1
|
Stevens C, Zhou Y, Teng P, Rault LN, Liao Y, Tang W. Development of Oligomeric Mannose-6-phosphonate Conjugates for Targeted Protein Degradation. ACS Med Chem Lett 2023; 14:719-726. [PMID: 37312839 PMCID: PMC10258825 DOI: 10.1021/acsmedchemlett.2c00479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Lysosome targeting chimeras (LYTACs) are a new protein degradation strategy that has recently emerged. LYTACs utilize the native cell internalization process in the body to target and degrade therapeutically relevant extracellular proteins via the lysosomal pathways. The first lysosomal internalization receptor recently used for LYTACs is the mannose-6-phosphate receptor (M6PR). M6PR is expressed across most cell types, making it ideal for internalization and degradation of numerous extracellular proteins. Herein, we report the development of a series of structurally well-defined mannose-6-phosphonate (M6Pn)-peptide conjugates that are capable of linking to a variety of targeting ligands for proteins of interest and successfully internalizing and degrading those proteins through M6PR. This will greatly facilitate the development of M6Pn based LYTACs for therapeutic applications.
Collapse
Affiliation(s)
- Christopher
M. Stevens
- Lachman
Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin − Madison Madison, Wisconsin 53705, United States
| | - Yaxian Zhou
- Lachman
Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin − Madison Madison, Wisconsin 53705, United States
| | - Peng Teng
- Lachman
Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin − Madison Madison, Wisconsin 53705, United States
| | - Lauren N. Rault
- Lachman
Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin − Madison Madison, Wisconsin 53705, United States
| | - Yaxian Liao
- Lachman
Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin − Madison Madison, Wisconsin 53705, United States
- Department
of Chemistry, University of Wisconsin −
Madison Madison, Wisconsin 53706, United States
| | - Weiping Tang
- Lachman
Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin − Madison Madison, Wisconsin 53705, United States
- Department
of Chemistry, University of Wisconsin −
Madison Madison, Wisconsin 53706, United States
| |
Collapse
|
2
|
Miller JJ, Bohnsack RN, Olson LJ, Ishihara M, Aoki K, Tiemeyer M, Dahms NM. Tissue plasminogen activator is a ligand of cation-independent mannose 6-phosphate receptor and consists of glycoforms that contain mannose 6-phosphate. Sci Rep 2021; 11:8213. [PMID: 33859256 PMCID: PMC8050316 DOI: 10.1038/s41598-021-87579-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/30/2021] [Indexed: 01/18/2023] Open
Abstract
Plasmin is the key enzyme in fibrinolysis. Upon interaction with plasminogen activators, the zymogen plasminogen is converted to active plasmin. Some studies indicate plasminogen activation is regulated by cation-independent mannose 6-phosphate receptor (CI-MPR), a protein that facilitates lysosomal enzyme trafficking and insulin-like growth factor 2 downregulation. Plasminogen regulation may be accomplished by CI-MPR binding to plasminogen or urokinase plasminogen activator receptor. We asked whether other members of the plasminogen activation system, such as tissue plasminogen activator (tPA), also interact with CI-MPR. Because tPA is a glycoprotein with three N-linked glycosylation sites, we hypothesized that tPA contains mannose 6-phosphate (M6P) and binds CI-MPR in a M6P-dependent manner. Using surface plasmon resonance, we found that two sources of tPA bound the extracellular region of human and bovine CI-MPR with low-mid nanomolar affinities. Binding was partially inhibited with phosphatase treatment or M6P. Subsequent studies revealed that the five N-terminal domains of CI-MPR were sufficient for tPA binding, and this interaction was also partially mediated by M6P. The three glycosylation sites of tPA were analyzed by mass spectrometry, and glycoforms containing M6P and M6P-N-acetylglucosamine were identified at position N448 of tPA. In summary, we found that tPA contains M6P and is a CI-MPR ligand.
Collapse
Affiliation(s)
- James J Miller
- Department of Biochemistry, Medical College of Wisconsin, 8701 W. Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Richard N Bohnsack
- Department of Biochemistry, Medical College of Wisconsin, 8701 W. Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Linda J Olson
- Department of Biochemistry, Medical College of Wisconsin, 8701 W. Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Mayumi Ishihara
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA, 30602, USA
| | - Kazuhiro Aoki
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA, 30602, USA
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA, 30602, USA.
| | - Nancy M Dahms
- Department of Biochemistry, Medical College of Wisconsin, 8701 W. Watertown Plank Rd, Milwaukee, WI, 53226, USA.
| |
Collapse
|
3
|
Legrand B, Maillard LT. α,β-Unsaturated γ-Peptide Foldamers. Chempluschem 2021; 86:629-645. [PMID: 33856125 DOI: 10.1002/cplu.202100045] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/31/2021] [Indexed: 01/01/2023]
Abstract
Despite their concomitant emergence in the 1990s, γ-peptide foldamers have not developed as fast as β-peptide foldamers and to date, only a few γ-oligomer structures have been reported, and with sparse applications. Among these examples, sequences containing α,β-unsaturated γ-amino acids have recently drawn attention since the Z/E configurations of the double bond provide opposite planar restrictions leading to divergent conformational behaviors, from helix to extended structures. In this Review, we give a comprehensive overview of the developments of γ-peptide foldamers containing α,β-unsaturated γ-amino acids with examples of applications for health and catalysis, as well as materials science.
Collapse
Affiliation(s)
- Baptiste Legrand
- Institut des Biomolécules Max Mousseron, IBMM, University of Montpellier, ENSCM, CNRS, Montpellier, France., 15 Av. Charles Flahault BP 14 491, 34093, Montpellier Cedex 5, France
| | - Ludovic T Maillard
- Institut des Biomolécules Max Mousseron, IBMM, University of Montpellier, ENSCM, CNRS, Montpellier, France., 15 Av. Charles Flahault BP 14 491, 34093, Montpellier Cedex 5, France
| |
Collapse
|
4
|
Potalitsyn P, Selicharová I, Sršeň K, Radosavljević J, Marek A, Nováková K, Jiráček J, Žáková L. A radioligand binding assay for the insulin-like growth factor 2 receptor. PLoS One 2020; 15:e0238393. [PMID: 32877466 PMCID: PMC7467306 DOI: 10.1371/journal.pone.0238393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/14/2020] [Indexed: 01/04/2023] Open
Abstract
Insulin-like growth factors 2 and 1 (IGF2 and IGF1) and insulin are closely related hormones that are responsible for the regulation of metabolic homeostasis, development and growth of the organism. Physiological functions of insulin and IGF1 are relatively well-studied, but information about the role of IGF2 in the body is still sparse. Recent discoveries called attention to emerging functions of IGF2 in the brain, where it could be involved in processes of learning and memory consolidation. It was also proposed that these functions could be mediated by the receptor for IGF2 (IGF2R). Nevertheless, little is known about the mechanism of signal transduction through this receptor. Here we produced His-tagged domain 11 (D11), an IGF2-binding element of IGF2R; we immobilized it on the solid support through a well-defined sandwich, consisting of neutravidin, biotin and synthetic anti-His-tag antibodies. Next, we prepared specifically radiolabeled [125I]-monoiodotyrosyl-Tyr2-IGF2 and optimized a sensitive and robust competitive radioligand binding assay for determination of the nanomolar binding affinities of hormones for D11 of IGF2. The assay will be helpful for the characterization of new IGF2 mutants to study the functions of IGF2R and the development of new compounds for the treatment of neurological disorders.
Collapse
Affiliation(s)
- Pavlo Potalitsyn
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Irena Selicharová
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague, Czech Republic
| | - Kryštof Sršeň
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague, Czech Republic
| | - Jelena Radosavljević
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague, Czech Republic
| | - Aleš Marek
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague, Czech Republic
| | - Kateřina Nováková
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Jiráček
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague, Czech Republic
| | - Lenka Žáková
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
5
|
Bochel AJ, Williams C, McCoy AJ, Hoppe HJ, Winter AJ, Nicholls RD, Harlos K, Jones EY, Berger I, Hassan AB, Crump MP. Structure of the Human Cation-Independent Mannose 6-Phosphate/IGF2 Receptor Domains 7-11 Uncovers the Mannose 6-Phosphate Binding Site of Domain 9. Structure 2020; 28:1300-1312.e5. [PMID: 32877646 DOI: 10.1016/j.str.2020.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/13/2020] [Accepted: 08/07/2020] [Indexed: 11/29/2022]
Abstract
The cation-independent mannose 6-phosphate (M6P)/Insulin-like growth factor-2 receptor (CI-MPR/IGF2R) is an ∼300 kDa transmembrane protein responsible for trafficking M6P-tagged lysosomal hydrolases and internalizing IGF2. The extracellular region of the CI-MPR has 15 homologous domains, including M6P-binding domains (D) 3, 5, 9, and 15 and IGF2-binding domain 11. We have focused on solving the first structures of human D7-10 within two multi-domain constructs, D9-10 and D7-11, and provide the first high-resolution description of the high-affinity M6P-binding D9. Moreover, D9 stabilizes a well-defined hub formed by D7-11 whereby two penta-domains intertwine to form a dimeric helical-type coil via an N-glycan bridge on D9. Remarkably the D7-11 structure matches an IGF2-bound state of the receptor, suggesting this may be an intrinsically stable conformation at neutral pH. Interdomain clusters of histidine and proline residues may impart receptor rigidity and play a role in structural transitions at low pH.
