1
|
Nygren P, Balashova N, Brown AC, Kieba I, Dhingra A, Boesze-Battaglia K, Lally ET. Aggregatibacter actinomycetemcomitans leukotoxin causes activation of lymphocyte function-associated antigen 1. Cell Microbiol 2018; 21:e12967. [PMID: 30329215 DOI: 10.1111/cmi.12967] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/20/2018] [Accepted: 10/05/2018] [Indexed: 11/29/2022]
Abstract
Repeats-in-toxin leukotoxin (LtxA) produced by the oral bacterium Aggregatibacter actinomycetemcomitans kills human leukocytes in a lymphocyte function-associated antigen 1 (LFA-1, integrin αL /β2 )-dependent manner, although the mechanism for this interaction has not been identified. The LtxA internalisation by LFA-1-expressing cells was explored with florescence resonance energy transfer (FRET) microscopy using a cell line that expresses LFA-1 with a cyan fluorescent protein-tagged cytosolic αL domain and a yellow fluorescent protein-tagged β2 domain. Phorbol 12-myristate 13-acetate activation of LFA-1 caused transient cytosolic domain separation. However, addition of LtxA resulted in an increase in FRET, indicating that LtxA brings the cytosolic domains closer together, compared with the inactive state. Unlike activation, this effect was not transient, lasting more than 30 min. Equilibrium constants of LtxA binding to the cytoplasmic domains of both αL and β2 were determined using surface plasmon resonance. LtxA has a strong affinity for the cytosolic domains of both the αL and β2 subunits (Kd = 15 and 4.2 nM, respectively) and a significantly lower affinity for the cytoplasmic domains of other integrin αM , αX , and β3 subunits (Kd = 400, 180, and 230 nM, respectively), used as controls. Peptide fragments of αL and β2 show that LtxA binds membrane-proximal domain of αL and intermediate domain of β2 .
Collapse
Affiliation(s)
- Patrik Nygren
- Departments of Biochemistry, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Medicine, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nataliya Balashova
- Departments of Pathology, School of Dental Medicine, and the Division of Hematology/Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Angela C Brown
- Departments of Pathology, School of Dental Medicine, and the Division of Hematology/Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Irene Kieba
- Departments of Pathology, School of Dental Medicine, and the Division of Hematology/Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anuradha Dhingra
- Departments of Biochemistry, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Edward T Lally
- Departments of Pathology, School of Dental Medicine, and the Division of Hematology/Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
2
|
Gonzalez-Salinas R, Hernández-Zimbrón LF, Gulias-Cañizo R, Sánchez-Vela MA, Ochoa-De La Paz L, Zamora R, Quiroz-Mercado H. Current Anti-Integrin Therapy for Ocular Disease. Semin Ophthalmol 2017; 33:634-642. [DOI: 10.1080/08820538.2017.1388411] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | | | - Rosario Gulias-Cañizo
- Research Department, Asociación para Evitar la Ceguera en México I.A.P, Mexico City, Mexico
- Cell Biology Department, Advanced Research Center, I.P.N. (CINVESTAV), Mexico City, Mexico
| | | | - Lenin Ochoa-De La Paz
- Research Department, Asociación para Evitar la Ceguera en México I.A.P, Mexico City, Mexico
- Biochemistry Department, Universidad Nacional Autónoma de Mexico, School of Medicine, Mexico City, Mexico
| | - Ruben Zamora
- Research Department, Asociación para Evitar la Ceguera en México I.A.P, Mexico City, Mexico
| | - Hugo Quiroz-Mercado
- Research Department, Asociación para Evitar la Ceguera en México I.A.P, Mexico City, Mexico
- Department of Ophthalmology, University of Colorado, Denver, CO, USA
| |
Collapse
|
3
|
Cabanillas D, Regairaz L, Deswarte C, García M, Richard ME, Casanova JL, Bustamante J, Perez L. Leukocyte Adhesion Deficiency Type 1 (LAD1) with Expressed but Nonfunctional CD11/CD18. J Clin Immunol 2016; 36:627-30. [DOI: 10.1007/s10875-016-0322-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 07/18/2016] [Indexed: 11/25/2022]
|
4
|
LFA-1 integrin antibodies inhibit leukocyte α4β1-mediated adhesion by intracellular signaling. Blood 2016; 128:1270-81. [PMID: 27443292 DOI: 10.1182/blood-2016-03-705160] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/12/2016] [Indexed: 02/03/2023] Open
Abstract
Binding of intercellular adhesion molecule-1 to the β2-integrin leukocyte function associated antigen-1 (LFA-1) is known to induce cross-talk to the α4β1 integrin. Using different LFA-1 monoclonal antibodies, we have been able to study the requirement and mechanism of action for the cross-talk in considerable detail. LFA-1-activating antibodies and those inhibitory antibodies that signal to α4β1 induce phosphorylation of Thr-758 on the β2-chain, which is followed by binding of 14-3-3 proteins and signaling through the G protein exchange factor Tiam1. This results in dephosphorylation of Thr-788/789 on the β1-chain of α4β1 and loss of binding to its ligand vascular cell adhesion molecule-1. The results show that with LFA-1 antibodies, we can activate LFA-1 and inhibit α4β1, inhibit both LFA-1 and α4β1, inhibit LFA-1 but not α4β1, or not affect LFA-1 or α4β1 These findings are important for the understanding of integrin regulation and for the interpretation of the effect of integrin antibodies and their use in clinical applications.
Collapse
|
5
|
Jensen MR, Bajic G, Zhang X, Laustsen AK, Koldsø H, Skeby KK, Schiøtt B, Andersen GR, Vorup-Jensen T. Structural Basis for Simvastatin Competitive Antagonism of Complement Receptor 3. J Biol Chem 2016; 291:16963-76. [PMID: 27339893 DOI: 10.1074/jbc.m116.732222] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Indexed: 01/08/2023] Open
Abstract
The complement system is an important part of the innate immune response to infection but may also cause severe complications during inflammation. Small molecule antagonists to complement receptor 3 (CR3) have been widely sought, but a structural basis for their mode of action is not available. We report here on the structure of the human CR3 ligand-binding I domain in complex with simvastatin. Simvastatin targets the metal ion-dependent adhesion site of the open, ligand-binding conformation of the CR3 I domain by direct contact with the chelated Mg(2+) ion. Simvastatin antagonizes I domain binding to the complement fragments iC3b and C3d but not to intercellular adhesion molecule-1. By virtue of the I domain's wide distribution in binding kinetics to ligands, it was possible to identify ligand binding kinetics as discriminator for simvastatin antagonism. In static cellular experiments, 15-25 μm simvastatin reduced adhesion by K562 cells expressing recombinant CR3 and by primary human monocytes, with an endogenous expression of this receptor. Application of force to adhering monocytes potentiated the effects of simvastatin where only a 50-100 nm concentration of the drug reduced the adhesion by 20-40% compared with untreated cells. The ability of simvastatin to target CR3 in its ligand binding-activated conformation is a novel mechanism to explain the known anti-inflammatory effects of this compound, in particular because this CR3 conformation is found in pro-inflammatory environments. Our report points to new designs of CR3 antagonists and opens new perspectives and identifies druggable receptors from characterization of the ligand binding kinetics in the presence of antagonists.
Collapse
Affiliation(s)
| | - Goran Bajic
- Molecular Biology and Genetics, and the Lundbeck Foundation Nanomedicine Center for Individualized Management of Tissue Damage and Regeneration (LUNA), and
| | | | | | - Heidi Koldsø
- Chemistry, the Interdisciplinary Nanoscience Center (iNANO), the Center for Insoluble Protein Structures (inSPIN)
| | - Katrine Kirkeby Skeby
- Chemistry, the Interdisciplinary Nanoscience Center (iNANO), the Center for Insoluble Protein Structures (inSPIN)
| | - Birgit Schiøtt
- Chemistry, the Interdisciplinary Nanoscience Center (iNANO), the Center for Insoluble Protein Structures (inSPIN)
| | - Gregers R Andersen
- Molecular Biology and Genetics, and the Lundbeck Foundation Nanomedicine Center for Individualized Management of Tissue Damage and Regeneration (LUNA), and
| | - Thomas Vorup-Jensen
- From the Departments of Biomedicine, the Lundbeck Foundation Nanomedicine Center for Individualized Management of Tissue Damage and Regeneration (LUNA), and the Interdisciplinary Nanoscience Center (iNANO), the MEMBRANES Research Center, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
6
|
Abstract
Whether β1 integrin ectodomains visit conformational states similarly to β2 and β3 integrins has not been characterized. Furthermore, despite a wealth of activating and inhibitory antibodies to β1 integrins, the conformational states that these antibodies stabilize, and the relation of these conformations to function, remain incompletely characterized. Using negative-stain electron microscopy, we show that the integrin α5β1 ectodomain adopts extended-closed and extended-open conformations as well as a bent conformation. Antibodies SNAKA51, 8E3, N29, and 9EG7 bind to different domains in the α5 or β1 legs, activate, and stabilize extended ectodomain conformations. Antibodies 12G10 and HUTS-4 bind to the β1 βI domain and hybrid domains, respectively, activate, and stabilize the open headpiece conformation. Antibody TS2/16 binds a similar epitope as 12G10, activates, and appears to stabilize an open βI domain conformation without requiring extension or hybrid domain swing-out. mAb13 and SG/19 bind to the βI domain and βI-hybrid domain interface, respectively, inhibit, and stabilize the closed conformation of the headpiece. The effects of the antibodies on cell adhesion to fibronectin substrates suggest that the extended-open conformation of α5β1 is adhesive and that the extended-closed and bent-closed conformations are nonadhesive. The functional effects and binding sites of antibodies and fibronectin were consistent with their ability in binding to α5β1 on cell surfaces to cross-enhance or inhibit one another by competitive or noncompetitive (allosteric) mechanisms.
