1
|
Dernovšek J, Tomašič T. Following the design path of isoform-selective Hsp90 inhibitors: Small differences, great opportunities. Pharmacol Ther 2023; 245:108396. [PMID: 37001734 DOI: 10.1016/j.pharmthera.2023.108396] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/03/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
The heat shock protein 90 (Hsp90) family consists of four highly conserved isoforms: the mitochondrial TRAP-1, the endoplasmic reticulum-localised Grp94, and the cytoplasmic Hsp90α and Hsp90β. Since the late 1990s, this family has been extensively studied as a potential target for the treatment of cancer, neurological disorders, and infectious diseases. The initial approach was to develop non-selective, so-called pan-Hsp90 ATP-competitive inhibitors of the N-terminal domain. Many of these agents were tested in clinical trials, mainly for the treatment of cancer, but none of them succeeded in the clinic. This was mainly due to the lack of efficacy and various toxicities associated with the induction of heat shock response (HSR). This lack of success has prompted a turn to new approaches of Hsp90 inhibition. Thus, inhibitors selective for a particular isoform of Hsp90 have been developed. These isoform-selective inhibitors do not induce HSR and have a more targeted effect because not all client proteins are equally dependent on all four paralogues of Hsp90. However, it is extremely difficult to develop such selective compounds because the family is highly conserved. Hsp90α and Hsp90β have an amazing 95% identity of the N-terminal ATP binding site, differing only in two amino acid residues. Therefore, the focus of this review is to fully elucidate the key structural features of the selective inhibitor classes in terms of binding site dissimilarities. In addition to a methodological characterisation of the structure-activity relationships, the main advantages of selective inhibition of the TRAP-1, Grp94, Hsp90α and Hsp90β isoforms are discussed.
Collapse
Affiliation(s)
- Jaka Dernovšek
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Tihomir Tomašič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
2
|
Amankwah YS, Collins P, Fleifil Y, Unruh E, Ruiz Márquez KJ, Vitou K, Kravats AN. Grp94 works upstream of BiP in protein remodeling under heat stress. J Mol Biol 2022; 434:167762. [PMID: 35905823 DOI: 10.1016/j.jmb.2022.167762] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/28/2022] [Accepted: 07/21/2022] [Indexed: 10/16/2022]
Abstract
Hsp90 and Hsp70 are highly conserved molecular chaperones that promote the proper folding and activation of substrate proteins that are often referred to as clients. The two chaperones functionally collaborate to fold specific clients in an ATP-dependent manner. In eukaryotic cytosol, initial client folding is done by Hsp70 and its co-chaperones, followed by a direct transfer of client refolding intermediates to Hsp90 for final client processing. However, the mechanistic details of collaboration of organelle specific Hsp70 and Hsp90 are lacking. This work investigates the collaboration of the endoplasmic reticulum (ER) Hsp70 and Hsp90, BiP and Grp94 respectively, in protein remodeling using in vitro refolding assays. We show that under milder denaturation conditions, BiP collaborates with its co-chaperones to refold misfolded proteins in an ATP-dependent manner. Grp94 does not play a major role in this refolding reaction. However, under stronger denaturation conditions that favor aggregation, Grp94 works in an ATP-independent manner to bind and hold misfolded clients in a folding competent state for subsequent remodeling by the BiP system. We also show that the collaboration of Grp94 and BiP is not simply a reversal of the eukaryotic refolding mechanism since a direct interaction of Grp94 and BiP is not required for client transfer. Instead, ATP binding but not hydrolysis by Grp94 facilitates the release of the bound client, which is then picked up by the BiP system for subsequent refolding in a Grp94-independent manner.
Collapse
Affiliation(s)
- Yaa S Amankwah
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056
| | - Preston Collins
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056
| | - Yasmeen Fleifil
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056
| | - Erin Unruh
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056
| | | | - Katherine Vitou
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056
| | - Andrea N Kravats
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056.
| |
Collapse
|
3
|
Jacobson KA, Salmaso V, Suresh RR, Tosh DK. Expanding the repertoire of methanocarba nucleosides from purinergic signaling to diverse targets. RSC Med Chem 2021; 12:1808-1825. [PMID: 34825182 PMCID: PMC8597424 DOI: 10.1039/d1md00167a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/01/2021] [Indexed: 12/11/2022] Open
Abstract
Nucleoside derivatives are well represented as pharmaceuticals due to their druglike physicochemical properties, and some nucleoside drugs are designed to act on receptors. The purinergic signaling pathways for extracellular nucleosides and nucleotides, consisting of adenosine receptors, P2Y/P2X receptors for nucleotides, and enzymes such as adenosine (ribo)kinase, have been extensively studied. A general modification, i.e. a constrained, bicyclic ring system (bicyclo[3.1.0]hexane, also called methanocarba) substituted in place of a furanose ring, can increase nucleoside/nucleotide potency and/or selectivity at purinergic and antiviral targets and in interactions at diverse and unconventional targets. Compared to other common drug discovery scaffolds containing planar rings, methanocarba nucleosides display greater sp3 character (i.e. more favorable as drug-like molecules) and can manifest as sterically-constrained North (N) or South (S) conformations. Initially weak, off-target interactions of (N)-methanocarba adenosine derivatives were detected as leads that were structurally optimized to enhance activity and selectivity toward target proteins that normally do not recognize nucleosides. By this approach, novel modulators for 5HT2 serotonin and κ-opioid receptors, dopamine (DAT) and ATP-binding cassette (ABC) transporters were found, and previously undetected antiviral activities were revealed. Thus, through methanocarba nucleoside synthesis, structure-activity relationships, and multi-target pharmacology, a robust purinergic receptor scaffold has been repurposed to satisfy the pharmacophoric requirements of various GPCRs, enzymes and transporters.
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health Bethesda MD 20892-0810 USA +301 480 8422 +301 496 9024
| | - Veronica Salmaso
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health Bethesda MD 20892-0810 USA +301 480 8422 +301 496 9024
| | - R Rama Suresh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health Bethesda MD 20892-0810 USA +301 480 8422 +301 496 9024
| | - Dilip K Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health Bethesda MD 20892-0810 USA +301 480 8422 +301 496 9024
| |
Collapse
|
4
|
Tosh DK, Brackett CM, Jung YH, Gao ZG, Banerjee M, Blagg BSJ, Jacobson KA. Biological Evaluation of 5'-( N-Ethylcarboxamido)adenosine Analogues as Grp94-Selective Inhibitors. ACS Med Chem Lett 2021; 12:373-379. [PMID: 33738064 DOI: 10.1021/acsmedchemlett.0c00509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/19/2021] [Indexed: 11/28/2022] Open
Abstract
The heat shock protein 90 kDa (Hsp90) family of chaperones is highly sought-after for the treatment of cancer and neurodegenerative diseases. Glucose regulated protein 94 (Grp94) is the endoplasmic reticulum localized isoform that is responsible for the maturation of proteins involved in cell adhesion and the immune response, including Toll-like receptors, immunoglobulins, and integrins. Consequently, Grp94 has been implicated in many different diseases including cancer metastasis, glaucoma, and viral infection. 5'-(N-Ethylcarboxamido)adenosine (NECA) was identified from a high-throughput screen as one of the first molecules to exhibit isoform selectivity toward Grp94, with the ethyl group projecting into a unique pocket within the ATP binding site of Grp94. This pocket has since been exploited by several groups to develop Grp94 selective inhibitors. Despite success in the development of other classes of inhibitors, relatively little work has been done to further develop inhibitors with the NECA scaffold. Unfortunately, NECA is also a potent adenosine receptor agonist, which is likely to confound any biological activity. Therefore, structure-activity relationship studies were performed on the NECA scaffold leading to the discovery of several molecules that displayed similar selectivity and affinity as the parent compound.
Collapse
Affiliation(s)
- Dilip K. Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Christopher M. Brackett
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Young-Hwan Jung
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Monimoy Banerjee
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Brian S. J. Blagg
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
5
|
Sanchez J, Carter TR, Cohen MS, Blagg BSJ. Old and New Approaches to Target the Hsp90 Chaperone. Curr Cancer Drug Targets 2020; 20:253-270. [PMID: 31793427 DOI: 10.2174/1568009619666191202101330] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/30/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022]
Abstract
The 90-kDa heat shock protein (Hsp90) is a molecular chaperone that ensures cellular proteostasis by maintaining the folding, stabilization, activation, and degradation of over 400 client proteins. Hsp90 is not only critical for routine protein maintenance in healthy cells, but also during states of cellular stress, such as cancer and neurodegenerative diseases. Due to its ability to affect phosphorylation of numerous client proteins, inhibition of Hsp90 has been an attractive anticancer approach since the early 1990's, when researchers identified a druggable target on the amino terminus of Hsp90 for a variety of cancers. Since then, 17 Hsp90 inhibitors that target the chaperone's Nterminal domain, have entered clinical trials. None, however, have been approved thus far by the FDA as a cancer monotherapy. In these trials, a major limitation observed with Hsp90 inhibition at the N-terminal domain was dose-limiting toxicities and relatively poor pharmacokinetic profiles. Despite this, preclinical and clinical research continues to show that Hsp90 inhibitors effectively target cancer cell death and decrease tumor progression supporting the rationale for the development of novel Hsp90 inhibitors. Here, we present an in-depth overview of the Hsp90 inhibitors used in clinical trials. Finally, we present current shifts in the field related to targeting the carboxy-terminal domain of Hsp90 as well as to the development of isoform-selective inhibitors as a means to bypass the pitfalls of current Hsp90 inhibitors and improve clinical trial outcomes.
Collapse
Affiliation(s)
- Jackee Sanchez
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Trever R Carter
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Mark S Cohen
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, United States.,Department of Surgery, University of Michigan, Ann Arbor, MI 48109, United States
| | - Brian S J Blagg
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| |
Collapse
|
6
|
Huck JD, Que NLS, Immormino RM, Shrestha L, Taldone T, Chiosis G, Gewirth DT. NECA derivatives exploit the paralog-specific properties of the site 3 side pocket of Grp94, the endoplasmic reticulum Hsp90. J Biol Chem 2019; 294:16010-16019. [PMID: 31501246 DOI: 10.1074/jbc.ra119.009960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/05/2019] [Indexed: 11/06/2022] Open
Abstract
The hsp90 chaperones govern the function of essential client proteins critical for normal cell function as well as cancer initiation and progression. Hsp90 activity is driven by ATP, which binds to the N-terminal domain and induces large conformational changes that are required for client maturation. Inhibitors targeting the ATP-binding pocket of the N-terminal domain have anticancer effects, but most bind with similar affinity to cytosolic Hsp90α and Hsp90β, endoplasmic reticulum Grp94, and mitochondrial Trap1, the four cellular hsp90 paralogs. Paralog-specific inhibitors may lead to drugs with fewer side effects. The ATP-binding pockets of the four paralogs are flanked by three side pockets, termed sites 1, 2, and 3, which differ between the paralogs in their accessibility to inhibitors. Previous insights into the principles governing access to sites 1 and 2 have resulted in development of paralog-selective inhibitors targeting these sites, but the rules for selective targeting of site 3 are less clear. Earlier studies identified 5'N-ethylcarboxamido adenosine (NECA) as a Grp94-selective ligand. Here we use NECA and its derivatives to probe the properties of site 3. We found that derivatives that lengthen the 5' moiety of NECA improve selectivity for Grp94 over Hsp90α. Crystal structures reveal that the derivatives extend further into site 3 of Grp94 compared with their parent compound and that selectivity is due to paralog-specific differences in ligand pose and ligand-induced conformational strain in the protein. These studies provide a structural basis for Grp94-selective inhibition using site 3.
Collapse
Affiliation(s)
- John D Huck
- Hauptman-Woodward Medical Research Institute, Buffalo, New York 14203.,Department of Structural Biology, University at Buffalo, Buffalo, New York 14203
| | - Nanette L S Que
- Hauptman-Woodward Medical Research Institute, Buffalo, New York 14203
| | | | - Liza Shrestha
- Memorial Sloan-Kettering Cancer Institute, New York, New York 10021
| | - Tony Taldone
- Memorial Sloan-Kettering Cancer Institute, New York, New York 10021
| | - Gabriela Chiosis
- Memorial Sloan-Kettering Cancer Institute, New York, New York 10021
| | - Daniel T Gewirth
- Hauptman-Woodward Medical Research Institute, Buffalo, New York 14203 .,Department of Structural Biology, University at Buffalo, Buffalo, New York 14203
| |
Collapse
|
7
|
Targeting hsp90 family members: A strategy to improve cancer cell death. Biochem Pharmacol 2019; 164:177-187. [PMID: 30981878 DOI: 10.1016/j.bcp.2019.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/10/2019] [Indexed: 02/01/2023]
Abstract
A crucial process in biology is the conversion of the genetic information into functional proteins that carry out the genetic program. However, a supplementary step is required to obtain functional proteins: the folding of the newly translated polypeptides into well-defined, three-dimensional conformations. Proteins chaperones are crucial for this final step in the readout of genetic information, which results in the formation of functional proteins. In this review, a special attention will be given to the strategies targeting hsp90 family members in order to increase cancer cell death. We argue that disruption of hsp90 machinery and the further client protein degradation is the main consequence of hsp90 oxidative cleavage taking place at the N-terminal nucleotide-binding site. Moreover, modulation of Grp94 expression will be discussed as a potential therapeutic goal looking for a decrease in cancer relapses.