Collapse
Affiliation(s)
- Alice J Bochel
- School of Chemistry, Cantock's Close, University of Bristol, Bristol BS8 1TS, UK
| | - Christopher Williams
- School of Chemistry, Cantock's Close, University of Bristol, Bristol BS8 1TS, UK; BrisSynBio, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Airlie J McCoy
- Cambridge Institute for Medical Research, Department of Haematology, University of Cambridge, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Hans-Jürgen Hoppe
- Tumour Growth Control Group, Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; dAInomics Ltd, 66 High Street, Bassingbourn Royston SG8 5LF, UK
| | - Ashley J Winter
- School of Chemistry, Cantock's Close, University of Bristol, Bristol BS8 1TS, UK
| | - Ryan D Nicholls
- School of Chemistry, Cantock's Close, University of Bristol, Bristol BS8 1TS, UK
| | - Karl Harlos
- Cancer Research UK Receptor Structure Research Group, Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - E Yvonne Jones
- Cancer Research UK Receptor Structure Research Group, Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Imre Berger
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - A Bassim Hassan
- Tumour Growth Control Group, Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK.
| | - Matthew P Crump
- School of Chemistry, Cantock's Close, University of Bristol, Bristol BS8 1TS, UK; BrisSynBio, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK.
| |
Collapse
|
6
|
Wang R, Qi X, Schmiege P, Coutavas E, Li X. Marked structural rearrangement of mannose 6-phosphate/IGF2 receptor at different pH environments. SCIENCE ADVANCES 2020; 6:eaaz1466. [PMID: 32095534 PMCID: PMC7015683 DOI: 10.1126/sciadv.aaz1466] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/02/2019] [Indexed: 05/08/2023]
Abstract
Many cell surface receptors internalize their ligands and deliver them to endosomes, where the acidic pH causes the ligand to dissociate. The liberated receptor returns to the cell surface in a process called receptor cycling. The structural basis for pH-dependent ligand dissociation is not well understood. In some receptors, the ligand binding domain is composed of multiple repeated sequences. The insulin-like growth factor 2 receptor (IGF2R) contains 15 β strand-rich repeat domains. The overall structure and the mechanism by which IGF2R binds IGF2 and releases it are unknown. We used cryo-EM to determine the structures of the IGF2R at pH 7.4 with IGF2 bound and at pH 4.5 in the ligand-dissociated state. The results reveal different arrangements of the receptor in different pH environments mediated by changes in the interactions between the repeated sequences. These results have implications for our understanding of ligand release from receptors in endocytic compartments.
Collapse
Affiliation(s)
- Rong Wang
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaofeng Qi
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Philip Schmiege
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Elias Coutavas
- Laboratory of Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Xiaochun Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Corresponding author.
| |
Collapse
|
7
|
Ali LMA, Simon M, El Cheikh K, Aguesseau-Kondrotas J, Godefroy A, Nguyen C, Garcia M, Morère A, Gary-Bobo M, Maillard L. Topological Requirements for CI-M6PR-Mediated Cell Uptake. Bioconjug Chem 2019; 30:2533-2538. [DOI: 10.1021/acs.bioconjchem.9b00590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Lamiaa M. A. Ali
- Institut des Biomolécules Max Mousseron, UMR CNRS-UM-ENSCM
5247, UFR des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault, 34093 Montpellier Cedex 5, France
- Biochemistry Department, Medical Research Institute, Alexandria University, 21561 Alexandria, Egypt
| | - Matthieu Simon
- Institut des Biomolécules Max Mousseron, UMR CNRS-UM-ENSCM
5247, UFR des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault, 34093 Montpellier Cedex 5, France
| | - Khaled El Cheikh
- NanoMedSyn, Avenue Charles Flahault, 34093 Montpellier Cedex
05, France
| | - Julie Aguesseau-Kondrotas
- Institut des Biomolécules Max Mousseron, UMR CNRS-UM-ENSCM
5247, UFR des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault, 34093 Montpellier Cedex 5, France
| | - Anastasia Godefroy
- Institut des Biomolécules Max Mousseron, UMR CNRS-UM-ENSCM
5247, UFR des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault, 34093 Montpellier Cedex 5, France
- NanoMedSyn, Avenue Charles Flahault, 34093 Montpellier Cedex
05, France
| | - Christophe Nguyen
- Institut des Biomolécules Max Mousseron, UMR CNRS-UM-ENSCM
5247, UFR des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault, 34093 Montpellier Cedex 5, France
| | - Marcel Garcia
- NanoMedSyn, Avenue Charles Flahault, 34093 Montpellier Cedex
05, France
| | - Alain Morère
- Institut des Biomolécules Max Mousseron, UMR CNRS-UM-ENSCM
5247, UFR des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault, 34093 Montpellier Cedex 5, France
| | - Magali Gary-Bobo
- Institut des Biomolécules Max Mousseron, UMR CNRS-UM-ENSCM
5247, UFR des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault, 34093 Montpellier Cedex 5, France
| | - Ludovic Maillard
- Institut des Biomolécules Max Mousseron, UMR CNRS-UM-ENSCM
5247, UFR des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault, 34093 Montpellier Cedex 5, France
| |
Collapse
|
8
|
Zhang K, Wang F, Huang J, Lou Y, Xie J, Li H, Cao D, Huang X. Insulin-like growth factor 2 promotes the adipogenesis of hemangioma-derived stem cells. Exp Ther Med 2018; 17:1663-1669. [PMID: 30867686 PMCID: PMC6396001 DOI: 10.3892/etm.2018.7132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 06/15/2018] [Indexed: 11/15/2022] Open
Abstract
Infantile hemangioma (IH), which is the most common tumor in infants, is characterized by rapid proliferation followed by spontaneous regression into fibro-fatty tissue in childhood. However, its specific mechanism has not been clarified. Our previous studies showed that insulin-like growth factor 2 (IGF-2) is increased in the proliferative phase of IH, which is deemed to form from hemangioma-derived stem cells (HemSC). However, it remains unclear whether IGF-2 can promote the adipogenic differentiation of HemSCs and the signaling mechanisms involved require further elucidation. In the present study, CCK-8 assay was used to detect the effect of different concentrations of IGF-2 on the proliferation of HemSCs. Immunohistochemistry was applied to observe the expression of IGF-2 and its receptors in cells. Oil red o-staining of adipogenesis was conducted after cells recevied no treatment or were induced with IGF-2 or IGF-2 plus OSI-906 for 10 days. Cells were cultured in EGM-2/FBS-10% alone or containing IGF-2, IGF-2 plus OSI-906 or IGF-2 plus LY294002 and the protein expression of C/EBPα, C/EBPβ, PPARγ, adiponectin, p-AKT and total AKT was determined using western blot analysis. In another experiment, cells were treated with 25, 50 or 100 μM propranolol, or vehicle. C/EBPα, C/EBPβ, PPARγ and IGF-2 were analyzed using western blot analysis or reverse transcription-quantitative polymerase chain reaction. Results indicated that IGF-2 significantly promoted the cell proliferation and lipid accumulation of HemSCs. The expression of phosphorylated AKT (p-AKT), C/EBPα, C/EBPβ, PPARγ and adiponectin was increased in IGF-2-treated HemSCs culture, whereas these changes were repressed by the inhibition of either the IGF-1 receptor (IGF-1R) or phosphoinositide 3-kinase (PI3K). Our previous research showed that propranolol accelerated adipogenesis in HemSCs and induced the upregulation of IGF-2. The results of the present study indicate that IGF-2 is able to accelerate adipogenesis, and the propranolol-induced promotion of dysregulated adipogenesis may be mediated by the IGF-2 via IGF-1R and PI3K pathways.
Collapse
Affiliation(s)
- Kui Zhang
- Department of Plastic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Fan Wang
- Department of Plastic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Jun Huang
- Department of Anesthesia, The Second Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Yin Lou
- Department of Plastic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Juan Xie
- Department of Plastic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Honghong Li
- Department of Plastic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Dongsheng Cao
- Department of Plastic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Xueying Huang
- Department of Anatomy, Anhui Medical University, Hefei, Anhui 230031, P.R. China
| |
Collapse
|
9
|
Inhibition of insulin-like growth factor II (IGF-II)-dependent cell growth by multidentate pentamannosyl 6-phosphate-based ligands targeting the mannose 6-phosphate/IGF-II receptor. Oncotarget 2018; 7:62386-62410. [PMID: 27694692 PMCID: PMC5308735 DOI: 10.18632/oncotarget.11493] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/28/2016] [Indexed: 01/24/2023] Open
Abstract
The mannose 6-phosphate/insulin-like growth factor II receptor (M6P/IGF2R) binds M6P-capped ligands and IGF-II at different binding sites within the ectodomain and mediates ligand internalization and trafficking to the lysosome. Multivalent M6P-based ligands can cross-bridge the M6P/IGF2R, which increases the rate of receptor internalization, permitting IGF-II binding as a passenger ligand and subsequent trafficking to the lysosome, where the IGF-II is degraded. This unique feature of the receptor may be exploited to design novel therapeutic agents against IGF-II-dependent cancers that will lead to decreased bioavailable IGF-II within the tumor microenvironment. We have designed a panel of M6P-based ligands that bind to the M6P/IGF2R with high affinity in a bivalent manner and cause decreased cell viability. We present evidence that our ligands bind through the M6P-binding sites of the receptor and facilitate internalization and degradation of IGF-II from conditioned medium to mediate this cellular response. To our knowledge, this is the first panel of synthetic bivalent ligands for the M6P/IGF2R that can take advantage of the ligand-receptor interactions of the M6P/IGF2R to provide proof-of-principle evidence for the feasibility of novel chemotherapeutic agents that decrease IGF-II-dependent growth of cancer cells.
Collapse
|
10
|
Fei X, Zavorka ME, Malik G, Connelly CM, MacDonald RG, Berkowitz DB. General Linker Diversification Approach to Bivalent Ligand Assembly: Generation of an Array of Ligands for the Cation-Independent Mannose 6-Phosphate Receptor. Org Lett 2017; 19:4267-4270. [PMID: 28753028 PMCID: PMC6208139 DOI: 10.1021/acs.orglett.7b01914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A generalized strategy is presented for the rapid assembly of a set of bivalent ligands with a variety of linking functionalities from a common monomer. Herein, an array of phosphatase-inert mannose-6-phosphonate-presenting ligands for the cation-independent-mannose 6-phosphate receptor (CI-MPR) is constructed. Receptor binding affinity varies with linking functionality-the simple amide and 1,5-triazole(tetrazole) being preferred over the 1,4-triazole. This approach is expected to find application across chemical biology, particularly in glycoscience, wherein multivalency often governs molecular recognition.