Collapse
|
7
|
LFA-1 and Mac-1 integrins bind to the serine/threonine-rich domain of thrombomodulin. Biochem Biophys Res Commun 2016; 473:1005-1012. [PMID: 27055590 DOI: 10.1016/j.bbrc.2016.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 04/03/2016] [Indexed: 01/13/2023]
Abstract
LFA-1 (αLβ2) and Mac-1 (αMβ2) integrins regulate leukocyte trafficking in health and disease by binding primarily to IgSF ligand ICAM-1 and ICAM-2 on endothelial cells. Here we have shown that the anti-coagulant molecule thrombomodulin (TM), found on the surface of endothelial cells, functions as a potentially new ligand for leukocyte integrins. We generated a recombinant extracellular domain of human TM and Fc fusion protein (TM-domains 123-Fc), and showed that pheripheral blood mononuclear cells (PBMCs) bind to TM-domains 123-Fc dependent upon integrin activation. We then demonstrated that αL integrin-blocking mAb, αM integrin-blocking mAb, and β2 integrin-blocking mAb inhibited the binding of PBMCs to TM-domains 123-Fc. Furthermore, we show that the serine/threonine-rich domain (domain 3) of TM is required for the interaction with the LFA-1 (αLβ2) and Mac-1 (αMβ2) integrins to occur on PBMCs. These results demonstrate that the LFA-1 and Mac-1 integrins on leukocytes bind to TM, thereby establishing the molecular and structural basis underlying LFA-1 and Mac-1 integrin interaction with TM on endothelial cells. In fact, integrin-TM interactions might be involved in the dynamic regulation of leukocyte adhesion with endothelial cells.
Collapse
|
8
|
Park EJ, Yuki Y, Kiyono H, Shimaoka M. Structural basis of blocking integrin activation and deactivation for anti-inflammation. J Biomed Sci 2015; 22:51. [PMID: 26152212 PMCID: PMC4495637 DOI: 10.1186/s12929-015-0159-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/22/2015] [Indexed: 12/30/2022] Open
Abstract
Integrins mediate leukocyte accumulation to the sites of inflammation, thereby enhancing their potential as an important therapeutic target for inflammatory disorders. Integrin activation triggered by inflammatory mediators or signaling pathway is a key step to initiate leukocyte migration to inflamed tissues; however, an appropriately regulated integrin deactivation is indispensable for maintaining productive leukocyte migration. While typical integrin antagonists that block integrin activation target the initiation of leukocyte migration, a novel class of experimental compounds has been designed to block integrin deactivation, thereby perturbing the progression of cell migration. Current review discusses the mechanisms by which integrin is activated and subsequently deactivated by focusing on its structure-function relationship.
Collapse
Affiliation(s)
- Eun Jeong Park
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Mie, 514-8507, Japan. .,Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.
| | - Yoshikazu Yuki
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.
| | - Hiroshi Kiyono
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan. .,International Research and Development Center for Mucosal Vaccine, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.
| | - Motomu Shimaoka
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Mie, 514-8507, Japan.
| |
Collapse
|
9
|
Steblyanko M, Anikeeva N, Campbell KS, Keen JH, Sykulev Y. Integrins Influence the Size and Dynamics of Signaling Microclusters in a Pyk2-dependent Manner. J Biol Chem 2015; 290:11833-42. [PMID: 25778396 DOI: 10.1074/jbc.m114.614719] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Indexed: 12/28/2022] Open
Abstract
Integrin engagement on lymphocytes initiates "outside-in" signaling that is required for cytoskeleton remodeling and the formation of the synaptic interface. However, the mechanism by which the "outside-in" signal contributes to receptor-mediated intracellular signaling that regulates the kinetics of granule delivery and efficiency of cytolytic activity is not well understood. We have found that variations in ICAM-1 expression on tumor cells influence killing kinetics of these cells by CD16.NK-92 cytolytic effectors suggesting that changes in integrin ligation on the effector cells regulate the kinetics of cytolytic activity by the effector cells. To understand how variations of the integrin receptor ligation may alter cytolytic activity of CD16.NK-92 cells, we analyzed molecular events at the contact area of these cells exposed to planar lipid bilayers that display integrin ligands at different densities and activating CD16-specific antibodies. Changes in the extent of integrin ligation on CD16.NK-92 cells at the cell/bilayer interface revealed that the integrin signal influences the size and the dynamics of activating receptor microclusters in a Pyk2-dependent manner. Integrin-mediated changes of the intracellular signaling significantly affected the kinetics of degranulation of CD16.NK-92 cells providing evidence that integrins regulate the rate of target cell destruction in antibody-dependent cell cytotoxicity (ADCC).
Collapse
Affiliation(s)
| | | | - Kerry S Campbell
- the Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| | - James H Keen
- Biochemistry and Molecular Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 and
| | - Yuri Sykulev
- From the Departments of Microbiology and Immunology and
| |
Collapse
|
10
|
Jung S, Yuki K. Differential effects of volatile anesthetics on leukocyte integrin macrophage-1 antigen. J Immunotoxicol 2015; 13:148-56. [PMID: 25746395 DOI: 10.3109/1547691x.2015.1019596] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Macrophage-1 antigen (Mac-1, αMβ2) is a leukocyte adhesion molecule that plays a significant role in leukocyte crawling and phagocytosis, and is homologous to its sister protein leukocyte function-associated antigen-1 (LFA-1, αLβ2). The authors have previously demonstrated that volatile anesthetics isoflurane and sevoflurane bound to and inhibited LFA-1. Here, the hypothesis tested was that isoflurane and sevoflurane would inhibit Mac-1. A binding assay of Mac-1 to its ligand inter-cellular adhesion molecule-1 (ICAM-1) using V-bottom plates was established. The effect of isoflurane and sevoflurane on Mac-1 was examined using this ICAM-1 binding assay and by probing exposure of activation-sensitive epitopes. The docking program Glide was used to predict anesthetic binding site(s) on Mac-1. The functional role of this predicted binding site was then assessed by introducing point mutations in this region. Lastly, the effect of anesthetic on activating mutants was evaluated. The results indicated that isoflurane inhibited binding of Mac-1 to ICAM-1, but sevoflurane did not. Isoflurane also attenuated the exposure of the activation-sensitive epitopes. The docking simulation predicted the isoflurane binding site to be at the cavity underneath the α7 helix of the ligand binding domain (the αM I domain). Point mutants at this predicted binding site contained both activating and deactivating mutants, suggesting its functional significance. The binding of activating mutants αM-Y267A β2-WT and αM-L312A β2-WT to ICAM-1 was not affected by isoflurane, but binding of another activating mutant αM-WT β2-L132A was inhibited supporting the binding of isoflurane to this cavity. The conclusion reached from these findings was that isoflurane inhibited Mac-1 binding to ICAM-1 by binding to the cavity underneath the α7 helix of the αM I domain, but sevoflurane did not. Thus, because these common clinical volatile anesthetics demonstrated different effects on Mac-1, this implied their effects on the immune system might differ.
Collapse
Affiliation(s)
- Sungeun Jung
- a Department of Anesthesiology , Perioperative and Pain Medicine, Boston Children's Hospital , Boston , MA , USA and.,b Department of Anaesthesia , Harvard Medical School , Boston , MA , USA
| | - Koichi Yuki
- a Department of Anesthesiology , Perioperative and Pain Medicine, Boston Children's Hospital , Boston , MA , USA and.,b Department of Anaesthesia , Harvard Medical School , Boston , MA , USA
| |
Collapse
|
11
|
Anikeeva N, Steblyanko M, Fayngerts S, Kopylova N, Marshall DJ, Powers GD, Sato T, Campbell KS, Sykulev Y. Integrin receptors on tumor cells facilitate NK cell-mediated antibody-dependent cytotoxicity. Eur J Immunol 2014; 44:2331-9. [PMID: 24810893 DOI: 10.1002/eji.201344179] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 04/03/2014] [Accepted: 05/06/2014] [Indexed: 12/21/2022]
Abstract
NK cells that mediate ADCC play an important role in tumor-specific immunity. We have examined factors limiting specific lysis of tumor cells by CD16.NK-92 cells induced by CNTO 95LF antibodies recognizing αV integrins that are overexpressed on many tumor cells. Although all tested tumor cells were killed by CD16.NK-92 effectors in the presence of the antibodies, the killing of target cells with a low level of ICAM-1 expression revealed a dramatic decrease in their specific lysis at high antibody concentration, revealing a dose limiting effect. A similar effect was also observed with primary human NK cells. The effect was erased after IFN-γ treatment of tumor cells resulting in upregulation of ICAM-1. Furthermore, killing of the same tumor cells induced by Herceptin antibody was significantly impaired in the presence of CNTO 95Ala-Ala antibody variant that blocks αV integrins but is incapable of binding to CD16. These data suggest that αV integrins on tumor cells could compensate for the loss of ICAM-1 molecules, thereby facilitating ADCC by NK cells. Thus, NK cells could exercise cytolytic activity against ICAM-1 deficient tumor cells in the absence of proinflammatory cytokines, emphasizing the importance of NK cells in tumor-specific immunity at early stages of cancer.