Collapse
|
8
|
Jiang F, Guo AP, Xu JC, You QD, Xu XL. Discovery of a Potent Grp94 Selective Inhibitor with Anti-Inflammatory Efficacy in a Mouse Model of Ulcerative Colitis. J Med Chem 2018; 61:9513-9533. [PMID: 30351001 DOI: 10.1021/acs.jmedchem.8b00800] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As the endoplasmic reticulum paralogue of Hsp90, Grp94 chaperones a small set of client proteins associated with some diseases, including cancer, primary open-angle glaucoma, and inflammatory disorders. Grp94-selective inhibition has been a potential therapeutic strategy for these diseases. In this study, inspired by the conclusion that ligand-induced "Phe199 shift" effect is the structural basis of Grp94-selective inhibition, a series of novel Grp94 selective inhibitors incorporating "benzamide" moiety were developed, among which compound 54 manifested the most potent Grp94 inhibitory activity with an IC50 value of 2 nM and over 1000-fold selectivity to Grp94 against Hsp90α. In a DSS-induced mouse model of ulcerative colitis (UC), compound 54 exhibited significant anti-inflammatory efficacy. This work provides a potent Grp94 selective inhibitor as probe compound for the biological study of Grp94 and represents the first study that confirms the potential therapeutic efficacy of Grp94-selective inhibitors against UC.
Collapse
Affiliation(s)
- Fen Jiang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization , China Pharmaceutical University , Nanjing 210009 , China.,Department of Medicinal Chemistry, School of Pharmacy , China Pharmaceutical University , Nanjing 210009 , China
| | - An-Ping Guo
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization , China Pharmaceutical University , Nanjing 210009 , China.,Department of Medicinal Chemistry, School of Pharmacy , China Pharmaceutical University , Nanjing 210009 , China
| | - Jia-Chen Xu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization , China Pharmaceutical University , Nanjing 210009 , China.,Department of Medicinal Chemistry, School of Pharmacy , China Pharmaceutical University , Nanjing 210009 , China
| | - Qi-Dong You
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization , China Pharmaceutical University , Nanjing 210009 , China.,Department of Medicinal Chemistry, School of Pharmacy , China Pharmaceutical University , Nanjing 210009 , China
| | - Xiao-Li Xu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization , China Pharmaceutical University , Nanjing 210009 , China.,Department of Medicinal Chemistry, School of Pharmacy , China Pharmaceutical University , Nanjing 210009 , China
| |
Collapse
|
9
|
Que NLS, Crowley VM, Duerfeldt AS, Zhao J, Kent CN, Blagg BSJ, Gewirth DT. Structure Based Design of a Grp94-Selective Inhibitor: Exploiting a Key Residue in Grp94 To Optimize Paralog-Selective Binding. J Med Chem 2018. [PMID: 29528635 DOI: 10.1021/acs.jmedchem.7b01608] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Grp94 and Hsp90, the ER and cytoplasmic hsp90 paralogs, share a conserved ATP-binding pocket that has been targeted for therapeutics. Paralog-selective inhibitors may lead to drugs with fewer side effects. Here, we analyzed 1 (BnIm), a benzyl imidazole resorcinylic inhibitor, for its mode of binding. The structures of 1 bound to Hsp90 and Grp94 reveal large conformational changes in Grp94 but not Hsp90 that expose site 2, a binding pocket adjacent to the central ATP cavity that is ordinarily blocked. The Grp94:1 structure reveals a flipped pose of the resorcinylic scaffold that inserts into the exposed site 2. We exploited this flipped binding pose to develop a Grp94-selective derivative of 1. Our structural analysis shows that the ability of the ligand to insert its benzyl imidazole substituent into site 1, a different side pocket off the ATP binding cavity, is the key to exposing site 2 in Grp94.
Collapse
Affiliation(s)
- Nanette L S Que
- Hauptman-Woodward Medical Research Institute , Buffalo , New York 14203 , United States
| | - Vincent M Crowley
- Department of Medicinal Chemistry , The University of Kansas , Lawrence , Kansas 66045 , United States
| | - Adam S Duerfeldt
- Department of Medicinal Chemistry , The University of Kansas , Lawrence , Kansas 66045 , United States
| | - Jinbo Zhao
- Department of Medicinal Chemistry , The University of Kansas , Lawrence , Kansas 66045 , United States
| | - Caitlin N Kent
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Brian S J Blagg
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Daniel T Gewirth
- Hauptman-Woodward Medical Research Institute , Buffalo , New York 14203 , United States.,Department of Structural Biology , University at Buffalo , Buffalo , New York 14203 , United States
| |
Collapse
|
10
|
Khandelwal A, Crowley VM, Blagg BSJ. Resorcinol-Based Grp94-Selective Inhibitors. ACS Med Chem Lett 2017; 8:1013-1018. [PMID: 29057043 DOI: 10.1021/acsmedchemlett.7b00193] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/01/2017] [Indexed: 12/15/2022] Open
Abstract
Glucose regulated protein 94 (Grp94) is the endoplasmic reticulum resident of the 90 kDa heat shock protein (Hsp90) family and represents a promising therapeutic target for the treatment of several diseases. Grp94 is the most unique member of the 90 kDa heat shock protein family due to a five amino acid insertion into its primary sequence, which creates hydrophobic subpockets exclusive to Grp94 that can be utilized for selective inhibition. The first resorcinol-based Grp94-selective inhibitor to take advantage of the hydrophobic S2 subpocket has been developed and shown to manifest low nanomolar affinity and ∼10-fold selectivity for Grp94. Furthermore, these Grp94-selective inhibitors manifest low micromolar GI50 values against multiple myeloma cells, supporting Grp94 as an emerging target for the treatment of this disease.
Collapse
Affiliation(s)
- Anuj Khandelwal
- Department
of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall
Drive, Malott Hall 4070, Lawrence, Kansas 66045, United States
| | - Vincent M. Crowley
- Department
of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall
Drive, Malott Hall 4070, Lawrence, Kansas 66045, United States
| | - Brian S. J. Blagg
- Warren Family Research Center for Drug Discovery and Development and Department of Chemistry & Biochemistry, University of Notre Dame, 305 McCourtney Hall, Notre Dame, Indiana 46556, United States
| |
Collapse
|
11
|
Gewirth DT. Paralog Specific Hsp90 Inhibitors - A Brief History and a Bright Future. Curr Top Med Chem 2017; 16:2779-91. [PMID: 27072700 DOI: 10.2174/1568026616666160413141154] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/30/2015] [Accepted: 01/17/2016] [Indexed: 11/22/2022]
Abstract
BACKGROUND The high sequence and structural homology among the hsp90 paralogs - Hsp90α, Hsp90β, Grp94, and Trap-1 - has made the development of paralog-specific inhibitors a challenging proposition. OBJECTIVE This review surveys the state of developments in structural analysis, compound screening, and structure-based design that have been brought to bear on this problem. RESULTS First generation compounds that selectively bind to Hsp90, Grp94, or Trap-1 have been identified. CONCLUSION With the proof of principle firmly established, the prospects for further progress are bright.
Collapse
Affiliation(s)
- Daniel T Gewirth
- Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY, 14203, USA.
| |
Collapse
|
12
|
Shrestha L, Patel HJ, Chiosis G. Chemical Tools to Investigate Mechanisms Associated with HSP90 and HSP70 in Disease. Cell Chem Biol 2016; 23:158-172. [PMID: 26933742 DOI: 10.1016/j.chembiol.2015.12.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/08/2015] [Accepted: 12/08/2015] [Indexed: 01/22/2023]
Abstract
The chaperome is a large and diverse protein machinery composed of chaperone proteins and a variety of helpers, such as the co-chaperones, folding enzymes, and scaffolding and adapter proteins. Heat shock protein 90s and 70s (HSP90s and HSP70s), the most abundant chaperome members in human cells, are also the most complex. As we have learned to appreciate, their functions are context dependent and manifested through a variety of conformations that each recruit a subset of co-chaperone, scaffolding, and folding proteins and which are further diversified by the posttranslational modifications each carry, making their study through classic genetic and biochemical techniques quite a challenge. Chemical biology tools and techniques have been developed over the years to help decipher the complexities of the HSPs and this review provides an overview of such efforts with focus on HSP90 and HSP70.
Collapse
Affiliation(s)
- Liza Shrestha
- Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Hardik J Patel
- Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Gabriela Chiosis
- Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA.
| |
Collapse
|
13
|
Liu S, Street TO. 5'-N-ethylcarboxamidoadenosine is not a paralog-specific Hsp90 inhibitor. Protein Sci 2016; 25:2209-2215. [PMID: 27667530 DOI: 10.1002/pro.3049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 09/21/2016] [Indexed: 01/03/2023]
Abstract
The molecular chaperone Hsp90 facilitates the folding and modulates activation of diverse substrate proteins. Unlike other heat shock proteins such as Hsp60 and Hsp70, Hsp90 plays critical regulatory roles by maintaining active states of kinases, many of which are overactive in cancer cells. Four Hsp90 paralogs are expressed in eukaryotic cells: Hsp90α/β (in the cytosol), Grp94 (in the endoplasmic reticulum), Trap1 (in mitochondria). Although numerous Hsp90 inhibitors are being tested in cancer clinical trials, little is known about why different Hsp90 inhibitors show specificity among Hsp90 paralogs. The paralog specificity of Hsp90 inhibitors is likely fundamental to inhibitor efficacy and side effects. In hopes of gaining insight into this issue we examined NECA (5'-N-ethylcarboxamidoadenosine), which has been claimed to be an example of a highly specific ligand that binds to one paralog, Grp94, but not cytosolic Hsp90. To our surprise we find that NECA inhibits many different Hsp90 proteins (Grp94, Hsp90α, Trap1, yeast Hsp82, bacterial HtpG). NMR experiments demonstrate that NECA can bind to the N-terminal domains of Grp94 and Hsp82. We use ATPase competition experiments to quantify the inhibitory power of NECA for different Hsp90 proteins. This scale: Hsp82 > Hsp90α > HtpG ≈ Grp94 > Trap1, ranks Grp94 as less sensitive to NECA inhibition. Because NECA is primarily used as an adenosine receptor agonist, our results also suggest that cell biological experiments utilizing NECA may have confounding effects from cytosolic Hsp90 inhibition.
Collapse
Affiliation(s)
- Shanshan Liu
- Department of Biochemistry, Brandeis University, Waltham, MA, 02454
| | - Timothy O Street
- Department of Biochemistry, Brandeis University, Waltham, MA, 02454
| |
Collapse
|
14
|
Wang J, Grishin AV, Ford HR. Experimental Anti-Inflammatory Drug Semapimod Inhibits TLR Signaling by Targeting the TLR Chaperone gp96. THE JOURNAL OF IMMUNOLOGY 2016; 196:5130-7. [PMID: 27194788 DOI: 10.4049/jimmunol.1502135] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 04/18/2016] [Indexed: 01/07/2023]
Abstract
Semapimod, a tetravalent guanylhydrazone, suppresses inflammatory cytokine production and has potential in a variety of inflammatory and autoimmune disorders. The mechanism of action of Semapimod is not well understood. In this study, we demonstrate that in rat IEC-6 intestinal epithelioid cells, Semapimod inhibits activation of p38 MAPK and NF-κB and induction of cyclooxygenase-2 by TLR ligands, but not by IL-1β or stresses. Semapimod inhibits TLR4 signaling (IC50 ≈0.3 μmol) and acts by desensitizing cells to LPS; it fails to block responses to LPS concentrations of ≥5 μg/ml. Inhibition of TLR signaling by Semapimod is almost instantaneous: the drug is effective when applied simultaneously with LPS. Semapimod blocks cell-surface recruitment of the MyD88 adapter, one of the earliest events in TLR signaling. gp96, the endoplasmic reticulum-localized chaperone of the HSP90 family critically involved in the biogenesis of TLRs, was identified as a target of Semapimod using ATP-desthiobiotin pulldown and mass spectroscopy. Semapimod inhibits ATP-binding and ATPase activities of gp96 in vitro (IC50 ≈0.2-0.4 μmol). On prolonged exposure, Semapimod causes accumulation of TLR4 and TLR9 in perinuclear space, consistent with endoplasmic reticulum retention, an anticipated consequence of impaired gp96 chaperone function. Our data indicate that Semapimod desensitizes TLR signaling via its effect on the TLR chaperone gp96. Fast inhibition by Semapimod is consistent with gp96 participating in high-affinity sensing of TLR ligands in addition to its role as a TLR chaperone.
Collapse
Affiliation(s)
- Jin Wang
- Division of Pediatric Surgery, Children's Hospital Los Angeles, Los Angeles, CA 90027; and
| | - Anatoly V Grishin
- Division of Pediatric Surgery, Children's Hospital Los Angeles, Los Angeles, CA 90027; and Department of Surgery, University of Southern California, Los Angeles, CA 90027
| | - Henri R Ford
- Division of Pediatric Surgery, Children's Hospital Los Angeles, Los Angeles, CA 90027; and Department of Surgery, University of Southern California, Los Angeles, CA 90027
| |
Collapse
|
15
|
Marzec M, Hawkes CP, Eletto D, Boyle S, Rosenfeld R, Hwa V, Wit JM, van Duyvenvoorde HA, Oostdijk W, Losekoot M, Pedersen O, Yeap BB, Flicker L, Barzilai N, Atzmon G, Grimberg A, Argon Y. A Human Variant of Glucose-Regulated Protein 94 That Inefficiently Supports IGF Production. Endocrinology 2016; 157:1914-28. [PMID: 26982636 PMCID: PMC4870884 DOI: 10.1210/en.2015-2058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/10/2016] [Indexed: 02/08/2023]
Abstract
IGFs are critical for normal intrauterine and childhood growth and sustaining health throughout life. We showed previously that the production of IGF-1 and IGF-2 requires interaction with the chaperone glucose-regulated protein 94 (GRP94) and that the amount of secreted IGFs is proportional to the GRP94 activity. Therefore, we tested the hypothesis that functional polymorphisms of human GRP94 affect IGF production and thereby human health. We describe a hypomorphic variant of human GRP94, P300L, whose heterozygous carriers have 9% lower circulating IGF-1 concentration. P300L was found first in a child with primary IGF deficiency and was later shown to be a noncommon single-nucleotide polymorphism with frequencies of 1%-4% in various populations. When tested in the grp94(-/-) cell-based complementation assay, P300L supported only approximately 58% of IGF secretion relative to wild-type GRP94. Furthermore, recombinant P300L showed impaired nucleotide binding activity. These in vitro data strongly support a causal relationship between the GRP94 variant and the decreased concentration of circulating IGF-1, as observed in human carriers of P300L. Thus, mutations in GRP94 that affect its IGF chaperone activity represent a novel causal genetic mechanism that limits IGF biosynthesis, quite a distinct mechanism from the known genes in the GH/IGF signaling network.
