1
|
Favero A, Segatto I, Capuano A, Mattevi MC, Rampioni Vinciguerra GL, Musco L, D'Andrea S, Dall'Acqua A, Gava C, Perin T, Massarut S, Marchini C, Baldassarre G, Spessotto P, Belletti B. Loss of the extracellular matrix glycoprotein EMILIN1 accelerates Δ16HER2-driven breast cancer initiation in mice. NPJ Breast Cancer 2024; 10:5. [PMID: 38184660 PMCID: PMC10771445 DOI: 10.1038/s41523-023-00608-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/02/2023] [Indexed: 01/08/2024] Open
Abstract
The extracellular matrix (ECM) is an important component of the tumor microenvironment and undergoes extensive remodeling during both initiation and progression of breast cancer (BC). EMILIN1 is an ECM glycoprotein, whose function has been linked to cancer and metastasis. However, EMILIN1 role during mammary gland and BC development has never been investigated. In silico and molecular analyses of human samples from normal mammary gland and BC showed that EMILIN1 expression was lower in tumors than in healthy mammary tissue and it predicted poor prognosis, particularly in HER2-positive BC. HER2+ BC accounts for 15-20% of all invasive BC and is characterized by high aggressiveness and poor prognosis. The Δ16HER2 isoform, a splice variant with very high oncogenic potential, is frequently expressed in HER2+ BC and correlates with metastatic disease. To elucidate the role of EMILIN1 in BC, we analyzed the phenotype of MMTV-Δ16HER2 transgenic mice, developing spontaneous multifocal mammary adenocarcinomas, crossed with EMILIN1 knock-out (KO) animals. We observed that Δ16HER2/EMILIN1 KO female mice exhibited an accelerated normal mammary gland development and a significantly anticipated appearance of palpable tumors (13.32 vs 15.28 weeks). This accelerated tumor initiation was corroborated by an increased number of tumor foci observed in mammary glands from Δ16HER2/EMILIN1 KO mice compared to the wild-type counterpart. Altogether our results underscore the centrality of ECM in the process of BC initiation and point to a role for EMILIN1 during normal mammary gland development and in protecting from HER2-driven breast tumorigenesis.
Collapse
Affiliation(s)
- Andrea Favero
- Unit of Molecular Oncology, Centro di Riferimento Oncologico (CRO) di Aviano, IRCCS, National Cancer Institute, 33081, Aviano, Italy
| | - Ilenia Segatto
- Unit of Molecular Oncology, Centro di Riferimento Oncologico (CRO) di Aviano, IRCCS, National Cancer Institute, 33081, Aviano, Italy
| | - Alessandra Capuano
- Unit of Molecular Oncology, Centro di Riferimento Oncologico (CRO) di Aviano, IRCCS, National Cancer Institute, 33081, Aviano, Italy
| | - Maria Chiara Mattevi
- Unit of Molecular Oncology, Centro di Riferimento Oncologico (CRO) di Aviano, IRCCS, National Cancer Institute, 33081, Aviano, Italy
| | - Gian Luca Rampioni Vinciguerra
- Unit of Molecular Oncology, Centro di Riferimento Oncologico (CRO) di Aviano, IRCCS, National Cancer Institute, 33081, Aviano, Italy
- Faculty of Medicine and Psychology, Department of Clinical and Molecular Medicine, University of Rome "Sapienza", Santo Andrea Hospital, 00189, Rome, Italy
| | - Lorena Musco
- Unit of Molecular Oncology, Centro di Riferimento Oncologico (CRO) di Aviano, IRCCS, National Cancer Institute, 33081, Aviano, Italy
| | - Sara D'Andrea
- Unit of Molecular Oncology, Centro di Riferimento Oncologico (CRO) di Aviano, IRCCS, National Cancer Institute, 33081, Aviano, Italy
| | - Alessandra Dall'Acqua
- Unit of Molecular Oncology, Centro di Riferimento Oncologico (CRO) di Aviano, IRCCS, National Cancer Institute, 33081, Aviano, Italy
| | - Chiara Gava
- Unit of Molecular Oncology, Centro di Riferimento Oncologico (CRO) di Aviano, IRCCS, National Cancer Institute, 33081, Aviano, Italy
- Medical Department, University of Udine, Udine, Italy
| | - Tiziana Perin
- Unit of Pathology, Centro di Riferimento Oncologico (CRO) di Aviano, IRCCS, National Cancer Institute, 33081, Aviano, Italy
| | - Samuele Massarut
- Unit of Breast Surgery, Centro di Riferimento Oncologico (CRO) di Aviano, IRCCS, National Cancer Institute, 33081, Aviano, Italy
| | - Cristina Marchini
- School of Biosciences and Veterinary Medicine, Biology Division, University of Camerino, via Gentile III da Varano, 62032, Camerino, Italy
| | - Gustavo Baldassarre
- Unit of Molecular Oncology, Centro di Riferimento Oncologico (CRO) di Aviano, IRCCS, National Cancer Institute, 33081, Aviano, Italy
| | - Paola Spessotto
- Unit of Molecular Oncology, Centro di Riferimento Oncologico (CRO) di Aviano, IRCCS, National Cancer Institute, 33081, Aviano, Italy
| | - Barbara Belletti
- Unit of Molecular Oncology, Centro di Riferimento Oncologico (CRO) di Aviano, IRCCS, National Cancer Institute, 33081, Aviano, Italy.
| |
Collapse
|
2
|
Fejza A, Camicia L, Carobolante G, Poletto E, Paulitti A, Schinello G, Di Siena E, Cannizzaro R, Iozzo RV, Baldassarre G, Andreuzzi E, Spessotto P, Mongiat M. Emilin2 fosters vascular stability by promoting pericyte recruitment. Matrix Biol 2023; 122:18-32. [PMID: 37579864 DOI: 10.1016/j.matbio.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/20/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Angiogenesis, the formation of the new blood vessels from pre-existing vasculature, is an essential process occurring under both normal and pathological conditions, such as inflammation and cancer. This complex process is regulated by several cytokines, growth factors and extracellular matrix components modulating endothelial cell and pericyte function. In this study, we discovered that the extracellular matrix glycoprotein Elastin Microfibril Interfacer 2 (Emilin2) plays a prominent role in pericyte physiology. This work was originally prompted by the observations that tumor-associated vessels from Emilin2-/- mice display less pericyte coverage, impaired vascular perfusion, and reduced drug efficacy, suggesting that Emilin2 could promote vessel maturation and stabilization affecting pericyte recruitment. We found that Emilin2 affects different mechanisms engaged in pericyte recruitment and vascular stabilization. First, human primary endothelial cells challenged with recombinant Emilin2 synthesized and released ∼ 2.1 and 1.2 folds more PDGF-BB and HB-EGF, two cytokines known to promote pericyte recruitment. We also discovered that Emilin2, by directly engaging α5β1 and α6β1 integrins, highly expressed in pericytes, served as an adhesion substrate and haptotactic stimulus for pericytes. Moreover, Emilin2 evoked increased NCadherin expression via the sphingosine-1-phosphate receptor, leading to enhanced vascular stability by fostering interconnection between endothelial cells and pericytes. Finally, restoring pericyte coverage in melanoma and ovarian tumor vessels developed in Emilin2-/- mice improved drug delivery to the tumors. Collectively, our results implicate Emilin2 as a prominent regulator of pericyte function and suggest that Emilin2 expression could represent a promising maker to predict the clinical outcome of patients with melanoma, ovarian, and potentially other forms of cancer.
Collapse
Affiliation(s)
- Albina Fejza
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy; UBT-Higher Education Institution, Kalabria, Street Rexhep Krasniqi Nr. 56, Prishtina 10000, Kosovo
| | - Lucrezia Camicia
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Greta Carobolante
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Evelina Poletto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Alice Paulitti
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy; VivaBioCell S.P.A., Udine, Italy
| | - Giorgia Schinello
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Emanuele Di Siena
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Renato Cannizzaro
- Department of Clinical Oncology, Oncological Gastroenterology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste 34127, Italy
| | - Renato V Iozzo
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Gustavo Baldassarre
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Eva Andreuzzi
- Obstetrics and Gynecology, Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste 34137, Italy
| | - Paola Spessotto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Maurizio Mongiat
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy.
| |
Collapse
|
3
|
EMILIN-1 deficiency promotes chronic inflammatory disease through TGFβ signaling alteration and impairment of the gC1q/α4β1 integrin interaction. Matrix Biol 2022; 111:133-152. [PMID: 35764213 DOI: 10.1016/j.matbio.2022.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 11/21/2022]
Abstract
Alterations in extracellular matrix (ECM) components that modulate inflammatory cell behavior have been shown to serve as early starters for multifactorial diseases such as fibrosis and cancer. Here, we demonstrated that loss of the ECM glycoprotein EMILIN-1 alters the inflammatory context in skin during IMQ-induced psoriasis, a disease characterized by a prominent inflammatory infiltrate and alteration of vessels that appear dilated and tortuous. Abrogation of EMILIN-1 expression or expression of the EMILIN-1 mutant E933A impairs macrophage polarization and leads to imbalanced tissue homeostasis. We found that EMILIN-1 deficiency is associated with dilated lymphatic vessels, increased macrophage recruitment and psoriasis severity. Importantly, the null or mutant EMILIN-1 background was characterized by the induction of a myofibroblast phenotype, which in turn drove macrophages towards the M1 phenotype. By using the transgenic mouse model carrying the E933A mutation in the gC1q domain of EMILIN-1, which abolishes the interaction with α4- and α9-integrins, we demonstrated that the observed changes in TGFβ signaling were due to both the EMI and gC1q domains of EMILIN-1. gC1q may exert multiple functions in psoriasis, in the context of a final, more consistent inflammatory condition by controlling skin homeostasis via interaction with both keratinocytes and fibroblasts, influencing non-canonical TGFβ signaling, and likely acting on lymphatic vessel structure and function. The analyses of human psoriatic lesions, in which lower levels of EMILIN-1 were present with a very rare association with lymphatic vessels, support the multifaceted role of this ECM component in the skin inflammatory scenario.
Collapse
|
4
|
Multimerin-1 and cancer: a review. Biosci Rep 2022; 42:230760. [PMID: 35132992 PMCID: PMC8881648 DOI: 10.1042/bsr20211248] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 11/21/2022] Open
Abstract
Multimerin-1 (MMRN1) is a platelet protein with a role in haemostasis and coagulation. It is also present in endothelial cells (ECs) and the extracellular matrix (ECM), where it may be involved in cell adhesion, but its molecular functions and protein–protein interactions in these cellular locations have not been studied in detail yet. In recent years, MMRN1 has been identified as a differentially expressed gene (DEG) in various cancers and it has been proposed as a possible cancer biomarker. Some evidence suggest that MMRN1 expression is regulated by methylation, protein interactions, and non-coding RNAs (ncRNAs) in different cancers. This raises the questions if a functional role of MMRN1 is being targeted during cancer development, and if MMRN1’s differential expression pattern correlates with cancer progression. As a result, it is timely to review the current state of what is known about MMRN1 to help inform future research into MMRN1’s molecular mechanisms in cancer.