Collapse
Affiliation(s)
- Xiang Fei
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Megan E. Zavorka
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870, United States
| | - Guillaume Malik
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Christopher M. Connelly
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870, United States
| | - Richard G. MacDonald
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870, United States
| | - David B. Berkowitz
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| |
Collapse
|
11
|
Wang Y, MacDonald RG, Thinakaran G, Kar S. Insulin-Like Growth Factor-II/Cation-Independent Mannose 6-Phosphate Receptor in Neurodegenerative Diseases. Mol Neurobiol 2017; 54:2636-2658. [PMID: 26993302 PMCID: PMC5901910 DOI: 10.1007/s12035-016-9849-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/09/2016] [Indexed: 12/11/2022]
Abstract
The insulin-like growth factor II/mannose 6-phosphate (IGF-II/M6P) receptor is a multifunctional single transmembrane glycoprotein. Recent studies have advanced our understanding of the structure, ligand-binding properties, and trafficking of the IGF-II/M6P receptor. This receptor has been implicated in a variety of important cellular processes including growth and development, clearance of IGF-II, proteolytic activation of enzymes, and growth factor precursors, in addition to its well-known role in the delivery of lysosomal enzymes. The IGF-II/M6P receptor, distributed widely in the central nervous system, has additional roles in mediating neurotransmitter release and memory enhancement/consolidation, possibly through activating IGF-II-related intracellular signaling pathways. Recent studies suggest that overexpression of the IGF-II/M6P receptor may have an important role in regulating the levels of transcripts and proteins involved in the development of Alzheimer's disease (AD)-the prevalent cause of dementia affecting the elderly population in our society. It is reported that IGF-II/M6P receptor overexpression can increase the levels/processing of amyloid precursor protein leading to the generation of β-amyloid peptide, which is associated with degeneration of neurons and subsequent development of AD pathology. Given the significance of the receptor in mediating the transport and functioning of the lysosomal enzymes, it is being considered for therapeutic delivery of enzymes to the lysosomes to treat lysosomal storage disorders. Notwithstanding these results, additional studies are required to validate and fully characterize the function of the IGF-II/M6P receptor in the normal brain and its involvement in various neurodegenerative disorders including AD. It is also critical to understand the interaction between the IGF-II/M6P receptor and lysosomal enzymes in neurodegenerative processes, which may shed some light on developing approaches to detect and prevent neurodegeneration through the dysfunction of the receptor and the endosomal-lysosomal system.
Collapse
Affiliation(s)
- Y Wang
- Department of Psychiatry, University of Alberta, Edmonton, AB, T6G 2M8, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | - R G MacDonald
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - G Thinakaran
- Departments of Neurobiology, Neurology, and Pathology, The University of Chicago, Chicago, IL, 60637, USA
| | - S Kar
- Department of Psychiatry, University of Alberta, Edmonton, AB, T6G 2M8, Canada.
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada.
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, T6G 2M8, Canada.
| |
Collapse
|
12
|
Das S, Parekh N, Mondal B, Gupta SS. Controlled Synthesis of End-Functionalized Mannose-6-phosphate Glycopolypeptides for Lysosome Targeting. ACS Macro Lett 2016; 5:809-813. [PMID: 35614754 DOI: 10.1021/acsmacrolett.6b00297] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The ubiquitous expression of the mannose-6-phosphate receptor on the majority of human cells makes it a valid target in the quest to deliver therapeutics selectively to the lysosome. In this work end-functionalized polyvalent mannose-6-phosphate glycopolypeptides (M6P-GPs) with high molecular weights (up to 22 kDa) have been synthesized via NCA polymerization. These synthetic M6P-GPs were found to display minimal toxicity to cells in vitro and show exceptional selectivity for trafficking into lysosomes in various cell lines. Comparison of the cellular uptake behavior of M6P-GP and the corresponding mannose-GP polymer reveals that incorporation of the phosphate moiety at the 6-position of mannose completely alters its trafficking behavior and becomes exclusively lysosome specific. We also demonstrate that trafficking of M6P-GPs in mammalian cells is likely associated with the CI-MPR receptor pathway.
Collapse
Affiliation(s)
- Soumen Das
- CReST Chemical Engineering
Division, CSIR National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Nimisha Parekh
- CReST Chemical Engineering
Division, CSIR National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Basudeb Mondal
- CReST Chemical Engineering
Division, CSIR National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Sayam Sen Gupta
- CReST Chemical Engineering
Division, CSIR National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
13
|
Aguilera AC, Boschin V, Carvelli L, Cavicchia JC, Sosa MA. Glycosidases Interact Selectively With Mannose-6-Phosphate Receptors of Bull Spermatozoa. J Cell Biochem 2016; 117:2464-72. [DOI: 10.1002/jcb.25538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 03/09/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Andrea C. Aguilera
- Laboratorio de Biología y Fisiología Celular “Dr. Franciso Bertini,” Instituto de Histología y Embriología-CONICET-FCM-UNCuyo; Facultad de Ciencias Exactas y Naturales-Universidad Nacional de Cuyo; 5500 Mendoza Argentina
| | - Verónica Boschin
- Laboratorio de Biología y Fisiología Celular “Dr. Franciso Bertini,” Instituto de Histología y Embriología-CONICET-FCM-UNCuyo; 5500 Mendoza Argentina
| | - Lorena Carvelli
- Laboratorio de Biología y Fisiología Celular “Dr. Franciso Bertini,” Instituto de Histología y Embriología-CONICET-FCM-UNCuyo; Facultad de Ciencias Exactas y Naturales-Universidad Nacional de Cuyo; 5500 Mendoza Argentina
| | - Juan C. Cavicchia
- Laboratorio de Biología y Fisiología Celular “Dr. Franciso Bertini,” Instituto de Histología y Embriología-CONICET-FCM-UNCuyo; 5500 Mendoza Argentina
| | - Miguel A. Sosa
- Laboratorio de Biología y Fisiología Celular “Dr. Franciso Bertini,” Instituto de Histología y Embriología-CONICET-FCM-UNCuyo; Facultad de Ciencias Exactas y Naturales-Universidad Nacional de Cuyo; 5500 Mendoza Argentina
| |
Collapse
|
14
|
Overexpression of the Insulin-Like Growth Factor II Receptor Increases β-Amyloid Production and Affects Cell Viability. Mol Cell Biol 2015; 35:2368-84. [PMID: 25939386 DOI: 10.1128/mcb.01338-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 04/20/2015] [Indexed: 12/26/2022] Open
Abstract
Amyloid β (Aβ) peptides originating from amyloid precursor protein (APP) in the endosomal-lysosomal compartments play a critical role in the development of Alzheimer's disease (AD), the most common type of senile dementia affecting the elderly. Since insulin-like growth factor II (IGF-II) receptors facilitate the delivery of nascent lysosomal enzymes from the trans-Golgi network to endosomes, we evaluated their role in APP metabolism and cell viability using mouse fibroblast MS cells deficient in the murine IGF-II receptor and corresponding MS9II cells overexpressing the human IGF-II receptors. Our results show that IGF-II receptor overexpression increases the protein levels of APP. This is accompanied by an increase of β-site APP-cleaving enzyme 1 levels and an increase of β- and γ-secretase enzyme activities, leading to enhanced Aβ production. At the cellular level, IGF-II receptor overexpression causes localization of APP in perinuclear tubular structures, an increase of lipid raft components, and increased lipid raft partitioning of APP. Finally, MS9II cells are more susceptible to staurosporine-induced cytotoxicity, which can be attenuated by β-secretase inhibitor. Together, these results highlight the potential contribution of IGF-II receptor to AD pathology not only by regulating expression/processing of APP but also by its role in cellular vulnerability.
Collapse
|
15
|
Hoogendoorn S, van Puijvelde GHM, Kuiper J, van der Marel GA, Overkleeft HS. A multivalent ligand for the mannose-6-phosphate receptor for endolysosomal targeting of an activity-based probe. Angew Chem Int Ed Engl 2014; 53:10975-8. [PMID: 25163608 DOI: 10.1002/anie.201406842] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Indexed: 12/26/2022]
Abstract
The ubiquitously expressed mannose-6-phosphate receptors (MPRs) are a promising class of receptors for targeted compound delivery into the endolysosomal compartments of a variety of cell types. The development of a synthetic, multivalent, mannose-6-phosphate (M6P) glycopeptide-based MPR ligand is described. The conjugation of this ligand to fluorescent DCG-04, an activity-based probe for cysteine cathepsins, enabled fluorescent readout of its receptor-targeting properties. The resulting M6P-cluster-BODIPY-DCG-04 probe was shown to efficiently label cathepsins in cell lysates as well as in live cells. Furthermore, the introduction of the 6-O-phosphates leads to a completely altered uptake profile in COS and dendritic cells compared to a mannose-containing ligand. Competition with mannose-6-phosphate abolished all uptake of the probe in COS cells, and we conclude that the mannose-6-phosphate cluster targets the MPR and ensures the targeted delivery of cargo bound to the cluster into the endolysosomal pathway.
Collapse
Affiliation(s)
- Sascha Hoogendoorn
- Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden (The Netherlands)
| | | | | | | | | |
Collapse
|
16
|
Hoogendoorn S, van Puijvelde GHM, Kuiper J, van der Marel GA, Overkleeft HS. A Multivalent Ligand for the Mannose-6-Phosphate Receptor for Endolysosomal Targeting of an Activity-Based Probe. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201406842] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
17
|
Kleiman A, Keats EC, Chan NG, Khan ZA. Elevated IGF2 prevents leptin induction and terminal adipocyte differentiation in hemangioma stem cells. Exp Mol Pathol 2012; 94:126-36. [PMID: 23047069 DOI: 10.1016/j.yexmp.2012.09.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 09/11/2012] [Accepted: 09/28/2012] [Indexed: 10/27/2022]
Abstract
Infantile hemangioma is a benign vascular tumor that exhibits a unique yet predictable lifecycle of rapid proliferation followed by spontaneous regression. Recent studies have identified that insulin-like growth factor-2 (IGF2), a fetal mitogen, is highly expressed during the proliferative phase of hemangioma growth. Since hemangiomas arise from CD133+ stem cells, high levels of IGF2 may regulate the activity of the stem cells and therefore, hemangioma growth. The aim of this study was to understand the functional significance of elevated IGF2 in hemangiomas. We show that IGF2 localizes to the CD133+ cells in hemangioma specimens. We, therefore, hypothesized that IGF2 may be regulating the plasticity of hemangioma stem cells. To test our hypothesis, we used CD133-selected cells from hemangiomas to knockdown the expression of IGF2. We found that IGF2 is a mitogen for hemangioma stem cells and prevents leptin induction and full terminal differentiation of hemangioma stem cells into adipocytes. We also show that IGF2 does not alter the initial commitment phase. These findings implicate an important role of IGF2 in expanding hemangioma stem cells and preventing terminal adipocyte differentiation.
