a consequence, T cells deficient in Rasa3 and Sipa1 were trapped in the lung due to firm attachment to capillary beds, while administration of LFA1 antibodies or loss of talin1 or Rap1 rescued lung sequestration. Unexpectedly, mutant T cells exhibited normal extravasation into lymph nodes, fast interstitial migration, even greater chemotactic responses to chemokines and sphingosine-1-phosphate, and entrance into lymphatic sinuses but severely delayed exit: mutant T cells retained high motility in lymphatic sinuses and frequently returned to the lymph node parenchyma, resulting in defective egress. These results reveal the critical trafficking processes that require Rap1 inactivation.
Collapse
Affiliation(s)
- Shunsuke Horitani
- The Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
- Division of Gastroenterology and Hepatology, the Third Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Yoshihiro Ueda
- The Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Yuji Kamioka
- The Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Naoyuki Kondo
- The Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Yoshiki Ikeda
- The Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Makoto Naganuma
- Division of Gastroenterology and Hepatology, the Third Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Tatsuo Kinashi
- The Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| |
Collapse
|
48
|
Yura Y, Hamada M. Outline of Salivary Gland Pathogenesis of Sjögren's Syndrome and Current Therapeutic Approaches. Int J Mol Sci 2023; 24:11179. [PMID: 37446355 DOI: 10.3390/ijms241311179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Sjögren's syndrome (SS) is an autoimmune disease characterized by the involvement of exocrine glands such as the salivary and lacrimal glands. The minor salivary glands, from which tissue samples may be obtained, are important for the diagnosis, evaluation of therapeutic efficacy, and genetic analyses of SS. In the onset of SS, autoantigens derived from the salivary glands are recognized by antigen-presenting dendritic cells, leading to the activation of T and B cells, cytokine production, autoantibody production by plasma cells, the formation of ectopic germinal centers, and the destruction of salivary gland epithelial cells. A recent therapeutic approach with immune checkpoint inhibitors for malignant tumors enhances the anti-tumor activity of cytotoxic effector T cells, but also induces SS-like autoimmune disease as an adverse event. In the treatment of xerostomia, muscarinic agonists and salivary gland duct cleansing procedure, as well as sialendoscopy, are expected to ameliorate symptoms. Clinical trials on biological therapy to attenuate the hyperresponsiveness of B cells in SS patients with systemic organ involvement have progressed. The efficacy of treatment with mesenchymal stem cells and chimeric antigen receptor T cells for SS has also been investigated. In this review, we will provide an overview of the pathogenesis of salivary gland lesions and recent trends in therapeutic approaches for SS.
Collapse
Affiliation(s)
- Yoshiaki Yura
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| | - Masakazu Hamada
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| |
Collapse
|
49
|
Khan AA, Gutlapalli SD, Sohail M, Patel P, Midha S, Shukla S, Dhamija D, Bello AO, Elshaikh AO. Fingolimod-Associated Macular Edema in the Treatment of Multiple Sclerosis. Cureus 2023; 15:e41520. [PMID: 37551255 PMCID: PMC10404465 DOI: 10.7759/cureus.41520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/07/2023] [Indexed: 08/09/2023] Open
Abstract
Multiple sclerosis is a neurological disorder categorized by inflammatory processes with a high prevalence worldwide. It affects both motor and sensory pathways and is also associated with the visual pathway. Fingolimod is a commonly used drug for relapsing-remitting multiple sclerosis. It is a sphingosine 1-phosphate modulator acting on its receptors for immune cell accumulation, neuronal function, embryological development, vascular permeability, smooth muscle cell function, and endothelial barrier maintenance. This review aims to understand the processes, mechanisms, risks, and management of fingolimod-associated macular edema. Due to the anti-inflammatory properties of fingolimod, it decreases various cytokines, including interleukin (IL)-1B and IL-6, spike wave, and spike amplitude, in electrophysiological activities and decreases insoluble receptors for advanced glycation end product ligand. A daily dosage of 0.5 mg of fingolimod has an increased association with macular edema. The serious adverse events of fingolimod are lymphopenia, cardiovascular events, ocular events, and carcinoma. Fingolimod decreases brain volume and increases vascular permeability, resulting in increased macular volume and damage to the blood-retinal barrier, which causes an increased risk for macular edema. Cystoid macular edema is more common in older individuals suffering from comorbidities affecting the retina, such as diabetes, or those undergoing ophthalmological surgeries. This review also highlights the importance of regular ophthalmology examinations on patients consuming fingolimod both in the initial stages and chronic use. The treatment options for macular edema include nonsteroidal anti-inflammatory drugs, acetazolamide, triamcinolone, ketorolac, corticosteroids, and intravitreal procedures.
Collapse
Affiliation(s)
- Asma A Khan
- Medical School, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sai Dheeraj Gutlapalli
- Internal Medicine, Richmond University Medical Center Affiliated with Mount Sinai Health System and Icahn School of Medicine, New York, USA
- Internal Medicine Clinical Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Mehvish Sohail
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Priyansh Patel
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Internal Medicine, Baroda Medical College, Vadodara, IND
| | - Sidharth Midha
- Radiology, Bharati Vidyapeeth University, Pune, IND
- Radiology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Surmai Shukla
- Medicine and Surgery, Qingdao University College of Medical Science, Qingdao, CHN
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Divyanshu Dhamija
- Internal Medicine, Government Medical College Amritsar, Amritsar, IND
- General Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Adedamola O Bello
- Psychiatry, St. Martinus University Faculty of Medicine, Willemstad, USA
- Psychiatry, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Abeer O Elshaikh
- Internal Medicine/Family Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
50
|
Kihara Y, Chun J. Molecular and neuroimmune pharmacology of S1P receptor modulators and other disease-modifying therapies for multiple sclerosis. Pharmacol Ther 2023; 246:108432. [PMID: 37149155 DOI: 10.1016/j.pharmthera.2023.108432] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
Multiple sclerosis (MS) is a neurological, immune-mediated demyelinating disease that affects people in the prime of life. Environmental, infectious, and genetic factors have been implicated in its etiology, although a definitive cause has yet to be determined. Nevertheless, multiple disease-modifying therapies (DMTs: including interferons, glatiramer acetate, fumarates, cladribine, teriflunomide, fingolimod, siponimod, ozanimod, ponesimod, and monoclonal antibodies targeting ITGA4, CD20, and CD52) have been developed and approved for the treatment of MS. All the DMTs approved to date target immunomodulation as their mechanism of action (MOA); however, the direct effects of some DMTs on the central nervous system (CNS), particularly sphingosine 1-phosphate (S1P) receptor (S1PR) modulators, implicate a parallel MOA that may also reduce neurodegenerative sequelae. This review summarizes the currently approved DMTs for the treatment of MS and provides details and recent advances in the molecular pharmacology, immunopharmacology, and neuropharmacology of S1PR modulators, with a special focus on the CNS-oriented, astrocyte-centric MOA of fingolimod.
Collapse
Affiliation(s)
- Yasuyuki Kihara
- Sanford Burnham Prebys Medical Discovery Institute, United States of America.
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, United States of America
| |
Collapse
|