Collapse
|
5
|
Liu S, Lin Z. Vascular Smooth Muscle Cells Mechanosensitive Regulators and Vascular Remodeling. J Vasc Res 2021; 59:90-113. [PMID: 34937033 DOI: 10.1159/000519845] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/23/2021] [Indexed: 11/19/2022] Open
Abstract
Blood vessels are subjected to mechanical loads of pressure and flow, inducing smooth muscle circumferential and endothelial shear stresses. The perception and response of vascular tissue and living cells to these stresses and the microenvironment they are exposed to are critical to their function and survival. These mechanical stimuli not only cause morphological changes in cells and vessel walls but also can interfere with biochemical homeostasis, leading to vascular remodeling and dysfunction. However, the mechanisms underlying how these stimuli affect tissue and cellular function, including mechanical stimulation-induced biochemical signaling and mechanical transduction that relies on cytoskeletal integrity, are unclear. This review focuses on signaling pathways that regulate multiple biochemical processes in vascular mesangial smooth muscle cells in response to circumferential stress and are involved in mechanosensitive regulatory molecules in response to mechanotransduction, including ion channels, membrane receptors, integrins, cytoskeletal proteins, nuclear structures, and cascades. Mechanoactivation of these signaling pathways is closely associated with vascular remodeling in physiological or pathophysiological states.
Collapse
Affiliation(s)
- Shangmin Liu
- Ji Hua Institute of Biomedical Engineering Technology, Ji Hua Laboratory, Foshan, China, .,Medical Research Center, Guangdong Academy of Medical Sciences, Guangdong General Hospital, Guangzhou, China,
| | - Zhanyi Lin
- Ji Hua Institute of Biomedical Engineering Technology, Ji Hua Laboratory, Foshan, China.,Institute of Geriatric Medicine, Guangdong Academy of Medical Sciences, Guangdong General Hospital, Guangzhou, China
| |
Collapse
|
6
|
Andreuzzi E, Capuano A, Poletto E, Pivetta E, Fejza A, Favero A, Doliana R, Cannizzaro R, Spessotto P, Mongiat M. Role of Extracellular Matrix in Gastrointestinal Cancer-Associated Angiogenesis. Int J Mol Sci 2020; 21:E3686. [PMID: 32456248 PMCID: PMC7279269 DOI: 10.3390/ijms21103686] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal tumors are responsible for more cancer-related fatalities than any other type of tumors, and colorectal and gastric malignancies account for a large part of these diseases. Thus, there is an urgent need to develop new therapeutic approaches to improve the patients' outcome and the tumor microenvironment is a promising arena for the development of such treatments. In fact, the nature of the microenvironment in the different gastrointestinal tracts may significantly influence not only tumor development but also the therapy response. In particular, an important microenvironmental component and a potential therapeutic target is the vasculature. In this context, the extracellular matrix is a key component exerting an active effect in all the hallmarks of cancer, including angiogenesis. Here, we summarized the current knowledge on the role of extracellular matrix in affecting endothelial cell function and intratumoral vascularization in the context of colorectal and gastric cancer. The extracellular matrix acts both directly on endothelial cells and indirectly through its remodeling and the consequent release of growth factors. We envision that a deeper understanding of the role of extracellular matrix and of its remodeling during cancer progression is of chief importance for the development of new, more efficacious, targeted therapies.
Collapse
Affiliation(s)
- Eva Andreuzzi
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Alessandra Capuano
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Evelina Poletto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Eliana Pivetta
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Albina Fejza
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Andrea Favero
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Roberto Doliana
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Renato Cannizzaro
- Department of Clinical Oncology, Experimental Gastrointestinal Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy;
| | - Paola Spessotto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Maurizio Mongiat
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| |
Collapse
|
7
|
Fitoussi R, Beauchef G, Guéré C, André N, Vié K. Localization, fate and interactions of Emilin-1 in human skin. Int J Cosmet Sci 2019; 41:183-193. [PMID: 30843221 DOI: 10.1111/ics.12524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/04/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Emilin-1 is a versatile protein abundant in tissues where resilience and elastic recoil are prominent and interacting with components of the extracellular matrix. Still, little is known about Emilin-1 in the skin. Therefore, we investigated Emilin-1 in the skin, its localization, its fate upon ageing, its interactions with other proteins and the effect of its knockdown. METHODS Skin explants from young or old Caucasian women, immunofluorescently labelled by anti-Emilin-1, anti-Fibrillin-1 and anti-Elastin antibodies, were analysed using confocal microscopy. Skin explants subjected to UV-induced skin ageing were also analysed. Colocalization of Emilin-1 with Collagen IV, Fibrillin-1 and Elastin was studied by multiphoton microscopy and co-immunoprecipitation. Finally, the effect of Emilin-1 extinction was studied by producing small interfering RNA (siRNA) knockdown fibroblasts and by analysing the outcome on selected genes. RESULTS In skin sections from young donors, Emilin-1 localizes similarly to Elastin and Fibrillin-1. In the papillary dermis, it shows clear and ramified structures, perpendicular to the dermo-epidermal junction that are reminiscent of the oxytalan fibres. In the reticular dermis, Emilin-1 signal appears identical to that of the elastic fibres network. Upon intrinsic or UV-induced ageing, the signal associated with Emilin-1 is drastically reduced and disorganized. Multiphoton microscopy study shows that, as expected, Emilin-1 colocalizes with Elastin. It also colocalizes with Collagen IV in the basement membrane and within dermal fibroblasts. Interaction of Emilin-1 with Elastin and Collagen IV was also found by co-immunoprecipitation. It also reveals interaction with Laminin-5. Finally, siRNA-mediated knockdown of EMILIN-1 show little effect on the expression level of the 61 genes we studied. The most striking change is a downregulation of fibroblast growth factor receptor 2 that show a decrease similar to that of EMILIN-1 itself and after 8 days a downregulation of COL6A1. CONCLUSION In skin, Emilin-1 locates in the dermis, up to the basement membrane, interacting with components of the extracellular matrix but also with the anchoring complex. These interactions are important for cell adhesion, migration, proliferation and would suggest that Emilin-1 might be important for maintaining the 3D structure of the extracellular matrix.
Collapse
Affiliation(s)
- R Fitoussi
- Laboratoires Clarins, 5 rue Ampère, 95300, Pontoise, France
| | - G Beauchef
- Laboratoires Clarins, 5 rue Ampère, 95300, Pontoise, France
| | - C Guéré
- Laboratoires Clarins, 5 rue Ampère, 95300, Pontoise, France
| | - N André
- Laboratoires Clarins, 5 rue Ampère, 95300, Pontoise, France
| | - K Vié
- Laboratoires Clarins, 5 rue Ampère, 95300, Pontoise, France
| |
Collapse
|
8
|
Alternative PDGFD rearrangements in dermatofibrosarcomas protuberans without PDGFB fusions. Mod Pathol 2018; 31:1683-1693. [PMID: 29955147 DOI: 10.1038/s41379-018-0089-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/07/2018] [Accepted: 05/07/2018] [Indexed: 12/20/2022]
Abstract
Dermatofibrosarcoma protuberans is underlined by recurrent collagen type I alpha 1 chain-platelet-derived growth factor B chain (COL1A1-PDGFB) fusions but ~ 4% of typical dermatofibrosarcoma protuberans remain negative for this translocation in routine molecular screening. We investigated a series of 21 cases not associated with the pathognomonic COL1A1-PDGFB fusion on routine fluorescence in situ hybridization (FISH) testing. All cases displayed morphological and clinical features consistent with the diagnosis of dermatofibrosarcoma protuberans. RNA-sequencing analysis was successful in 20 cases. The classical COL1A1-PDGFB fusion was present in 40% of cases (n = 8/20), and subsequently confirmed with a COL1A1 break-apart FISH probe in all but one case (n = 7/8). 55% of cases (n = 11/20) displayed novel PDGFD rearrangements; PDGFD being fused either to the 5' part of COL6A3 (2q37.3) (n = 9/11) or EMILIN2 (18p11) (n = 2/11). All rearrangements led to in-frame fusion transcripts and were confirmed at genomic level by FISH and/or array-comparative genomic hybridization. PDGFD-rearranged dermatofibrosarcoma protuberans presented clinical outcomes similar to typical dermatofibrosarcoma protuberans. Notably, the two EMILIN2-PDGFD cases displayed fibrosarcomatous transformation and homozygous deletions of CDKN2A at genomic level. We report the first recurrent molecular variant of dermatofibrosarcoma protuberans involving PDGFD, which functionally mimic bona fide COL1A1-PDGFB fusions, leading presumably to a similar autocrine loop-stimulating PDGFRB. This study also emphasizes that COL1A1-PDGFB fusions can be cytogenetically cryptic on FISH testing in a subset of cases, thereby representing a diagnostic pitfall that pathologists should be aware of.
Collapse
|
9
|
Capuano A, Pivetta E, Baldissera F, Bosisio G, Wassermann B, Bucciotti F, Colombatti A, Sabatelli P, Doliana R, Spessotto P. Integrin binding site within the gC1q domain orchestrates EMILIN-1-induced lymphangiogenesis. Matrix Biol 2018; 81:34-49. [PMID: 30408617 DOI: 10.1016/j.matbio.2018.10.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/10/2018] [Accepted: 10/24/2018] [Indexed: 12/27/2022]
Abstract
Lymphatic vessels (LVs) play a pivotal role in the control of tissue homeostasis and also have emerged as important regulators of immunity, inflammation and tumor metastasis. EMILIN-1 is the first ECM protein identified as a structural modulator of the growth and maintenance of LV; accordingly, Emilin1-/- mice display lymphatic morphological alterations leading to functional defects as mild lymphedema, leakage and compromised lymph drainage. Many EMILIN-1 functions are exerted by the binding of its gC1q domain with the E933 residue of α4 and α9β1 integrins. To investigate the specific regulatory role of this domain on lymphangiogenesis, we generated a transgenic mouse model expressing an E933A-mutated EMILIN-1 (E1-E933A), unable to interact with α4 or α9 integrin. The mutant resulted in abnormal LV architecture with dense, tortuous and irregular networks; moreover, the number of anchoring filaments was reduced and collector valves had aberrant narrowed structures. E933A mutation also affected lymphatic function in lymphangiography assays and made the transgenic mice more prone to lymph node metastases. The finding that the gC1q/integrin interaction is crucial for a correct lymphangiogenesis response was confirmed and reinforced by functional in vitro tubulogenesis assays. In addition, ex vivo thoracic-duct ring assays revealed that E1-E933A-derived lymphatic endothelial cells had a severe reduction in sprouting capacity and were unable to organize into capillary-like structures. All these data provide evidence that the novel "regulatory structural" role of EMILIN-1 in the lymphangiogenic process is played by the integrin binding site within its gC1q domain.
Collapse
Affiliation(s)
- Alessandra Capuano
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Eliana Pivetta
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Francesca Baldissera
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Giulia Bosisio
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Bruna Wassermann
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Francesco Bucciotti
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Alfonso Colombatti
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Patrizia Sabatelli
- Institute of Molecular Genetics, National Research Council of Italy, Bologna, Italy
| | - Roberto Doliana
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy.
| | - Paola Spessotto
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy.
| |
Collapse
|
10
|
Modica TME, Maiorani O, Sartori G, Pivetta E, Doliana R, Capuano A, Colombatti A, Spessotto P. The extracellular matrix protein EMILIN1 silences the RAS-ERK pathway via α4β1 integrin and decreases tumor cell growth. Oncotarget 2018; 8:27034-27046. [PMID: 28177903 PMCID: PMC5432316 DOI: 10.18632/oncotarget.15067] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/09/2017] [Indexed: 01/29/2023] Open
Abstract
The extracellular matrix plays a fundamental role in physiological and pathological proliferation. It exerts its function through a signal cascade starting from the integrins that take direct contact with matrix constituents most of which behave as pro-proliferative clues. On the contrary, EMILIN1, a glycoprotein interacting with the α4β1 integrin through its gC1q domain, plays a paradigmatic anti-proliferative role. Here, we demonstrate that the EMILIN1-α4 interaction de-activates the MAPK pathway through HRas. Epithelial cells expressing endogenous α4 integrin and persistently plated on gC1q inhibited pERK1/2 increasing HRasGTP and especially the HRasGTP ubiquitinated form (HRasGTP-Ub). The drug salirasib reversed this effect. In addition, only the gC1q-ligated α4 integrin chain co-immunoprecipitated the ubiquitinated HRas. Only epithelial cells transfected with the wild type form of the α4 integrin chain showed the EMILIN1/α4β1/HRas/pERK1/2 link, whereas cells transfected with a α4 integrin chain carrying a truncated cytoplasmic tail had no effect. In this study we unveiled the pathway activated by the gC1q domain of EMILIN1 through α4β1 integrin engagement and leading to the decrease of proliferation in an epithelial system.