Collapse
Affiliation(s)
- Alexandra Kleiman
- Department of Pathology, University of Western Ontario, London ON, Canada
| | | | | | | |
Collapse
|
18
|
Kreiling JL, Montgomery MA, Wheeler JR, Kopanic JL, Connelly CM, Zavorka ME, Allison JL, Macdonald RG. Dominant-negative effect of truncated mannose 6-phosphate/insulin-like growth factor II receptor species in cancer. FEBS J 2012; 279:2695-713. [PMID: 22681933 DOI: 10.1111/j.1742-4658.2012.08652.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Oligomerization of the mannose 6-phosphate/insulin-like growth factor II receptor (M6P/IGF2R) is important for optimal ligand binding and internalization. M6P/IGF2R is a tumor suppressor gene that exhibits loss of heterozygosity and is mutated in several cancers. We tested the potential dominant-negative effects of two cancer-associated mutations that truncate M6P/IGF2R in ectodomain repeats 9 and 14. Our hypothesis was that co-expression of the truncated receptors with the wild-type/endogenous full-length M6P/IGF2R would interfere with M6P/IGF2R function by heterodimer interference. Immunoprecipitation confirmed formation of heterodimeric complexes between full-length M6P/IGF2Rs and the truncated receptors, termed Rep9F and Rep14F. Remarkably, increasing expression of either Rep9F or Rep14F provoked decreased levels of full-length M6P/IGF2Rs in both cell lysates and plasma membranes, indicating a dominant-negative effect on receptor availability. Loss of full-length M6P/IGF2R was not due to increased proteasomal or lysosomal degradation, but instead arose from increased proteolytic cleavage of cell-surface M6P/IGF2Rs, resulting in ectodomain release, by a mechanism that was inhibited by metal ion chelators. These data suggest that M6P/IGF2R truncation mutants may contribute to the cancer phenotype by decreasing the availability of full-length M6P/IGF2Rs to perform tumor-suppressive functions such as binding/internalization of receptor ligands such as insulin-like growth factor II.
Collapse
Affiliation(s)
- Jodi L Kreiling
- Department of Chemistry, University of Nebraska at Omaha, Omaha, NE 68198, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Brown J, Jones EY, Forbes BE. Keeping IGF-II under control: Lessons from the IGF-II–IGF2R crystal structure. Trends Biochem Sci 2009; 34:612-9. [DOI: 10.1016/j.tibs.2009.07.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 07/17/2009] [Accepted: 07/20/2009] [Indexed: 11/24/2022]
|
20
|
Bohnsack RN, Song X, Olson LJ, Kudo M, Gotschall RR, Canfield WM, Cummings RD, Smith DF, Dahms NM. Cation-independent mannose 6-phosphate receptor: a composite of distinct phosphomannosyl binding sites. J Biol Chem 2009; 284:35215-26. [PMID: 19840944 DOI: 10.1074/jbc.m109.056184] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The 300-kDa cation-independent mannose 6-phosphate receptor (CI-MPR), which contains multiple mannose 6-phosphate (Man-6-P) binding sites that map to domains 3, 5, and 9 within its 15-domain extracytoplasmic region, functions as an efficient carrier of Man-6-P-containing lysosomal enzymes. To determine the types of phosphorylated N-glycans recognized by each of the three carbohydrate binding sites of the CI-MPR, a phosphorylated glycan microarray was probed with truncated forms of the CI-MPR. Surface plasmon resonance analyses using lysosomal enzymes with defined N-glycans were performed to evaluate whether multiple domains are needed to form a stable, high affinity carbohydrate binding pocket. Like domain 3, adjacent domains increase the affinity of domain 5 for phosphomannosyl residues, with domain 5 exhibiting approximately 60-fold higher affinity for lysosomal enzymes containing the phosphodiester Man-P-GlcNAc when in the context of a construct encoding domains 5-9. In contrast, domain 9 does not require additional domains for high affinity binding. The three sites differ in their glycan specificity, with only domain 5 being capable of recognizing Man-P-GlcNAc. In addition, domain 9, unlike domains 1-3, interacts with Man(8)GlcNAc(2) and Man(9)GlcNAc(2) oligosaccharides containing a single phosphomonoester. Together, these data indicate that the assembly of three unique carbohydrate binding sites allows the CI-MPR to interact with the structurally diverse phosphorylated N-glycans it encounters on newly synthesized lysosomal enzymes.
Collapse
Affiliation(s)
- Richard N Bohnsack
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Martin-Kleiner I, Gall Troselj K. Mannose-6-phosphate/insulin-like growth factor 2 receptor (M6P/IGF2R) in carcinogenesis. Cancer Lett 2009; 289:11-22. [PMID: 19646808 DOI: 10.1016/j.canlet.2009.06.036] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 06/29/2009] [Accepted: 06/30/2009] [Indexed: 01/18/2023]
Abstract
The cation-independent mannose-6-phosphate/insulin-like growth factor 2 receptor (M6P/IGF2R) is a multifunctional receptor. It is involved in a variety of cellular processes which become dysregulated in cancer. Its tumor suppressor role was recognized a long time ago. However, due to its multifunctionality, it is not easy to understand the extent of its relevance to normal cellular physiology. Accordingly, it is even more difficult understanding its role in carcinogenesis. This review presents critical and focused highlights of data relating to M6P/IGF2R, obtained during more than 25 years of cancer research.
Collapse
|
22
|
Brown J, Jones EY, Forbes BE. Interactions of IGF-II with the IGF2R/cation-independent mannose-6-phosphate receptor mechanism and biological outcomes. VITAMINS AND HORMONES 2009; 80:699-719. [PMID: 19251056 DOI: 10.1016/s0083-6729(08)00625-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The cation-independent mannose-6-phosphate/insulin-like growth factor-II receptor (IGF2R) is a membrane-bound glycoprotein consisting of 15 homologous extracellular repeat domains. The major function of this receptor is trafficking of lysosomal enzymes from the trans-Golgi network to the endosomes and their subsequent transfer to lysosomes. The IGF2R also plays a major role in binding and regulating the circulating and tissue levels of IGF-II. As this ligand is important for cell growth, survival, and migration, the maintenance of correct IGF-II levels influences its actions in normal growth and development. Deregulation of IGF2R expression has therefore been associated with growth related disease and cancer. This review highlights recent advances in understanding the IGF2R structure and mechanism of interaction with its ligands, in particular IGF-II. Recent mutagenesis studies combined with the crystal structure of domains 11-14 in complex with IGF-II have mapped the sites of interaction and explain how the IGF2R specificity for IGF-II is achieved. The role of domain 13 in high-affinity IGF-II binding is also revealed. Characterization of ligand:IGF2R interactions is vital for the understanding of the mechanism of IGF2R actions and will allow the development of specific cancer therapies in the future.
Collapse
Affiliation(s)
- J Brown
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | | | | |
Collapse
|
23
|
Rezgui D, Williams C, Savage SA, Prince SN, Zaccheo OJ, Jones EY, Crump MP, Hassan AB. Structure and function of the human Gly1619Arg polymorphism of M6P/IGF2R domain 11 implicated in IGF2 dependent growth. J Mol Endocrinol 2009; 42:341-56. [PMID: 19208780 PMCID: PMC2659294 DOI: 10.1677/jme-08-0154] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 01/08/2009] [Accepted: 02/04/2009] [Indexed: 11/27/2022]
Abstract
The mannose 6-phosphate/IGF 2 receptor (IGF2R) is comprised of 15 extra-cellular domains that bind IGF2 and mannose 6-phosphate ligands. IGF2R transports ligands from the Golgi to the pre-lysosomal compartment and thereafter to and from the cell surface. IGF2R regulates growth, placental development, tumour suppression and signalling. The ligand IGF2 is implicated in the growth phenotype, where IGF2R normally limits bioavailability, such that loss and gain of IGF2R results in increased and reduced growth respectively. The IGF2R exon 34 (5002A>G) polymorphism (rs629849) of the IGF2 specific binding domain has been correlated with impaired childhood growth (A/A homozygotes). We evaluated the function of the Gly1619Arg non-synonymous amino acid modification of domain 11. NMR and X-ray crystallography structures located 1619 remote from the ligand binding region of domain 11. Arg1619 was located close to the fibronectin type II (FnII) domain of domain 13, previously implicated as a modifier of IGF2 ligand binding through indirect interaction with the AB loop of the binding cleft. However, comparison of binding kinetics of IGF2R, Gly1619 and Arg1619 to either IGF2 or mannose 6-phosphate revealed no differences in 'on' and 'off' rates. Quantitative PCR, (35)S pulse chase and flow cytometry failed to demonstrate altered gene expression, protein half-life and cell membrane distribution, suggesting the polymorphism had no direct effect on receptor function. Intronic polymorphisms were identified which may be in linkage disequilibrium with rs629849 in certain populations. Other potential IGF2R polymorphisms may account for the correlation with childhood growth, warranting further functional evaluation.
Collapse
Affiliation(s)
| | - Christopher Williams
- Department of Organic and Biological ChemistrySchool of Chemistry, University of BristolBristol, BS8 1TSUK
| | - Sharon A Savage
- Division of Cancer Epidemiology and GeneticsNational Cancer Institute6120 Executive Boulevard, EPS/7018, Rockville, Maryland, 20852USA
| | | | | | - E Yvonne Jones
- Cancer Research UK Receptor Structure Research Group, Division of Structural BiologyWellcome Trust Centre for Human Genetics, University of OxfordOxford, OX3 7BNUK
| | - Matthew P Crump
- Department of Organic and Biological ChemistrySchool of Chemistry, University of BristolBristol, BS8 1TSUK
| | | |
Collapse
|
24
|
Hartman MA, Kreiling JL, Byrd JC, MacDonald RG. High-affinity ligand binding by wild-type/mutant heteromeric complexes of the mannose 6-phosphate/insulin-like growth factor II receptor. FEBS J 2009; 276:1915-29. [PMID: 19236480 DOI: 10.1111/j.1742-4658.2009.06917.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mannose 6-phosphate/insulin-like growth factor II receptor has diverse ligand-binding properties contributing to its roles in lysosome biogenesis and growth suppression. Optimal receptor binding and internalization of mannose 6-phosphate (Man-6-P)-bearing ligands requires a dimeric structure leading to bivalent high-affinity binding, presumably mediated by cooperation between sites on both subunits. Insulin-like growth factor II (IGF-II) binds to a single site on each monomer. It is hypothesized that IGF-II binding to cognate sites on each monomer occurs independently, but bivalent Man-6-P ligand binding requires cooperative contributions from sites on both monomers. To test this hypothesis, we co-immunoprecipitated differentially epitope-tagged soluble mini-receptors and assessed ligand binding. Pairing of wild-type and point-mutated IGF-II binding sites between two dimerized mini-receptors had no effect on the function of the contralateral binding site, indicating IGF-II binding to each side of the dimer is independent and manifests no intersubunit effects. As expected, heterodimeric receptors composed of a wild-type monomer and a mutant bearing two Man-6-P-binding knockout mutations form functional IGF-II binding sites. By contrast to prediction, such heterodimeric receptors also bind Man-6-P-based ligands with high affinity, and the amount of binding can be attributed entirely to the immunoprecipitated wild-type receptors. Anchoring of both C-terminal ends of the heterodimer produces optimal binding of both IGF-II and Man-6-P ligands. Thus, IGF-II binds independently to both subunits of the dimeric mannose 6-phosphate/insulin-like growth factor II receptor. Although wild-type/mutant hetero-oligomers form readily when mixed, it appears that multivalent Man-6-P ligands bind preferentially to wild-type sites, possibly by cross-bridging receptors within clusters of immobilized receptors.