Collapse
Affiliation(s)
- Michal Marzec
- Department of Pathology and Laboratory Medicine (M.M., D.E., S.B., Y.A.), The Children's Hospital of Philadelphia and The University of Pennsylvania, Philadelphia,; Division of Endocrinology and Diabetes (C.P.H., A.G.), The Children's Hospital of Philadelphia, and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Pennsylvania 19104; National Children's Research Centre (C.P.H.), Dublin 12, Ireland; STAT5, LLC (R.R.), Los Altos, California 94022; Department of Pediatrics (R.R., V.H.), Oregon Health and Science University, Portland, Oregon 97239; Departments of Pediatrics (J.-M.W., H.A.v.D., W.O.), Endocrinology and Metabolic Diseases (H.A.v.D.), and Clinical Genetics (H.A.v.D., M.L.), Leiden University Medical Center, 2300 RC Leiden, The Netherlands; Faculty of Health and Medical Sciences (O.P.), University of Copenhagen, DK-2400 Copenhagen, Denmark; School of Medicine and Pharmacology (B.B.Y.), Western Australia Centre for Health and Ageing (L.F.), Centre for Medical Research (L.F.), and School of Medicine and Pharmacology (L.F.), University of Western Australia, Perth, Western Australia 6872, Australia; Department of Endocrinology and Diabetes (B.B.Y.), Fiona Stanley Hospital, Perth, Western Australia 6150, Australia; Department of Human Biology (G.A.), Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel; and Departments of Medicine and Genetics (N.B., G.A.), Albert Einstein College of Medicine, Bronx, New York 10461
| | - Colin P Hawkes
- Department of Pathology and Laboratory Medicine (M.M., D.E., S.B., Y.A.), The Children's Hospital of Philadelphia and The University of Pennsylvania, Philadelphia,; Division of Endocrinology and Diabetes (C.P.H., A.G.), The Children's Hospital of Philadelphia, and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Pennsylvania 19104; National Children's Research Centre (C.P.H.), Dublin 12, Ireland; STAT5, LLC (R.R.), Los Altos, California 94022; Department of Pediatrics (R.R., V.H.), Oregon Health and Science University, Portland, Oregon 97239; Departments of Pediatrics (J.-M.W., H.A.v.D., W.O.), Endocrinology and Metabolic Diseases (H.A.v.D.), and Clinical Genetics (H.A.v.D., M.L.), Leiden University Medical Center, 2300 RC Leiden, The Netherlands; Faculty of Health and Medical Sciences (O.P.), University of Copenhagen, DK-2400 Copenhagen, Denmark; School of Medicine and Pharmacology (B.B.Y.), Western Australia Centre for Health and Ageing (L.F.), Centre for Medical Research (L.F.), and School of Medicine and Pharmacology (L.F.), University of Western Australia, Perth, Western Australia 6872, Australia; Department of Endocrinology and Diabetes (B.B.Y.), Fiona Stanley Hospital, Perth, Western Australia 6150, Australia; Department of Human Biology (G.A.), Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel; and Departments of Medicine and Genetics (N.B., G.A.), Albert Einstein College of Medicine, Bronx, New York 10461
| | - Davide Eletto
- Department of Pathology and Laboratory Medicine (M.M., D.E., S.B., Y.A.), The Children's Hospital of Philadelphia and The University of Pennsylvania, Philadelphia,; Division of Endocrinology and Diabetes (C.P.H., A.G.), The Children's Hospital of Philadelphia, and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Pennsylvania 19104; National Children's Research Centre (C.P.H.), Dublin 12, Ireland; STAT5, LLC (R.R.), Los Altos, California 94022; Department of Pediatrics (R.R., V.H.), Oregon Health and Science University, Portland, Oregon 97239; Departments of Pediatrics (J.-M.W., H.A.v.D., W.O.), Endocrinology and Metabolic Diseases (H.A.v.D.), and Clinical Genetics (H.A.v.D., M.L.), Leiden University Medical Center, 2300 RC Leiden, The Netherlands; Faculty of Health and Medical Sciences (O.P.), University of Copenhagen, DK-2400 Copenhagen, Denmark; School of Medicine and Pharmacology (B.B.Y.), Western Australia Centre for Health and Ageing (L.F.), Centre for Medical Research (L.F.), and School of Medicine and Pharmacology (L.F.), University of Western Australia, Perth, Western Australia 6872, Australia; Department of Endocrinology and Diabetes (B.B.Y.), Fiona Stanley Hospital, Perth, Western Australia 6150, Australia; Department of Human Biology (G.A.), Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel; and Departments of Medicine and Genetics (N.B., G.A.), Albert Einstein College of Medicine, Bronx, New York 10461
| | - Sarah Boyle
- Department of Pathology and Laboratory Medicine (M.M., D.E., S.B., Y.A.), The Children's Hospital of Philadelphia and The University of Pennsylvania, Philadelphia,; Division of Endocrinology and Diabetes (C.P.H., A.G.), The Children's Hospital of Philadelphia, and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Pennsylvania 19104; National Children's Research Centre (C.P.H.), Dublin 12, Ireland; STAT5, LLC (R.R.), Los Altos, California 94022; Department of Pediatrics (R.R., V.H.), Oregon Health and Science University, Portland, Oregon 97239; Departments of Pediatrics (J.-M.W., H.A.v.D., W.O.), Endocrinology and Metabolic Diseases (H.A.v.D.), and Clinical Genetics (H.A.v.D., M.L.), Leiden University Medical Center, 2300 RC Leiden, The Netherlands; Faculty of Health and Medical Sciences (O.P.), University of Copenhagen, DK-2400 Copenhagen, Denmark; School of Medicine and Pharmacology (B.B.Y.), Western Australia Centre for Health and Ageing (L.F.), Centre for Medical Research (L.F.), and School of Medicine and Pharmacology (L.F.), University of Western Australia, Perth, Western Australia 6872, Australia; Department of Endocrinology and Diabetes (B.B.Y.), Fiona Stanley Hospital, Perth, Western Australia 6150, Australia; Department of Human Biology (G.A.), Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel; and Departments of Medicine and Genetics (N.B., G.A.), Albert Einstein College of Medicine, Bronx, New York 10461
| | - Ron Rosenfeld
- Department of Pathology and Laboratory Medicine (M.M., D.E., S.B., Y.A.), The Children's Hospital of Philadelphia and The University of Pennsylvania, Philadelphia,; Division of Endocrinology and Diabetes (C.P.H., A.G.), The Children's Hospital of Philadelphia, and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Pennsylvania 19104; National Children's Research Centre (C.P.H.), Dublin 12, Ireland; STAT5, LLC (R.R.), Los Altos, California 94022; Department of Pediatrics (R.R., V.H.), Oregon Health and Science University, Portland, Oregon 97239; Departments of Pediatrics (J.-M.W., H.A.v.D., W.O.), Endocrinology and Metabolic Diseases (H.A.v.D.), and Clinical Genetics (H.A.v.D., M.L.), Leiden University Medical Center, 2300 RC Leiden, The Netherlands; Faculty of Health and Medical Sciences (O.P.), University of Copenhagen, DK-2400 Copenhagen, Denmark; School of Medicine and Pharmacology (B.B.Y.), Western Australia Centre for Health and Ageing (L.F.), Centre for Medical Research (L.F.), and School of Medicine and Pharmacology (L.F.), University of Western Australia, Perth, Western Australia 6872, Australia; Department of Endocrinology and Diabetes (B.B.Y.), Fiona Stanley Hospital, Perth, Western Australia 6150, Australia; Department of Human Biology (G.A.), Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel; and Departments of Medicine and Genetics (N.B., G.A.), Albert Einstein College of Medicine, Bronx, New York 10461
| | - Vivian Hwa
- Department of Pathology and Laboratory Medicine (M.M., D.E., S.B., Y.A.), The Children's Hospital of Philadelphia and The University of Pennsylvania, Philadelphia,; Division of Endocrinology and Diabetes (C.P.H., A.G.), The Children's Hospital of Philadelphia, and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Pennsylvania 19104; National Children's Research Centre (C.P.H.), Dublin 12, Ireland; STAT5, LLC (R.R.), Los Altos, California 94022; Department of Pediatrics (R.R., V.H.), Oregon Health and Science University, Portland, Oregon 97239; Departments of Pediatrics (J.-M.W., H.A.v.D., W.O.), Endocrinology and Metabolic Diseases (H.A.v.D.), and Clinical Genetics (H.A.v.D., M.L.), Leiden University Medical Center, 2300 RC Leiden, The Netherlands; Faculty of Health and Medical Sciences (O.P.), University of Copenhagen, DK-2400 Copenhagen, Denmark; School of Medicine and Pharmacology (B.B.Y.), Western Australia Centre for Health and Ageing (L.F.), Centre for Medical Research (L.F.), and School of Medicine and Pharmacology (L.F.), University of Western Australia, Perth, Western Australia 6872, Australia; Department of Endocrinology and Diabetes (B.B.Y.), Fiona Stanley Hospital, Perth, Western Australia 6150, Australia; Department of Human Biology (G.A.), Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel; and Departments of Medicine and Genetics (N.B., G.A.), Albert Einstein College of Medicine, Bronx, New York 10461
| | - Jan M Wit
- Department of Pathology and Laboratory Medicine (M.M., D.E., S.B., Y.A.), The Children's Hospital of Philadelphia and The University of Pennsylvania, Philadelphia,; Division of Endocrinology and Diabetes (C.P.H., A.G.), The Children's Hospital of Philadelphia, and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Pennsylvania 19104; National Children's Research Centre (C.P.H.), Dublin 12, Ireland; STAT5, LLC (R.R.), Los Altos, California 94022; Department of Pediatrics (R.R., V.H.), Oregon Health and Science University, Portland, Oregon 97239; Departments of Pediatrics (J.-M.W., H.A.v.D., W.O.), Endocrinology and Metabolic Diseases (H.A.v.D.), and Clinical Genetics (H.A.v.D., M.L.), Leiden University Medical Center, 2300 RC Leiden, The Netherlands; Faculty of Health and Medical Sciences (O.P.), University of Copenhagen, DK-2400 Copenhagen, Denmark; School of Medicine and Pharmacology (B.B.Y.), Western Australia Centre for Health and Ageing (L.F.), Centre for Medical Research (L.F.), and School of Medicine and Pharmacology (L.F.), University of Western Australia, Perth, Western Australia 6872, Australia; Department of Endocrinology and Diabetes (B.B.Y.), Fiona Stanley Hospital, Perth, Western Australia 6150, Australia; Department of Human Biology (G.A.), Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel; and Departments of Medicine and Genetics (N.B., G.A.), Albert Einstein College of Medicine, Bronx, New York 10461
| | - Hermine A van Duyvenvoorde
- Department of Pathology and Laboratory Medicine (M.M., D.E., S.B., Y.A.), The Children's Hospital of Philadelphia and The University of Pennsylvania, Philadelphia,; Division of Endocrinology and Diabetes (C.P.H., A.G.), The Children's Hospital of Philadelphia, and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Pennsylvania 19104; National Children's Research Centre (C.P.H.), Dublin 12, Ireland; STAT5, LLC (R.R.), Los Altos, California 94022; Department of Pediatrics (R.R., V.H.), Oregon Health and Science University, Portland, Oregon 97239; Departments of Pediatrics (J.-M.W., H.A.v.D., W.O.), Endocrinology and Metabolic Diseases (H.A.v.D.), and Clinical Genetics (H.A.v.D., M.L.), Leiden University Medical Center, 2300 RC Leiden, The Netherlands; Faculty of Health and Medical Sciences (O.P.), University of Copenhagen, DK-2400 Copenhagen, Denmark; School of Medicine and Pharmacology (B.B.Y.), Western Australia Centre for Health and Ageing (L.F.), Centre for Medical Research (L.F.), and School of Medicine and Pharmacology (L.F.), University of Western Australia, Perth, Western Australia 6872, Australia; Department of Endocrinology and Diabetes (B.B.Y.), Fiona Stanley Hospital, Perth, Western Australia 6150, Australia; Department of Human Biology (G.A.), Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel; and Departments of Medicine and Genetics (N.B., G.A.), Albert Einstein College of Medicine, Bronx, New York 10461
| | - Wilma Oostdijk
- Department of Pathology and Laboratory Medicine (M.M., D.E., S.B., Y.A.), The Children's Hospital of Philadelphia and The University of Pennsylvania, Philadelphia,; Division of Endocrinology and Diabetes (C.P.H., A.G.), The Children's Hospital of Philadelphia, and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Pennsylvania 19104; National Children's Research Centre (C.P.H.), Dublin 12, Ireland; STAT5, LLC (R.R.), Los Altos, California 94022; Department of Pediatrics (R.R., V.H.), Oregon Health and Science University, Portland, Oregon 97239; Departments of Pediatrics (J.-M.W., H.A.v.D., W.O.), Endocrinology and Metabolic Diseases (H.A.v.D.), and Clinical Genetics (H.A.v.D., M.L.), Leiden University Medical Center, 2300 RC Leiden, The Netherlands; Faculty of Health and Medical Sciences (O.P.), University of Copenhagen, DK-2400 Copenhagen, Denmark; School of Medicine and Pharmacology (B.B.Y.), Western Australia Centre for Health and Ageing (L.F.), Centre for Medical Research (L.F.), and School of Medicine and Pharmacology (L.F.), University of Western Australia, Perth, Western Australia 6872, Australia; Department of Endocrinology and Diabetes (B.B.Y.), Fiona Stanley Hospital, Perth, Western Australia 6150, Australia; Department of Human Biology (G.A.), Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel; and Departments of Medicine and Genetics (N.B., G.A.), Albert Einstein College of Medicine, Bronx, New York 10461