Collapse
Affiliation(s)
- Teresa Maria Elisa Modica
- Department of Translational Research, Experimental Oncology 2 Division, CRO Aviano, National Cancer Institute, Aviano, PN 33081, Italy
| | - Orlando Maiorani
- Department of Translational Research, Experimental Oncology 2 Division, CRO Aviano, National Cancer Institute, Aviano, PN 33081, Italy
| | - Giulio Sartori
- Department of Translational Research, Experimental Oncology 2 Division, CRO Aviano, National Cancer Institute, Aviano, PN 33081, Italy
| | - Eliana Pivetta
- Department of Translational Research, Experimental Oncology 2 Division, CRO Aviano, National Cancer Institute, Aviano, PN 33081, Italy
| | - Roberto Doliana
- Department of Translational Research, Experimental Oncology 2 Division, CRO Aviano, National Cancer Institute, Aviano, PN 33081, Italy
| | - Alessandra Capuano
- Department of Translational Research, Experimental Oncology 2 Division, CRO Aviano, National Cancer Institute, Aviano, PN 33081, Italy
| | - Alfonso Colombatti
- Department of Translational Research, Experimental Oncology 2 Division, CRO Aviano, National Cancer Institute, Aviano, PN 33081, Italy
| | - Paola Spessotto
- Department of Translational Research, Experimental Oncology 2 Division, CRO Aviano, National Cancer Institute, Aviano, PN 33081, Italy
| |
Collapse
|
11
|
Schiavinato A, Keene DR, Imhof T, Doliana R, Sasaki T, Sengle G. Fibulin-4 deposition requires EMILIN-1 in the extracellular matrix of osteoblasts. Sci Rep 2017; 7:5526. [PMID: 28717224 PMCID: PMC5514116 DOI: 10.1038/s41598-017-05835-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 06/05/2017] [Indexed: 11/09/2022] Open
Abstract
Tissue microenvironments formed by extracellular matrix networks play an important role in regulating tissue structure and function. Extracellular microfibrillar networks composed of fibrillins and their associated ligands such as LTBPs, fibulins, and EMILINs are of particular interest in this regard since they provide a specialized cellular microenvironment guiding proper morphology and functional behavior of specialized cell types. To understand how cellular microenvironments composed of intricate microfibrillar networks influence cell fate decisions in a contextual manner, more information about the spatiotemporal localization, deposition, and function of their components is required. By employing confocal immunofluorescence and electron microscopy we investigated the localization and extracellular matrix deposition of EMILIN-1 and -2 in tissues of the skeletal system such as cartilage and bone as well as in in vitro cultures of osteoblasts. We found that upon RNAi mediated depletion of EMILIN-1 in primary calvarial osteoblasts and MC3T3-E1 cells only fibulin-4 matrix deposition was lost while other fibulin family members or LTBPs remained unaffected. Immunoprecipitation and ELISA-style binding assays confirmed a direct interaction between EMILIN-1 and fibulin-4. Our data suggest a new function for EMILIN-1 which implies the guidance of linear fibulin-4 matrix deposition and thereby fibulin-4 fiber formation.
Collapse
Affiliation(s)
- Alvise Schiavinato
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | | | - Thomas Imhof
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany.,Institute for Dental Research and Oral Musculoskeletal Biology, Medical Faculty, University of Cologne, 50931, Cologne, Germany
| | - Roberto Doliana
- Experimental Oncology 2, CRO, IRCCS, National Cancer Institute, Aviano, PN, Italy
| | - Takako Sasaki
- Department of Biochemistry II, Faculty of Medicine, Oita University, Oita, 879-5593, Japan
| | - Gerhard Sengle
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany. .,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
12
|
Maiorani O, Pivetta E, Capuano A, Modica TME, Wassermann B, Bucciotti F, Colombatti A, Doliana R, Spessotto P. Neutrophil elastase cleavage of the gC1q domain impairs the EMILIN1-α4β1 integrin interaction, cell adhesion and anti-proliferative activity. Sci Rep 2017; 7:39974. [PMID: 28074935 PMCID: PMC5225433 DOI: 10.1038/srep39974] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/29/2016] [Indexed: 02/06/2023] Open
Abstract
The extracellular matrix glycoprotein EMILIN1 exerts a wide range of functions mainly associated with its gC1q domain. Besides providing functional significance for adhesion and migration, the direct interaction between α4β1 integrin and EMILIN1-gC1q regulates cell proliferation, transducing net anti-proliferative effects. We have previously demonstrated that EMILIN1 degradation by neutrophil elastase (NE) is a specific mechanism leading to the loss of functions disabling its regulatory properties. In this study we further analysed the proteolytic activity of NE, MMP-3, MMP-9, and MT1-MMP on EMILIN1 and found that MMP-3 and MT1-MMP partially cleaved EMILIN1 but without affecting the functional properties associated with the gC1q domain, whereas NE was able to fully impair the interaction of gC1q with the α4β1 integrin by cleaving this domain outside of the E933 integrin binding site. By a site direct mutagenesis approach we mapped the bond between S913 and R914 residues and selected the NE-resistant R914W mutant still able to interact with the α4β1 integrin after NE treatment. Functional studies showed that NE impaired the EMILIN1-α4β1 integrin interaction by cleaving the gC1q domain in a region crucial for its proper structural conformation, paving the way to better understand NE effects on EMILIN1-cell interaction in pathological context.
Collapse
Affiliation(s)
- Orlando Maiorani
- Experimental Oncology 2, Department of Translational Research, CRO-IRCCS, National Cancer Institute, Aviano 33081, Italy
| | - Eliana Pivetta
- Experimental Oncology 2, Department of Translational Research, CRO-IRCCS, National Cancer Institute, Aviano 33081, Italy
| | - Alessandra Capuano
- Experimental Oncology 2, Department of Translational Research, CRO-IRCCS, National Cancer Institute, Aviano 33081, Italy
| | - Teresa Maria Elisa Modica
- Experimental Oncology 2, Department of Translational Research, CRO-IRCCS, National Cancer Institute, Aviano 33081, Italy
| | - Bruna Wassermann
- Experimental Oncology 2, Department of Translational Research, CRO-IRCCS, National Cancer Institute, Aviano 33081, Italy
| | - Francesco Bucciotti
- Experimental Oncology 2, Department of Translational Research, CRO-IRCCS, National Cancer Institute, Aviano 33081, Italy
| | - Alfonso Colombatti
- Experimental Oncology 2, Department of Translational Research, CRO-IRCCS, National Cancer Institute, Aviano 33081, Italy
| | - Roberto Doliana
- Experimental Oncology 2, Department of Translational Research, CRO-IRCCS, National Cancer Institute, Aviano 33081, Italy
| | - Paola Spessotto
- Experimental Oncology 2, Department of Translational Research, CRO-IRCCS, National Cancer Institute, Aviano 33081, Italy
| |
Collapse
|
13
|
Extracellular Matrix, a Hard Player in Angiogenesis. Int J Mol Sci 2016; 17:ijms17111822. [PMID: 27809279 PMCID: PMC5133823 DOI: 10.3390/ijms17111822] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/30/2016] [Accepted: 10/21/2016] [Indexed: 12/11/2022] Open
Abstract
The extracellular matrix (ECM) is a complex network of proteins, glycoproteins, proteoglycans, and polysaccharides. Through multiple interactions with each other and the cell surface receptors, not only the ECM determines the physical and mechanical properties of the tissues, but also profoundly influences cell behavior and many physiological and pathological processes. One of the functions that have been extensively explored is its impingement on angiogenesis. The strong impact of the ECM in this context is both direct and indirect by virtue of its ability to interact and/or store several growth factors and cytokines. The aim of this review is to provide some examples of the complex molecular mechanisms that are elicited by these molecules in promoting or weakening the angiogenic processes. The scenario is intricate, since matrix remodeling often generates fragments displaying opposite effects compared to those exerted by the whole molecules. Thus, the balance will tilt towards angiogenesis or angiostasis depending on the relative expression of pro- or anti-angiogenetic molecules/fragments composing the matrix of a given tissue. One of the vital aspects of this field of research is that, for its endogenous nature, the ECM can be viewed as a reservoir to draw from for the development of new more efficacious therapies to treat angiogenesis-dependent pathologies.
Collapse
|
14
|
Local inhibition of elastase reduces EMILIN1 cleavage reactivating lymphatic vessel function in a mouse lymphoedema model. Clin Sci (Lond) 2016; 130:1221-36. [PMID: 26920215 PMCID: PMC4888021 DOI: 10.1042/cs20160064] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/26/2016] [Indexed: 01/03/2023]
Abstract
Lymphatic vasculature critically depends on the connections of lymphatic endothelial cells with the extracellular matrix (ECM), which are mediated by anchoring filaments (AFs). The ECM protein EMILIN1 is a component of AFs and is involved in the regulation of lymphatic vessel functions: accordingly, Emilin1−/− mice display lymphatic vascular morphological alterations, leading to functional defects such as mild lymphoedema, lymph leakage and compromised lymph drainage. In the present study, using a mouse post-surgical tail lymphoedema model, we show that the acute phase of acquired lymphoedema correlates with EMILIN1 degradation due to neutrophil elastase (NE) released by infiltrating neutrophils. As a consequence, the intercellular junctions of lymphatic endothelial cells are weakened and drainage to regional lymph nodes is severely affected. The local administration of sivelestat, a specific NE inhibitor, prevents EMILIN1 degradation and reduces lymphoedema, restoring a normal lymphatic functionality. The finding that, in human secondary lymphoedema samples, we also detected cleaved EMILIN1 with the typical bands of an NE-dependent pattern of fragmentation establishes a rationale for a powerful strategy that targets NE inhibition. In conclusion, the attempts to block EMILIN1 degradation locally represent the basis for a novel ‘ECM’ pharmacological approach to assessing new lymphoedema treatments.