Collapse
Affiliation(s)
- Michelle A Hartman
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | | | | | | |
Collapse
|
25
|
Nedić O, Masnikosa R. Isolated compared to membrane-bound receptors exhibit altered insulin/IGF interaction. BIOCHEMISTRY. BIOKHIMIIA 2009; 74:29-35. [PMID: 19232045 DOI: 10.1134/s0006297909010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Insulin and insulin-like growth factors (IGFs) bind to their cognate receptors with high affinities, but due to their homology they may cross-react with each other's receptors. We performed a series of binding studies to reanalyze the cross-reactivity of insulin, IGF-I, and IGF-II to affinity-purified insulin (IR) and type 2 IGF receptors (IGF-2R) from human placental membranes. IR and IGF-2R were purified using insulin- and mannose-6-phosphate affinity chromatography (I-AC and M6P-AC). Binding studies were performed with (125)I-labeled and unlabeled ligands. According to immunoblotting, the only receptor species isolated by I-AC was IR, whereas the only receptor isolated by M6P-AC was IGF-2R. Isolated IR reacted to similar extent with (125)I-labeled insulin and (125)I-labeled IGF-II and significantly less with (125)I-labeled IGF-I, implicating predominance of IR-A. The affinity of IR towards heterologous ligands increased after its separation from other membrane proteins. Affinity-purified IGF-2R was almost unable to bind ligands under experimental conditions used in this work, but when incubated with (125)I-labeled ligands prior to affinity chromatography, IGF-2R interacted not only with IGF-II, but to a certain extent with the other two ligands. In the competitive M6P-AC, the binding of labeled ligands was inhibited with either homologous or heterologous ligands, in a dose dependent manner. In competitive ligand-blotting, specific interactions between (125)I-labeled insulin and IR, and (125)I-labeled IGF-II and IGF-2R were also inhibited with all unlabeled ligands, although to a different extent. The results presented in this work imply that isolation of IR an IGF-2R from their membrane milieu increases their reactivity towards all members of the insulin/IGF ligand family.
Collapse
Affiliation(s)
- O Nedić
- Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Belgrade, 11080, Serbia.
| | | |
Collapse
|
26
|
El‐Shewy HM, Luttrell LM. Chapter 24 Insulin‐Like Growth Factor‐2/Mannose‐6 Phosphate Receptors. VITAMINS & HORMONES 2009; 80:667-97. [DOI: 10.1016/s0083-6729(08)00624-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Fei X, Connelly CM, MacDonald RG, Berkowitz DB. A set of phosphatase-inert "molecular rulers" to probe for bivalent mannose 6-phosphate ligand-receptor interactions. Bioorg Med Chem Lett 2008; 18:3085-9. [PMID: 18068981 PMCID: PMC2862223 DOI: 10.1016/j.bmcl.2007.11.094] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 11/19/2007] [Accepted: 11/19/2007] [Indexed: 11/27/2022]
Abstract
A set of bivalent mannose 6-phosphonate 'molecular rulers' has been synthesized to examine ligand binding to the M6P/IGF2R. The set is estimated to span a P-P distance range of 16-26A (MMFF energy minimization on the hydrated phosphonates). Key synthetic transformations include sugar triflate displacement for phosphonate installation and Grubbs I cross-metathesis to achieve bivalency. Relative binding affinities were tested by radioligand displacement assays versus PMP-BSA (pentamannosyl phosphate-bovine serum albumin). These compounds exhibit slightly higher binding affinities for the receptor (IC(50)'s=3.7-5 microM) than the parent, monomeric mannose 6-phosphonate ligand and M6P itself (IC(50)=11.5+/-2.5 microM). These results suggest that the use of an alpha-configured anomeric alkane tether is acceptable, as no significant thermodynamic penalty is apparently paid with this design. On the other hand, the modest gains in binding affinity observed suggest that this ligand set has not yet found true bivalent interaction with the M6P/IGF2R (i.e., simultaneous binding to two distinct M6P-binding pockets).
Collapse
Affiliation(s)
- Xiang Fei
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | | | | | | |
Collapse
|
28
|
Newman DJ. Natural products as leads to potential drugs: an old process or the new hope for drug discovery? J Med Chem 2008; 51:2589-99. [PMID: 18393402 DOI: 10.1021/jm0704090] [Citation(s) in RCA: 442] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- David J Newman
- Natural Products Branch, Developmental Therapeutics Program, DCTD, National Cancer Institute-Frederick, P.O. Box B, Frederick, Maryland 21702, USA.
| |
Collapse
|
29
|
Hawkes C, Amritraj A, Macdonald RG, Jhamandas JH, Kar S. Heterotrimeric G proteins and the single-transmembrane domain IGF-II/M6P receptor: functional interaction and relevance to cell signaling. Mol Neurobiol 2008; 35:329-45. [PMID: 17917122 DOI: 10.1007/s12035-007-0021-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 11/30/1999] [Accepted: 04/02/2007] [Indexed: 12/11/2022]
Abstract
The G protein-coupled receptor (GPCR) family represents the largest and most versatile group of cell surface receptors. Classical GPCR signaling constitutes ligand binding to a seven-transmembrane domain receptor, receptor interaction with a heterotrimeric G protein, and the subsequent activation or inhibition of downstream intracellular effectors to mediate a cellular response. However, recent reports on direct, receptor-independent G protein activation, G protein-independent signaling by GPCRs, and signaling of nonheptahelical receptors via trimeric G proteins have highlighted the intrinsic complexities of G protein signaling mechanisms. The insulin-like growth factor-II/mannose-6 phosphate (IGF-II/M6P) receptor is a single-transmembrane glycoprotein whose principal function is the intracellular transport of lysosomal enzymes. In addition, the receptor also mediates some biological effects in response to IGF-II binding in both neuronal and nonneuronal systems. Multidisciplinary efforts to elucidate the intracellular signaling pathways that underlie these effects have generated data to suggest that the IGF-II/M6P receptor might mediate transmembrane signaling via a G protein-coupled mechanism. The purpose of this review is to outline the characteristics of traditional and nontraditional GPCRs, to relate the IGF-II/M6P receptor's structure with its role in G protein-coupled signaling and to summarize evidence gathered over the years regarding the putative signaling of the IGF-II/M6P receptor mediated by a G protein.
Collapse
Affiliation(s)
- C Hawkes
- Department of Psychiatry, Centre for Alzheimer and Neurodegenerative Research, University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | | | | | | | | |
Collapse
|
30
|
Structure and functional analysis of the IGF-II/IGF2R interaction. EMBO J 2007; 27:265-76. [PMID: 18046459 DOI: 10.1038/sj.emboj.7601938] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Accepted: 11/06/2007] [Indexed: 02/05/2023] Open
Abstract
Embryonic development and normal growth require exquisite control of insulin-like growth factors (IGFs). In mammals the extracellular region of the cation-independent mannose-6-phosphate receptor has gained an IGF-II-binding function and is termed type II IGF receptor (IGF2R). IGF2R sequesters IGF-II; imbalances occur in cancers and IGF2R is implicated in tumour suppression. We report crystal structures of IGF2R domains 11-12, 11-12-13-14 and domains 11-12-13/IGF-II complex. A distinctive juxtaposition of these domains provides the IGF-II-binding unit, with domain 11 directly interacting with IGF-II and domain 13 modulating binding site flexibility. Our complex shows that Phe19 and Leu53 of IGF-II lock into a hydrophobic pocket unique to domain 11 of mammalian IGF2Rs. Mutagenesis analyses confirm this IGF-II 'binding-hotspot', revealing that IGF-binding proteins and IGF2R have converged on the same high-affinity site.
Collapse
|
31
|
Williams C, Rezgui D, Prince SN, Zaccheo OJ, Foulstone EJ, Forbes BE, Norton RS, Crosby J, Hassan AB, Crump MP. Structural insights into the interaction of insulin-like growth factor 2 with IGF2R domain 11. Structure 2007; 15:1065-78. [PMID: 17850746 DOI: 10.1016/j.str.2007.07.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 06/18/2007] [Accepted: 07/06/2007] [Indexed: 11/25/2022]
Abstract
The insulin-like growth factor II/mannose-6-phosphate receptor (IGF2R) mediates trafficking of mannose-6-phosphate (M6P)-containing proteins and the mitogenic hormone IGF2. IGF2R also plays an important role as a tumor suppressor, as mutation is frequently associated with human carcinogenesis. IGF2 binds to domain 11, one of 15 extracellular domains on IGF2R. The crystal structure of domain 11 and the solution structure of IGF2 have been reported, but, to date, there has been limited success when using crystallography to study the interaction of IGFs with their binding partners. As an approach to investigate the interaction between IGF2 and IGF2R, we have used heteronuclear NMR in combination with existing mutagenesis data to derive models of the domain 11-IGF2 complex by using the program HADDOCK. The models reveal that the molecular interaction is driven by critical hydrophobic residues on IGF2 and IGF2R, while a ring of flexible, charged residues on IGF2R may modulate binding.