| | - Monique Losekoot
- Department of Pathology and Laboratory Medicine (M.M., D.E., S.B., Y.A.), The Children's Hospital of Philadelphia and The University of Pennsylvania, Philadelphia,; Division of Endocrinology and Diabetes (C.P.H., A.G.), The Children's Hospital of Philadelphia, and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Pennsylvania 19104; National Children's Research Centre (C.P.H.), Dublin 12, Ireland; STAT5, LLC (R.R.), Los Altos, California 94022; Department of Pediatrics (R.R., V.H.), Oregon Health and Science University, Portland, Oregon 97239; Departments of Pediatrics (J.-M.W., H.A.v.D., W.O.), Endocrinology and Metabolic Diseases (H.A.v.D.), and Clinical Genetics (H.A.v.D., M.L.), Leiden University Medical Center, 2300 RC Leiden, The Netherlands; Faculty of Health and Medical Sciences (O.P.), University of Copenhagen, DK-2400 Copenhagen, Denmark; School of Medicine and Pharmacology (B.B.Y.), Western Australia Centre for Health and Ageing (L.F.), Centre for Medical Research (L.F.), and School of Medicine and Pharmacology (L.F.), University of Western Australia, Perth, Western Australia 6872, Australia; Department of Endocrinology and Diabetes (B.B.Y.), Fiona Stanley Hospital, Perth, Western Australia 6150, Australia; Department of Human Biology (G.A.), Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel; and Departments of Medicine and Genetics (N.B., G.A.), Albert Einstein College of Medicine, Bronx, New York 10461
| | - Oluf Pedersen
- Department of Pathology and Laboratory Medicine (M.M., D.E., S.B., Y.A.), The Children's Hospital of Philadelphia and The University of Pennsylvania, Philadelphia,; Division of Endocrinology and Diabetes (C.P.H., A.G.), The Children's Hospital of Philadelphia, and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Pennsylvania 19104; National Children's Research Centre (C.P.H.), Dublin 12, Ireland; STAT5, LLC (R.R.), Los Altos, California 94022; Department of Pediatrics (R.R., V.H.), Oregon Health and Science University, Portland, Oregon 97239; Departments of Pediatrics (J.-M.W., H.A.v.D., W.O.), Endocrinology and Metabolic Diseases (H.A.v.D.), and Clinical Genetics (H.A.v.D., M.L.), Leiden University Medical Center, 2300 RC Leiden, The Netherlands; Faculty of Health and Medical Sciences (O.P.), University of Copenhagen, DK-2400 Copenhagen, Denmark; School of Medicine and Pharmacology (B.B.Y.), Western Australia Centre for Health and Ageing (L.F.), Centre for Medical Research (L.F.), and School of Medicine and Pharmacology (L.F.), University of Western Australia, Perth, Western Australia 6872, Australia; Department of Endocrinology and Diabetes (B.B.Y.), Fiona Stanley Hospital, Perth, Western Australia 6150, Australia; Department of Human Biology (G.A.), Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel; and Departments of Medicine and Genetics (N.B., G.A.), Albert Einstein College of Medicine, Bronx, New York 10461
| | - Bu Beng Yeap
- Department of Pathology and Laboratory Medicine (M.M., D.E., S.B., Y.A.), The Children's Hospital of Philadelphia and The University of Pennsylvania, Philadelphia,; Division of Endocrinology and Diabetes (C.P.H., A.G.), The Children's Hospital of Philadelphia, and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Pennsylvania 19104; National Children's Research Centre (C.P.H.), Dublin 12, Ireland; STAT5, LLC (R.R.), Los Altos, California 94022; Department of Pediatrics (R.R., V.H.), Oregon Health and Science University, Portland, Oregon 97239; Departments of Pediatrics (J.-M.W., H.A.v.D., W.O.), Endocrinology and Metabolic Diseases (H.A.v.D.), and Clinical Genetics (H.A.v.D., M.L.), Leiden University Medical Center, 2300 RC Leiden, The Netherlands; Faculty of Health and Medical Sciences (O.P.), University of Copenhagen, DK-2400 Copenhagen, Denmark; School of Medicine and Pharmacology (B.B.Y.), Western Australia Centre for Health and Ageing (L.F.), Centre for Medical Research (L.F.), and School of Medicine and Pharmacology (L.F.), University of Western Australia, Perth, Western Australia 6872, Australia; Department of Endocrinology and Diabetes (B.B.Y.), Fiona Stanley Hospital, Perth, Western Australia 6150, Australia; Department of Human Biology (G.A.), Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel; and Departments of Medicine and Genetics (N.B., G.A.), Albert Einstein College of Medicine, Bronx, New York 10461
| | - Leon Flicker
- Department of Pathology and Laboratory Medicine (M.M., D.E., S.B., Y.A.), The Children's Hospital of Philadelphia and The University of Pennsylvania, Philadelphia,; Division of Endocrinology and Diabetes (C.P.H., A.G.), The Children's Hospital of Philadelphia, and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Pennsylvania 19104; National Children's Research Centre (C.P.H.), Dublin 12, Ireland; STAT5, LLC (R.R.), Los Altos, California 94022; Department of Pediatrics (R.R., V.H.), Oregon Health and Science University, Portland, Oregon 97239; Departments of Pediatrics (J.-M.W., H.A.v.D., W.O.), Endocrinology and Metabolic Diseases (H.A.v.D.), and Clinical Genetics (H.A.v.D., M.L.), Leiden University Medical Center, 2300 RC Leiden, The Netherlands; Faculty of Health and Medical Sciences (O.P.), University of Copenhagen, DK-2400 Copenhagen, Denmark; School of Medicine and Pharmacology (B.B.Y.), Western Australia Centre for Health and Ageing (L.F.), Centre for Medical Research (L.F.), and School of Medicine and Pharmacology (L.F.), University of Western Australia, Perth, Western Australia 6872, Australia; Department of Endocrinology and Diabetes (B.B.Y.), Fiona Stanley Hospital, Perth, Western Australia 6150, Australia; Department of Human Biology (G.A.), Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel; and Departments of Medicine and Genetics (N.B., G.A.), Albert Einstein College of Medicine, Bronx, New York 10461
| | - Nir Barzilai
- Department of Pathology and Laboratory Medicine (M.M., D.E., S.B., Y.A.), The Children's Hospital of Philadelphia and The University of Pennsylvania, Philadelphia,; Division of Endocrinology and Diabetes (C.P.H., A.G.), The Children's Hospital of Philadelphia, and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Pennsylvania 19104; National Children's Research Centre (C.P.H.), Dublin 12, Ireland; STAT5, LLC (R.R.), Los Altos, California 94022; Department of Pediatrics (R.R., V.H.), Oregon Health and Science University, Portland, Oregon 97239; Departments of Pediatrics (J.-M.W., H.A.v.D., W.O.), Endocrinology and Metabolic Diseases (H.A.v.D.), and Clinical Genetics (H.A.v.D., M.L.), Leiden University Medical Center, 2300 RC Leiden, The Netherlands; Faculty of Health and Medical Sciences (O.P.), University of Copenhagen, DK-2400 Copenhagen, Denmark; School of Medicine and Pharmacology (B.B.Y.), Western Australia Centre for Health and Ageing (L.F.), Centre for Medical Research (L.F.), and School of Medicine and Pharmacology (L.F.), University of Western Australia, Perth, Western Australia 6872, Australia; Department of Endocrinology and Diabetes (B.B.Y.), Fiona Stanley Hospital, Perth, Western Australia 6150, Australia; Department of Human Biology (G.A.), Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel; and Departments of Medicine and Genetics (N.B., G.A.), Albert Einstein College of Medicine, Bronx, New York 10461
| | - Gil Atzmon
- Department of Pathology and Laboratory Medicine (M.M., D.E., S.B., Y.A.), The Children's Hospital of Philadelphia and The University of Pennsylvania, Philadelphia,; Division of Endocrinology and Diabetes (C.P.H., A.G.), The Children's Hospital of Philadelphia, and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Pennsylvania 19104; National Children's Research Centre (C.P.H.), Dublin 12, Ireland; STAT5, LLC (R.R.), Los Altos, California 94022; Department of Pediatrics (R.R., V.H.), Oregon Health and Science University, Portland, Oregon 97239; Departments of Pediatrics (J.-M.W., H.A.v.D., W.O.), Endocrinology and Metabolic Diseases (H.A.v.D.), and Clinical Genetics (H.A.v.D., M.L.), Leiden University Medical Center, 2300 RC Leiden, The Netherlands; Faculty of Health and Medical Sciences (O.P.), University of Copenhagen, DK-2400 Copenhagen, Denmark; School of Medicine and Pharmacology (B.B.Y.), Western Australia Centre for Health and Ageing (L.F.), Centre for Medical Research (L.F.), and School of Medicine and Pharmacology (L.F.), University of Western Australia, Perth, Western Australia 6872, Australia; Department of Endocrinology and Diabetes (B.B.Y.), Fiona Stanley Hospital, Perth, Western Australia 6150, Australia; Department of Human Biology (G.A.), Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel; and Departments of Medicine and Genetics (N.B., G.A.), Albert Einstein College of Medicine, Bronx, New York 10461
| | - Adda Grimberg
- Department of Pathology and Laboratory Medicine (M.M., D.E., S.B., Y.A.), The Children's Hospital of Philadelphia and The University of Pennsylvania, Philadelphia,; Division of Endocrinology and Diabetes (C.P.H., A.G.), The Children's Hospital of Philadelphia, and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Pennsylvania 19104; National Children's Research Centre (C.P.H.), Dublin 12, Ireland; STAT5, LLC (R.R.), Los Altos, California 94022; Department of Pediatrics (R.R., V.H.), Oregon Health and Science University, Portland, Oregon 97239; Departments of Pediatrics (J.-M.W., H.A.v.D., W.O.), Endocrinology and Metabolic Diseases (H.A.v.D.), and Clinical Genetics (H.A.v.D., M.L.), Leiden University Medical Center, 2300 RC Leiden, The Netherlands; Faculty of Health and Medical Sciences (O.P.), University of Copenhagen, DK-2400 Copenhagen, Denmark; School of Medicine and Pharmacology (B.B.Y.), Western Australia Centre for Health and Ageing (L.F.), Centre for Medical Research (L.F.), and School of Medicine and Pharmacology (L.F.), University of Western Australia, Perth, Western Australia 6872, Australia; Department of Endocrinology and Diabetes (B.B.Y.), Fiona Stanley Hospital, Perth, Western Australia 6150, Australia; Department of Human Biology (G.A.), Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel; and Departments of Medicine and Genetics (N.B., G.A.), Albert Einstein College of Medicine, Bronx, New York 10461
| | - Yair Argon
- Department of Pathology and Laboratory Medicine (M.M., D.E., S.B., Y.A.), The Children's Hospital of Philadelphia and The University of Pennsylvania, Philadelphia,; Division of Endocrinology and Diabetes (C.P.H., A.G.), The Children's Hospital of Philadelphia, and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Pennsylvania 19104; National Children's Research Centre (C.P.H.), Dublin 12, Ireland; STAT5, LLC (R.R.), Los Altos, California 94022; Department of Pediatrics (R.R., V.H.), Oregon Health and Science University, Portland, Oregon 97239; Departments of Pediatrics (J.-M.W., H.A.v.D., W.O.), Endocrinology and Metabolic Diseases (H.A.v.D.), and Clinical Genetics (H.A.v.D., M.L.), Leiden University Medical Center, 2300 RC Leiden, The Netherlands; Faculty of Health and Medical Sciences (O.P.), University of Copenhagen, DK-2400 Copenhagen, Denmark; School of Medicine and Pharmacology (B.B.Y.), Western Australia Centre for Health and Ageing (L.F.), Centre for Medical Research (L.F.), and School of Medicine and Pharmacology (L.F.), University of Western Australia, Perth, Western Australia 6872, Australia; Department of Endocrinology and Diabetes (B.B.Y.), Fiona Stanley Hospital, Perth, Western Australia 6150, Australia; Department of Human Biology (G.A.), Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel; and Departments of Medicine and Genetics (N.B., G.A.), Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
16
|
Crowley VM, Khandelwal A, Mishra S, Stothert AR, Huard DJE, Zhao J, Muth A, Duerfeldt AS, Kizziah JL, Lieberman RL, Dickey CA, Blagg BSJ. Development of Glucose Regulated Protein 94-Selective Inhibitors Based on the BnIm and Radamide Scaffold. J Med Chem 2016; 59:3471-88. [PMID: 27003516 DOI: 10.1021/acs.jmedchem.6b00085] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glucose regulated protein 94 (Grp94) is the endoplasmic reticulum resident of the heat shock protein 90 kDa (Hsp90) family of molecular chaperones. Grp94 associates with many proteins involved in cell adhesion and signaling, including integrins, Toll-like receptors, immunoglobulins, and mutant myocilin. Grp94 has been implicated as a target for several therapeutic areas including glaucoma, cancer metastasis, and multiple myeloma. While 85% identical to other Hsp90 isoforms, the N-terminal ATP-binding site of Grp94 possesses a unique hydrophobic pocket that was used to design isoform-selective inhibitors. Incorporation of a cis-amide bioisostere into the radamide scaffold led to development of the original Grp94-selective inhibitor, BnIm. Structure-activity relationship studies have now been performed on the aryl side chain of BnIm, which resulted in improved analogues that exhibit better potency and selectivity for Grp94. These analogues also manifest superior antimigratory activity in a metastasis model as well as enhanced mutant myocilin degradation in a glaucoma model compared to BnIm.