Collapse
|
15
|
Capuano A, Bucciotti F, Farwell KD, Tippin Davis B, Mroske C, Hulick PJ, Weissman SM, Gao Q, Spessotto P, Colombatti A, Doliana R. Diagnostic Exome Sequencing Identifies a Novel Gene, EMILIN1, Associated with Autosomal-Dominant Hereditary Connective Tissue Disease. Hum Mutat 2015; 37:84-97. [PMID: 26462740 PMCID: PMC4738430 DOI: 10.1002/humu.22920] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 10/05/2015] [Indexed: 12/31/2022]
Abstract
Heritable connective tissue diseases are a highly heterogeneous family of over 200 disorders that affect the extracellular matrix. While the genetic basis of several disorders is established, the etiology has not been discovered for a large portion of patients, likely due to rare yet undiscovered disease genes. By performing trio‐exome sequencing of a 55‐year‐old male proband presenting with multiple symptoms indicative of a connective disorder, we identified a heterozygous missense alteration in exon 1 of the Elastin Microfibril Interfacer 1 (EMILIN1) gene, c.64G>A (p.A22T). The proband presented with ascending and descending aortic aneurysms, bilateral lower leg and foot sensorimotor peripheral neuropathy, arthropathy, and increased skin elasticity. Sanger sequencing confirmed that the EMILIN1 alteration, which maps around the signal peptide cleavage site, segregated with disease in the affected proband, mother, and son. The impaired secretion of EMILIN‐1 in cells transfected with the mutant p.A22T coincided with abnormal protein accumulation within the endoplasmic reticulum. In skin biopsy of the proband, we detected less EMILIN‐1 with disorganized and abnormal coarse fibrils, aggregated deposits underneath the epidermis basal lamina, and dermal cells apoptosis. These findings collectively suggest that EMILIN1 may represent a new disease gene associated with an autosomal‐dominant connective tissue disorder.
Collapse
Affiliation(s)
- Alessandra Capuano
- Department of Translational Research, CRO-IRCCS National Cancer Institute, Aviano, 33081, Italy
| | - Francesco Bucciotti
- Department of Translational Research, CRO-IRCCS National Cancer Institute, Aviano, 33081, Italy
| | | | | | | | - Peter J Hulick
- Center for Medical Genetics, NorthShore University HealthSystem, Evanston, Illinois, 60201
| | - Scott M Weissman
- Center for Medical Genetics, NorthShore University HealthSystem, Evanston, Illinois, 60201
| | - Qingshen Gao
- NorthShore Research Institute, NorthShore University HealthSystem, Evanston, Illinois, 60201
| | - Paola Spessotto
- Department of Translational Research, CRO-IRCCS National Cancer Institute, Aviano, 33081, Italy
| | - Alfonso Colombatti
- Department of Translational Research, CRO-IRCCS National Cancer Institute, Aviano, 33081, Italy
| | - Roberto Doliana
- Department of Translational Research, CRO-IRCCS National Cancer Institute, Aviano, 33081, Italy
| |
Collapse
|
16
|
Li X, Zhang W, Ding Y, Wang Z, Wu Z, Yu L, Hu D, Li P, Song B. Characterization of the importance of terminal residues for southern rice black-streaked dwarf virus P9-1 viroplasm formations. Protein Expr Purif 2015; 111:98-104. [DOI: 10.1016/j.pep.2015.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/03/2015] [Accepted: 04/08/2015] [Indexed: 11/25/2022]
|
17
|
Bot S, Andreuzzi E, Capuano A, Schiavinato A, Colombatti A, Doliana R. Multiple-interactions among EMILIN1 and EMILIN2 N- and C-terminal domains. Matrix Biol 2015; 41:44-55. [DOI: 10.1016/j.matbio.2014.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/24/2014] [Accepted: 10/26/2014] [Indexed: 10/24/2022]
|
18
|
Pivetta E, Danussi C, Wassermann B, Modica TME, Del Bel Belluz L, Canzonieri V, Colombatti A, Spessotto P. Neutrophil elastase-dependent cleavage compromises the tumor suppressor role of EMILIN1. Matrix Biol 2014; 34:22-32. [PMID: 24513040 DOI: 10.1016/j.matbio.2014.01.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/31/2014] [Accepted: 01/31/2014] [Indexed: 12/20/2022]
Abstract
Proteolysis of the extracellular matrix (ECM) is a key event in tumor growth and progression. The breakdown of ECM can lead to the generation of bioactive fragments that promote cell growth and spread. EMILIN1, a multidomain glycoprotein expressed in several tissues, exerts a crucial regulatory function through the engagement of α4/α9 integrins. Unlike the majority of ECM molecules that elicit a proliferative program, the signals emitting from EMILIN1 engaged by α4/α9β1 integrins are antiproliferative. In this study, aimed to demonstrate if the suppressor role of EMILIN1 was related to its structural integrity, we tested the possibility that EMILIN1 could be specifically cleaved. Among the proteolytic enzymes released in the tumor microenvironment we showed that neutrophil elastase cleaved EMILIN1 in three/four major fragments. The consequence of this proteolytic process was the impairment of its anti-proliferative role. Accordingly, EMILIN1 was digested in sarcomas and ovarian cancers. Sarcoma specimens were infiltrated by neutrophils (PMNs) and stained positively for elastase. The present findings highlight the peculiar activity of PMN elastase in disabling EMILIN1 suppressor function.
Collapse
Affiliation(s)
- Eliana Pivetta
- Experimental Oncology 2, CRO, IRCCS, National Cancer Institute, Aviano, PN, Italy
| | - Carla Danussi
- Experimental Oncology 2, CRO, IRCCS, National Cancer Institute, Aviano, PN, Italy
| | - Bruna Wassermann
- Experimental Oncology 2, CRO, IRCCS, National Cancer Institute, Aviano, PN, Italy
| | | | - Lisa Del Bel Belluz
- Experimental Oncology 2, CRO, IRCCS, National Cancer Institute, Aviano, PN, Italy
| | - Vincenzo Canzonieri
- Division of Pathology, CRO, IRCCS, National Cancer Institute, Aviano, PN, Italy
| | - Alfonso Colombatti
- Experimental Oncology 2, CRO, IRCCS, National Cancer Institute, Aviano, PN, Italy; Department of Medical and Biomedical Sciences, University of Udine, Italy; MATI (Microgravity, Ageing, Training, Immobility) Excellence Center, University of Udine, Italy
| | - Paola Spessotto
- Experimental Oncology 2, CRO, IRCCS, National Cancer Institute, Aviano, PN, Italy.
| |
Collapse
|
19
|
Schiavinato A, Becker AKA, Zanetti M, Corallo D, Milanetto M, Bizzotto D, Bressan G, Guljelmovic M, Paulsson M, Wagener R, Braghetta P, Bonaldo P. EMILIN-3, peculiar member of elastin microfibril interface-located protein (EMILIN) family, has distinct expression pattern, forms oligomeric assemblies, and serves as transforming growth factor β (TGF-β) antagonist. J Biol Chem 2012; 287:11498-515. [PMID: 22334695 DOI: 10.1074/jbc.m111.303578] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
EMILIN-3 is a glycoprotein of the extracellular matrix belonging to a family that contains a characteristic N-terminal cysteine-rich EMI domain. Currently, EMILIN-3 is the least characterized member of the elastin microfibril interface-located protein (EMILIN)/Multimerin family. Using RNA, immunohistochemical, and protein chemistry approaches, we carried out a detailed characterization of the expression and biochemical properties of EMILIN-3 in mouse. During embryonic and postnatal development, EMILIN-3 showed a peculiar and dynamic pattern of gene expression and protein distribution. EMILIN-3 mRNA was first detected at E8.5-E9.5 in the tail bud and in the primitive gut, and at later stages it became abundant in the developing gonads and osteogenic mesenchyme. Interestingly and in contrast to other EMILIN/Multimerin genes, EMILIN-3 was not found in the cardiovascular system. Despite the absence of the globular C1q domain, immunoprecipitation and Western blot analyses demonstrated that EMILIN-3 forms disulfide-bonded homotrimers and higher order oligomers. Circular dichroism spectroscopy indicated that the most C-terminal part of EMILIN-3 has a substantial α-helical content and forms coiled coil structures involved in EMILIN-3 homo-oligomerization. Transfection experiments with recombinant constructs showed that the EMI domain contributes to the higher order self-assembly but was dispensable for homotrimer formation. EMILIN-3 was found to bind heparin with high affinity, a property mediated by the EMI domain, thus revealing a new function for this domain that may contribute to the interaction of EMILIN-3 with other extracellular matrix and/or cell surface molecules. Finally, in vitro experiments showed that EMILIN-3 is able to function as an extracellular regulator of the activity of TGF-β ligands.
Collapse
Affiliation(s)
- Alvise Schiavinato
- Department of Biomedical Sciences, University of Padova, I-35121 Padova, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Colombatti A, Spessotto P, Doliana R, Mongiat M, Bressan GM, Esposito G. The EMILIN/Multimerin family. Front Immunol 2012; 2:93. [PMID: 22566882 PMCID: PMC3342094 DOI: 10.3389/fimmu.2011.00093] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 12/21/2011] [Indexed: 01/12/2023] Open
Abstract
Elastin microfibrillar interface proteins (EMILINs) and Multimerins (EMILIN1, EMILIN2, Multimerin1, and Multimerin2) constitute a four member family that in addition to the shared C-terminus gC1q domain typical of the gC1q/TNF superfamily members contain a N-terminus unique cysteine-rich EMI domain. These glycoproteins are homotrimeric and assemble into high molecular weight multimers. They are predominantly expressed in the extracellular matrix and contribute to several cellular functions in part associated with the gC1q domain and in part not yet assigned nor linked to other specific regions of the sequence. Among the latter is the control of arterial blood pressure, the inhibition of Bacillus anthracis cell cytotoxicity, the promotion of cell death, the proangiogenic function, and a role in platelet hemostasis. The focus of this review is to highlight the multiplicity of functions and domains of the EMILIN/Multimerin family with a particular emphasis on the regulatory role played by the ligand-receptor interactions of the gC1q domain. EMILIN1 is the most extensively studied member both from the structural and functional point of view. The structure of the gC1q of EMILIN1 solved by NMR highlights unique characteristics compared to other gC1q domains: it shows a marked decrease of the contact surface of the trimeric assembly and while conserving the jelly-roll topology with two β-sheets of antiparallel strands it presents a nine-stranded β-sandwich fold instead of the usual 10-stranded fold. This is likely due to the insertion of nine residues that disrupt the ordered strand organization and forma a highly dynamic protruding loop. In this loop the residue E933 is the site of interaction between gC1q and the α4β1 and α9β1 integrins, and contrary to integrin occupancy that usually upregulates cell growth, when gC1q is ligated by the integrin the cells reduce their proliferative activity.
Collapse
Affiliation(s)
- Alfonso Colombatti
- Experimental Oncology 2, Centro di Riferimento Oncologico, Istituto di Ricerca e Cura a Carattere Scientifico Aviano, Italy.
| | | | | | | | | | | |
Collapse
|
21
|
Danussi C, Petrucco A, Wassermann B, Pivetta E, Modica TME, Del Bel Belluz L, Colombatti A, Spessotto P. EMILIN1-α4/α9 integrin interaction inhibits dermal fibroblast and keratinocyte proliferation. ACTA ACUST UNITED AC 2011; 195:131-45. [PMID: 21949412 PMCID: PMC3187715 DOI: 10.1083/jcb.201008013] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The α4/α9 integrins directly engage the ECM glycoprotein EMILIN1 to inhibit skin cell proliferation upstream of TGF-β signaling. EMILIN1 promotes α4β1 integrin–dependent cell adhesion and migration and reduces pro–transforming growth factor–β processing. A knockout mouse model was used to unravel EMILIN1 functions in skin where the protein was abundantly expressed in the dermal stroma and where EMILIN1-positive fibrils reached the basal keratinocyte layer. Loss of EMILIN1 caused dermal and epidermal hyperproliferation and accelerated wound closure. We identified the direct engagement of EMILIN1 to α4β1 and α9β1 integrins as the mechanism underlying the homeostatic role exerted by EMILIN1. The lack of EMILIN1–α4/α9 integrin interaction was accompanied by activation of PI3K/Akt and Erk1/2 pathways as a result of the reduction of PTEN. The down-regulation of PTEN empowered Erk1/2 phosphorylation that in turn inhibited Smad2 signaling by phosphorylation of residues Ser245/250/255. These results highlight the important regulatory role of an extracellular matrix component in skin proliferation. In addition, EMILIN1 is identified as a novel ligand for keratinocyte α9β1 integrin, suggesting prospective roles for this receptor–ligand pair in skin homeostasis.