Collapse
Affiliation(s)
- Nadia Anikeeva
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Anderson LR, Owens TW, Naylor MJ. Structural and mechanical functions of integrins. Biophys Rev 2014; 6:203-213. [PMID: 28510180 PMCID: PMC5418412 DOI: 10.1007/s12551-013-0124-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/28/2013] [Indexed: 01/09/2023] Open
Abstract
Integrins are ubiquitously expressed cell surface receptors that play a critical role in regulating the interaction between a cell and its microenvironment to control cell fate. These molecules are regulated either via their expression on the cell surface or through a unique bidirectional signalling mechanism. However, integrins are just the tip of the adhesome iceberg, initiating the assembly of a large range of adaptor and signalling proteins that mediate the structural and signalling functions of integrin. In this review, we summarise the structure of integrins and mechanisms by which integrin activation is controlled. The different adhesion structures formed by integrins are discussed, as well as the mechanical and structural roles integrins play during cell migration. As the function of integrin signalling can be quite varied based on cell type and context, an in depth understanding of these processes will aid our understanding of aberrant adhesion and migration, which is often associated with human pathologies such as cancer.
Collapse
Affiliation(s)
- Luke R Anderson
- Discipline of Physiology & Bosch Institute, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Thomas W Owens
- Discipline of Physiology & Bosch Institute, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Matthew J Naylor
- Discipline of Physiology & Bosch Institute, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.
- The University of Sydney, Room E212, Anderson Stuart Building (F13), Sydney, NSW, 2006, Australia.
| |
Collapse
|
13
|
Willenbrock F, Zicha D, Hoppe A, Hogg N. Novel automated tracking analysis of particles subjected to shear flow: kindlin-3 role in B cells. Biophys J 2014; 105:1110-22. [PMID: 24010654 PMCID: PMC3762340 DOI: 10.1016/j.bpj.2013.06.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/16/2013] [Accepted: 06/18/2013] [Indexed: 12/23/2022] Open
Abstract
Shear flow assays are used to mimic the influence of physiological shear force in diverse situations such as leukocyte rolling and arrest on the vasculature, capture of nanoparticles, and bacterial adhesion. Analysis of such assays usually involves manual counting, is labor-intensive, and is subject to bias. We have developed the Leukotrack program that incorporates a novel (to our knowledge) segmentation routine capable of reliable detection of cells in phase contrast images. The program also automatically tracks rolling cells in addition to those that are more firmly attached and migrating in random directions. We demonstrate its use in the analysis of lymphocyte arrest mediated by one or more active conformations of the integrin LFA-1. Activation of LFA-1 is a multistep process that depends on several proteins including kindlin-3, the protein that is mutated in leukocyte adhesion deficiency-III patients. We find that the very first stage of LFA-1-mediated attaching is unable to proceed in the absence of kindlin-3. Our evidence indicates that kindlin-3-mediated high-affinity LFA-1 controls both the early transient integrin-dependent adhesions in addition to the final stable adhesions made under flow conditions.
Collapse
|
14
|
Nakayama H, Ogawa H, Takamori K, Iwabuchi K. GSL-Enriched Membrane Microdomains in Innate Immune Responses. Arch Immunol Ther Exp (Warsz) 2013; 61:217-28. [DOI: 10.1007/s00005-013-0221-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 02/13/2013] [Indexed: 12/20/2022]
|
15
|
Tanigami H, Okamoto T, Yasue Y, Shimaoka M. Astroglial integrins in the development and regulation of neurovascular units. PAIN RESEARCH AND TREATMENT 2012; 2012:964652. [PMID: 23304493 PMCID: PMC3529429 DOI: 10.1155/2012/964652] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 11/13/2012] [Indexed: 11/18/2022]
Abstract
In the neurovascular units of the central nervous system, astrocytes form extensive networks that physically and functionally connect the neuronal synapses and the cerebral vascular vessels. This astrocytic network is thought to be critically important for coupling neuronal signaling activity and energy demand with cerebral vascular tone and blood flow. To establish and maintain this elaborate network, astrocytes must precisely calibrate their perisynaptic and perivascular processes in order to sense and regulate neuronal and vascular activities, respectively. Integrins, a prominent family of cell-adhesion molecules that support astrocytic migration in the brain during developmental and normal adult stages, have been implicated in regulating the integrity of the blood brain barrier and the tripartite synapse to facilitate the formation of a functionally integrated neurovascular unit. This paper describes the significant roles that integrins and connexins play not only in regulating astrocyte migration during the developmental and adult stages of the neurovascular unit, but also in general health and in such diseases as hepatic encephalopathy.
Collapse
Affiliation(s)
- Hironobu Tanigami
- Department of Anesthesiology, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3 Nakamichi, Higashinari-ku, Osaka 537-8511, Japan
| | - Takayuki Okamoto
- Department of Molecular Pathobiology and Cell Adhesion Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Mie, Tsu City, Japan
| | - Yuichi Yasue
- Department of Anesthesiology, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3 Nakamichi, Higashinari-ku, Osaka 537-8511, Japan
| | - Motomu Shimaoka
- Department of Molecular Pathobiology and Cell Adhesion Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Mie, Tsu City, Japan
| |
Collapse
|
16
|
Vorup-Jensen T. On the roles of polyvalent binding in immune recognition: perspectives in the nanoscience of immunology and the immune response to nanomedicines. Adv Drug Deliv Rev 2012; 64:1759-81. [PMID: 22705545 DOI: 10.1016/j.addr.2012.06.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 06/06/2012] [Accepted: 06/08/2012] [Indexed: 12/31/2022]
Abstract
Immunology often conveys the image of large molecules, either in the soluble state or in the membrane of leukocytes, forming multiple contacts with a target for actions of the immune system. Avidity names the ability of a polyvalent molecule to form multiple connections of the same kind with ligands tethered to the same surface. Polyvalent interactions are vastly stronger than their monovalent equivalent. In the present review, the functional consequences of polyvalent interactions are explored in a perspective of recent theoretical advances in understanding the thermodynamics of such binding. From insights on the structural biology of soluble pattern recognition molecules as well as adhesion molecules in the cell membranes or in their proteolytically shed form, this review documents the prominent role of polyvalent interactions in making the immune system a formidable barrier to microbial infection as well as constituting a significant challenge to the application of nanomedicines.
Collapse
|
17
|
Yuki K, Bu W, Xi J, Sen M, Shimaoka M, Eckenhoff RG. Isoflurane binds and stabilizes a closed conformation of the leukocyte function-associated antigen-1. FASEB J 2012; 26:4408-17. [PMID: 22815384 DOI: 10.1096/fj.12-212746] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We previously demonstrated that isoflurane targets lymphocyte function-associated antigen-1 (LFA-1), a critical adhesion molecule for leukocyte arrest. However, it remains to be determined how isoflurane interacts with the full ectodomain LFA-1 and modulates its conformation and function. Isoflurane binding sites on the full ectodomain LFA-1 were probed by photolabeling using photoactivatable isoflurane (azi-isoflurane). The adducted residues were determined by liquid chromatography/mass spectrometry analysis. Separately, docking simulations were performed to predict binding sites. Point mutations were introduced around isoflurane binding sites. The significance of isoflurane's effect was assessed in both intracellular adhesion molecule-1 (ICAM-1) binding assays and epitope mapping of activation-sensitive antibodies using flow cytometry. Two isoflurane binding sites were identified using photolabeling and were further validated by the docking simulation: one at the hydrophobic pocket in the ICAM-1 binding domain (the αI domain); the other at the βI domain. Mutagenesis of the α'1 helix showed that isoflurane binding sites at the βI domain were significantly important in modulating LFA-1 function and conformation. Epitope mapping using activation-sensitive antibodies suggested that isoflurane stabilized LFA-1 in the closed conformation. This study suggested that isoflurane binds to both the αI and βI domains allosteric to the ICAM-1 binding site, and that isoflurane binding stabilizes LFA-1 in the closed conformation.
Collapse
Affiliation(s)
- Koichi Yuki
- Department of Anesthesiology, Perioperative and Pain Medicine, Children's Hospital Boston, 300 Longwood Ave., Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Gjelstrup LC, Andersen SH, Petersen SV, Enghild JJ, Blom AM, Vorup-Jensen T, Thiel S. The role of higher-order protein structure in supporting binding by heteroclitic monoclonal antibodies: the monoclonal antibody KIM185 to CD18 also binds C4-binding protein. Mol Immunol 2011; 49:38-47. [PMID: 21856004 DOI: 10.1016/j.molimm.2011.07.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 07/18/2011] [Accepted: 07/20/2011] [Indexed: 10/17/2022]
Abstract
Heteroclitic monoclonal antibodies are characterized by the ability to bind multiple epitopes with little or no similarity. Such antibodies have been reported earlier, but insight into to the molecular basis of this propensity is limited. Here we report that the KIM185 antibody to human CD18 reacts with the plasma protein C4b-binding protein (C4BP). This was revealed during affinity purification procedures where human serum was incubated with surfaces coated with monoclonal antibodies to CD18. Other monoclonal antibodies to CD18 (KIM127 and TS1/18) showed no such interaction with C4BP. We constructed a sandwich-type time-resolved immunofluorometric assay using KIM185 both as capture and developing antibody. By use of proteolytic fragments of KIM185 and recombinant deletion mutants of C4BP the interaction sites were mapped to the variable region of KIM185 and the oligomerization domain of C4BP, respectively. C4BP is a large oligomeric plasma protein that binds activated complement factor C4b and other endogenous ligands as well as microorganisms. By use of the recent crystallographic data on the structure of CD11c/CD18 and prediction of the secondary structure of the C4BP oligomerization domain, we show that epitopes bound by KIM185 in these proteins are unlikely to share any major structural similarity. However, both antigens may form oligomers that would enable avid binding by the antibody. Our report points to the astonishing ability of heteroclitic antibodies to accommodate the binding of multiple proteins with no or little structural similarity within the confined space of the variable regions.