Collapse
Affiliation(s)
- Vincent M Crowley
- Department of Medicinal Chemistry, The University of Kansas , 1251 Wescoe Hall Drive, Malott Hall 4070, Lawrence, Kansas 66045-7563, United States
| | - Anuj Khandelwal
- Department of Medicinal Chemistry, The University of Kansas , 1251 Wescoe Hall Drive, Malott Hall 4070, Lawrence, Kansas 66045-7563, United States
| | - Sanket Mishra
- Department of Medicinal Chemistry, The University of Kansas , 1251 Wescoe Hall Drive, Malott Hall 4070, Lawrence, Kansas 66045-7563, United States
| | - Andrew R Stothert
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, University of South Florida , Tampa, Florida 33613, United States
| | - Dustin J E Huard
- School of Chemistry and Biochemistry, Georgia Institute of Technology , Atlanta, Georgia 30332 United States
| | - Jinbo Zhao
- Department of Medicinal Chemistry, The University of Kansas , 1251 Wescoe Hall Drive, Malott Hall 4070, Lawrence, Kansas 66045-7563, United States
| | - Aaron Muth
- Department of Medicinal Chemistry, The University of Kansas , 1251 Wescoe Hall Drive, Malott Hall 4070, Lawrence, Kansas 66045-7563, United States
| | - Adam S Duerfeldt
- Department of Medicinal Chemistry, The University of Kansas , 1251 Wescoe Hall Drive, Malott Hall 4070, Lawrence, Kansas 66045-7563, United States
| | - James L Kizziah
- School of Chemistry and Biochemistry, Georgia Institute of Technology , Atlanta, Georgia 30332 United States
| | - Raquel L Lieberman
- School of Chemistry and Biochemistry, Georgia Institute of Technology , Atlanta, Georgia 30332 United States
| | - Chad A Dickey
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, University of South Florida , Tampa, Florida 33613, United States
| | - Brian S J Blagg
- Department of Medicinal Chemistry, The University of Kansas , 1251 Wescoe Hall Drive, Malott Hall 4070, Lawrence, Kansas 66045-7563, United States
| |
Collapse
|
17
|
Arin RM, Vallejo AI, Rueda Y, Fresnedo O, Ochoa B. Stimulation of gastric acid secretion by rabbit parietal cell A2B adenosine receptor activation. Am J Physiol Cell Physiol 2015; 309:C823-34. [DOI: 10.1152/ajpcell.00224.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/08/2015] [Indexed: 11/22/2022]
Abstract
Adenosine modulates different functional activities in many cells of the gastrointestinal tract; some of them are believed to be mediated by interaction with its four G protein-coupled receptors. The renewed interest in the adenosine A2B receptor (A2BR) subtype can be traced by studies in which the introduction of new genetic and chemical tools has widened the pharmacological and structural knowledge of this receptor as well as its potential therapeutic use in cancer and inflammation- or hypoxia-related pathologies. In the acid-secreting parietal cells of the gastric mucosa, the use of various radioligands for adenosine receptors suggested the presence of the A2 adenosine receptor subtype(s) on the cell surface. Recently, we confirmed A2BR expression in native, nontransformed parietal cells at rest by using flow cytometry and confocal microscopy. In this study, we show that A2BR is functional in primary rabbit gastric parietal cells, as indicated by the fact that agonist binding to A2BR increased adenylate cyclase activity and acid production. In addition, both acid production and radioligand binding of adenosine analogs to isolated cell membranes were potently blocked by selective A2BR antagonists, whereas ligands for A1, A2A, and A3 adenosine receptors failed to abolish activation. We conclude that rabbit gastric parietal cells possess functional A2BR proteins that are coupled to Gs and stimulate HCl production upon activation. Whether adenosine- and A2BR-mediated functional responses play a role in human gastric pathophysiology is yet to be elucidated.
Collapse
Affiliation(s)
- Rosa María Arin
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Ana Isabel Vallejo
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Yuri Rueda
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Olatz Fresnedo
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Begoña Ochoa
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, Leioa, Spain
| |
Collapse
|
18
|
Brandvold KR, Morimoto RI. The Chemical Biology of Molecular Chaperones--Implications for Modulation of Proteostasis. J Mol Biol 2015; 427:2931-47. [PMID: 26003923 DOI: 10.1016/j.jmb.2015.05.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/09/2015] [Accepted: 05/13/2015] [Indexed: 12/14/2022]
Abstract
Protein homeostasis (proteostasis) is inextricably tied to cellular health and organismal lifespan. Aging, exposure to physiological and environmental stress, and expression of mutant and metastable proteins can cause an imbalance in the protein-folding landscape, which results in the formation of non-native protein aggregates that challenge the capacity of the proteostasis network (PN), increasing the risk for diseases associated with misfolding, aggregation, and aberrant regulation of cell stress responses. Molecular chaperones have central roles in each of the arms of the PN (protein synthesis, folding, disaggregation, and degradation), leading to the proposal that modulation of chaperone function could have therapeutic benefits for the large and growing family of diseases of protein conformation including neurodegeneration, metabolic diseases, and cancer. In this review, we will discuss the current strategies used to tune the PN through targeting molecular chaperones and assess the potential of the chemical biology of proteostasis.
Collapse
Affiliation(s)
- Kristoffer R Brandvold
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL 60208, USA
| | - Richard I Morimoto
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
19
|
Patel HJ, Patel PD, Ochiana SO, Yan P, Sun W, Patel MR, Shah SK, Tramentozzi E, Brooks J, Bolaender A, Shrestha L, Stephani R, Finotti P, Leifer C, Li Z, Gewirth DT, Taldone T, Chiosis G. Structure-activity relationship in a purine-scaffold compound series with selectivity for the endoplasmic reticulum Hsp90 paralog Grp94. J Med Chem 2015; 58:3922-43. [PMID: 25901531 DOI: 10.1021/acs.jmedchem.5b00197] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Grp94 is involved in the regulation of a restricted number of proteins and represents a potential target in a host of diseases, including cancer, septic shock, autoimmune diseases, chronic inflammatory conditions, diabetes, coronary thrombosis, and stroke. We have recently identified a novel allosteric pocket located in the Grp94 N-terminal binding site that can be used to design ligands with a 2-log selectivity over the other Hsp90 paralogs. Here we perform extensive SAR investigations in this ligand series and rationalize the affinity and paralog selectivity of choice derivatives by molecular modeling. We then use this to design 18c, a derivative with good potency for Grp94 (IC50 = 0.22 μM) and selectivity over other paralogs (>100- and 33-fold for Hsp90α/β and Trap-1, respectively). The paralog selectivity and target-mediated activity of 18c was confirmed in cells through several functional readouts. Compound 18c was also inert when tested against a large panel of kinases. We show that 18c has biological activity in several cellular models of inflammation and cancer and also present here for the first time the in vivo profile of a Grp94 inhibitor.
Collapse
Affiliation(s)
- Hardik J Patel
- †Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, New York, New York 10021, United States
| | - Pallav D Patel
- †Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, New York, New York 10021, United States.,‡Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John's University, Jamaica, New York 11439, United States
| | - Stefan O Ochiana
- †Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, New York, New York 10021, United States
| | - Pengrong Yan
- †Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, New York, New York 10021, United States
| | - Weilin Sun
- †Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, New York, New York 10021, United States
| | - Maulik R Patel
- †Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, New York, New York 10021, United States
| | - Smit K Shah
- †Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, New York, New York 10021, United States
| | - Elisa Tramentozzi
- §Department of Pharmacology and Anesthesiology, University of Padua, Largo E. Meneghetti 2, 35131, Padua, Italy
| | - James Brooks
- ∥Department of Microbiology and Immunology, Cornell University, Ithaca, New York 14850, United States
| | - Alexander Bolaender
- †Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, New York, New York 10021, United States
| | - Liza Shrestha
- †Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, New York, New York 10021, United States
| | - Ralph Stephani
- ‡Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John's University, Jamaica, New York 11439, United States
| | - Paola Finotti
- §Department of Pharmacology and Anesthesiology, University of Padua, Largo E. Meneghetti 2, 35131, Padua, Italy
| | - Cynthia Leifer
- ∥Department of Microbiology and Immunology, Cornell University, Ithaca, New York 14850, United States
| | - Zihai Li
- ⊥Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina United States
| | - Daniel T Gewirth
- #Hauptman-Woodward Medical Research Institute, Buffalo, New York 14203, United States
| | - Tony Taldone
- †Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, New York, New York 10021, United States
| | - Gabriela Chiosis
- †Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, New York, New York 10021, United States
| |
Collapse
|
20
|
Development of radamide analogs as Grp94 inhibitors. Bioorg Med Chem 2014; 22:4083-98. [PMID: 25027801 DOI: 10.1016/j.bmc.2014.05.075] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/21/2014] [Accepted: 05/28/2014] [Indexed: 12/29/2022]
Abstract
Hsp90 isoform-selective inhibition is highly desired as it can potentially avoid the toxic side-effects of pan-inhibition. The current study developed selective inhibitors of one such isoform, Grp94, predicated on the chimeric and pan-Hsp90 inhibitor, radamide (RDA). Replacement of the quinone moiety of RDA with a phenyl ring (2) was found to be better suited for Grp94 inhibition as it can fully interact with a unique hydrophobic pocket present in Grp94. An extensive SAR for this scaffold showed that substitutions at the 2- and 4-positions (8 and 27, respectively) manifested excellent Grp94 affinity and selectivity. Introduction of heteroatoms into the ring also proved beneficial, with a 2-pyridine derivative (38) exhibiting the highest Grp94 affinity (K(d)=820 nM). Subsequent cell-based assays showed that these Grp94 inhibitors inhibit migration of the metastatic breast cancer cell line, MDA-MB-231, as well as exhibit an anti-proliferative affect against the multiple myeloma cell line, RPMI 8226.
Collapse
|
21
|
Arin RM, Rueda Y, Casis O, Gallego M, Vallejo AI, Ochoa B. Basolateral expression of GRP94 in parietal cells of gastric mucosa. BIOCHEMISTRY (MOSCOW) 2014; 79:8-15. [DOI: 10.1134/s0006297914010027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Taldone T, Patel PD, Patel M, Patel HJ, Evans CE, Rodina A, Ochiana S, Shah SK, Uddin M, Gewirth D, Chiosis G. Experimental and structural testing module to analyze paralogue-specificity and affinity in the Hsp90 inhibitors series. J Med Chem 2013; 56:6803-18. [PMID: 23965125 DOI: 10.1021/jm400619b] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We here describe the first reported comprehensive analysis of Hsp90 paralogue affinity and selectivity in the clinical Hsp90 inhibitor chemotypes. This has been possible through the development of a versatile experimental assay based on a new FP-probe (16a) that we both describe here. The assay can test rapidly and accurately the binding affinity of all major Hsp90 chemotypes and has a testing range that spans low nanomolar to millimolar binding affinities. We couple this assay with a computational analysis that allows for rationalization of paralogue selectivity and defines not only the major binding modes that relay pan-paralogue binding or, conversely, paralogue selectivity, but also identifies molecular characteristics that impart such features. The methods developed here provide a blueprint for parsing out the contribution of the four Hsp90 paralogues to the perceived biological activity with the current Hsp90 chemotypes and set the ground for the development of paralogue selective inhibitors.
Collapse
Affiliation(s)
- Tony Taldone
- Program in Molecular Pharmacology and Chemistry and Department of Medicine, Memorial Sloan-Kettering Cancer Center , New York, New York 10021, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Sanghera SS, Skitzki JJ. Targeting the heat shock response in cancer: tipping the balance in transformed cells. Surg Oncol Clin N Am 2013; 22:665-84. [PMID: 24012394 DOI: 10.1016/j.soc.2013.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The elucidation of the heat shock response (HSR) as a mediator of cellular stress has created a framework for understanding how these processes may promote tumorigenesis. Furthermore, the identification of specific components of the HSR and how they are co-opted by cancer cells has led to the discovery of new therapeutic targets. A wide range of small molecule inhibitors of the HSR are in various stages of development for clinical application in patients with cancer. The introduction of these novel small molecule inhibitors offers the opportunity for synergy with existing therapies and the potential for highly targeted treatments.
Collapse
Affiliation(s)
- Sartaj S Sanghera
- Department of Surgical Oncology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | | |
Collapse
|
24
|
Eletto D, Dersh D, Argon Y. GRP94 in ER quality control and stress responses. Semin Cell Dev Biol 2010; 21:479-85. [PMID: 20223290 DOI: 10.1016/j.semcdb.2010.03.004] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 03/02/2010] [Indexed: 01/01/2023]
Abstract
A system of endoplasmic reticulum (ER) chaperones has evolved to optimize the output of properly folded secretory and membrane proteins. An important player in this network is Glucose Regulated Protein 94 (GRP94). Over the last decade, new structural and functional data have begun to delineate the unique characteristics of GRP94 and have solidified its importance in ER quality control pathways. This review describes our current understanding of GRP94 and the four ways in which it contributes to the ER quality control: (1) chaperoning the folding of proteins; (2) interacting with other components of the ER protein folding machinery; (3) storing calcium; and (4) assisting in the targeting of malfolded proteins to ER-associated degradation (ERAD).
Collapse
Affiliation(s)
- Davide Eletto
- Division of Cell Pathology, Department of Pathology and Lab Medicine, The Children's Hospital of Philadelphia and the University of Pennsylvania, 3615 Civic Center Blvd., Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
25
|
Ostrovsky O, Makarewich CA, Snapp EL, Argon Y. An essential role for ATP binding and hydrolysis in the chaperone activity of GRP94 in cells. Proc Natl Acad Sci U S A 2009; 106:11600-5. [PMID: 19553200 PMCID: PMC2710619 DOI: 10.1073/pnas.0902626106] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Indexed: 12/22/2022] Open
Abstract
Glucose-regulated protein 94 (GRP94) is an endoplasmic reticulum (ER) chaperone for which only few client proteins and no cofactors are known and whose mode of action is unclear. To decipher the mode of GRP94 action in vivo, we exploited our finding that GRP94 is necessary for the production of insulin-like growth factor (IGF)-II and developed a cell-based functional assay. Grp94(-/-) cells are hypersensitive to serum withdrawal and die. This phenotype can be complemented either with exogenous IGF-II or by expression of functional GRP94. Fusion proteins of GRP94 with monomeric GFP (mGFP) or mCherry also rescue the viability of transiently transfected, GRP94-deficient cells, demonstrating that the fusion proteins are functional. Because these constructs enable direct visualization of chaperone-expressing cells, we used this survival assay to assess the activities of GRP94 mutants that are defective in specific biochemical functions in vitro. Mutations that abolish binding of adenosine nucleotides cannot support growth in serum-free medium. Similarly, mutations of residues needed for ATP hydrolysis also render GRP94 partially or completely nonfunctional. In contrast, an N-terminal domain mutant that cannot bind peptides still supports cell survival. Thus the peptide binding activity in vitro can be uncoupled from the chaperone activity toward IGF in vivo. This mutational analysis suggests that the ATPase activity of GRP94 is essential for chaperone activity in vivo and that the essential protein-binding domain of GRP94 is distinct from the N-terminal domain.