Collapse
Affiliation(s)
- Carla Danussi
- Division of Experimental Oncology 2, Centro di Riferimento Oncologico, Istituto di Ricovero e Cura a Carattere Scientifico, National Cancer Institute, 33081 Aviano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Wei Z, Peterson JM, Wong GW. Metabolic regulation by C1q/TNF-related protein-13 (CTRP13): activation OF AMP-activated protein kinase and suppression of fatty acid-induced JNK signaling. J Biol Chem 2011; 286:15652-65. [PMID: 21378161 DOI: 10.1074/jbc.m110.201087] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Members of the C1q/TNF family play important and diverse roles in the immune, endocrine, skeletal, vascular, and sensory systems. Here, we identify and characterize CTRP13, a new and extremely conserved member of the C1q/TNF family. CTRP13 is preferentially expressed by adipose tissue and the brain in mice and predominantly by adipose tissue in humans. Within mouse adipose tissue, CTRP13 is largely expressed by cells of the stromal vascular compartment. Due to sexually dimorphic expression patterns, female mice have higher transcript and circulating CTRP13 levels than males. CTRP13 transcript and circulating levels are elevated in obese male mice, suggesting a potential role in energy metabolism. The insulin-sensitizing drug rosiglitazone also increases the expression of CTRP13 in adipocytes, which correlates with the insulin-sensitizing action of CTRP13. In a heterologous expression system, CTRP13 is secreted as a disulfide-linked oligomeric protein. When co-expressed, CTRP13 forms heteromeric complexes with a closely related family member, CTRP10. This heteromeric association does not involve conserved N-terminal Cys residues. Functional studies using purified recombinant protein demonstrated that CTRP13 is an adipokine that promotes glucose uptake in adipocytes, myotubes, and hepatocytes via activation of the AMPK signaling pathway. CTRP13 also ameliorates lipid-induced insulin resistance in hepatocytes through suppression of the SAPK/JNK stress signaling that impairs the insulin signaling pathway. Further, CTRP13 reduces glucose output in hepatocytes by inhibiting the mRNA expression of gluconeogenic enzymes, glucose-6-phosphatase and the cytosolic form of phosphoenolpyruvate carboxykinase. These results provide the first functional characterization of CTRP13 and establish its importance in glucose homeostasis.
Collapse
Affiliation(s)
- Zhikui Wei
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
23
|
Nakatomi Y, Tsuruga E, Nakashima K, Sawa Y, Ishikawa H. EMILIN-1 regulates the amount of oxytalan fiber formation in periodontal ligaments in vitro. Connect Tissue Res 2011; 52:30-5. [PMID: 20701466 DOI: 10.3109/03008207.2010.502982] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The elastic system fibers comprise oxytalan, elaunin, and elastic fibers, differing in their relative microfibril and elastin contents. Among them, human periodontal ligament (PDL) contains only oxytalan fibers (pure microfibrils). Elastin microfibril interface-located protein-1 (EMILIN-1) is localized at the interface between microfibrils and elastin. We hypothesized that EMILIN-1 may contribute to the formation of oxytalan fibers. We used a small interfering RNA (siRNA) for EMILIN-1 in PDL cell culture to examine the extracellular deposition of fibrillin-1 (the major component of microfibrils). EMILIN-1 was labeled on microfibrils positive for fibrillin-1 and was colocalized with fibrillin-1 upon immunoprecipitation assay. EMILIN-1 suppression reduced the level of fibrillin-1 deposition to 23% of the control, and this was responsible for the diminution of fibrillin-1 deposition revealed by immunofluorescence. These results suggest that EMILIN-1 may regulate the formation of oxytalan fibers and play a role in their homeostasis.
Collapse
Affiliation(s)
- Yuka Nakatomi
- Section of Orthodontics, Department of Oral Growth and Development, Division of Clinical Dentistry, Fukuoka Dental College, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
24
|
The extracellular matrix glycoprotein elastin microfibril interface located protein 2: a dual role in the tumor microenvironment. Neoplasia 2010; 12:294-304. [PMID: 20360940 DOI: 10.1593/neo.91930] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 01/26/2010] [Accepted: 01/27/2010] [Indexed: 12/22/2022] Open
Abstract
We have recently reported that elastin microfibril interface located protein 2 (EMILIN2), an extracellular matrix (ECM) glycoprotein, triggers cell death through a direct binding to death receptors. EMILIN2 thus influences cell viability through a mechanism that is unique for an ECM molecule. In the present work, we report an additional function for this molecule. First, we identify the region responsible for the proapoptotic effects, a 90-amino acid residue-long coiled-coil fragment toward the N-terminus of the molecule. The fragment recapitulates EMILIN2 proapoptotic mechanisms. In addition, using either the full molecule or the active fragment, for the first time, we demonstrate a significant antitumoral effect in vivo, likely due to a decrease in tumor cell viability. Unexpectedly, tumors treated with EMILIN2 or the deletion mutant display a significant increase of tumor angiogenesis. In view of this novel finding, the cotreatment of the growing tumors with an antiangiogenic drug led, in most cases, to a complete regression of tumor growth. These results grant further support to recent findings that pinpoint the microenvironment as an important regulator of cell fate under both physiological and pathological conditions and disclose the possibility of using EMILIN2 fragments as potent antineoplastic tools for cancer treatment.
Collapse
|
25
|
Järveläinen H, Sainio A, Koulu M, Wight TN, Penttinen R. Extracellular matrix molecules: potential targets in pharmacotherapy. Pharmacol Rev 2010; 61:198-223. [PMID: 19549927 DOI: 10.1124/pr.109.001289] [Citation(s) in RCA: 351] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The extracellular matrix (ECM) consists of numerous macromolecules classified traditionally into collagens, elastin, and microfibrillar proteins, proteoglycans including hyaluronan, and noncollagenous glycoproteins. In addition to being necessary structural components, ECM molecules exhibit important functional roles in the control of key cellular events such as adhesion, migration, proliferation, differentiation, and survival. Any structural inherited or acquired defect and/or metabolic disturbance in the ECM may cause cellular and tissue alterations that can lead to the development or progression of disease. Consequently, ECM molecules are important targets for pharmacotherapy. Specific agents that prevent the excess accumulation of ECM molecules in the vascular system, liver, kidney, skin, and lung; alternatively, agents that inhibit the degradation of the ECM in degenerative diseases such as osteoarthritis would be clinically beneficial. Unfortunately, until recently, the ECM in drug discovery has been largely ignored. However, several of today's drugs that act on various primary targets affect the ECM as a byproduct of the drugs' actions, and this activity may in part be beneficial to the drugs' disease-modifying properties. In the future, agents and compounds targeting directly the ECM will significantly advance the treatment of various human diseases, even those for which efficient therapies are not yet available.
Collapse
Affiliation(s)
- Hannu Järveläinen
- Department of Medicine, Turku University Hospital, Kiinamyllynkatu 4-8, FI-20520 Turku, Finland.
| | | | | | | | | |
Collapse
|
26
|
Shen C, Lu X, Li Y, Zhao Q, Liu X, Hou L, Wang L, Chen S, Huang J, Gu D. Emilin1 gene and essential hypertension: a two-stage association study in northern Han Chinese population. BMC MEDICAL GENETICS 2009; 10:118. [PMID: 19922630 PMCID: PMC2785781 DOI: 10.1186/1471-2350-10-118] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 11/18/2009] [Indexed: 01/17/2023]
Abstract
Background Elastogenesis of elastic extracellular matrix (ECM) which was recognized as a major component of blood vessels has been believed for a long time to play only a passive role in the dynamic vascular changes of typical hypertension. Emilin1 gene participated in the transcription of ECM's formation and was recognized to modulate links TGF-β maturation to blood pressure homeostasis in animal study. Recently relevant advances urge further researches to investigate the role of Emilin1 gene in regulating TGF-β signals involved in elastogenesis and vascular cell defects of essential hypertension (EH). Methods We designed a two-stage case-control study and selected three single nucleotide polymorphisms (SNPs), rs3754734, rs2011616 and rs2304682 from the HapMap database, which covered Emilin1 gene. Totally 2,586 subjects were recruited from the International Collaborative Study of Cardiovascular Disease in Asia (InterASIA). In stage 1, all the three SNPs of the Emilin1 gene were genotyped and tested within a subsample including 503 cases and 490 controls, significant SNPs would enter into stage 2 including 814 cases with hypertension and 779 controls and analyze on the basis of testing total 2,586 subjects. Results In stage 1, single locus analyses showed that SNPs rs3754734 and rs2011616 had significant association with EH (P < 0.05). In stage 2, weak association for dominant model were observed by age stratification and odds ratio (ORs) of TG+GG vs. TT of rs3754734 were 0.768 (0.584-1.009), 0.985 (0.735-1.320) and 1.346 (1.003-1.806) in < 50, 50-59 and ≥ 60 years group and ORs of GA+AA vs. GG of rs2011616 were 0.745 (0.568-0.977), 1.013 (0.758-1.353) and 1.437 (1.072-1.926) in < 50, 50-59 and ≥ 60 years group respectively. Accordingly, significant interactions were detected between genotypes of rs3754734 and rs2011616 and age for EH, and ORs were 1.758 (1.180-2.620), P = 0.006 and 1.903 (1.281-2.825), P = 0.001, respectively. Results of haplotypes analysis showed that there weren't any haplotypes associated with EH directly, but the interaction of hap2 (GA) and age-group found to be significant after being adjusted for the covariates, OR was 1.220 (1.031-1.444), P value was 0.020. Conclusion Our findings don't support positive association of Emilin1 gene with EH, but the interaction of age and genotype variation of rs3754734 and rs2011616 might increase the risk to hypertension.
Collapse
Affiliation(s)
- Chong Shen
- Department of Evidence Based Medicine and Division of Population Genetics, Cardiovascular Institute and Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College P eople's Republic of China, No, 167 Beilishi Rd, Beijing 100037, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Järveläinen H, Sainio A, Koulu M, Wight TN, Penttinen R. Extracellular Matrix Molecules: Potential Targets in Pharmacotherapy. Pharmacol Rev 2009. [DOI: 10.1124/pr.109.001289 doi:dx.doi.org] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
28
|
Verdone G, Corazza A, Colebrooke SA, Cicero D, Eliseo T, Boyd J, Doliana R, Fogolari F, Viglino P, Colombatti A, Campbell ID, Esposito G. NMR-based homology model for the solution structure of the C-terminal globular domain of EMILIN1. JOURNAL OF BIOMOLECULAR NMR 2009; 43:79-96. [PMID: 19023665 DOI: 10.1007/s10858-008-9290-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 10/30/2008] [Accepted: 11/03/2008] [Indexed: 05/27/2023]
Abstract
EMILIN1 is a glycoprotein of elastic tissues that has been recently linked to the pathogenesis of hypertension. The protein is formed by different independently folded structural domains whose role has been partially elucidated. In this paper the solution structure, inferred from NMR-based homology modelling of the C-terminal trimeric globular C1q domain (gC1q) of EMILIN1, is reported. The high molecular weight and the homotrimeric structure of the protein required the combined use of highly deuterated (15)N, (13)C-labelled samples and TROSY experiments. Starting from a homology model, the protein structure was refined using heteronuclear residual dipolar couplings, chemical shift patterns, NOEs and H-exchange data. Analysis of the gC1q domain structure of EMILIN1 shows that each protomer of the trimer adopts a nine-stranded beta sandwich folding topology which is related to the conformation observed for other proteins of the family. Distinguishing features, however, include a missing edge-strand and an unstructured 19-residue loop. Although the current data do not allow this loop to be precisely defined, the available evidence is consistent with a flexible segment that protrudes from each subunit of the globular trimeric assembly and plays a key role in inter-molecular interactions between the EMILIN1 gC1q homotrimer and its integrin receptor alpha4beta1.