Collapse
|
19
|
Weitz-Schmidt G, Schürpf T, Springer TA. The C-terminal αI domain linker as a critical structural element in the conformational activation of αI integrins. J Biol Chem 2011; 286:42115-42122. [PMID: 21965670 DOI: 10.1074/jbc.m111.282830] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activation of α/β heterodimeric integrins is the result of highly coordinated rearrangements within both subunits. The molecular interactions between the two subunits, however, remain to be characterized. In this study, we use the integrin α(L)β(2) to investigate the functional role of the C-linker polypeptide that connects the C-terminal end of the inserted (I) domain with the β-propeller domain on the α subunit and is located at the interface with the βI domain of the β chain. We demonstrate that shortening of the C-linker by eight or more amino acids results in constitutively active α(L)β(2) in which the αI domain is no longer responsive to the regulation by the βI domain. Despite this intersubunit uncoupling, both I domains remain individually sensitive to intrasubunit conformational changes induced by allosteric modulators. Interestingly, the length and not the sequence of the C-linker appears to be critical for its functionality in α/β intersubunit communication. Using two monoclonal antibodies (R7.1 and CBR LFA-1/1) we further demonstrate that shortening of the C-linker results in the gradual loss of combinational epitopes that require both the αI and β-propeller domains for full reactivity. Taken together, our findings highlight the role of the C-linker as a spring-like element that allows relaxation of the αI domain in the resting state and controlled tension of the αI domain during activation, exerted by the β chain.
Collapse
Affiliation(s)
- Gabriele Weitz-Schmidt
- Immune Disease Institute, Children's Hospital Boston and Department of Pathology, Harvard Medical School, Boston Massachusetts 02115; University Basel, PharmaCenter, Klingelbergstr. 50-70, 4056 Basel, Switzerland.
| | - Thomas Schürpf
- Immune Disease Institute, Children's Hospital Boston and Department of Pathology, Harvard Medical School, Boston Massachusetts 02115
| | - Timothy A Springer
- Immune Disease Institute, Children's Hospital Boston and Department of Pathology, Harvard Medical School, Boston Massachusetts 02115.
| |
Collapse
|
20
|
Abstract
Integrins are cell adhesion molecules that play important roles in many biological processes including hemostasis, immune responses, development, and cancer. Their adhesiveness is dynamically regulated through a process termed inside-out signaling. In addition, ligand binding transduces outside-in signals from the extracellular domain to the cytoplasm. Advances in the past several years have shed light on structural basis for integrin regulation and signaling, especially how the large-scale reorientations of the ectodomain are related to the inter-domain and intra-domain shape shifting that changes ligand-binding affinity. Experiments have also shown how the conformational changes of the ectodomain are linked to changes in the α- and β-subunit transmembrane and cytoplasmic domains.
Collapse
Affiliation(s)
- Guanyuan Fu
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | | | | |
Collapse
|
21
|
Requirement of open headpiece conformation for activation of leukocyte integrin alphaXbeta2. Proc Natl Acad Sci U S A 2010; 107:14727-32. [PMID: 20679211 DOI: 10.1073/pnas.1008663107] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Negative stain electron microscopy (EM) and adhesion assays show that alpha(X)beta(2) integrin activation requires headpiece opening as well as extension. An extension-inducing Fab to the beta(2) leg, in combination with representative activating and inhibitory Fabs, were examined for effect on the equilibrium between the open and closed headpiece conformations. The two activating Fabs stabilized the open headpiece conformation. Conversely, two different inhibitory Fabs stabilized the closed headpiece conformation. Adhesion assays revealed that alpha(X)beta(2) in the extended-open headpiece conformation had high affinity for ligand, whereas both the bent conformation and the extended-closed headpiece conformation represented the low affinity state. Intermediate integrin affinity appears to result not from a single conformational state, but from a mixture of equilibrating conformational states.
Collapse
|
22
|
Zecchinon L, Fett T, Baise E, Desmecht D. Characterization of the caprine (Capra hircus) beta-2 integrin CD18-encoding cDNA and identification of mutations potentially responsible for the ruminant-specific virulence ofMannheimia haemolytica. Mol Membr Biol 2009; 21:289-95. [PMID: 15513736 DOI: 10.1080/09687680412331282785] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The leukocyte integrins play a critical role in a great number of cellular adhesive interactions during the immune response. We describe here the isolation and characterization of the caprine beta(2) (CD18) sub-unit, common to the leukocyte beta(2)-integrin family. The deduced 770-amino-acid sequence reveals a transmembrane protein with 80, 81, 83, 96 and 99% identity with its canine, murine, human, bovine and ovine homologues respectively. Analysis of CD18 sequences emphasizes the functional importance of the beta(2) sub-unit I-like domain, and included metal ion-dependent adhesion site-like motif and confirms that of the cytoplasmic tail. Moreover, comparisons of ruminant versus non-ruminant CD18 sequences allowed the identification of 16 potential mutation sites that could be held responsible for the unique virulence of Mannheimia haemolytica for ruminants. Mannheimiosis is known to be the major respiratory disease among ruminants, whereas it is not pathogenic for other mammals, an observation that has been attributed to a specific interaction between M. haemolytica leukotoxin and ruminants' CD18. Therefore, the data provided here offer the possibility to explore new avenues in studies based on the caprine model and provide key information for future studies aimed at elucidating the molecular mechanisms underlying the ruminant-specific virulence of M. haemolytica.
Collapse
Affiliation(s)
- L Zecchinon
- Department of Pathology, University of Liége, Liége, Belgium
| | | | | | | |
Collapse
|
23
|
Chapter 4 Activation of Leukocyte Integrins. CURRENT TOPICS IN MEMBRANES 2009. [DOI: 10.1016/s1063-5823(09)64004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Sadhu C, Hendrickson L, Dick KO, Potter TG, Staunton DE. Novel tools for functional analysis of CD11c: activation-specific, activation-independent, and activating antibodies. J Immunoassay Immunochem 2008; 29:42-57. [PMID: 18080879 DOI: 10.1080/15321810701735062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Functions and binding properties of four CD11c-specific mAbs are described here. The mAb 496B stimulated, while 496K inhibited ligand binding of CD11c. The stimulatory mAb, 496B, as well as the inhibitory mAbs BU15 and 496 K appear to act allosterically, as they do not bind the CD11c I domain. The mAb 3.9 bound preferentially to activated forms of CD11c and the binding was divalent cation dependent. CD11c binding to 3.9 recapitulates many of the integrin-ligand interactions. Our data suggest that 3.9 is a competitive antagonist, BU15 and 496K are allosteric antagonists, and 496B is an allosteric agonist of CD11c. These mAbs provide a set of tools to study the functions of the dendritic cell marker, CD11c.
Collapse
|
25
|
Nakayama H, Yoshizaki F, Prinetti A, Sonnino S, Mauri L, Takamori K, Ogawa H, Iwabuchi K. Lyn-coupled LacCer-enriched lipid rafts are required for CD11b/CD18-mediated neutrophil phagocytosis of nonopsonized microorganisms. J Leukoc Biol 2007; 83:728-41. [DOI: 10.1189/jlb.0707478] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
26
|
Bergh PGACV, Zecchinon LLM, Fett T, Desmecht DJM. The wild boar (Sus scrofa) lymphocyte function-associated antigen-1 (CD11a/CD18) receptor: cDNA sequencing, structure analysis and comparison with homologues. BMC Vet Res 2007; 3:27. [PMID: 17937788 PMCID: PMC2151945 DOI: 10.1186/1746-6148-3-27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Accepted: 10/15/2007] [Indexed: 12/23/2022] Open
Abstract
Background The most predominant beta2-integrin lymphocyte function-associated antigen-1 (LFA-1, CD11a/CD18, alphaLbeta2), expressed on all leukocytes, is essential for many adhesive functions of the immune system. Interestingly, RTX toxin-producing bacteria specifically target this leukocyte beta2-integrin which exacerbates lesions and disease development. Results This study reports the sequencing of the wild boar beta2-integrin CD11a and CD18 cDNAs. Predicted CD11a and CD18 subunits share all the main structural characteristics of their mammalian homologues, with a larger interspecies conservation for the CD18 than the CD11a. Besides these strong overall similarities, wild boar and domestic pig LFA-1 differ by 2 (CD18) and 1 or 3 (CD11a) substitutions, of which one is located in the crucial I-domain (CD11a, E168D). Conclusion As most wild boars are seropositive to the RTX toxin-producing bacterium Actinobacillus pleuropneumoniae and because they have sustained continuous natural selection, future studies addressing the functional impact of these polymorphisms could bring interesting new information on the physiopathology of Actinobacillus pleuropneumoniae-associated pneumonia in domestic pigs.