Collapse
Affiliation(s)
- Christopher Williams
- Department of Organic and Biological Chemistry, School of Chemistry, Cantock's Close, University of Bristol, Bristol, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Waguri S, Tomiyama Y, Ikeda H, Hida T, Sakai N, Taniike M, Ebisu S, Uchiyama Y. The luminal domain participates in the endosomal trafficking of the cation-independent mannose 6-phosphate receptor. Exp Cell Res 2006; 312:4090-107. [PMID: 17069798 DOI: 10.1016/j.yexcr.2006.09.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Revised: 08/07/2006] [Accepted: 09/12/2006] [Indexed: 01/20/2023]
Abstract
Although the role of the cytoplasmic tail of the cation-independent mannose 6-phosphate receptor (CIMPR) has been well established in the receptor trafficking, that of the luminal domain is still controversial. We noticed that the peripheral distribution of GFP, fused to the transmembrane and cytoplasmic domains of CIMPR (G-CIMPR-tail), was distinct from that of endogenous CIMPR or of GFP fused to the full-length CIMPR (G-CIMPR-full). By live-cell imaging, trans-Golgi-network (TGN)-derived transport carriers containing G-CIMPR-full more frequently stopped and overlapped with transferrin-containing endosomes in the peripheral region than those containing G-CIMPR-tail. G-CIMPR-full was recycled back to the perinuclear TGN more slowly than that for G-CIMPR-tail, evidenced by fluorescence recovery after photobleaching analysis. Moreover, endogenous CIMPR and G-CIMPR-full, but not GFP-CIMPR-tail, drastically altered the characteristic distribution after treatment with chloroquine. A mutant receptor, G-CIMPR-full R/A, that cannot recognize the mannose 6-phosphate (M6P)-signal, behaved similarly to G-CIMPR-full, indicating that these differences are not attributable to the M6P-ligands binding situation. Interestingly, we also found that U18666A treatment was able to discriminate the M6P-ligand binding-dependent trafficking of CIMPR. Based on these findings, we propose that the CIMPR luminal domain is required for tight interaction with endocytic compartments, and retention by them, and that there are additional transport steps, in which the binding to M6P-ligands is involved.
Collapse
Affiliation(s)
- Satoshi Waguri
- Department of Anatomy and Histology, Fukushima Medical University, School of Medicine, 1-Hikarigaoka, Fukushima City, Fukushima 960-1295, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Charette BD, Macdonald RG, Wetzel S, Berkowitz DB, Waldmann H. Protein Structure Similarity Clustering: Dynamic Treatment of PDB Structures Facilitates Clustering. Angew Chem Int Ed Engl 2006; 45:7766-70. [PMID: 17075950 DOI: 10.1002/anie.200602125] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
34
|
Charette BD, MacDonald RG, Wetzel S, Berkowitz DB, Waldmann H. Protein Structure Similarity Clustering: Dynamic Treatment of PDB Structures Facilitates Clustering. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200602125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
35
|
Berkowitz DB, Maiti G, Charette BD, Dreis CD, MacDonald RG. Mono- and bivalent ligands bearing mannose 6-phosphate (M6P) surrogates: targeting the M6P/insulin-like growth factor II receptor. Org Lett 2006; 6:4921-4. [PMID: 15606100 DOI: 10.1021/ol0479444] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
[reaction: see text] Mannose 6-phosphate mimics locked into the alpha-configuration and bearing hydrolase-resistant phosphate surrogates were synthesized and evaluated for binding affinity to the mannose 6-phosphate/insulin-like growth factor II receptor (M6P/IGF2R). Affinity increases as the phosphate surrogate is varied in the order malonyl ether < malonate < phosphonate. An alkene cross-metathesis approach to sought-after bivalent M6P-bearing ligands is also described. These compounds were designed to map onto biantennary sectors of high-mannose-type oligosaccharides carried by glycoprotein M6P/IGF2R ligands.
Collapse
Affiliation(s)
- David B Berkowitz
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, USA.
| | | | | | | | | |
Collapse
|
36
|
Gasanov U, Koina C, Beagley KW, Aitken RJ, Hansbro PM. Identification of the insulin-like growth factor II receptor as a novel receptor for binding and invasion by Listeria monocytogenes. Infect Immun 2006; 74:566-77. [PMID: 16369013 PMCID: PMC1346592 DOI: 10.1128/iai.74.1.566-577.2006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The gram-positive bacterium Listeria monocytogenes causes a life-threatening disease known as listeriosis. The mechanism by which L. monocytogenes invades mammalian cells is not fully understood, but the processes involved may provide targets to prevent and treat listeriosis. Here, for the first time, we have identified the insulin-like growth factor II receptor (IGFIIR; also known as the cation-independent mannose 6-phosphate receptor (CI)M6PR or CD222) as a novel receptor for binding and invasion of Listeria species. Random peptide phage display was employed to select a peptide sequence by panning with immobilized L. monocytogenes cells; this peptide sequence corresponds to a sequence within the mannose 6-phosphate binding site of the IGFIIR. All Listeria spp. specifically bound the labeled peptide but not a control peptide, which was demonstrated using fluorescence spectrophotometry and fluorescence-activated cell sorting. Further evidence for binding of the receptor by L. monocytogenes and L. innocua was provided by affinity purification of the bovine IGFIIR from fetal calf serum by use of magnetic beads coated with cell preparations of Listeria spp. as affinity matrices. Adherence to and invasion of mammalian cells by L. monocytogenes was significantly inhibited by both the synthetic peptide and mannose 6-phosphate but not by appropriate controls. These observations indicate a role for the IGFIIR in the adherence and invasion of L. monocytogenes of mammalian cells, perhaps in combination with known mechanisms. Ligation of IGFIIR by L. monocytogenes may be a novel mechanism that contributes to the regulation of infectivity, possibly in combination with other mechanisms.
Collapse
Affiliation(s)
- Uta Gasanov
- Discipline of Immunology & Microbiology, Faculty of Health, The University of Newcastle, Royal Newcastle Hospital, Newcastle, New South Wales 2300, Australia
| | | | | | | | | |
Collapse
|
37
|
Sacher M, Di Bacco A, Lunin VV, Ye Z, Wagner J, Gill G, Cygler M. The crystal structure of CREG, a secreted glycoprotein involved in cellular growth and differentiation. Proc Natl Acad Sci U S A 2005; 102:18326-31. [PMID: 16344469 PMCID: PMC1317909 DOI: 10.1073/pnas.0505071102] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cellular repressor of E1A-stimulated genes (CREG) is a secreted glycoprotein that inhibits proliferation and enhances differentiation of human embryonal carcinoma cells. CREG binds to the cation-independent mannose 6-phosphate (M6P)/insulin-like growth factor II (IGF2) receptor (IGF2R) (M6P/IGF2R), and this receptor has been shown to be required for CREG-induced growth suppression. To better understand CREG function in cellular growth and differentiation, we solved the 3D crystal structure of this protein to 1.9-A resolution. CREG forms a tight homodimeric complex, and CREG monomers display a beta-barrel fold. The three potential glycosylation sites on CREG map to a confined patch opposite the dimer interface. Thus, dimerization of glycosylated CREG likely presents a bivalent ligand for the M6P/IGF2R. Closely related structural homologs of CREG are FMN-binding split-barrel fold proteins that bind flavin mononucleotide. Our structure shows that the putative flavin mononucleotide-binding pocket in CREG is sterically blocked by a loop and several key bulky residues. A mutant of CREG lacking a part of this loop maintained overall structure and dimerization, as well as M6P/IGF2R binding, but lost the growth suppression activity of WT CREG. Thus, analysis of a structure-based mutant of CREG revealed that binding to M6P/IGF2R, while necessary, is not sufficient for CREG-induced growth suppression. These findings indicate that CREG utilizes a known fold for a previously undescribed function [corrected]
Collapse
Affiliation(s)
- Michael Sacher
- Montreal Proteomics Network, 740 Doctor Penfield, Montreal, QC, Canada H3A 1A4.
| | | | | | | | | | | | | |
Collapse
|
38
|
Romano PS, Carvelli L, López AC, Jofré G, Sartor T, Sosa MA. Developmental differences between cation-independent and cation-dependent mannose-6-phosphate receptors in rat brain at perinatal stages. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 158:23-30. [PMID: 15982751 DOI: 10.1016/j.devbrainres.2005.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Revised: 05/03/2005] [Accepted: 05/09/2005] [Indexed: 10/25/2022]
Abstract
Mannose-6-phosphate receptors (MPRs) play a role in the selective transport of macromolecules bearing mannose-6-phosphate residue to lysosomes. To date, two types of MPRs have been described in most of cells and tissues: the cation-dependent (CD-MPR) and cation-independent mannose-6-phosphate receptor (CI-MPR). In order to elucidate their possible role in the central nervous system, the expression and binding properties of both MPRs were studied in rat brain along perinatal development. It was observed that the expression of CI-MPR decreases progressively from fetuses to adults, while the CD-MPR increases around the 10th day of birth, and maintains these values up to adulthood. Binding assays showed differences in the Bmax and KD values between the ages studied, and they did not correlate with the expression levels of both MPRs. Variations in lysosomal enzyme activities and expression of phosphomannosylated ligands during development correlated more with CD-MPR than with CI-MPR expression. These results suggest that both receptors play a different role in rat brain during perinatal development, being CD-MPR mostly involved in lysosome maturation.
Collapse
Affiliation(s)
- P S Romano
- Instituto de Histología y Embriología (IHEM)-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Casilla de Correo 56, Centro Universitario, Parque General San Martín, (5500) Mendoza, Argentina
| | | | | | | | | | | |
Collapse
|
39
|
Kreiling JL, Byrd JC, MacDonald RG. Domain interactions of the mannose 6-phosphate/insulin-like growth factor II receptor. J Biol Chem 2005; 280:21067-77. [PMID: 15799974 DOI: 10.1074/jbc.m412971200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mannose 6-phosphate/insulin-like growth factor II receptor (M6P/IGF2R) forms oligomeric structures important for optimal function in binding and internalization of Man-6-P-bearing extracellular ligands as well as lysosomal biogenesis and growth regulation. However, neither the mechanism of inter-receptor interaction nor the dimerization domain has yet been identified. We hypothesized that areas near the ligand binding domains of the receptor would contribute preferentially to oligomerization. Two panels of minireceptors were constructed that involved truncations of either the N- or C-terminal regions of the M6P/IGF2R encompassing deletions of various ligand binding domains. alpha-FLAG or alpha-Myc-based immunoprecipitation assays showed that all of the minireceptors tested were able to associate with a full-length, Myc-tagged M6P/IGF2R (WT-M). In the alpha-FLAG but not alpha-Myc immunoprecipitation assays, the degree of association of a series of C-terminally truncated minireceptors with WT-M showed a positive trend with length of the minireceptor. In contrast, length did not seem to affect the association of the N-terminally truncated minireceptors with WT-M, except that the 12th extracytoplasmic repeat appeared exceptionally important in dimerization in the alpha-FLAG assays. The presence of mutations in the ligand-binding sites of the minireceptors had no effect on their ability to associate with WT-M. Thus, association within the heterodimers was not dependent on the presence of functional ligand binding domains. Heterodimers formed between WT-M and the minireceptors demonstrated high affinity IGF-II and Man-6-P-ligand binding, suggesting a functional association. We conclude that there is no finite M6P/IGF2R dimerization domain, but rather that interactions between dimer partners occur all along the extracytoplasmic region of the receptor.