Collapse
Affiliation(s)
- Giuliana Verdone
- Dipartimento di Scienze e Tecnologie Biomediche-MATI Centre of Excellence, Università di Udine, P. le Kolbe, 4-33100, Udine, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Multimerin 1 is a massive, soluble, disulfide-linked homopolymeric protein that is expressed in megakaryocytes, platelets and endothelial cells. Normally, multimerin 1 undergoes efficient sorting to secretion granules, and it is not detectable in plasma. Recently, multimerin 1 was designated as a member of the EMILIN protein family, a group of structurally similar, disulfide-linked multimeric proteins. Multimerin 1 has the structural features of an adhesive protein and it supports the adhesion of many different cell types in vitro, including activated platelets, neutrophils, and endothelial cells. Multimerin 1 also has the ability to self associate and form large, branching matrix fibers. In platelet alpha-granules, multimerin 1 functions as the binding protein for coagulation factor V, a key regulator of coagulation. This review summarizes the current knowledge on multimerin 1 including its orthologous genes, restricted pattern of expression, structure, biosynthesis and functions.
Collapse
Affiliation(s)
- Samira B Jeimy
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
30
|
Verdone G, Doliana R, Corazza A, Colebrooke SA, Spessotto P, Bot S, Bucciotti F, Capuano A, Silvestri A, Viglino P, Campbell ID, Colombatti A, Esposito G. The solution structure of EMILIN1 globular C1q domain reveals a disordered insertion necessary for interaction with the alpha4beta1 integrin. J Biol Chem 2008; 283:18947-56. [PMID: 18463100 DOI: 10.1074/jbc.m801085200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The extracellular matrix protein EMILIN1 (elastin microfibril interface located protein 1) is implicated in maintaining blood pressure homeostasis via the N-terminal elastin microfibril interface domain and in trophoblast invasion of the uterine wall via the globular C1q (gC1q) domain. Here, we describe the first NMR-based homology model structure of the human 52-kDa homotrimer of the EMILIN1 gC1q domain. In contrast to all of the gC1q (crystal) structures solved to date, the 10-stranded beta-sandwich fold of the gC1q domain is reduced to nine beta strands with a consequent increase in the size of the central cavity lumen. An unstructured loop, resulting from an insertion unique to EMILIN1 and EMILIN2 family members and located at the trimer apex upstream of the missing strand, specifically engages the alpha4beta1 integrin. Using both Jurkat T and EA.hy926 endothelial cells as well as site-directed mutagenesis, we demonstrate that the ability of alpha4beta1 integrins to recognize the trimeric EMILIN1 gC1q domain mainly depends on a single glutamic acid residue (Glu(933)). Static and flow adhesion of T cells and haptotactic migration of endothelial cells on gC1q is fully dependent on this residue. Thus, EMILIN1 gC1q-alpha4beta1 represents a unique ligand/receptor system, with a requirement for a 3-fold arrangement of the interaction site.
Collapse
Affiliation(s)
- Giuliana Verdone
- Dipartimento di Scienze e Tecnologie Biomediche, Centro di Eccellenza MATI, Università di Udine, 33100 Udine, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Doliana R, Veljkovic V, Prljic J, Veljkovic N, De Lorenzo E, Mongiat M, Ligresti G, Marastoni S, Colombatti A. EMILINs interact with anthrax protective antigen and inhibit toxin action in vitro. Matrix Biol 2007; 27:96-106. [PMID: 17988845 DOI: 10.1016/j.matbio.2007.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 09/13/2007] [Accepted: 09/26/2007] [Indexed: 11/29/2022]
Abstract
The informational spectrum method (ISM) is a virtual spectroscopy method for the fast analysis of potential protein-protein relationships. By applying the ISM approach to the GeneBank protein database the vascular proteins EMILIN1 (Elastin Microfibril Interface Located ProteIN), EMILIN2, MMN1, and MMN2 were identified as additional anthrax PA antigen interacting molecules. This virtual molecular interaction was formally proven by solid phase assays using recombinant proteins. The interaction is independent of the presence of divalent cations and does not involve PA aspartic residue at 683, a critical residue in receptor binding. In fact, the D683A point mutation fully prevented the cell intoxication ability of PA in the presence of Lethal Factor, but it was fully ineffective on the binding of mutated PA to EMILIN1 and EMILIN2. The ISM approach also led to the identification of the potential interaction sites between PA and EMILINs. A PA mutant with a deletion at residue D425 and solid phase protein-protein interaction studies as well as deletion mutant of EMILIN2 confirmed the hypothesized interaction site. Our findings imply that the PA-cell surface receptor interaction is not likely to provide the full explanation for the vascular lesions and prominent hemorrhages that follow Bacillus anthracis infection and spreading and call into play vascular associated proteins such as EMILINs as potential inhibitory proteins.
Collapse
Affiliation(s)
- Roberto Doliana
- Divisione di Oncologia Sperimentale 2, CRO-IRCCS, Aviano, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Mongiat M, Ligresti G, Marastoni S, Lorenzon E, Doliana R, Colombatti A. Regulation of the extrinsic apoptotic pathway by the extracellular matrix glycoprotein EMILIN2. Mol Cell Biol 2007; 27:7176-87. [PMID: 17698584 PMCID: PMC2168889 DOI: 10.1128/mcb.00696-07] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Elastin microfibril interface-located proteins (EMILINs) constitute a family of extracellular matrix (ECM) glycoproteins characterized by the presence of an EMI domain at the N terminus and a gC1q domain at the C terminus. EMILIN1, the archetype molecule of the family, is involved in elastogenesis and hypertension etiology, whereas the function of EMILIN2 has not been resolved. Here, we provide evidence that the expression of EMILIN2 triggers the apoptosis of different cell lines. Cell death depends on the activation of the extrinsic apoptotic pathway following EMILIN2 binding to the TRAIL receptors DR4 and, to a lesser extent, DR5. Binding is followed by receptor clustering, colocalization with lipid rafts, death-inducing signaling complex assembly, and caspase activation. The direct activation of death receptors by an ECM molecule that mimics the activity of the known death receptor ligands is novel. The knockdown of EMILIN2 increases transformed cell survival, and overexpression impairs clonogenicity in soft agar and three-dimensional growth in natural matrices due to massive apoptosis. These data demonstrate an unexpected direct and functional interaction of an ECM constituent with death receptors and discloses an additional mechanism by which ECM cues can negatively affect cell survival.
Collapse
Affiliation(s)
- Maurizio Mongiat
- Department of Molecular Oncology and Translational Research, Experimental Division 2, CRO-IRCCS, Aviano, Italy
| | | | | | | | | | | |
Collapse
|
33
|
Shu X, Tulloch B, Lennon A, Hayward C, O'Connell M, Cideciyan AV, Jacobson SG, Wright AF. Biochemical characterisation of the C1QTNF5 gene associated with late-onset retinal degeneration. A genetic model of age-related macular degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 572:41-8. [PMID: 17249553 DOI: 10.1007/0-387-32442-9_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Xinhua Shu
- MRC Human Genetics Unit, Western General Hospital, Edinburgh, UK
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Spessotto P, Bulla R, Danussi C, Radillo O, Cervi M, Monami G, Bossi F, Tedesco F, Doliana R, Colombatti A. EMILIN1 represents a major stromal element determining human trophoblast invasion of the uterine wall. J Cell Sci 2007; 119:4574-84. [PMID: 17074837 DOI: 10.1242/jcs.03232] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The detection of EMILIN1, a connective tissue glycoprotein associated with elastic fibers, at the level of the ectoplacental cone and trophoblast giant cells of developing mouse embryos (Braghetta et al., 2002) favored the idea of a structural as well as a functional role for this protein in the process of placentation. During the establishment of human placenta, a highly migratory subpopulation of extravillous trophoblasts (EVT), originating from anchoring chorionic villi, penetrate and invade the uterine wall. In this study we show that EMILIN1, produced by decidual stromal and smooth muscle uterine cells, is expressed in the stroma and in some instances as a gradient of increasing concentration in the perivascular region of modified vessels. This distribution pattern is consistent with the haptotactic directional migration observed in in vitro functional studies of freshly isolated EVT and of the immortalized HTR-8/SVneo cell line of trophoblasts. Function-blocking monoclonal antibodies against alpha4-integrin chain and against EMILIN1 as well as the use of EMILIN1-specific short interfering RNA confirmed that trophoblasts interact with EMILIN1 and/or its functional gC1q1 domain via alpha4beta1 integrin. Finally, membrane type I-matrix metalloproteinase (MT1-MMP) and MMP-2 were upregulated in co-cultures of trophoblast cells and stromal cells, suggesting a contributing role in the haptotactic process towards EMILIN1.
Collapse
Affiliation(s)
- Paola Spessotto
- Divisione di Oncologia Sperimentale 2, CRO-IRCCS, 33081 Aviano, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Milanetto M, Tiso N, Braghetta P, Volpin D, Argenton F, Bonaldo P. Emilin genes are duplicated and dynamically expressed during zebrafish embryonic development. Dev Dyn 2007; 237:222-32. [DOI: 10.1002/dvdy.21402] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
36
|
Zacchigna L, Vecchione C, Notte A, Cordenonsi M, Dupont S, Maretto S, Cifelli G, Ferrari A, Maffei A, Fabbro C, Braghetta P, Marino G, Selvetella G, Aretini A, Colonnese C, Bettarini U, Russo G, Soligo S, Adorno M, Bonaldo P, Volpin D, Piccolo S, Lembo G, Bressan GM. Emilin1 links TGF-beta maturation to blood pressure homeostasis. Cell 2006; 124:929-42. [PMID: 16530041 DOI: 10.1016/j.cell.2005.12.035] [Citation(s) in RCA: 222] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Revised: 11/18/2005] [Accepted: 12/14/2005] [Indexed: 11/17/2022]
Abstract
TGF-beta proteins are main regulators of blood vessel development and maintenance. Here, we report an unprecedented link between TGF-beta signaling and arterial hypertension based on the analysis of mice mutant for Emilin1, a cysteine-rich secreted glycoprotein expressed in the vascular tree. Emilin1 knockout animals display increased blood pressure, increased peripheral vascular resistance, and reduced vessel size. Mechanistically, we found that Emilin1 inhibits TGF-beta signaling by binding specifically to the proTGF-beta precursor and preventing its maturation by furin convertases in the extracellular space. In support of these findings, genetic inactivation of Emilin1 causes increased TGF-beta signaling in the vascular wall. Strikingly, high blood pressure observed in Emilin1 mutants is rescued to normal levels upon inactivation of a single TGF-beta1 allele. This study highlights the importance of modulation of TGF-beta availability in the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Luca Zacchigna
- Developmental Signaling Laboratory, Department of Histology Microbiology and Medical Biotechnologies, University of Padua, viale Colombo 3, 35121 Padua, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Meyer W. Disulphide reaction staining for the identification of integumental elastic fibres. Arch Dermatol Res 2005; 297:177-9. [PMID: 16187091 DOI: 10.1007/s00403-005-0599-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 06/14/2005] [Accepted: 08/17/2005] [Indexed: 10/25/2022]
Abstract
Based on specific methods (Sippel-APM-chromotropic acid technique; IC3-PE-maleimide fluorescence reaction) and skin samples of four domesticated mammals (dog, cattle, horse, pig), disulphide groups were demonstrated in the elastic component of the basement membrane of the epidermis, the elastic fibre system of the dermis, the elastic components of the connective tissue sheath of hair follicles, apocrine tubular glands, and sebaceous glands, and of the connective tissue surrounding the cutaneous muscle. The results are discussed regarding the relation of this reaction staining to the presence of microfibrils (fibrillin) in the elastic fibres.