Collapse
Affiliation(s)
- Philippe G A C Vanden Bergh
- Pathology Department, Faculty of Veterinary Medicine, University of Liege, Colonster Boulevard 20 B43, B-4000 Liege, Belgium.
| | | | | | | |
Collapse
|
27
|
Kieba IR, Fong KP, Tang HY, Hoffman KE, Speicher DW, Klickstein LB, Lally ET. Aggregatibacter actinomycetemcomitans leukotoxin requires beta-sheets 1 and 2 of the human CD11a beta-propeller for cytotoxicity. Cell Microbiol 2007; 9:2689-99. [PMID: 17587330 PMCID: PMC3459317 DOI: 10.1111/j.1462-5822.2007.00989.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aggregatibacter actinomycetemcomitans leukotoxin (Ltx) is a repeats-in-toxin (RTX) cytolysin that kills human leukocyte function-associated antigen-1 (LFA-1; alpha(L)/beta(2))-bearing cells. In order to determine whether the alpha(L) portion of the heterodimer is involved in Ltx recognition, we transfected human, mouse and bovine alpha(L) cDNAs into J-beta(2).7, an alpha(L)-deficient cell line, and looked for restoration of Ltx susceptibility. Cells expressing either bovine or human alpha(L) in conjunction with human beta(2) were efficiently killed by Ltx, an indication that bovine alpha(L) could substitute for its human counterpart in critical regions used by Ltx for attachment to LFA-1. On the other hand, cells expressing murine alpha(L) and human beta(2) were not susceptible to the lethal effects of Ltx indicating that the toxin recognition sites are not present in the corresponding mouse sequence. To further identify the region(s) of alpha(L) recognized by Ltx, we constructed and evaluated a panel of chimeric human/murine alpha(L) genes in J-beta(2).7 cells. Analysis of the alpha(L) mutant panel showed that the presence of human N-terminal 128 amino acids on a mouse CD11a background, a region that includes beta-sheets 1 and 2 of the beta-propeller of the human alpha(L) chain, was sufficient for Ltx cytolysis.
Collapse
Affiliation(s)
- Irene R. Kieba
- Leon Levy Research Center for Oral Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karen P. Fong
- Leon Levy Research Center for Oral Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Karl E. Hoffman
- Leon Levy Research Center for Oral Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Lloyd B. Klickstein
- Novartis Institutes for Biomedical Research, 400 Technology Square, Cambridge, MA 02139, USA
| | - Edward T. Lally
- Leon Levy Research Center for Oral Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- For correspondence. ; Tel. (+1) 215 898 5913; Fax (+1) 215 573 2050
| |
Collapse
|
28
|
Abstract
Integrins are cell adhesion molecules that mediate cell-cell, cell-extracellular matrix, and cell-pathogen interactions. They play critical roles for the immune system in leukocyte trafficking and migration, immunological synapse formation, costimulation, and phagocytosis. Integrin adhesiveness can be dynamically regulated through a process termed inside-out signaling. In addition, ligand binding transduces signals from the extracellular domain to the cytoplasm in the classical outside-in direction. Recent structural, biochemical, and biophysical studies have greatly advanced our understanding of the mechanisms of integrin bidirectional signaling across the plasma membrane. Large-scale reorientations of the ectodomain of up to 200 A couple to conformational change in ligand-binding sites and are linked to changes in alpha and beta subunit transmembrane domain association. In this review, we focus on integrin structure as it relates to affinity modulation, ligand binding, outside-in signaling, and cell surface distribution dynamics.
Collapse
Affiliation(s)
- Bing-Hao Luo
- The CBR Institute for Biomedical Research, Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
29
|
Perez OD, Mitchell D, Nolan GP. Differential role of ICAM ligands in determination of human memory T cell differentiation. BMC Immunol 2007; 8:2. [PMID: 17233909 PMCID: PMC1784112 DOI: 10.1186/1471-2172-8-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2006] [Accepted: 01/18/2007] [Indexed: 11/14/2022] Open
Abstract
Background Leukocyte Function Antigen-1 (LFA-1) is a primary adhesion molecule that plays important roles in T cell activation, leukocyte recirculation, and trans-endothelial migration. By applying a multivariate intracellular phospho-proteomic analysis, we demonstrate that LFA-1 differentially activates signaling molecules. Results Signal intensity was dependent on both ICAM ligand and LFA-1 concentration. In the presence of CD3 and CD28 stimulation, ICAM-2 and ICAM-3 decreased TGFβ1 production more than ICAM-1. In long-term differentiation experiments, stimulation with ICAM-3, CD3, and CD28 generated IFNγ producing CD4+CD45RO+CD62L-CD11aBrightCD27- cells that had increased expression of intracellular BCL2, displayed distinct chemokine receptor profiles, and exhibited distinct migratory characteristics. Only CD3/CD28 with ICAM-3 generated CD4+CD45RO+CD62L-CD11aBrightCD27- cells that were functionally responsive to chemotaxis and exhibited higher frequencies of cells that signaled to JNK and ERK1/2 upon stimulation with MIP3α. Furthermore, these reports identify that the LFA-1 receptor, when presented with multiple ligands, can result in distinct T cell differentiation states and suggest that the combinatorial integration of ICAM ligand interactions with LFA-1 have functional consequences for T cell biology. Conclusion Thus, the ICAM ligands, differentially modulate LFA-1 signaling in T cells and potentiate the development of memory human T cells in vitro. These findings are of importance in a mechanistic understanding of memory cell differentiation and ex vivo generation of memory cell subsets for therapeutic applications.
Collapse
Affiliation(s)
- Omar D Perez
- The Baxter Laboratory for Genetic Pharmacology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dennis Mitchell
- The Baxter Laboratory for Genetic Pharmacology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Garry P Nolan
- The Baxter Laboratory for Genetic Pharmacology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
30
|
Yang W, Carman CV, Kim M, Salas A, Shimaoka M, Springer TA. A small molecule agonist of an integrin, alphaLbeta2. J Biol Chem 2006; 281:37904-12. [PMID: 17023419 PMCID: PMC1764823 DOI: 10.1074/jbc.m606888200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The binding of integrin alpha(L)beta(2) to its ligand intercellular adhesion molecule-1 is required for immune responses and leukocyte trafficking. Small molecule antagonists of alpha(L)beta(2) are under intense investigation as potential anti-inflammatory drugs. We describe for the first time a small molecule integrin agonist. A previously described alpha/beta I allosteric inhibitor, compound 4, functions as an agonist of alpha(L)beta(2) in Ca(2+) and Mg(2+)and as an antagonist in Mn(2+). We have characterized the mechanism of activation and its competitive and noncompetitive inhibition by different compounds. Although it stimulates ligand binding, compound 4 nonetheless inhibits lymphocyte transendothelial migration. Agonism by compound 4 results in accumulation of alpha(L)beta(2) in the uropod, extreme uropod elongation, and defective de-adhesion. Small molecule integrin agonists open up novel therapeutic possibilities.
Collapse
Affiliation(s)
- Wei Yang
- From the CBR Institute for Biomedical Research,
Departments of
- Pathology and
| | | | - Minsoo Kim
- From the CBR Institute for Biomedical Research,
Departments of
- Pathology and
- Anesthesia, Harvard Medical School, Boston,
Massachusetts 02115
| | - Azucena Salas
- From the CBR Institute for Biomedical Research,
Departments of
- Pathology and
- Anesthesia, Harvard Medical School, Boston,
Massachusetts 02115
| | - Motomu Shimaoka
- From the CBR Institute for Biomedical Research,
Departments of
- Anesthesia, Harvard Medical School, Boston,
Massachusetts 02115
| | - Timothy A. Springer
- From the CBR Institute for Biomedical Research,
Departments of
- Pathology and
- To whom correspondence should be addressed: The CBR
Institute for Biomedical Research, Dept. of Pathology, Harvard Medical School,
200 Longwood Ave., Boston, MA 02115. Tel.: 617-278-3200; Fax: 617-278-3232;
E-mail:
| |
Collapse
|
31
|
Anderson ME, Tejo BA, Yakovleva T, Siahaan TJ. Characterization of Binding Properties of ICAM-1 Peptides to LFA-1: Inhibitors of T-cell Adhesion. Chem Biol Drug Des 2006; 68:20-8. [PMID: 16923022 DOI: 10.1111/j.1747-0285.2006.00407.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the present study, we characterized the binding site of two intercellular adhesion molecule-1-derived cyclic peptides, cIBC and cIBR, to the LFA-1 on the surface of T cells. These peptides had been able to inhibit LFA-1/intercellular adhesion molecule-1 signal by blocking the signal-2 of immune synapse. Both peptides prefer to bind to the closed form of LFA-1 I-domain, indicating that two peptides act as allosteric inhibitors against intercellular adhesion molecule-1. Binding site mapping using monoclonal antibodies proposes that cIBC binds to around residues 266-272 of LFA-1 I-domain where this site is adjacent to the metal ion-dependent adhesion site. On the other hand, cIBR binds to the pocket called L-site where is distant from metal ion-dependent adhesion site. Cross-inhibition mapping between two peptides show that cIBR could inhibit the binding of cIBC but not vice versa, suggesting that cIBR has some properties that allow this peptide bind to more than one site. Structural comparison between cIBC and cIBR reveals that cIBR is more flexible than cIBC, allowing this peptide bind to exposed region, such as cIBC-binding site as well as cramped pocket like L-site. Our findings are important for understanding the selectivity of cIBC and cIBR peptides; thus, they can be conjugated with drugs and transported specifically to the target.