Collapse
Affiliation(s)
- Jodi L Kreiling
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870, USA
| | | | | |
Collapse
|
40
|
Reddy ST, Chai W, Childs RA, Page JD, Feizi T, Dahms NM. Identification of a low affinity mannose 6-phosphate-binding site in domain 5 of the cation-independent mannose 6-phosphate receptor. J Biol Chem 2004; 279:38658-67. [PMID: 15252023 DOI: 10.1074/jbc.m407474200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The 300-kDa cation-independent mannose 6-phosphate receptor (CI-MPR) and the 46-kDa cation-dependent MPR (CD-MPR) are type I integral membrane glycoproteins that play a critical role in the intracellular delivery of newly synthesized mannose 6-phosphate (Man-6-P)-containing acid hydrolases to the lysosome. The extracytoplasmic region of the CI-MPR contains 15 contiguous domains, and the two high affinity ( approximately 1 nm) Man-6-P-binding sites have been mapped to domains 1-3 and 9, with essential residues localized to domains 3 and 9. Domain 5 of the CI-MPR exhibits significant sequence homology to domains 3 and 9 as well as to the CD-MPR. A structure-based sequence alignment was performed that predicts that domain 5 contains the four conserved key residues (Gln, Arg, Glu, and Tyr) identified as essential for carbohydrate recognition by the CD-MPR and domains 3 and 9 of the CI-MPR, but lacks two cysteine residues predicted to form a disulfide bond within the binding pocket. To determine whether domain 5 harbors a carbohydrate-binding site, a construct that encodes domain 5 alone (Dom5His) was expressed in Pichia pastoris. Microarray analysis using 30 different oligosaccharides demonstrated that Dom5His bound specifically to a Man-6-P-containing oligosaccharide (pentamannosyl 6-phosphate). Frontal affinity chromatography showed that the affinity of Dom5His for Man-6-P was approximately 300-fold lower (K(i) = 5.3 mm) than that observed for domains 1-3 and 9. The interaction affinity for the lysosomal enzyme beta-glucuronidase was also much lower (K(d) = 54 microm) as determined by surface plasmon resonance analysis. Taken together, these results demonstrate that the CI-MPR contains a third Man-6-P recognition site that is located in domain 5 and that exhibits lower affinity than the carbohydrate-binding sites present in domains 1-3 and 9.
Collapse
Affiliation(s)
- Sreelatha T Reddy
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | |
Collapse
|
41
|
Hawkes C, Kar S. The insulin-like growth factor-II/mannose-6-phosphate receptor: structure, distribution and function in the central nervous system. ACTA ACUST UNITED AC 2004; 44:117-40. [PMID: 15003389 DOI: 10.1016/j.brainresrev.2003.11.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2003] [Indexed: 01/25/2023]
Abstract
The insulin-like growth factor-II/mannose-6-phosphate (IGF-II/M6P) receptor is a multifunctional single transmembrane glycoprotein which, along with the cation-dependent M6P (CD-M6P) receptor, mediates the trafficking of M6P-containing lysosomal enzymes from the trans-Golgi network (TGN) to lysosomes. Cell surface IGF-II/M6P receptors also function in the degradation of the non-glycosylated IGF-II polypeptide hormone, as well as in the capture and activation/degradation of extracellular M6P-bearing ligands. In recent years, the multifaceted role of the receptor has become apparent, as several lines of evidence have indicated that in addition to its role in lysosomal enzyme trafficking, clearance and/or activation of a variety of growth factors and endocytosis-mediated degradation of IGF-II, the IGF-II/M6P receptor may also mediate transmembrane signal transduction in response to IGF-II binding under certain conditions. However, very little is known about the physiological significance of the receptor in the function of the central nervous system (CNS). This review aims to delineate what is currently known about IGF-II/M6P receptor structure, its ligand binding properties and role in lysosomal enzyme transport. It also summarizes the recent data regarding the role of the receptor in the CNS, including its distribution, possible importance for normal and activity-dependent functioning as well as its implications in neurodegenerative disorders such as Alzheimer's disease (AD).
Collapse
Affiliation(s)
- C Hawkes
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada H4H 1R3
| | | |
Collapse
|
42
|
Olson LJ, Yammani RD, Dahms NM, Kim JJP. Structure of uPAR, plasminogen, and sugar-binding sites of the 300 kDa mannose 6-phosphate receptor. EMBO J 2004; 23:2019-28. [PMID: 15085180 PMCID: PMC424385 DOI: 10.1038/sj.emboj.7600215] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Accepted: 03/25/2004] [Indexed: 11/09/2022] Open
Abstract
The 300 kDa cation-independent mannose 6-phosphate receptor (CI-MPR) mediates the intracellular transport of newly synthesized lysosomal enzymes containing mannose 6-phosphate on their N-linked oligosaccharides. In addition to its role in lysosome biogenesis, the CI-MPR interacts with a number of different extracellular ligands at the cell surface, including latent transforming growth factor-beta, insulin-like growth factor-II, plasminogen, and urokinase-type plasminogen activator receptor (uPAR), to regulate cell growth and motility. We have solved the crystal structure of the N-terminal 432 residues of the CI-MPR at 1.8 A resolution, which encompass three out of the 15 repetitive domains of its extracytoplasmic region. The three domains, which exhibit similar topology to each other and to the 46 kDa cation-dependent mannose 6-phosphate receptor, assemble into a compact structure with the uPAR/plasminogen and the carbohydrate-binding sites situated on opposite faces of the molecule. Knowledge of the arrangement of these three domains has allowed us to propose a model of the entire extracytoplasmic region of the CI-MPR that provides a context with which to envision the numerous binding interactions carried out by this multi-faceted receptor.
Collapse
Affiliation(s)
- Linda J Olson
- Department of Biochemistry, Medical College of Wisconsin, Watertown Plank Road, Milwaukee, WI, USA
| | - Rama D Yammani
- Department of Biochemistry, Medical College of Wisconsin, Watertown Plank Road, Milwaukee, WI, USA
| | - Nancy M Dahms
- Department of Biochemistry, Medical College of Wisconsin, Watertown Plank Road, Milwaukee, WI, USA
| | - Jung-Ja P Kim
- Department of Biochemistry, Medical College of Wisconsin, Watertown Plank Road, Milwaukee, WI, USA
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA. Tel.: +1 414 456 8479; Fax: +1 414 456 6510; E-mail:
| |
Collapse
|
43
|
Reaven E, Cortez Y, Leers-Sucheta S, Nomoto A, Azhar S. Dimerization of the scavenger receptor class B type I: formation, function, and localization in diverse cells and tissues. J Lipid Res 2004; 45:513-28. [PMID: 14657200 DOI: 10.1194/jlr.m300370-jlr200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study has examined the dimeric/oligomeric forms of scavenger receptor class B type I (SR-BI) and its alternatively spliced form, SR-BII, in a diverse group of cells and tissues: i.e., normal and hormonally altered tissues of mice and rats as well as tissues of transgenic animals and genetically altered steroidogenic and nonsteroidogenic cells overexpressing the SR-B proteins. Using both biochemical and morphological techniques, we have seen that these dimeric and higher order oligomeric forms of SR-BI expression are strongly associated with both functional and morphological expression of the selective HDL cholesteryl ester uptake pathway. Rats and mice show some species differences in expression of SR-BII dimeric forms; this difference does not extend to the use of SR-B cDNA types for transfection purposes. In a separate study, cotransfection of HEK293 cells with cMyc and V5 epitope-tagged SR-BI permitted coprecipitation and quantitative coimmunocytochemical measurements at the electron microscope level, suggesting that much of the newly expressed SR-BI protein in stimulated cells dimerizes and that the SR-BI dimers are localized to the cell surface and specifically to microvillar or double membraned intracellular channels. These combined data suggest that SR-BI self-association represents an integral step in the selective cholesteryl ester uptake process.
Collapse
MESH Headings
- Adrenal Glands/metabolism
- Animals
- Cell Membrane/metabolism
- Cells, Cultured
- Dimerization
- Female
- Gene Expression Profiling
- Humans
- Immunohistochemistry
- Lysosomal Membrane Proteins
- Male
- Membrane Proteins/chemistry
- Membrane Proteins/metabolism
- Mice
- Mice, Transgenic
- Organ Specificity
- Ovary/metabolism
- Protein Transport
- Rats
- Rats, Sprague-Dawley
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/classification
- Receptors, Immunologic/metabolism
- Receptors, Lipoprotein/chemistry
- Receptors, Lipoprotein/metabolism
- Receptors, Scavenger
- Scavenger Receptors, Class B
- Sialoglycoproteins
Collapse
Affiliation(s)
- Eve Reaven
- Geriatrics Research, Education, and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, USA.
| | | | | | | | | |
Collapse
|
44
|
Gestwicki JE, Cairo CW, Borrok MJ, Kiessling LL. Visualization and characterization of receptor clusters by transmission electron microscopy. Methods Enzymol 2003; 362:301-12. [PMID: 12968372 DOI: 10.1016/s0076-6879(03)01021-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Jason E Gestwicki
- Departments of Chemistry and Biochemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
45
|
Kreiling JL, Byrd JC, Deisz RJ, Mizukami IF, Todd RF, MacDonald RG. Binding of urokinase-type plasminogen activator receptor (uPAR) to the mannose 6-phosphate/insulin-like growth factor II receptor: contrasting interactions of full-length and soluble forms of uPAR. J Biol Chem 2003; 278:20628-37. [PMID: 12665524 DOI: 10.1074/jbc.m302249200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Urokinase-type plasminogen activator receptor (uPAR) binding by the mannose 6-phosphate/insulin-like growth factor II receptor (Man-6-P/IGF2R) is considered important to Man-6-P/IGF2R tumor suppressor function via regulation of cell surface proteolytic activity. Our goal was to map the uPAR binding site of the Man-6-P/IGF2R by analyzing the uPAR binding characteristics of a panel of minireceptors containing different regions of the Man-6-P/IGF2R extracytoplasmic domain. Coimmunoprecipitation assays revealed that soluble recombinant uPAR (suPAR) bound the Man-6-P/IGF2R at two distinct sites, one localized to the amino-terminal end of the Man-6-P/IGF2R extracytoplasmic domain (repeats 1-3) and the other to the more carboxyl-terminal end (repeats 7-9). These sites correspond with the positions of the two Man-6-P binding domains of Man-6-P/IGF2R. Indeed, the suPAR-Man-6-P/IGF2R interaction was inhibited by Man-6-P, and binding-competent su-PAR species represented a minor percentage (8-30%) of the suPAR present. In contrast, Man-6-P/IGF2R binding of endogenous, full-length uPAR solubilized from plasma membranes of the prostate cancer cell line, PC-3, was not inhibited by Man-6-P. Further studies showed that very little (<5%) endogenous uPAR was Man-6-P/IGF2R binding-competent. We conclude that, contrary to previous reports, the interaction between uPAR and Man-6-P/IGF2R is a low percentage binding event and that suPAR and full-length uPAR bind the Man-6-P/IGF2R by different mechanisms.