Collapse
Affiliation(s)
- Olga Ostrovsky
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104; and
| | - Catherine A. Makarewich
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104; and
| | - Erik L. Snapp
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Yair Argon
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104; and
| |
Collapse
|
26
|
Cytosolic chaperones influence the fate of a toxin dislocated from the endoplasmic reticulum. Proc Natl Acad Sci U S A 2008; 105:17408-13. [PMID: 18988734 DOI: 10.1073/pnas.0809013105] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The plant cytotoxin ricin enters target mammalian cells by receptor-mediated endocytosis and undergoes retrograde transport to the endoplasmic reticulum (ER). Here, its catalytic A chain (RTA) is reductively separated from the cell-binding B chain, and free RTA enters the cytosol where it inactivates ribosomes. Cytosolic entry requires unfolding of RTA and dislocation across the ER membrane such that it arrives in the cytosol in a vulnerable, nonnative conformation. Clearly, for such a dislocated toxin to become active, it must avoid degradation and fold to a catalytic conformation. Here, we show that, in vitro, Hsc70 prevents aggregation of heat-treated RTA, and that RTA catalytic activity is recovered after chaperone treatment. A combination of pharmacological inhibition and cochaperone expression reveals that, in vivo, cytosolic RTA is scrutinized sequentially by the Hsc70 and Hsp90 cytosolic chaperone machineries, and that its eventual fate is determined by the balance of activities of cochaperones that regulate Hsc70 and Hsp90 functions. Cytotoxic activity follows Hsc70-mediated escape of RTA from an otherwise destructive pathway facilitated by Hsp90. We demonstrate a role for cytosolic chaperones, proteins typically associated with folding nascent proteins, assembling multimolecular protein complexes and degrading cytosolic and stalled, cotranslocational clients, in a toxin triage, in which both toxin folding and degradation are initiated from chaperone-bound states.
Collapse
|
27
|
Dollins DE, Warren JJ, Immormino RM, Gewirth DT. Structures of GRP94-nucleotide complexes reveal mechanistic differences between the hsp90 chaperones. Mol Cell 2008; 28:41-56. [PMID: 17936703 DOI: 10.1016/j.molcel.2007.08.024] [Citation(s) in RCA: 215] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 08/07/2007] [Accepted: 08/31/2007] [Indexed: 10/22/2022]
Abstract
GRP94, an essential endoplasmic reticulum chaperone, is required for the conformational maturation of proteins destined for cell-surface display or export. The extent to which GRP94 and its cytosolic paralog, Hsp90, share a common mechanism remains controversial. GRP94 has not been shown conclusively to hydrolyze ATP or bind cochaperones, and both activities, by contrast, result in conformational changes and N-terminal dimerization in Hsp90 that are critical for its function. Here, we report the 2.4 A crystal structure of mammalian GRP94 in complex with AMPPNP and ADP. The chaperone is conformationally insensitive to the identity of the bound nucleotide, adopting a "twisted V" conformation that precludes N-terminal domain dimerization. We also present conclusive evidence that GRP94 possesses ATPase activity. Our observations provide a structural explanation for GRP94's observed rate of ATP hydrolysis and suggest a model for the role of ATP binding and hydrolysis in the GRP94 chaperone cycle.
Collapse
Affiliation(s)
- D Eric Dollins
- Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA
| | | | | | | |
Collapse
|
28
|
Frey S, Leskovar A, Reinstein J, Buchner J. The ATPase cycle of the endoplasmic chaperone Grp94. J Biol Chem 2007; 282:35612-20. [PMID: 17925398 DOI: 10.1074/jbc.m704647200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Grp94, the Hsp90 paralog of the endoplasmic reticulum, plays a crucial role in protein secretion. Like cytoplasmic Hsp90, Grp94 is regulated by nucleotide binding to its N-terminal domain. However, the question of whether Grp94 hydrolyzes ATP was controversial. This sets Grp94 apart from other members of the Hsp90 family where a slow but specific turnover of ATP has been unambiguously established. In this study we aimed at analyzing the nucleotide binding properties and the potential ATPase activity of Grp94. We show here that Grp94 has an ATPase activity comparable with that of yeast Hsp90 with a k(cat) of 0.36 min(-1) at 25 degrees C. Kinetic and equilibrium constants of the partial reactions of the ATPase cycle were determined using transient kinetic methods. Nucleotide binding appears to be tighter compared with other Hsp90s investigated, with dissociation constants (K(D)) of approximately 4 microm for ADP, ATP, and AMP-PCP. Interestingly, all nucleotides and inhibitors (radicicol, 5'-N-ethylcarboxamidoadenosine) studied here bind with similar rate constants for association (0.2-0.3 x 10(6) M(-1) s(-1)). Furthermore, there is a marked difference from cytosolic Hsp90s in that after binding, the ATP molecule does not seem to become trapped by conformational changes in Grp94. Grp94 stays predominantly in the open state concerning the nucleotide-binding pocket as evidenced by kinetic analyses. Thus, Grp94 shows mechanistically important differences in the interaction with adenosine nucleotides, but the basic hydrolysis reaction seems to be conserved between cytosolic and endoplasmic members of the Hsp90 family.
Collapse
Affiliation(s)
- Stephan Frey
- Center for Integrated Protein Science and the Department of Chemistry, Technische Universität München, 85747 Garching, Germany
| | | | | | | |
Collapse
|
29
|
Wanderling S, Simen BB, Ostrovsky O, Ahmed NT, Vogen SM, Gidalevitz T, Argon Y. GRP94 is essential for mesoderm induction and muscle development because it regulates insulin-like growth factor secretion. Mol Biol Cell 2007; 18:3764-75. [PMID: 17634284 PMCID: PMC1995707 DOI: 10.1091/mbc.e07-03-0275] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Because only few of its client proteins are known, the physiological roles of the endoplasmic reticulum chaperone glucose-regulated protein 94 (GRP94) are poorly understood. Using targeted disruption of the murine GRP94 gene, we show that it has essential functions in embryonic development. grp94-/- embryos die on day 7 of gestation, fail to develop mesoderm, primitive streak, or proamniotic cavity. grp94-/- ES cells grow in culture and are capable of differentiation into cells representing all three germ layers. However, these cells do not differentiate into cardiac, smooth, or skeletal muscle. Differentiation cultures of mutant ES cells are deficient in secretion of insulin-like growth factor II and their defect can be complemented with exogenous insulin-like growth factors I or II. The data identify insulin-like growth factor II as one developmentally important protein whose production depends on the activity of GRP94.
Collapse
Affiliation(s)
| | - Birgitte B. Simen
- *Department of Pathology and
- Committee on Cell Physiology, The University of Chicago, Chicago, IL 60637; and
| | - Olga Ostrovsky
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Noreen T. Ahmed
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | | | | | - Yair Argon
- *Department of Pathology and
- Committee on Cell Physiology, The University of Chicago, Chicago, IL 60637; and
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| |
Collapse
|
30
|
Powers MV, Workman P. Inhibitors of the heat shock response: biology and pharmacology. FEBS Lett 2007; 581:3758-69. [PMID: 17559840 DOI: 10.1016/j.febslet.2007.05.040] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 05/10/2007] [Accepted: 05/14/2007] [Indexed: 11/15/2022]
Abstract
A number of human diseases can be linked to aberrations in protein folding which cause an imbalance in protein homeostasis. Molecular chaperones, including heat shock proteins, act to assist protein folding, stability and activity in the cell. Attention has begun to focus on modulating the expression and/or activity of this group of proteins for the treatment of a wide variety of human diseases. This review will describe the progress made to date in developing pharmacological modulators of the heat shock response, including both agents which affect the entire heat shock response and those that specifically target the HSP70 and HSP90 chaperone families.
Collapse
Affiliation(s)
- Marissa V Powers
- Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, Haddow Laboratories, 15 Cotswold Road, Sutton Surrey SM2 5NG, UK
| | | |
Collapse
|
31
|
Brockmeier A, Williams DB. Potent Lectin-Independent Chaperone Function of Calnexin under Conditions Prevalent within the Lumen of the Endoplasmic Reticulum†. Biochemistry 2006; 45:12906-16. [PMID: 17042509 DOI: 10.1021/bi0614378] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Calnexin is a membrane-bound chaperone of the endoplasmic reticulum (ER) that participates in the folding and quality control of newly synthesized glycoproteins. Binding to glycoproteins occurs through a lectin site with specificity for Glc1Man9GlcNAc2 oligosaccharides as well as through a polypeptide binding site that recognizes non-native protein conformations. The latter interaction is somewhat controversial because it is based on observations that calnexin can suppress the aggregation of non-glycosylated substrates at elevated temperature or at low calcium concentrations, conditions that may affect the structural integrity of calnexin. Here, we examine the ability of calnexin to interact with a non-glycosylated substrate under physiological conditions of the ER lumen. We show that the soluble ER luminal domain of calnexin can indeed suppress the aggregation of non-glycosylated firefly luciferase at 37 degrees C and at the normal resting ER calcium concentration of 0.4 mM. However, gradual reduction of calcium below the resting level was accompanied by a progressive loss of native calnexin structure as assessed by thermal stability, protease sensitivity, intrinsic fluorescence, and bis-ANS binding. These assays permitted the characterization of a single calcium binding site on calnexin with a Kd = 0.15 +/- 0.05 mM. We also show that the suppression of firefly luciferase aggregation by calnexin is strongly enhanced in the presence of millimolar concentrations of ATP and that the Kd for ATP binding to calnexin in the presence of 0.4 mM calcium is 0.7 mM. ATP did not alter the overall stability of calnexin but instead triggered the localized exposure of a hydrophobic site on the chaperone. These findings demonstrate that calnexin is a potent molecular chaperone that is capable of suppressing the aggregation of substrates through polypeptide-based interactions under conditions that exist within the ER lumen.
Collapse
Affiliation(s)
- Achim Brockmeier
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | | |
Collapse
|
32
|
Ge J, Normant E, Porter JR, Ali JA, Dembski MS, Gao Y, Georges AT, Grenier L, Pak RH, Patterson J, Sydor JR, Tibbitts TT, Tong JK, Adams J, Palombella VJ. Design, synthesis, and biological evaluation of hydroquinone derivatives of 17-amino-17-demethoxygeldanamycin as potent, water-soluble inhibitors of Hsp90. J Med Chem 2006; 49:4606-15. [PMID: 16854066 DOI: 10.1021/jm0603116] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
17-Allylamino-17-demethoxygeldanamycin (17-AAG)1 is a semisynthetic inhibitor of the 90 kDa heat shock protein (Hsp90) currently in clinical trials for the treatment of cancer. However, 17-AAG faces challenging formulation issues due to its poor solubility. Here we report the synthesis and evaluation of a highly soluble hydroquinone hydrochloride derivative of 17-AAG, 1a (IPI-504), and several of the physiological metabolites. These compounds show comparable binding affinity to human Hsp90 and its endoplasmic reticulum (ER) homologue, the 94 kDa glucose regulated protein (Grp94). Furthermore, the compounds inhibit the growth of the human cancer cell lines SKBR3 and SKOV3, which overexpress Hsp90 client protein Her2, and cause down-regulation of Her2 as well as induction of Hsp70 consistent with Hsp90 inhibition. There is a clear correlation between the measured binding affinity of the compounds and their cellular activities. Upon the basis of its potent activity against Hsp90 and a significant improvement in solubility, 1a is currently under evaluation in Phase I clinical trials for cancer.
Collapse
Affiliation(s)
- Jie Ge
- Infinity Pharmaceuticals, Inc., 780 Memorial Drive, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Chu F, Maynard JC, Chiosis G, Nicchitta CV, Burlingame AL. Identification of novel quaternary domain interactions in the Hsp90 chaperone, GRP94. Protein Sci 2006; 15:1260-9. [PMID: 16731965 PMCID: PMC2242539 DOI: 10.1110/ps.052065106] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The structural basis for the coupling of ATP binding and hydrolysis to chaperone activity remains a central question in Hsp90 biology. By analogy to MutL, ATP binding to Hsp90 is thought to promote intramolecular N-terminal dimerization, yielding a molecular clamp functioning in substrate protein activation. Though observed in studies with recombinant domains, whether such quaternary states are present in native Hsp90s is unknown. In this study, native subunit interactions in GRP94, the endoplasmic reticulum Hsp90, were analyzed using chemical cross-linking in conjunction with tandem mass spectrometry. We report the identification of two distinct intermolecular interaction sites. Consistent with previous studies, one site comprises the C-terminal dimerization domain. The remaining site represents a novel intermolecular contact between the N-terminal and middle (M) domains of opposing subunits. This N+M domain interaction was present in the nucleotide-empty, ADP-, ATP-, or geldanamycin-bound states and could be selectively disrupted upon addition of synthetic geldanamycin dimers. These results identify a compact, intertwined quaternary conformation of native GRP94 and suggest that intersubunit N+M interactions are integral to the structural biology of Hsp90.