Collapse
Affiliation(s)
- Meagan E Anderson
- Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Ave, Lawrence, KS 66047, USA
| | | | | | | |
Collapse
|
32
|
Evans BJ, McDowall A, Taylor PC, Hogg N, Haskard DO, Landis RC. Shedding of lymphocyte function-associated antigen-1 (LFA-1) in a human inflammatory response. Blood 2006; 107:3593-9. [PMID: 16418329 DOI: 10.1182/blood-2005-09-3695] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shedding of adhesion molecules has been described for members of the selectin and immunoglobulin superfamilies, but integrins are not known to be shed. Here, we describe shedding of the integrin lymphocyte function-associated antigen-1 (LFA-1; CD11a/CD18) from human leukocytes during the cutaneous inflammatory response to the blistering agent cantharidin. Expression of LFA-1 was significantly diminished on blister-infiltrated neutrophils (P < .001) and monocytes (P = .02) compared with cells in peripheral blood, but expression on lymphocytes remained unchanged. A capture enzyme-linked immunosorbent assay (ELISA) indicated that LFA-1 was shed into blister fluid as a heterodimer expressing an intact headpiece with I and I-like epitopes. However, a CD11a central region epitope, G25.2, was absent and this remained expressed as a "stub" on the cell surface of blister neutrophils. Western analysis of soluble LFA-1 revealed a truncated 110-kDa CD11a chain and a minimally truncated 86-kDa CD18 chain. However, LFA-1 was shed in a ligand-binding conformation, since it expressed KIM-127 and 24 activation epitopes and bound to solid-phase ICAM-1. Shed LFA-1 was also detected in a synovial effusion by ELISA and Western analysis. We hypothesize that LFA-1 shedding may play a role in leukocyte detachment after transendothelial migration and in regulating integrin-dependent outside-in signaling.
Collapse
Affiliation(s)
- Betsy J Evans
- BHF Cardiovascular Medicine Unit, Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, United Kingdom
| | | | | | | | | | | |
Collapse
|
33
|
Song G, Lazar GA, Kortemme T, Shimaoka M, Desjarlais JR, Baker D, Springer TA. Rational design of intercellular adhesion molecule-1 (ICAM-1) variants for antagonizing integrin lymphocyte function-associated antigen-1-dependent adhesion. J Biol Chem 2005; 281:5042-9. [PMID: 16354667 PMCID: PMC1455478 DOI: 10.1074/jbc.m510454200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interaction between integrin lymphocyte function-associated antigen-1 (LFA-1) and its ligand intercellular adhesion molecule-1 (ICAM-1) is critical in immunological and inflammatory reactions but, like other adhesive interactions, is of low affinity. Here, multiple rational design methods were used to engineer ICAM-1 mutants with enhanced affinity for LFA-1. Five amino acid substitutions 1) enhance the hydrophobicity and packing of residues surrounding Glu-34 of ICAM-1, which coordinates to a Mg2+ in the LFA-1 I domain, and 2) alter associations at the edges of the binding interface. The affinity of the most improved ICAM-1 mutant for intermediate- and high-affinity LFA-1 I domains was increased by 19-fold and 22-fold, respectively, relative to wild type. Moreover, potency was similarly enhanced for inhibition of LFA-1-dependent ligand binding and cell adhesion. Thus, rational design can be used to engineer novel adhesion molecules with high monomeric affinity; furthermore, the ICAM-1 mutant holds promise for targeting LFA-1-ICAM-1 interaction for biological studies and therapeutic purposes.
Collapse
Affiliation(s)
- Gang Song
- From the CBR Institute for Biomedical Research, and
| | | | - Tanja Kortemme
- Howard Hughes Medical Institute and Department of Biochemistry, University of Washington, Seattle, Washington 98195
| | - Motomu Shimaoka
- Departments of Pathology and Anesthesia, Harvard Medical School, Boston, Massachusetts 02115
| | | | - David Baker
- Howard Hughes Medical Institute and Department of Biochemistry, University of Washington, Seattle, Washington 98195
| | - Timothy A. Springer
- From the CBR Institute for Biomedical Research, and
- To whom correspondence should be addressed: CBR Institute for Biochemical Research, 200 Longwood Ave., Boston, MA 02115. Tel.: 617-278-3225; Fax: 617-278-3232; E-mail:
| |
Collapse
|
34
|
Gopinath RS, Ambagala TC, Deshpande MS, Donis RO, Srikumaran S. Mannheimia (Pasteurella) haemolytica leukotoxin binding domain lies within amino acids 1 to 291 of bovine CD18. Infect Immun 2005; 73:6179-82. [PMID: 16113344 PMCID: PMC1231049 DOI: 10.1128/iai.73.9.6179-6182.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously, we identified bovine CD18 as the receptor for leukotoxin secreted by Mannheimia (Pasteurella) haemolytica. In this study, we constructed bovine-murine CD18 chimeras to locate the leukotoxin binding domain on CD18. Leukotoxin specifically lysed transfectants expressing bovine CD18 fragment encompassing amino acids 1 to 291, indicating that leukotoxin binding domain lies within amino acids 1 to 291 of bovine CD18.
Collapse
Affiliation(s)
- R S Gopinath
- Department of Veterinary and Biomedical Sciences, University of Nebraska--Lincoln, Lincoln, Nebraska 68583-0905, USA
| | | | | | | | | |
Collapse
|
35
|
Lu C, Shimaoka M, Salas A, Springer TA. The binding sites for competitive antagonistic, allosteric antagonistic, and agonistic antibodies to the I domain of integrin LFA-1. THE JOURNAL OF IMMUNOLOGY 2004; 173:3972-8. [PMID: 15356146 DOI: 10.4049/jimmunol.173.6.3972] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We explore the binding sites for mAbs to the alpha I domain of the integrin alphaLbeta2 that can competitively inhibit, allosterically inhibit, or activate binding to the ligand ICAM-1. Ten mAbs, some of them clinically important, were mapped to species-specific residues. The results are interpreted with independent structures of the alphaL I domain determined in seven different crystal lattices and in solution, and which are present in three conformational states that differ in affinity for ligand. Six mAbs bind to adjacent regions of the beta1-alpha1 and alpha3-alpha4 loops, which show only small (mean, 0.8 angstroms; maximum, 1.8 angstroms) displacements among the eight I domain structures. Proximity to the ligand binding site and to noncontacting portions of the ICAM-1 molecule explains competitive inhibition by these mAbs. Three mAbs bind to a segment of seven residues in the beta5-alpha6 loop and alpha6 helix, in similar proximity to the ligand binding site, but on the side opposite from the beta1-alpha1/alpha3-alpha4 epitopes, and far from noncontacting portions of ICAM-1. These residues show large displacements among the eight structures in response to lattice contacts (mean, 3.6 angstroms; maximum, 9.4 angstroms), and movement of a buried Phe in the beta5-alpha6 loop is partially correlated with affinity change at the ligand binding site. Together with a lack of proximity to noncontacting portions of ICAM-1, these observations explain variation among this group of mAbs, which can either act as competitive or allosteric antagonists. One agonistic mAb binds distant from the ligand binding site of the I domain, to residues that show little movement (mean, 0.5 angstroms; maximum, 1.0 angstroms). Agonism by this mAb is thus likely to result from altering the orientation of the I domain with respect to other domains within an intact integrin alphaLbeta2 heterodimer.
Collapse
Affiliation(s)
- Chafen Lu
- CBR Institute for Biomedical Research, Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
36
|
Barton SJ, Travis MA, Askari JA, Buckley PA, Craig SE, Humphries MJ, Mould AP. Novel activating and inactivating mutations in the integrin beta1 subunit A domain. Biochem J 2004; 380:401-7. [PMID: 14967067 PMCID: PMC1224172 DOI: 10.1042/bj20031973] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Revised: 02/09/2004] [Accepted: 02/17/2004] [Indexed: 12/31/2022]
Abstract
The ligand-binding activity of integrins is regulated by shape changes that convert these receptors from a resting (or inactive) state to an active state. However, the precise conformational changes that take place in head region of integrins (the site of ligand binding) during activation are not well understood. The portion of the integrin beta subunit involved in ligand recognition contains a von Willebrand factor type A domain, which comprises a central beta-sheet surrounded by seven alpha helices (alpha1-alpha7). Using site-directed mutagenesis, we show here that point mutation of hydrophobic residues in the alpha1 and alpha7 helices (which would be predicted to increase the mobility of these helices) markedly increases the ligand-binding activity of both integrins alpha5beta1 and alpha4beta1. In contrast, mutation of a hydrophilic residue near the base of the alpha1 helix decreases activity and also suppresses exposure of activation epitopes on the underlying hybrid domain. Our results provide new evidence that shifts of the alpha1 and alpha7 helices are involved in activation of the A domain. Although these changes are grossly similar to those defined in the A domains found in some integrin alpha subunits, movement of the alpha1 helix appears to play a more prominent role in betaA domain activation.