Collapse
Affiliation(s)
- W Meyer
- Anatomical Institute, University of Veterinary Medicine, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany.
| |
Collapse
|
38
|
Abstract
Elastin is a key extracellular matrix protein that is critical to the elasticity and resilience of many vertebrate tissues including large arteries, lung, ligament, tendon, skin, and elastic cartilage. Tropoelastin associates with multiple tropoelastin molecules during the major phase of elastogenesis through coacervation, where this process is directed by the precise patterning of mostly alternating hydrophobic and hydrophilic sequences that dictate intermolecular alignment. Massively crosslinked arrays of tropoelastin (typically in association with microfibrils) contribute to tissue structural integrity and biomechanics through persistent flexibility, allowing for repeated stretch and relaxation cycles that critically depend on hydrated environments. Elastin sequences interact with multiple proteins found in or colocalized with microfibrils, and bind to elastogenic cell surface receptors. Knowledge of the major stages in elastin assembly has facilitated the construction of in vitro models of elastogenesis, leading to the identification of precise molecular regions that are critical to elastin-based protein interactions.
Collapse
Affiliation(s)
- Suzanne M Mithieux
- School of Molecular and Microbial Biosciences, University of Sydney, New South Wales 2006, Australia
| | | |
Collapse
|
39
|
Grill B, Wilson GM, Zhang KX, Wang B, Doyonnas R, Quadroni M, Schrader JW. Activation/division of lymphocytes results in increased levels of cytoplasmic activation/proliferation-associated protein-1: prototype of a new family of proteins. THE JOURNAL OF IMMUNOLOGY 2004; 172:2389-400. [PMID: 14764709 DOI: 10.4049/jimmunol.172.4.2389] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We purified from activated T lymphocytes a novel, highly conserved, 116-kDa, intracellular protein that occurred at high levels in the large, dividing cells of the thymus, was up-regulated when resting T or B lymphocytes or hemopoietic progenitors were activated, and was down-regulated when a monocytic leukemia, M1, was induced to differentiate. Expression of the protein was highest in the thymus and spleen and lowest in tissues with a low proportion of dividing cells such as kidney or muscle, although expression was high in the brain. The protein was localized to the cytosol and was phosphorylated, which is consistent with a previous report that the Xenopus laevis ortholog was phosphorylated by a mitotically activated kinase (1 ). The cDNA was previously mischaracterized as encoding p137, a 137-kDa GPI-linked membrane protein (2 ). We propose that the authentic protein encoded by this cDNA be called cytoplasmic activation/proliferation-associated protein-1 (caprin-1), and show that it is the prototype of a novel family of proteins characterized by two novel protein domains, termed homology regions-1 and -2 (HR-1, HR-2). Although we have found evidence for caprins only in urochordates and vertebrates, two insect proteins exhibit well-conserved HR-1 domains. The HR-1 and HR-2 domains have no known function, although the HR-1 of caprin-1 appeared necessary for formation of multimeric complexes of caprin-1. Overexpression of a fusion protein of enhanced green fluorescent protein and caprin-1 induced a specific, dose-dependent suppression of the proliferation of NIH-3T3 cells, consistent with the notion that caprin-1 plays a role in cellular activation or proliferation.
Collapse
Affiliation(s)
- Brock Grill
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|
40
|
Zanetti M, Braghetta P, Sabatelli P, Mura I, Doliana R, Colombatti A, Volpin D, Bonaldo P, Bressan GM. EMILIN-1 deficiency induces elastogenesis and vascular cell defects. Mol Cell Biol 2004; 24:638-50. [PMID: 14701737 PMCID: PMC343785 DOI: 10.1128/mcb.24.2.638-650.2004] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
EMILINs constitute a family of genes of the extracellular matrix with high structural similarity. Four genes have been identified so far in human and mouse. To gain insight into the function of this gene family, EMILIN-1 has been inactivated in the mouse by gene targeting. The homozygous animals were fertile and did not show obvious abnormalities. However, histological and ultrastructural examination revealed alterations of elastic fibers in aorta and skin. Formation of elastic fibers by mutant embryonic fibroblasts in culture was also abnormal. Additional alterations were observed in cell morphology and anchorage of endothelial and smooth muscle cells to elastic lamellae. Considering that EMILIN-1 is adhesive for cells and that the protein binds to elastin and fibulin-5, EMILIN-1 may regulate elastogenesis and vascular cell maintenance by stabilizing molecular interactions between elastic fiber components and by endowing elastic fibers with specific cell adhesion properties.
Collapse
Affiliation(s)
- Miriam Zanetti
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padua, Viale G. Colombo 3, 35121 Padua, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
McAlinden A, Smith TA, Sandell LJ, Ficheux D, Parry DAD, Hulmes DJS. Alpha-helical coiled-coil oligomerization domains are almost ubiquitous in the collagen superfamily. J Biol Chem 2003; 278:42200-7. [PMID: 12920133 DOI: 10.1074/jbc.m302429200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alpha-helical coiled-coils are widely occurring protein oligomerization motifs. Here we show that most members of the collagen superfamily contain short, repeating heptad sequences typical of coiled coils. Such sequences are found at the N-terminal ends of the C-propeptide domains in all fibrillar procollagens. When fused C-terminal to a reporter molecule containing a collagen-like sequence that does not spontaneously trimerize, the C-propeptide heptad repeats induced trimerization. C-terminal heptad repeats were also found in the oligomerization domains of the multiplexins (collagens XV and XVIII). N-terminal heptad repeats are known to drive trimerization in transmembrane collagens, whereas fibril-associated collagens with interrupted triple helices, as well as collagens VII, XIII, XXIII, and XXV, were found to contain heptad repeats between collagen domains. Finally, heptad repeats were found in the von Willebrand factor A domains known to be involved in trimerization of collagen VI, as well as in collagen VII. These observations suggest that coiled-coil oligomerization domains are widely used in the assembly of collagens and collagen-like proteins.
Collapse
Affiliation(s)
- Audrey McAlinden
- Department of Orthopedic Surgery, Washington University School of Medicine, Barnes-Jewish Hospital, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
42
|
Amma LL, Goodyear R, Faris JS, Jones I, Ng L, Richardson G, Forrest D. An emilin family extracellular matrix protein identified in the cochlear basilar membrane. Mol Cell Neurosci 2003; 23:460-72. [PMID: 12837629 DOI: 10.1016/s1044-7431(03)00075-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The precise movement of the cochlear basilar membrane (BM) stimulates the sensory hair cells during auditory transduction. However, the molecular composition of the BM that confers its specialized properties of support and elasticity is poorly understood. A differential screen of cochlear RNA from deaf mice lacking thyroid hormone receptor beta was used to identify a sequence encoding a secreted protein, which is abundant in the BM and is expressed at low levels in the heart, lung, and brain. The protein possesses several domains for protein interactions and is related to emilin (elastin microfibril interface-located protein) previously isolated from aorta. This cochlear emilin-2 mRNA is expressed in the tympanic border cells underlying the BM and an antibody detected protein in the extracellular matrix surrounding the collagenous fibers in the BM. These results identify emilin-2 as a major BM component and suggest that it contributes to the developmental assembly or function of the BM.
Collapse
Affiliation(s)
- Lori L Amma
- Department of Human Genetics, Box 1498, Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Mongiat M, Fu J, Oldershaw R, Greenhalgh R, Gown AM, Iozzo RV. Perlecan protein core interacts with extracellular matrix protein 1 (ECM1), a glycoprotein involved in bone formation and angiogenesis. J Biol Chem 2003; 278:17491-9. [PMID: 12604605 DOI: 10.1074/jbc.m210529200] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The goal of this study was to discover novel partners for perlecan, a major heparan sulfate proteoglycan of basement membranes, and to examine new interactions through which perlecan may influence cell behavior. We employed the yeast two-hybrid system and used perlecan domain V as bait to screen a human keratinocyte cDNA library. Among the strongest interacting clones, we isolated a approximately 1.6-kb cDNA insert that encoded extracellular matrix protein 1 (ECM1), a secreted glycoprotein involved in bone formation and angiogenesis. The sequencing of the clone revealed the existence of a novel splice variant that we name ECM1c. The interaction was validated by co-immunoprecipitation studies, using both cell-free systems and mammalian cells, and the specific binding site within each molecule was identified employing various deletion mutants. The C terminus of ECM1 interacted specifically with the epidermal growth factor-like modules flanking the LG2 subdomain of perlecan domain V. Perlecan and ECM1 were also co-expressed by a variety of normal and transformed cells, and immunohistochemical studies showed a partial expression overlap, particularly around dermal blood vessels and adnexal epithelia. ECM1 has been shown to regulate endochondral bone formation, stimulate the proliferation of endothelial cells, and induce angiogenesis. Similarly, perlecan plays an important role in chondrogenesis and skeletal development, as well as harboring pro- and anti-angiogenic activities. Thus, a physiological interaction could also occur in vivo during development and in pathological events, including tissue remodeling and tumor progression.
Collapse
Affiliation(s)
- Maurizio Mongiat
- Department of Pathology, Anatomy and Cell Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | |
Collapse
|
44
|
Chen CP, Aplin JD. Placental extracellular matrix: gene expression, deposition by placental fibroblasts and the effect of oxygen. Placenta 2003; 24:316-25. [PMID: 12657504 DOI: 10.1053/plac.2002.0904] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Database mining revealed 102 extracellular matrix (ECM) genes amongst about 10000 mRNA species expressed in human placenta, and these were classified into collagens (23), non-collagenous glycoproteins (59) and proteoglycans (23). A panel of antibodies to selected collagens and glycoproteins was used to examine ECM distribution in the placental villous stroma. Collagens I and IV, fibronectin and fibrillin I were abundant in first trimester and term tissue. Some areas lacked collagen I, while collagen IV was clearly evident in interstitial locations. At term, laminin was present in the stroma as well as in trophoblastic and vascular basement membranes. Thrombospondin I, tenascin C and elastin showed more restricted distributions. Fibrosis has been reported in association with ischaemia, so ECM production by cultured term and first trimester placental fibroblasts was evaluated at three different oxygen concentrations. Fibronectin and collagen IV were more strongly expressed than collagen I, fibrillin I or thrombospondin I, while the production of laminin and elastin was very low. Reducing the oxygen tension led to a selective increase in fibronectin and collagen IV production. Thus both quantitative and qualitative alterations in ECM composition may be expected to accompany prolonged hypoxia.