Collapse
Affiliation(s)
- Feixia Chu
- Mass Spectrometry Facility, University of California, San Francisco, California 94143, USA
| | | | | | | | | |
Collapse
|
34
|
Fairburn B, Muthana M, Hopkinson K, Slack LK, Mirza S, Georgiou AS, Espigares E, Wong C, Pockley AG. Analysis of purified gp96 preparations from rat and mouse livers using 2-D gel electrophoresis and tandem mass spectrometry. Biochimie 2006; 88:1165-74. [PMID: 16690194 DOI: 10.1016/j.biochi.2006.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Accepted: 04/03/2006] [Indexed: 11/25/2022]
Abstract
The stress protein gp96 exhibits a number of immunological activities, the majority of studies into which have used gp96 purified from a variety of tissues. On the basis of 1-D gel electrophoresis, the purity of these preparations has been reported to range between 70% and 99%. This study analyzed gp96 preparations from rat and mouse livers using 2-D gel electrophoresis and liquid chromatography electrospray ionization tandem mass spectrometry (MS-MS). The procedure for purifying gp96 was reproducible, as similar protein profiles were observed in replicate gels of gp96 preparations. The purity of the preparations was typically around 70%, with minor co-purified proteins of varying molecular weights and mobilities being present. Dominant bands at 95-100 kDa in preparations from Wistar rats and C57BL/6 mice were identified as gp96 by ECL Western blotting. Multiple bands having similar, yet distinct molecular weights and differing pI mobility on ECL Western blots were confirmed as being gp96 in preparations from Wistar rats using MS-MS. The most striking feature of the 2-D gel analysis was the presence of additional dominant bands at 55 kDa in preparations from Wistar rats, and at 75-90 kDa in preparations from C57BL/6 mice. These were identified as gp96 by ECL Western blotting and, in the case of preparations from Wistar rats, by MS-MS. Although the lower molecular weight, gp96-related molecules might be partially degraded gp96, their reproducible presence, definition and characteristics suggest that they are alternative, species-specific isoforms of the molecule. A 55 kDa protein which exhibited a lower pI value than gp96 was present in all preparations and this was identified as calreticulin, another putative immunoregulatory molecule. This study confirms the reproducibility of the gp96 purification protocol and reveals the presence of multiple gp96 isoforms, some of which likely result from post-translational modifications such as differential glycosylation and phosphorylation.
Collapse
Affiliation(s)
- B Fairburn
- Immunobiology Research Unit, Clinical Sciences Centre, University of Sheffield, Northern General Hospital, Herries Road, Sheffield S5 7AU, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ying M, Flatmark T. Binding of the viral immunogenic octapeptide VSV8 to native glucose-regulated protein Grp94 (gp96) and its inhibition by the physiological ligands ATP and Ca2+. FEBS J 2006; 273:513-22. [PMID: 16420475 DOI: 10.1111/j.1742-4658.2005.05084.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The molecular chaperone Grp94 (gp96) of the endoplasmic reticulum (ER) lumen plays an essential role in the structural maturation and/or secretion of proteins destined for transport to the cell surface. Its proposed role in binding and transferring peptides for immune recognition is, however, controversial. Using SPR spectroscopy, we studied the interaction of native glycosylated Grp94 at neutral pH and 25 and 37 degrees C with the viral immunogenic octapeptide RGYVYQGL (VSV8), derived from vesicular stomatitis virus nucleoprotein (52-59). The peptide binds reversibly with low affinity ([A]0.5 approximately 640 microM) and a hyperbolic binding isotherm, and the binding is partially inhibited by ATP and Ca2+ at concentrations that are present in the ER lumen, and the effects are explained by conformational changes in the native chaperone induced by these ligands. Our data present experimental support for the recent proposal that, under native conditions, VSV8 binds to Grp94 by an adsorptive, rather than a bioselective, mechanism, and thus further challenge the proposed in vivo peptide acceptor-donor function of the chaperone in the context of antigen-presenting cell activation.
Collapse
Affiliation(s)
- Ming Ying
- Section of Biochemistry and Molecular Biology, Department of Biomedicine, University of Bergen, Norway
| | | |
Collapse
|
36
|
van Anken E, Braakman I. Versatility of the endoplasmic reticulum protein folding factory. Crit Rev Biochem Mol Biol 2005; 40:191-228. [PMID: 16126486 DOI: 10.1080/10409230591008161] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The endoplasmic reticulum (ER) is dedicated to import, folding and assembly of all proteins that travel along or reside in the secretory pathway of eukaryotic cells. Folding in the ER is special. For instance, newly synthesized proteins are N-glycosylated and by default form disulfide bonds in the ER, but not elsewhere in the cell. In this review, we discuss which features distinguish the ER as an efficient folding factory, how the ER monitors its output and how it disposes of folding failures.
Collapse
Affiliation(s)
- Eelco van Anken
- Department of Cellular Protein Chemistry, Bijvoet Center, Utrecht University, The Netherlands
| | | |
Collapse
|
37
|
Dollins DE, Immormino RM, Gewirth DT. Structure of unliganded GRP94, the endoplasmic reticulum Hsp90. Basis for nucleotide-induced conformational change. J Biol Chem 2005; 280:30438-47. [PMID: 15951571 DOI: 10.1074/jbc.m503761200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GRP94, the endoplasmic reticulum paralog of Hsp90, is regulated by adenosine nucleotides that bind to its N-terminal regulatory domain. Because of its weak affinity for nucleotides, the functionally relevant transition in GRP94 is likely to be between the unliganded and nucleotide-bound states. We have determined the structure of the unliganded GRP94 N-domain. The helix 1-4-5 subdomain of the unliganded protein adopts the closed conformation seen in the structure of the protein in complex with inhibitors. This conformation is distinct from the open conformation of the subdomain seen when the protein is bound to ATP or ADP. ADP soaked into crystals of the unliganded protein reveals an intermediate conformation midway between the open and closed states and demonstrates that in GRP94 the conversion between the open and closed states is driven by ligand binding. The direction of the observed movement in GRP94 shows that nucleotides act to open the subdomain elements rather than close them, which is contrary to the motion proposed for Hsp90. These observations support a model where ATP binding dictates the conformation of the N-domain and regulates its ability to form quaternary structural interactions.
Collapse
Affiliation(s)
- D Eric Dollins
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
38
|
Thorne ME, McQuade KL. Heat-induced oligomerization of gp96 occurs via a site distinct from substrate binding and is regulated by ATP. Biochem Biophys Res Commun 2004; 323:1163-71. [PMID: 15451419 DOI: 10.1016/j.bbrc.2004.08.215] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Indexed: 10/26/2022]
Abstract
Gp96 (GRP94) is a dimeric glycoprotein and is the endoplasmic reticulum representative of the hsp90 family of molecular chaperones. In addition to the protein substrates it chaperones, gp96 binds weakly to both peptides and ATP, and has been shown to self-assemble into discrete oligomers upon heat shock at 50 degrees C, although physiological roles for these phenomena have not been well established. Our studies indicate that gp96 homooligomerizes irreversibly in vitro at temperatures as low as 42 degrees C and could involve pre-dissociation of dimers to monomers. Oligomerization is inhibited significantly by ATP; hydrolysis is not required, since ADP, ATP-gamma-S, and NECA inhibit self-assembly equally well. Peptide ligands do not competitively inhibit gp96 self-assembly and, in fact, bind to all oligomeric species, including the dimer. Together, these findings suggest that (1) heat-enhanced chaperone activity does not reside in oligomers per se, and (2) the regions of gp96 involved in peptide binding and oligomerization are distinct.
Collapse
Affiliation(s)
- Meghan E Thorne
- Department of Chemistry and Biochemistry, Bradley University, 1501 West Bradley Avenue, Peoria, IL 61625, USA
| | | |
Collapse
|
39
|
Rosser MFN, Trotta BM, Marshall MR, Berwin B, Nicchitta CV. Adenosine nucleotides and the regulation of GRP94-client protein interactions. Biochemistry 2004; 43:8835-45. [PMID: 15236592 DOI: 10.1021/bi049539q] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The molecular chaperone heat shock protein 90 (Hsp90) serves essential roles in the regulation of signaling protein function, trafficking, and turnover. Hsp90 function is intimately linked to intrinsic ATP binding and hydrolysis activities, the latter of which is under the regulatory control of accessory factors. Glucose-regulated protein of 94 kDa (GRP94), the endoplasmic reticulum Hsp90, is highly homologous to cytosolic Hsp90. However, neither accessory factors nor adenosine nucleotides have been clearly implicated in the regulation of GRP94-client protein interactions. In the current study, the structural and regulatory consequences of adenosine nucleotide binding to GRP94 were investigated. We report that apo-GRP94 undergoes a time- and temperature-dependent tertiary conformational change that exposes a site(s) of protein-protein interaction; ATP, ADP, and radicicol markedly suppress this conformational change. In concert with these findings, ATP and ADP act identically to suppress GRP94 homooligomerization, as well as both local and global conformational activity. To identify a role(s) for ATP or ADP in the regulation of GRP94-client protein interactions, immunoglobulin (Ig) heavy chain folding intermediates containing bound GRP94 and immunoglobulin binding protein (BiP) were isolated from myeloma cells, and the effects of adenosine nucleotides on chaperone-Ig heavy chain interactions were examined. Whereas ATP elicited efficient release of BiP from both wild-type and mutant Ig heavy chain intermediates, GRP94 remained in stable association with Ig heavy chains in the presence of ATP or ADP. On the basis of these data, we propose that structural maturation of the client protein substrate, rather than ATP binding or hydrolysis, serves as the primary signal for dissociation of GRP94-client protein complexes.
Collapse
Affiliation(s)
- Meredith F N Rosser
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
40
|
Immormino RM, Dollins DE, Shaffer PL, Soldano KL, Walker MA, Gewirth DT. Ligand-induced conformational shift in the N-terminal domain of GRP94, an Hsp90 chaperone. J Biol Chem 2004; 279:46162-71. [PMID: 15292259 DOI: 10.1074/jbc.m405253200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GRP94 is the endoplasmic reticulum paralog of cytoplasmic Hsp90. Models of Hsp90 action posit an ATP-dependent conformational switch in the N-terminal ligand regulatory domain of the chaperone. However, crystal structures of the isolated N-domain of Hsp90 in complex with a variety of ligands have yet to demonstrate such a conformational change. We have determined the structure of the N-domain of GRP94 in complex with ATP, ADP, and AMP. Compared with the N-ethylcarboxamidoadenosine and radicicol-bound forms, these structures reveal a large conformational rearrangement in the protein. The nucleotide-bound form exposes new surfaces that interact to form a biochemically plausible dimer that is reminiscent of those seen in structures of MutL and DNA gyrase. Weak ATP binding and a conformational change in response to ligand identity are distinctive mechanistic features of GRP94 and suggest a model for how GRP94 functions in the absence of co-chaperones and ATP hydrolysis.
Collapse
Affiliation(s)
- Robert M Immormino
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Soldano KL, Jivan A, Nicchitta CV, Gewirth DT. Structure of the N-terminal domain of GRP94. Basis for ligand specificity and regulation. J Biol Chem 2003; 278:48330-8. [PMID: 12970348 DOI: 10.1074/jbc.m308661200] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
GRP94, the endoplasmic reticulum (ER) paralog of the chaperone Hsp90, plays an essential role in the structural maturation or secretion of a subset of proteins destined for transport to the cell surface, such as the Toll-like receptors 2 and 4, and IgG, respectively. GRP94 differs from cytoplasmic Hsp90 by exhibiting very weak ATP binding and hydrolysis activity. GRP94 also binds selectively to a series of substituted adenosine analogs. The high resolution crystal structures at 1.75-2.1 A of the N-terminal and adjacent charged domains of GRP94 in complex with N-ethylcarboxamidoadenosine, radicicol, and 2-chlorodideoxyadenosine reveals a structural mechanism for ligand discrimination among hsp90 family members. The structures also identify a putative subdomain that may act as a ligand-responsive switch. The residues of the charged region fold into a disordered loop whose termini are ordered and continue the twisted beta sheet that forms the structural core of the N-domain. This continuation of the beta sheet past the charged domain suggests a structural basis for the association of the N-terminal and middle domains of the full-length chaperone.
Collapse
Affiliation(s)
- Karen L Soldano
- Departments of Biochemistry and Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
43
|
Reed RC, Berwin B, Baker JP, Nicchitta CV. GRP94/gp96 elicits ERK activation in murine macrophages. A role for endotoxin contamination in NF-kappa B activation and nitric oxide production. J Biol Chem 2003; 278:31853-60. [PMID: 12805368 DOI: 10.1074/jbc.m305480200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Vaccination of mice with GRP94/gp96, the endoplasmic reticulum Hsp90, elicits a variety of immune responses sufficient for tumor rejection and the suppression of metastatic tumor progression. Macrophages are a prominent GRP94/gp96 target, with GRP94/gp96 reported to activate macrophage NF-kappa B signaling and nitric oxide production, as well as the MAP kinase p38, JNK, and ERK signaling cascades. However, recent studies report that heat shock protein elicited macrophage activation is due, in large part, to contaminating endotoxin. To examine the generality of this finding, we have investigated the role of endotoxin in GRP94/gp96-elicited macrophage activation. We report that GRP94/gp96 binds endotoxin in a high-affinity, saturable, and specific manner. Low endotoxin calreticulin and GRP94/gp96 were purified, the latter using a novel method of depyrogenation; this resulted in GRP94/gp96 and calreticulin preparations with endotoxin levels substantially lower than those of previously reported preparations. Low endotoxin GRP94/gp96 retained its native conformation, ligand binding activity, and in vitro chaperone function, yet did not activate macrophage NF-kappa B signaling, nitric oxide production or inducible nitric-oxide synthase production. Low endotoxin GRP94/gp96 and calreticulin did, however, elicit a marked increase in ERK phosphorylation at protein concentrations as low as 2 microg/ml. These results are discussed with respect to current understanding of the contributions of endotoxin and heat shock/chaperone proteins to the stimulation of innate immune responses.