Collapse
Affiliation(s)
- Stephanie J Barton
- The Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, University of Manchester, Manchester M13 9PT, UK
| | | | | | | | | | | | | |
Collapse
|
37
|
Tng E, Tan SM, Ranganathan S, Cheng M, Law SKA. The integrin alpha L beta 2 hybrid domain serves as a link for the propagation of activation signal from its stalk regions to the I-like domain. J Biol Chem 2004; 279:54334-9. [PMID: 15456774 DOI: 10.1074/jbc.m407818200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Integrin activation involves global conformational changes as demonstrated by various functional and structural analyses. The integrin beta hybrid domain is proposed to be involved in the propagation of this activation signal. Our previous study showed that the integrin beta(2)-specific monoclonal antibody 7E4 abrogates monoclonal antibody KIM185-activated but not Mg(2+)/EGTA-activated leukocyte function-associated antigen-1 (LFA-1; alpha(L)beta(2))-mediated adhesion to ICAM-1. Here we investigated the allosteric inhibitory property of 7E4. By using human/mouse chimeras and substitution mutations, the epitope of 7E4 was mapped to Val(407), located in the mid-region of the beta(2) hybrid domain. Two sets of constitutively active LFA-1 variants were used to examine the effect of 7E4 on LFA-1/ICAM-1 binding. 7E4 attenuated the binding of variants that have modifications to regions membrane proximal with respect to the beta(2) hybrid domain. In contrast, the inhibitory effect was minimal on variants with alterations in the alpha(L) I- and beta(2) I-like domains preceding the hybrid domain. Furthermore, 7E4 abrogated LFA-1/ICAM-1 adhesion of phorbol 12-myristate 13-acetate-treated MOLT-4 cells. Our data demonstrate that interaction between the hybrid and I-like domain is critical for the regulation of LFA-1-mediated adhesion.
Collapse
Affiliation(s)
- Emilia Tng
- Medical Research Council Immunochemistry Unit, Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU, Oxford, UK
| | | | | | | | | |
Collapse
|
38
|
Zecchinon L, Fett T, Baise E, Desmecht D. Molecular cloning and characterisation of the CD18 partner in ovine (Ovis aries) β2-integrins. Gene 2004; 334:47-52. [PMID: 15256254 DOI: 10.1016/j.gene.2004.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Revised: 03/01/2004] [Accepted: 03/09/2004] [Indexed: 11/24/2022]
Abstract
The leukocyte integrins play a critical role in a number of cellular adhesive interactions during the immune response. We describe here the isolation and characterization of the ovine beta(2) (CD18) subunit, common to the leukocyte beta(2)-integrin family. The deduced 770-amino-acid sequence reveals a transmembrane protein with 81%, 83% and 95% identity with its murine, human and bovine homologues, respectively. Comparisons of CD18 sequences emphasize the functional importance of the beta(2) subunit I-like domain and included metal ion-dependent adhesion site (MIDAS)-like motif and confirm that of the cytoplasmic tail. The data provided here will offer the possibility to explore new avenues in studies based on the ovine model.
Collapse
Affiliation(s)
- L Zecchinon
- Department of Pathology, Faculty of Veterinary Medicine, University of Liège, FMV Sart Tilman B43, B-4000 Liège, Belgium
| | | | | | | |
Collapse
|
39
|
Luo BH, Strokovich K, Walz T, Springer TA, Takagi J. Allosteric beta1 integrin antibodies that stabilize the low affinity state by preventing the swing-out of the hybrid domain. J Biol Chem 2004; 279:27466-71. [PMID: 15123676 DOI: 10.1074/jbc.m404354200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ligand binding function of integrins can be modulated by various monoclonal antibodies by both direct and indirect mechanisms. We have characterized an anti-beta(1) antibody, SG/19, that had been reported to inhibit the function of the beta(1) integrin on the cell surface. SG/19 recognized the wild type beta(1) subunit that exists in a conformational equilibrium between the high and low affinity states but bound poorly to a mutant beta(1) integrin that had been locked in a high affinity state. Epitope mapping of SG/19 revealed that Thr(82) in the beta(1) subunit, located at the outer face of the boundary between the I-like and hybrid domains, was the key binding determinant for this antibody. Direct visualization of the alpha (5)beta(1) headpiece fragment in complex with SG/19 Fab with electron microscopy confirmed the location of the binding surface and showed that the ligand binding site is not occluded by the bound Fab. Surface plasmon resonance showed that alpha (5)beta(1) integrin bound by SG/19 maintained a low affinity toward its physiological ligand fibronectin (Fn) whereas binding by function-blocking anti-alpha(5) antibodies resulted in a complete loss of fibronectin binding. Thus a class of the anti-beta antibodies represented by SG/19 attenuate the ligand binding function by restricting the conformational shift to the high affinity state involving the swing-out of the hybrid domain without directly interfering with ligand docking.
Collapse
Affiliation(s)
- Bing-Hao Luo
- The CBR Institute for Biomedical Research and Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
40
|
Yang W, Shimaoka M, Chen J, Springer TA. Activation of integrin beta-subunit I-like domains by one-turn C-terminal alpha-helix deletions. Proc Natl Acad Sci U S A 2004; 101:2333-8. [PMID: 14983010 PMCID: PMC356951 DOI: 10.1073/pnas.0307291101] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Integrins contain two structurally homologous but distantly related domains: an I-like domain that is present in all beta-subunits and an I domain that is present in some alpha-subunits. Atomic resolution and mutagenesis studies of alpha I domains demonstrate a C-terminal, axial displacement of the alpha7-helix that allosterically regulates the shape and affinity of the ligand-binding site. Atomic resolution studies of beta I-like domains have thus far demonstrated no similar alpha7-helix displacement; however, other studies are consistent with the idea that alpha I and beta I-like domains undergo structurally analogous rearrangements. To test the hypothesis that C-terminal, axial displacement of the alpha7-helix, coupled with beta6-alpha7 loop reshaping, activates beta I-like domains, we have mimicked the effect of alpha7-helix displacement on the beta6-alpha7 loop by shortening the alpha7-helix by two independent, four-residue deletions of about one turn of alpha-helix. In the case of integrin alphaLbeta2, each mutant exhibits constitutively high affinity for the physiological ligand intercellular adhesion molecule 1 and full exposure of a beta I-like domain activation-dependent antibody epitope. In the case of analogous mutants in integrin alpha4beta7, each mutant shows the activated phenotype of firm adhesion, rather than rolling adhesion, in shear flow. The results show that integrins that contain or lack alpha I domains share a common pathway of beta I-like domain activation, and they suggest that beta I-like and alpha I domain activation involves structurally analogous alpha7-helix axial displacements.
Collapse
Affiliation(s)
- Wei Yang
- CBR Institute for Biomedical Research and Department of Pathology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
41
|
Yang W, Shimaoka M, Salas A, Takagi J, Springer TA. Intersubunit signal transmission in integrins by a receptor-like interaction with a pull spring. Proc Natl Acad Sci U S A 2004; 101:2906-11. [PMID: 14978279 PMCID: PMC365718 DOI: 10.1073/pnas.0307340101] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The function of some multidomain proteins is regulated by interdomain communication. We use second-site suppressor cysteine mutations to test a hypothesis on how the inserted (I)-like domain in the integrin beta-subunit regulates ligand binding by the neighboring I domain in the integrin alpha-subunit [Huth, J. R., Olejniczak, E. T., Mendoza, R., Liang, H., Harris, E. A., et al. (2000) Proc. Natl. Acad. Sci. USA 97, 5231-5236; and Alonso, J. L., Essafi, M., Xiong, J. P., Stehle, T. & Arnaout, M. A. (2002) Curr. Biol. 12, R340-R342]. The hypothesis is that an interaction between the beta I-like metal ion-dependent adhesion site (MIDAS) and an intrinsic ligand in the linker following the alpha I domain, Glu-310, exerts a pull that activates the alpha I domain. Individual mutation of alpha(L) linker residue Glu-310 or beta(2) MIDAS residues Ala-210 or Tyr-115 to cysteine abolishes I domain activation, whereas the double mutation of alpha(L)-E310C with either beta(2)-A210C or beta(2)-Y115C forms a disulfide bond that constitutively activates ligand binding. The disulfide-bonded mutant is resistant to small molecule antagonists that bind to the beta I-like domain near its interface with the alpha I domain and inhibit communication between these domains but remains susceptible to small molecule antagonists that bind underneath the I domain alpha 7-helix and certain allosteric antagonistic antibodies. Thus, the alpha 7-helix and its linker are better modeled as a pull spring than a bell rope. The results suggest that alpha(L) residue Glu-310, which is universally conserved in all I domain-containing integrins, functions as an intrinsic ligand for the beta I-like domain, and that when integrins are activated, the beta I-like MIDAS binds to Glu-310, pulls the spring, and thereby activates the alpha I domain.
Collapse
Affiliation(s)
- Wei Yang
- The CBR Institute for Biomedical Research and Department of Pathology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
42
|
Springer TA, Wang JH. The three-dimensional structure of integrins and their ligands, and conformational regulation of cell adhesion. ADVANCES IN PROTEIN CHEMISTRY 2004; 68:29-63. [PMID: 15500858 DOI: 10.1016/s0065-3233(04)68002-8] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Integrins are a structurally elaborate family of adhesion molecules that transmit signals bidirectionally across the plasma membrane by undergoing large-scale structural rearrangements. By regulating cell-cell and cell-matrix contacts, integrins participate in a wide-range of biological interactions including development, tissue repair, angiogenesis, inflammation and hemostasis. From a therapeutic standpoint, integrins are probably the most important class of cell adhesion receptors. Structural investigations on integrin-ligand interactions reveal remarkable features in molecular detail. These details include the atomic basis for divalent cation-dependent ligand binding and how conformational signals are propagated long distances from one domain to another between the cytoplasm and the extracellular ligand binding site that regulate affinity for ligand, and conversely, cytosolic signaling pathways.