Collapse
Affiliation(s)
- Jodi L Kreiling
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198-4525, USA
| | | | | | | | | | | |
Collapse
|
46
|
Ghosh P, Dahms NM, Kornfeld S. Mannose 6-phosphate receptors: new twists in the tale. Nat Rev Mol Cell Biol 2003; 4:202-12. [PMID: 12612639 DOI: 10.1038/nrm1050] [Citation(s) in RCA: 782] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The two mannose 6-phosphate (M6P) receptors were identified because of their ability to bind M6P-containing soluble acid hydrolases in the Golgi and transport them to the endosomal-lysosomal system. During the past decade, we have started to understand the structural features of these receptors that allow them to do this job, and how the receptors themselves are sorted as they pass through various membrane-bound compartments. But trafficking of acid hydrolases is only part of the story. Evidence is emerging that one of the receptors can regulate cell growth and motility, and that it functions as a tumour suppressor.
Collapse
Affiliation(s)
- Pradipta Ghosh
- Department of Internal Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, Missouri 63110, USA
| | | | | |
Collapse
|
47
|
Hancock MK, Yammani RD, Dahms NM. Localization of the carbohydrate recognition sites of the insulin-like growth factor II/mannose 6-phosphate receptor to domains 3 and 9 of the extracytoplasmic region. J Biol Chem 2002; 277:47205-12. [PMID: 12374794 DOI: 10.1074/jbc.m208534200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The insulin-like growth factor II/mannose 6-phosphate receptor is a multifunctional receptor that binds to a diverse array of mannose 6-phosphate (Man-6-P) modified proteins as well as nonglycosylated ligands. Previous studies have mapped its two Man-6-P binding sites to a minimum of three domains, 1-3 and 7-9, within its 15-domain extracytoplasmic region. Since the primary amino acid determinants of carbohydrate recognition by the insulin-like growth factor II/mannose 6-phosphate receptor are predicted by sequence alignment to the cation-dependent mannose 6-phosphate receptor to reside within domains 3 and 9, constructs encoding either domain 3 alone or domain 9 alone were expressed in a Pichia pastoris expression system and tested for their ability to bind several carbohydrate ligands, including Man-6-P, pentamannosyl phosphate, the lysosomal enzyme, beta-glucuronidase, and the carbohydrate modifications (mannose 6-sulfate and Man-6-P methyl ester) found on Dictyostelium discoideum lysosomal enzymes. Although both constructs were functional in ligand binding and dissociation, these studies demonstrate the ability of domain 9 alone to fold into a high affinity (K(d) = 0.3 +/- 0.1 nm) carbohydrate-recognition domain whereas the domain 3 alone construct is capable of only low affinity binding (K(d) approximately 500 nm) toward beta-glucuronidase, suggesting that residues in adjacent domains (domains 1 and/or 2) are important, either directly or indirectly, for optimal binding by domain 3.
Collapse
Affiliation(s)
- Michael K Hancock
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | |
Collapse
|
48
|
Brown J, Esnouf RM, Jones MA, Linnell J, Harlos K, Hassan A, Jones E. Structure of a functional IGF2R fragment determined from the anomalous scattering of sulfur. EMBO J 2002; 21:1054-62. [PMID: 11867533 PMCID: PMC125895 DOI: 10.1093/emboj/21.5.1054] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Insulin-like growth factor II receptor (IGF2R) is a multifunctional cell surface receptor implicated in tumour suppression. Its growth inhibitory activity has been associated with an ability to bind IGF-II. IGF2R contains 15 homologous extracellular domains, with domain 11 primarily responsible for IGF-II binding. We report a 1.4 A resolution crystal structure of domain 11, solved using the anomalous scattering signal of sulfur. The structure consists of two crossed beta-sheets forming a flattened beta-barrel. Structural analysis identifies the putative IGF-II binding site at one end of the beta-barrel whilst crystal lattice contacts suggest a model for the full-length IGF2R extracellular region. The structure factors and coordinates of IGF2R domain 11 have been deposited in the Protein Data Bank (accession codes 1GP0 and 1GP3).
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution
- Animals
- Binding Sites
- Chickens/metabolism
- Crystallography, X-Ray
- Evolution, Molecular
- Humans
- Insulin-Like Growth Factor II/metabolism
- Mammals/metabolism
- Models, Molecular
- Neoplasm Proteins/genetics
- Point Mutation
- Polymorphism, Genetic
- Protein Conformation
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Receptor, IGF Type 2/chemistry
- Receptor, IGF Type 2/genetics
- Receptor, IGF Type 2/metabolism
- Sequence Alignment
- Sequence Homology, Amino Acid
- Species Specificity
- Structure-Activity Relationship
Collapse
Affiliation(s)
| | | | | | - Jane Linnell
- Cancer Research UK Receptor Structure Research Group, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7BN and
Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK Corresponding author e-mail:
| | | | - A.Bassim Hassan
- Cancer Research UK Receptor Structure Research Group, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7BN and
Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK Corresponding author e-mail:
| | - E.Yvonne Jones
- Cancer Research UK Receptor Structure Research Group, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7BN and
Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK Corresponding author e-mail:
| |
Collapse
|
49
|
Linnell J, Groeger G, Hassan AB. Real time kinetics of insulin-like growth factor II (IGF-II) interaction with the IGF-II/mannose 6-phosphate receptor: the effects of domain 13 and pH. J Biol Chem 2001; 276:23986-91. [PMID: 11297550 DOI: 10.1074/jbc.m100700200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interaction of soluble forms of the human cation-independent insulin-like growth factor-II/mannose 6-phosphate receptor (IGF-IIR) with IGFs and mannosylated ligands was analyzed in real time. IGF-IIR proteins containing domains 1-15, 10-13, 11-13, or 11-12 were combined with rat CD4 domains 3 and 4. Following transient expression in 293T cells, secreted protein was immobilized onto biosensor chips. beta-Glucuronidase and latent transforming growth factor-beta1 bound only to domains 1-15. IGF-II bound to all constructs except a control, which contained a point mutation in domain 11. The affinity of domains 1-15, 10-13, 11-13, and 11-12 to IGF-II were 14, 120, 100, and 450 nm, respectively. Our data suggest that domain 13 acts as an enhancer of IGF-II affinity by slowing the rate of dissociation, but additional enhancement by domains other than 10-13 also occurs. As the receptor functions to transport ligands from either the trans-Golgi network or extracellular space to the endosomes, the interaction of IGF-IIR extracellular domains with IGF-II was analyzed over a pH range of 5.0-7.4. The constructs behaved differently in response to pH and in recovery after low pH exposure, suggesting that pH stability of the extracellular domains depends on domains other than 10-13.
Collapse
Affiliation(s)
- J Linnell
- Department of Zoology, University of Oxford, South Parks Rd., Oxford, OX1 3PS, United Kingdom.
| | | | | |
Collapse
|
50
|
Byrd JC, MacDonald RG. Mechanisms for high affinity mannose 6-phosphate ligand binding to the insulin-like growth factor II/mannose 6-phosphate receptor. J Biol Chem 2000; 275:18638-46. [PMID: 10764735 DOI: 10.1074/jbc.m000010200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The two mannose 6-phosphate (Man-6-P) binding domains of the insulin-like growth factor II/mannose 6-phosphate receptor (Man-6-P/IGF2R), located in extracytoplasmic repeats 1-3 and 7-9, are capable of binding Man-6-P with low affinity and glycoproteins that contain more than one Man-6-P residue with high affinity. High affinity multivalent ligand binding sites could be formed through two possible mechanisms: the interaction of two Man-6-P binding domains within one Man-6-P/IGF2R molecule or by receptor oligomerization. To discriminate between these mechanisms, truncated FLAG epitope-tagged Man-6-P/IGF2R constructs, containing one or both of the Man-6-P binding domains, were expressed in 293T cells, and characterized for binding of pentamannose phosphate-bovine serum albumin (PMP-BSA), a pseudoglycoprotein bearing multiple Man-6-P residues. A construct containing all 15 repeats of the Man-6-P/IGF2R extracytoplasmic domain bound PMP-BSA with the same affinity as the full-length receptor (K(d) = 0.54 nm) with a curvilinear Scatchard plot. The presence of excess unlabeled PMP-BSA increased the dissociation rate of pre-formed (125)I-PMP-BSA/receptor complexes, suggesting negative cooperativity in multivalent ligand binding and affirming the role of multiple Man-6-P/IGF2R binding domains in forming high affinity binding sites. Truncated receptors containing only one Man-6-P binding domain and mutant receptor constructs, containing an Arg(1325) --> Ala mutation that eliminates binding to the repeats 7-9 binding domain, formed high affinity PMP-BSA binding, but with reduced stoichiometries. Collectively, these observations suggest that alignment of Man-6-P binding domains of separate Man-6-P/IGF2R molecules is responsible for the formation of high affinity Man-6-P binding sites and provide functional evidence for Man-6-P/IGF2R oligomerization.
Collapse
Affiliation(s)
- J C Byrd
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198-4525, USA.
| | | |
Collapse
|