Collapse
Affiliation(s)
- Robyn C Reed
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
44
|
Pagetta A, Folda A, Brunati AM, Finotti P. Identification and purification from the plasma of Type 1 diabetic subjects of a proteolytically active Grp94Evidence that Grp94 is entirely responsible for plasma proteolytic activity. Diabetologia 2003; 46:996-1006. [PMID: 12827241 DOI: 10.1007/s00125-003-1133-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2002] [Revised: 02/06/2003] [Indexed: 02/01/2023]
Abstract
AIMS/HYPOTHESIS The overall increase in proteolytic activity in diabetes is known to be associated with the development and progression of vascular complications. Our aim was to investigate in detail the molecular nature of this activity in the plasma of Type 1 diabetic subjects. METHODS Plasma of both diabetic and control subjects was subjected to various purification procedures (ion exchange and affinity chromatography, HPLC, immunoprecipitation, electrophoresis, immunoblot and mass analyses) to identify the proteins of interest. Biological activities were measured on specific substrates. RESULTS In diabetic but not normal plasma we identified the presence of two heat shock proteins, Grp94 (Glucose-regulated protein94) and HSP70. The higher-than-normal proteolytic activity of Grp94 was: (i) directed against casein, but not against endogenous plasma proteins; (ii) fully and specifically inhibited only by anti-Grp94 polyclonal antibodies; and (iii) coupled with low-level ATPase activity. In addition, ATP binding to Grp94 was able to modulate proteolytic activity. We found that Grp94 in plasma circulates only as high molecular mass homo- and hetero-complexes, the latter mostly formed with IgG to which Grp94 is also linked by tenacious binding. Proteolytically-active Grp94 was purified by immunoprecipitation, which co-immunoprecipitated alpha(1)antitrypsin. CONCLUSION/INTERPRETATION Our results show the unexpected extracellular location and characteristic biological function of Grp94 even at a late stage of disease. These findings have physiopathological relevance for predicting activation of both autoimmune and inflammatory processes potentially associated with vascular complications.
Collapse
Affiliation(s)
- A Pagetta
- Department of Pharmacology and Anaesthesiology, University of Padova, Largo E. Meneghetti 2, 35131 Padua, Italy
| | | | | | | |
Collapse
|
45
|
Carreras CW, Schirmer A, Zhong Z, Santi DV. Filter binding assay for the geldanamycin-heat shock protein 90 interaction. Anal Biochem 2003; 317:40-6. [PMID: 12729599 DOI: 10.1016/s0003-2697(03)00060-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A filter binding assay to measure affinity of [3H-allyl]17-allylamino geldanamycin ([3H]AAG) for the ATP binding site of the N-terminal domain of human Hsp90alpha (hHsp90alpha9-236) was developed. Diethylaminoethyl cellulose or glass fiber filters impregnated with polyethyleneimine were used to capture the [3H]AAG-Hsp90 complex, and conditions which washed >98% of free [3H]AAG from the filters were developed. The complex formed at a rapid rate (k(on)=2.5 x 10(7)Lmol(-1) x s(-1)) and dissociated with a half-life of 2.3 min (k(off)=5 x 10(-3) x s(-1)). hHsp90alpha9-236 bound to [3H]AAG with a K(d) value of 0.4+/-0.1 microM. [3H]AAG had similar affinities for full-length hHsp90alpha and for hHsp90alpha9-236 variants containing biotinylated N-terminal biotinylation signal sequences and N- or C-terminal His(6) tags. Geldanamycin, ADP, ATP, and radicicol-all known to bind to the ATP domain of Hsp90-competed with [3H]AAG for binding to hHsp90alpha9-236, showing K(d) values in good agreement with reported values.
Collapse
Affiliation(s)
- Christopher W Carreras
- Department of Pharmacological Sciences, Kosan Biosciences, Inc, 3832 Bay Center Place, Hayward, CA 94545, USA.
| | | | | | | |
Collapse
|
46
|
Lai MT, Huang KL, Chang WM, Lai YK. Geldanamycin induction of grp78 requires activation of reactive oxygen species via ER stress responsive elements in 9L rat brain tumour cells. Cell Signal 2003; 15:585-95. [PMID: 12681446 DOI: 10.1016/s0898-6568(03)00004-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The molecular mechanism whereby anticancer agent geldanamycin (GA) impacts endoplasmic reticulum (ER) stress pathway is largely unknown. Here, we investigate the effect of GA on the expression of grp78 coding for ER stress protein and the mechanistic relationship of GA signalling to ER stress. GA induces the expression of mRNA and protein of grp78 by Northern blot analysis and metabolic labelling experiment in cultured rat brain tumour 9L cells. The induced grp78 expression is sensitive to antioxidant N-acetylcysteine (NAC) addition, indicating the involvement of reactive oxygen species (ROS) in GA-induced ER stress. Results from direct determination of oxidation status using dichlorodihydrofluorescein diacetate (H(2)DCFDA) showed that accumulation of ROS elicited GA was quenched by addition of NAC. Reporter genes harbouring deletions of transcription elements from grp78 promoter demonstrated that controlling elements of ERSE1, ERSE2 and CRE are required in GA treatment. The critical ROS-dependent elements in grp78 promoter can be confined within ER stress responsive element (ERSE) region, since reporter constructs loss of ERSE elements that lost the susceptibility to be modulated by NAC after GA treatment. Hence, ER stress elements correlate well with ROS-mediated elements in grp78 promoter. Reporter construct loss of ERSE element retains the susceptibility by NAC after GA treatment, indicating that CRE element might represent a ROS-independent, GA-inductive element. Conclusively, we show that ROS is required for GA to launch the transactivation of grp78, and a firm link was established between the ROS signalling pathway to specific promoter elements-ERSE1 and ERSE2 elements in ER stress marker gene grp78 promoter.
Collapse
Affiliation(s)
- Ming-Tsong Lai
- Department of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan 30013, ROC
| | | | | | | |
Collapse
|
47
|
Ou J, Ou Z, Ackerman AW, Oldham KT, Pritchard KA. Inhibition of heat shock protein 90 (hsp90) in proliferating endothelial cells uncouples endothelial nitric oxide synthase activity. Free Radic Biol Med 2003; 34:269-76. [PMID: 12521608 DOI: 10.1016/s0891-5849(02)01299-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Dual increases in nitric oxide ((*)NO) and superoxide anion (O(2)(*-)) production are one of the hallmarks of endothelial cell proliferation. Increased expression of endothelial nitric oxide synthase (eNOS) has been shown to play an important role in maintaining high levels of (*)NO generation to offset the increase in O(2)(*-) that occurs during proliferation. Although recent reports indicate that heat shock protein 90 (hsp90) associates with eNOS to increase (*)NO generation, the role of hsp90 association with eNOS during endothelial cell proliferation remains unknown. In this report, we examine the effects of endothelial cell proliferation on eNOS expression, hsp90 association with eNOS, and the mechanisms governing eNOS generation of (*)NO and O(2)(*-). Western analysis revealed that endothelial cells not only increased eNOS expression during proliferation but also hsp90 interactions with the enzyme. Pretreatment of cultures with radicicol (RAD, 20 microM), a specific inhibitor that does not redox cycle, decreased A23187-stimulated (*)NO production and increased L(omega)-nitroargininemethylester (L-NAME)-inhibitable O(2)(*-) generation. In contrast, A23187 stimulation of controls in the presence of L-NAME increased O(2)(*-) generation, confirming that during proliferation eNOS generates (*)NO. Our findings demonstrate that hsp90 plays an important role in maintaining (*)NO generation during proliferation. Inhibition of hsp90 in vascular endothelium provides a convenient mechanism for uncoupling eNOS activity to inhibit (*)NO production. This study provides new understanding of the mechanisms by which ansamycin antibiotics inhibit endothelial cell proliferation. Such information may be useful in the development and design of new antineoplastic agents in the future.
Collapse
Affiliation(s)
- Jingsong Ou
- Department of Surgery, Division of Pediatric Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | |
Collapse
|
48
|
Gavrilovich Zgoda V, Arison B, Mkrtchian S, Ingelman-Sundberg M, Correia MA. Hemin-mediated restoration of allylisopropylacetamide-inactivated CYP2B1: a role for glutathione and GRP94 in the heme-protein assembly. Arch Biochem Biophys 2002; 408:58-68. [PMID: 12485603 DOI: 10.1016/s0003-9861(02)00489-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Administration of the cytochrome P450 (P450) suicide inactivator allylisopropylacetamide (AIA) to phenobarbital (PB)-pretreated rats results in rapid and marked inactivation of several liver endoplasmic reticulum (ER)-bound P450s. A few of these such as CYP2B1, inactivated due to AIA-mediated prosthetic heme N-alkylation, can be structurally and functionally restored nearly completely by exogenous hemin in vivo or in vitro. Such in vitro hemin-mediated reassembly is unsuccessful with purified AIA-inactivated CYP2B1 and, as shown herein, is not very effective even when heme is incubated with just the corresponding liver microsomes that contain the reconstitutable CYP2B1 protein, thereby implicating a requirement for additional factors provided by the intact liver cell homogenates, ER, and/or cytosol. Using various approaches that include high-performance liquid chromatographic fractionation of the liver cytosolic subfraction as well as chemical and immunological probes such as the Hsp90/GRP94-specific inhibitor geldanamycin (GA) and polyclonal anti-GRP94 antibodies, respectively, we now demonstrate that the in vitro hemin-mediated reassembly of heme-stripped microsomal CYP2B1 requires GSH as well as the ER chaperone GRP94, but not the cytosolic chaperone heat shock protein 90. It remains to be determined whether GSH acts directly or indirectly, via a putative ER thiol reductase, to maintain the conserved active site cysteine-thiol (Cys436 in CYP2B1) in a reduced state, competent for heme binding and repair.
Collapse
Affiliation(s)
- Victor Gavrilovich Zgoda
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
49
|
Reed RC, Zheng T, Nicchitta CV. GRP94-associated enzymatic activities. Resolution by chromatographic fractionation. J Biol Chem 2002; 277:25082-9. [PMID: 11983709 DOI: 10.1074/jbc.m203195200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GRP94 (gp96), which performs established functions as a molecular chaperone and immune system modulator, has been reported to display a number of intrinsic enzymatic activities, including ATP hydrolysis, protein phosphorylation, and aminopeptidase. In observing that GRP94 co-purified with bacterial beta-galactosidase through multiple chromatographic steps, we have examined the hypothesis that the reported enzymatic activities of GRP94 may reflect co-purification of contaminant enzymes, rather than intrinsic catalytic functions. In subjecting GRP94 to increasingly stringent chromatographic purification, we report that a GRP94 carboxyl-terminal directed protein kinase activity could be separated from GRP94 by heparin affinity chromatography. Analysis of the kinase substrate specificity indicates that this kinase is distinct from casein kinase II, which is known to co-purify with GRP94. Electrophoretically pure GRP94 displayed low, but significant levels of aminopeptidase activity. Further purification of GRP94 by anion exchange and heparin affinity chromatography yielded resolution of GRP94 from the aminopeptidase activity. Furthermore, exhaustive trypsinolysis of GRP94 preparations displaying aminopeptidase activity yielded complete proteolysis of GRP94 but did not affect aminopeptidase activity. These results are discussed with respect to current models for GRP94 function and the role of such co-purifying (poly)peptides in the generation of GRP94-dependent cellular immune responses.
Collapse
Affiliation(s)
- Robyn C Reed
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
50
|
Rao RV, Peel A, Logvinova A, del Rio G, Hermel E, Yokota T, Goldsmith PC, Ellerby LM, Ellerby HM, Bredesen DE. Coupling endoplasmic reticulum stress to the cell death program: role of the ER chaperone GRP78. FEBS Lett 2002; 514:122-8. [PMID: 11943137 PMCID: PMC3971841 DOI: 10.1016/s0014-5793(02)02289-5] [Citation(s) in RCA: 466] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Alterations in Ca(2+) homeostasis and accumulation of unfolded proteins in the endoplasmic reticulum (ER) lead to an ER stress response. Prolonged ER stress may lead to cell death. Glucose-regulated protein (GRP) 78 (Bip) is an ER lumen protein whose expression is induced during ER stress. GRP78 is involved in polypeptide translocation across the ER membrane, and also acts as an apoptotic regulator by protecting the host cell against ER stress-induced cell death, although the mechanism by which GRP78 exerts its cytoprotective effect is not understood. The present study was carried out to determine whether one of the mechanisms of cell death inhibition by GRP78 involves inhibition of caspase activation. Our studies indicate that treatment of cells with ER stress inducers causes GRP78 to redistribute from the ER lumen with subpopulations existing in the cytosol and as an ER transmembrane protein. GRP78 inhibits cytochrome c-mediated caspase activation in a cell-free system, and expression of GRP78 blocks both caspase activation and caspase-mediated cell death. GRP78 forms a complex with caspase-7 and -12 and prevents release of caspase-12 from the ER. Addition of (d)ATP dissociates this complex and may facilitate movement of caspase-12 into the cytoplasm to set in motion the cytosolic component of the ER stress-induced apoptotic cascade. These results define a novel protective role for GRP78 in preventing ER stress-induced cell death.
Collapse
Affiliation(s)
- Rammohan V. Rao
- Buck Institute for Age Research, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - Alyson Peel
- Buck Institute for Age Research, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - Anna Logvinova
- Buck Institute for Age Research, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - Gabriel del Rio
- Buck Institute for Age Research, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - Evan Hermel
- Touro University College of Osteopathic Medicine, Vallejo, CA 94592, USA
| | - Takanori Yokota
- Buck Institute for Age Research, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - Paul C. Goldsmith
- Buck Institute for Age Research, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - Lisa M. Ellerby
- Buck Institute for Age Research, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - H. Michael Ellerby
- Buck Institute for Age Research, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - Dale E. Bredesen
- Buck Institute for Age Research, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
- Corresponding author. Fax: (1)-415-209 2230. (H.M. Ellerby), (D.E. Bredesen)
| |
Collapse
|