Collapse
Affiliation(s)
- Timothy A Springer
- CBR Institute for Biomedical Research, Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
43
|
Shimaoka M, Salas A, Yang W, Weitz-Schmidt G, Springer TA. Small molecule integrin antagonists that bind to the beta2 subunit I-like domain and activate signals in one direction and block them in the other. Immunity 2003; 19:391-402. [PMID: 14499114 DOI: 10.1016/s1074-7613(03)00238-3] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Leukocyte integrins contain an inserted (I) domain in their alpha subunits and an I-like domain in their beta(2) subunit, which directly bind ligand and regulate ligand binding, respectively. We describe a novel mechanistic class of integrin inhibitors that bind to the metal ion-dependent adhesion site of the beta(2) I-like domain and prevent its interaction with and activation of the alpha(L) I domain. The inhibitors do not bind to the alpha(L) I domain but stabilize alpha/beta subunit association and can show selectivity for alpha(L)beta(2) compared to alpha(M)beta(2). The inhibitors reveal a crucial intersection for relaying conformational signals within integrin extracellular domains. While blocking signals in one direction to the I domain, the antagonists induce the active conformation of the I-like domain and stalk domains, and thus transmit conformational signals in the other direction toward the transmembrane domains.
Collapse
Affiliation(s)
- Motomu Shimaoka
- The CBR Institute for Biomedical Research, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
44
|
Shimaoka M, Springer TA. Therapeutic antagonists and conformational regulation of integrin function. Nat Rev Drug Discov 2003; 2:703-16. [PMID: 12951577 DOI: 10.1038/nrd1174] [Citation(s) in RCA: 248] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Integrins are a structurally elaborate family of adhesion molecules that transmit signals bi-directionally across the plasma membrane by undergoing large-scale structural rearrangements. By regulating cell-cell and cell-matrix contacts, integrins participate in a wide range of biological processes, including development, tissue repair, angiogenesis, inflammation and haemostasis. From a therapeutic standpoint, integrins are probably the most important class of cell-adhesion receptors. Recent progress in the development of integrin antagonists has resulted in their clinical application and has shed new light on integrin biology. On the basis of their mechanism of action, small-molecule integrin antagonists fall into three different classes. Each of these classes affect the equilibria that relate integrin conformational states, but in different ways.
Collapse
Affiliation(s)
- Motomu Shimaoka
- The Center for Blood Research, Department of Anesthesia and Pathology, Harvard Medical School, 200 Longwood, Boston, Massachussets 02115, USA
| | | |
Collapse
|
45
|
Xiong JP, Stehle T, Goodman SL, Arnaout MA. New insights into the structural basis of integrin activation. Blood 2003; 102:1155-9. [PMID: 12714499 DOI: 10.1182/blood-2003-01-0334] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integrins are cell adhesion receptors that communicate biochemical and mechanical signals in a bidirectional manner across the plasma membrane and thus influence most cellular functions. Intracellular signals switch integrins into a ligand-competent state as a result of elicited conformational changes in the integrin ectodomain. Binding of extracellular ligands induces, in turn, structural changes that convey distinct signals to the cell interior. The structural basis of this bidirectional signaling has been the focus of intensive study for the past 3 decades. In this perspective, we develop a new hypothesis for integrin activation based on recent crystallographic, electron microscopic, and biochemical studies.
Collapse
Affiliation(s)
- Jian-Ping Xiong
- Renal Unit, Leukocyte Biology and Inflammation Program, Structural Biology Program, Massachusetts General Hospital, and Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | | |
Collapse
|
46
|
Humphries MJ, McEwan PA, Barton SJ, Buckley PA, Bella J, Mould AP. Integrin structure: heady advances in ligand binding, but activation still makes the knees wobble. Trends Biochem Sci 2003; 28:313-20. [PMID: 12826403 DOI: 10.1016/s0968-0004(03)00112-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Integrins are one of the major families of cell-adhesion receptors. In the past year, the first structure of an integrin has been published, ligand-binding pockets have been defined, and mechanisms of receptor priming and activation elucidated. Like all major advances, however, these studies have raised more questions than they have answered about issues such as the mechanisms underlying ligand-binding specificity and long-range conformational regulation.
Collapse
Affiliation(s)
- Martin J Humphries
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, 2.205 Stopford Building, Oxford Road, Manchester, UK M13 9PT.
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
Cell-adhesion molecules are critical for immune response. It is well known that the inhibition of adhesion is very effective in immunotherapy and that the peptides derived from leukocyte function associated antigen (LFA-1) and intercellular adhesion molecule (ICAM-1) modulate cell-adhesion interaction. The three-dimensional structure of a cyclic peptide, Cyclo(1,12)Pen(1)-Asp(2)-Leu(3)-Ser(4)-Tyr(5)-Ser(6)-Leu(7)-Asp(8)-Asp(9)-Leu(10)-Arg(11)-Cys(12) (cLBEL) derived from the beta subunit of LFA-1 which is known to modulate homotypic T-cell-adhesion process has been studied using NMR, CD and molecular dynamics (MD) simulation. The peptide exhibits two possible conformations in solution. Structure I has a conformation with two consecutive beta-turns involving residues Tyr(5)-Ser(6)-Leu(7)-Asp(8) and Asp(9)-Leu(10)-Arg(11)-Cys(12). Structure II has a beta-turn at Tyr(5)-Ser(6)-Leu(7)-Asp(8) and forms a beta-hairpin type of conformation.
Collapse
Affiliation(s)
- Zhang Shuxing
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | | | | | | |
Collapse
|
48
|
Mould AP, Barton SJ, Askari JA, McEwan PA, Buckley PA, Craig SE, Humphries MJ. Conformational changes in the integrin beta A domain provide a mechanism for signal transduction via hybrid domain movement. J Biol Chem 2003; 278:17028-35. [PMID: 12615914 DOI: 10.1074/jbc.m213139200] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The ligand-binding head region of integrin beta subunits contains a von Willebrand factor type A domain (betaA). Ligand binding activity is regulated through conformational changes in betaA, and ligand recognition also causes conformational changes that are transduced from this domain. The molecular basis of signal transduction to and from betaA is uncertain. The epitopes of mAbs 15/7 and HUTS-4 lie in the beta(1) subunit hybrid domain, which is connected to the lower face of betaA. Changes in the expression of these epitopes are induced by conformational changes in betaA caused by divalent cations, function perturbing mAbs, or ligand recognition. Recombinant truncated alpha(5)beta(1) with a mutation L358A in the alpha7 helix of betaA has constitutively high expression of the 15/7 and HUTS-4 epitopes, mimics the conformation of the ligand-occupied receptor, and has high constitutive ligand binding activity. The epitopes of 15/7 and HUTS-4 map to a region of the hybrid domain that lies close to an interface with the alpha subunit. Taken together, these data suggest that the transduction of conformational changes through betaA involves shape shifting in the alpha7 helix region, which is linked to a swing of the hybrid domain away from the alpha subunit.
Collapse
Affiliation(s)
- A Paul Mould
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, University of Manchester, Manchester M13 9PT, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
49
|
Jois SDS, Teruna TJ. A peptide derived from LFA-1 protein that modulates T-cell adhesion binds to soluble ICAM-1 protein. J Biomol Struct Dyn 2003; 20:635-44. [PMID: 12643766 DOI: 10.1080/07391102.2003.10506880] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Leukocyte function associated antigen 1 (LFA-1) and intercellular adhesion molecule 1 (ICAM-1) have been shown to be critical for adhesion process and immune response. Modulation or inhibition of the interaction between LFA-1/ICAM-1 interactions can result in therapeutic effects. Our group and others have shown that peptides derived from ICAM-1 or LFA-1 inhibit adhesion in a homotypic T-cell adhesion assay. It is likely that the peptides derived from ICAM-1 bind to LFA-1 and peptides derived from LFA-1 bind to ICAM-1 and inhibit the adhesion interaction. However, there are no concrete experimental evidence to show that peptides bind to either LFA-1 or ICAM-1 and inhibit the adhesion. Using NMR, CD and docking studies we have shown that an LFA-1 derived peptide binds to soluble ICAM-1. Docking studies using "autodock" resulted in LFA-1 peptide interacting with the ICAM-1 protein near Glu34. The proposed model based on our experimental data indicated that the LFA-1 peptide interacts with the protein via three intermolecular hydrogen bonds. Hydrophobic interactions also play a role in stabilizing the complex.
Collapse
Affiliation(s)
- Seetharama D S Jois
- Department of Pharmacy, 18 Science Drive 4, National University of Singapore, Singapore 117543, Singapore.
| | | |
Collapse
|
50
|
Abstract
In their roles as major adhesion receptors, integrins signal across the plasma membrane in both directions. Recent structural and cell biological data suggest models for how integrins transmit signals between their extracellular ligand binding adhesion sites and their cytoplasmic domains, which link to the cytoskeleton and to signal transduction pathways. Long-range conformational changes couple these functions via allosteric equilibria.
Collapse
Affiliation(s)
- Richard O Hynes
- Howard Hughes Medical Institute, Center for Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|