Collapse
Affiliation(s)
- C-P Chen
- Academic Unit of Obstetrics and Gynaecology, Schools of Medicine and Biological Sciences, University of Manchester, UK
| | | |
Collapse
|
45
|
Spessotto P, Cervi M, Mucignat MT, Mungiguerra G, Sartoretto I, Doliana R, Colombatti A. beta 1 Integrin-dependent cell adhesion to EMILIN-1 is mediated by the gC1q domain. J Biol Chem 2003; 278:6160-7. [PMID: 12456677 DOI: 10.1074/jbc.m208322200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
EMILIN-1 (Elastin Microfibril Interface Located ProteIN), the prototype of the EMILIN family, consists of a cysteine-rich domain (EMI domain) at the N terminus, an extended region with a high potential coiled-coil structure, a short collagenous stalk, and a self-interacting globular gC1q-l domain. EMILIN-1 is an adhesive extracellular matrix constituent associated with elastic fibers, detected also in the proximity of cell surfaces. To localize the cell attachment site(s), monoclonal antibodies (mAbs) against EMILIN-1 or the gC1q-1 domain were used to inhibit cell attachment to EMILIN-1. Thus, one mAb mapping to the gC1q-1 domain caused complete inhibition of cell attachment. EMILIN-1 and gC1q-1 displayed a comparable dose-dependent ability to promote cell adhesion. Adhesion kinetics was similar to that of fibronectin (FN), reaching the maximum level of attachment at 20 min, but in the absence of cations adhesion was negligible. The relative adhesion strength to detach 50% of the cells was similar for EMILIN-1 and gC1q-1 (250-270 x g) but lower than that for FN (>>500). Cell adhesion to EMILIN-1 or gC1q-1 was completely blocked by a function-blocking beta(1) integrin subunit mAb. In contrast, adhesion to the complement C1q component was totally unaffected. Among the various function-blocking mAbs against the alpha integrin subunits only the anti-alpha(4) fully abrogated cell adhesion to gC1q-1 and up to 70% to EMILIN-1. Furthermore, only K562 cells transfected with the alpha(4) integrin chain, but not wild type K562, were able to adhere to EMILIN-1 and were specifically inhibited by anti-alpha(4) function-blocking mAb. Finally, cells attached to EMILIN-1 or gC1q-1, compared with cells plated on FN or vitronectin, which appeared well spread out on the substrate with prominent stress fibers and focal contacts, were much smaller with wide ruffles and a different organization status of the actin cytoskeleton along the cell periphery. This pattern was in accord with the ability of EMILIN-1 to promote cell movement.
Collapse
Affiliation(s)
- Paola Spessotto
- Divisione di Oncologia Sperimentale 2, Centro di Riferimento Oncologico, Aviano, Italy
| | | | | | | | | | | | | |
Collapse
|
46
|
Leimeister C, Steidl C, Schumacher N, Erhard S, Gessler M. Developmental expression and biochemical characterization of Emu family members. Dev Biol 2002; 249:204-18. [PMID: 12221002 DOI: 10.1006/dbio.2002.0764] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Kidney development has often served as a model for epithelial-mesenchymal cell interaction where the branching epithelium of the ureteric bud induces the metanephrogenic mesenchyme to form epithelial nephrons. In a screen for genes differentially expressed during kidney development, we have identified a novel gene that is dynamically expressed in the branching ureter and the developing nephrons. It was designated Emu1 since it shares an N-terminal cysteine-rich domain with Emilin1/2 and Multimerin. This highly conserved EMI domain is also found in another novel protein (Emu2) of similar protein structure: an N-terminal signal peptide followed by the EMI domain, an interrupted collagen stretch, and a conserved C-terminal domain of unknown function. We identified two further secreted EMI domain proteins, prompting us to compare their gene and protein structures, the EMI domain phylogeny, as well as the embryonic expression pattern of known (Emilin1/2, Multimerin) and novel (Emu1/2, Emilin3, Multimerin2) Emu gene family members. Emu1 and Emu2 not only show a similar structural organization, but furthermore a striking complementary expression in organs developing through epithelial-mesenchymal interactions. In these tissues, Emu1 is restricted to epithelial and Emu2 to mesenchymal cells. Preliminary biochemical analysis of Emu1/2 confirmed that they are secreted glycoproteins which are attached to the extracellular matrix and capable of forming homo- and heteromers via disulfide bonding. The widespread, but individually distinct expression patterns of all Emu gene family members suggest multiple functions during mouse embryogenesis. Their multidomain protein structure may indicate that Emu proteins interact with several different extracellular matrix components and serve to connect and integrate the function of multiple partner molecules.
Collapse
Affiliation(s)
- Cornelia Leimeister
- Theodor-Boveri-Institute, Physiological Chemistry I, University of Wuerzburg, 97074, Wuerzburg, Germany
| | | | | | | | | |
Collapse
|
47
|
Christian S, Ahorn H, Novatchkova M, Garin-Chesa P, Park JE, Weber G, Eisenhaber F, Rettig WJ, Lenter MC. Molecular cloning and characterization of EndoGlyx-1, an EMILIN-like multisubunit glycoprotein of vascular endothelium. J Biol Chem 2001; 276:48588-95. [PMID: 11559704 DOI: 10.1074/jbc.m106152200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
EndoGlyx-1, the antigen identified with the monoclonal antibody H572, is a pan-endothelial human cell surface glycoprotein complex composed of four different disulfide-bonded protein species with an apparent molecular mass of approximately 500 kDa. Here, we report the purification and peptide analysis of two EndoGlyx-1 subunits, p125 and p140, and the identification of a common, full-length cDNA with an open reading frame of 2847 base pairs. The EndoGlyx-1 cDNA encodes a protein of 949 amino acids with a predicted molecular mass of 105 kDa, found as an entry for an unnamed protein with unknown function in public data bases. A short sequence tag matching the cDNA of this gene was independently discovered by serial analysis of gene expression profiling as a pan-endothelial marker, PEM87. Bioinformatic evaluation classifies EndoGlyx-1 as an EMILIN-like protein composed of a signal sequence, an N-terminal EMI domain, and a C-terminal C1q-like domain, separated from each other by a central coiled-coil-rich region. Biochemical and carbohydrate analysis revealed that p125, p140, and the two additional EndoGlyx-1 subunits, p110 and p200, are exposed on the cell surface. The three smaller subunits show a similar pattern of N-linked and O-linked carbohydrates, as shown by enzyme digestion. Because the two globular domains of EndoGlyx-1 p125/p140 show structural features shared by EMILIN-1 and Multimerin, two oligomerizing glycoproteins implicated in cell-matrix adhesion and hemostasis, it will be of interest to explore similar functions for EndoGlyx-1 in human vascular endothelium.
Collapse
Affiliation(s)
- S Christian
- Department of Oncology Research, Boehringer Ingelheim Pharma KG, 88397 Biberach an der Riss, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Doliana R, Bot S, Mungiguerra G, Canton A, Cilli SP, Colombatti A. Isolation and characterization of EMILIN-2, a new component of the growing EMILINs family and a member of the EMI domain-containing superfamily. J Biol Chem 2001; 276:12003-11. [PMID: 11278945 DOI: 10.1074/jbc.m011591200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
EMILIN (elastin microfibril interfase located Protein) is an elastic fiber-associated glycoprotein consisting of a self-interacting globular C1q domain at the C terminus, a short collagenous stalk, an extended region of potential coiled-coil structure, and an N-terminal cysteine-rich domain (EMI domain). Using the globular C1q domain as a bait in the yeast two-hybrid system, we have isolated a cDNA encoding a novel protein. Determination of the entire primary structure demonstrated that this EMILIN-binding polypeptide is highly homologous to EMILIN. The domain organization is superimposable, one important difference being a proline-rich (41%) segment of 56 residues between the potential coiled-coil region and the collagenous domain absent in EMILIN. The entire gene (localized on chromosome 18p11.3) was isolated from a BAC clone, and it is structurally almost identical to that of EMILIN (8 exons, 7 introns with identical phases at the exon/intron boundaries) but much larger (about 40 versus 8 kilobases) than that of EMILIN. Given these findings we propose to name the novel protein EMILIN-2 and the prototype member of this family EMILIN-1 (formerly EMILIN). The mRNA expression of EMILIN-2 is more restricted compared with that of EMILIN-1; highest levels are present in fetal heart and adult lung, whereas, differently from EMILIN-1, adult aorta, small intestine, and appendix show very low expression, and adult uterus and fetal kidney are negative. Finally, the EMILIN-2 protein is secreted extracellularly by in vitro-grown cells, and in accordance with the partial coexpression in fetal and adult tissues, the two proteins shown extensive but not absolute immunocolocalization in vitro.
Collapse
Affiliation(s)
- R Doliana
- Divisione di Oncologia Sperimentale 2, Centro di Riferimento Oncologico, 33081 Aviano, Italy
| | | | | | | | | | | |
Collapse
|
49
|
Mongiat M, Otto J, Oldershaw R, Ferrer F, Sato JD, Iozzo RV. Fibroblast growth factor-binding protein is a novel partner for perlecan protein core. J Biol Chem 2001; 276:10263-71. [PMID: 11148217 DOI: 10.1074/jbc.m011493200] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Perlecan, a widespread heparan sulfate proteoglycan, functions as a bioactive reservoir for growth factors by stabilizing them against misfolding or proteolysis. These factors, chiefly members of the fibroblast growth factor (FGF) gene family, are coupled to the N-terminal heparan sulfate chains, which augment high affinity binding and receptor activation. However, rather little is known about biological partners of the protein core. The major goal of this study was to identify novel proteins that interact with the protein core of perlecan. Using the yeast two-hybrid system and domain III of perlecan as bait, we screened approximately 0.5 10(6) cDNA clones from a keratinocyte library and identified a strongly interactive clone. This cDNA corresponded to FGF-binding protein (FGF-BP), a secreted protein previously shown to bind acidic and basic FGF and to modulate their activities. Using a panel of deletion mutants, FGF-BP binding was localized to the second EGF repeat of domain III, a region very close to the binding site for FGF7. FGF-BP could be coimmunoprecipitated with an antibody against perlecan and bound in solution to recombinant domain III-alkaline phosphatase fusion protein. Immunohistochemical analyses revealed colocalization of FGF-BP and perlecan in the pericellular stroma of various squamous cell carcinomas suggesting a potential in vivo interaction. Thus, FGF-BP should be considered a novel biological ligand for perlecan, an interaction that could influence cancer growth and tissue remodeling.
Collapse
Affiliation(s)
- M Mongiat
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | |
Collapse
|
50
|
Doliana R, Bot S, Bonaldo P, Colombatti A. EMI, a novel cysteine-rich domain of EMILINs and other extracellular proteins, interacts with the gC1q domains and participates in multimerization. FEBS Lett 2000; 484:164-8. [PMID: 11068053 DOI: 10.1016/s0014-5793(00)02140-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The N-terminal cysteine-rich domain (EMI domain) of EMILIN-1 is a new protein domain that is shared with two proteins (multimerin and EMILIN-2) and with four additional database entries. The EMI domains are always located at the N-terminus, have a common gene organization, and belong to proteins that are forming or are compatible with multimer formation. The potential role of the EMI domain in the assembly of EMILIN-1 was investigated by the two-hybrid system. No reporter gene activity was detected when EMI-1 was co-transformed with the C-terminal gC1q-1 domain excluding a head-to-tail multimerization; conversely, a strong interaction was detected when the EMI-1 domain was co-transformed with the gC1q-2 domain of EMILIN-2.
Collapse
Affiliation(s)
- R Doliana
- Divisione di Oncologia Sperimentale 2, CRO-IRCCS, National Cancer Institute, Aviano, Italy
| | | | | | | |
Collapse
|