1
|
Borović Šunjić S, Jaganjac M, Vlainić J, Halasz M, Žarković N. Lipid Peroxidation-Related Redox Signaling in Osteosarcoma. Int J Mol Sci 2024; 25:4559. [PMID: 38674143 PMCID: PMC11050283 DOI: 10.3390/ijms25084559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Oxidative stress and lipid peroxidation play important roles in numerous physiological and pathological processes, while the bioactive products of lipid peroxidation, lipid hydroperoxides and reactive aldehydes, act as important mediators of redox signaling in normal and malignant cells. Many types of cancer, including osteosarcoma, express altered redox signaling pathways. Such redox signaling pathways protect cancer cells from the cytotoxic effects of oxidative stress, thus supporting malignant transformation, and eventually from cytotoxic anticancer therapies associated with oxidative stress. In this review, we aim to explore the status of lipid peroxidation in osteosarcoma and highlight the involvement of lipid peroxidation products in redox signaling pathways, including the involvement of lipid peroxidation in osteosarcoma therapies.
Collapse
Affiliation(s)
- Suzana Borović Šunjić
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia; (M.J.); (J.V.); (M.H.)
| | | | | | | | - Neven Žarković
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia; (M.J.); (J.V.); (M.H.)
| |
Collapse
|
2
|
Kryszczuk M, Kowalczuk O. Significance of NRF2 in physiological and pathological conditions an comprehensive review. Arch Biochem Biophys 2022; 730:109417. [DOI: 10.1016/j.abb.2022.109417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 11/30/2022]
|
3
|
Heurtaux T, Bouvier DS, Benani A, Helgueta Romero S, Frauenknecht KBM, Mittelbronn M, Sinkkonen L. Normal and Pathological NRF2 Signalling in the Central Nervous System. Antioxidants (Basel) 2022; 11:1426. [PMID: 35892629 PMCID: PMC9394413 DOI: 10.3390/antiox11081426] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
The nuclear factor erythroid 2-related factor 2 (NRF2) was originally described as a master regulator of antioxidant cellular response, but in the time since, numerous important biological functions linked to cell survival, cellular detoxification, metabolism, autophagy, proteostasis, inflammation, immunity, and differentiation have been attributed to this pleiotropic transcription factor that regulates hundreds of genes. After 40 years of in-depth research and key discoveries, NRF2 is now at the center of a vast regulatory network, revealing NRF2 signalling as increasingly complex. It is widely recognized that reactive oxygen species (ROS) play a key role in human physiological and pathological processes such as ageing, obesity, diabetes, cancer, and neurodegenerative diseases. The high oxygen consumption associated with high levels of free iron and oxidizable unsaturated lipids make the brain particularly vulnerable to oxidative stress. A good stability of NRF2 activity is thus crucial to maintain the redox balance and therefore brain homeostasis. In this review, we have gathered recent data about the contribution of the NRF2 pathway in the healthy brain as well as during metabolic diseases, cancer, ageing, and ageing-related neurodegenerative diseases. We also discuss promising therapeutic strategies and the need for better understanding of cell-type-specific functions of NRF2 in these different fields.
Collapse
Affiliation(s)
- Tony Heurtaux
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, 4367 Belvaux, Luxembourg; (S.H.R.); (M.M.); (L.S.)
- Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg; (D.S.B.); (K.B.M.F.)
| | - David S. Bouvier
- Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg; (D.S.B.); (K.B.M.F.)
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), 3555 Dudelange, Luxembourg
- Luxembourg Centre of Systems Biomedicine (LCSB), University of Luxembourg, 4367 Belvaux, Luxembourg
| | - Alexandre Benani
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000 Dijon, France;
| | - Sergio Helgueta Romero
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, 4367 Belvaux, Luxembourg; (S.H.R.); (M.M.); (L.S.)
- Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg; (D.S.B.); (K.B.M.F.)
| | - Katrin B. M. Frauenknecht
- Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg; (D.S.B.); (K.B.M.F.)
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), 3555 Dudelange, Luxembourg
| | - Michel Mittelbronn
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, 4367 Belvaux, Luxembourg; (S.H.R.); (M.M.); (L.S.)
- Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg; (D.S.B.); (K.B.M.F.)
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), 3555 Dudelange, Luxembourg
- Luxembourg Centre of Systems Biomedicine (LCSB), University of Luxembourg, 4367 Belvaux, Luxembourg
- Luxembourg Institute of Health (LIH), 1526 Luxembourg, Luxembourg
| | - Lasse Sinkkonen
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, 4367 Belvaux, Luxembourg; (S.H.R.); (M.M.); (L.S.)
| |
Collapse
|
4
|
Wang D, Wang C, Hao X, Carter G, Carter R, Welch WJ, Wilcox CS. Activation of Nrf2 in Mice Causes Early Microvascular Cyclooxygenase-Dependent Oxidative Stress and Enhanced Contractility. Antioxidants (Basel) 2022; 11:antiox11050845. [PMID: 35624708 PMCID: PMC9137799 DOI: 10.3390/antiox11050845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 12/05/2022] Open
Abstract
Nuclear factor erythroid factor E2-related factor 2 (Nrf2) transcribes antioxidant genes that reduce the blood pressure (BP), yet its activation with tert-butylhydroquinone (tBHQ) in mice infused with angiotensin II (Ang II) increased mean arterial pressure (MAP) over the first 4 days of the infusion. Since tBHQ enhanced cyclooxygenase (COX) 2 expression in vascular smooth muscle cells (VSMCs), we tested the hypothesis that tBHQ administration during an ongoing Ang II infusion causes an early increase in microvascular COX-dependent reactive oxygen species (ROS) and contractility. Mesenteric microarteriolar contractility was assessed on a myograph, and ROS by RatioMaster™. Three days of oral tBHQ administration during the infusion of Ang II increased the mesenteric microarteriolar mRNA for p47phox, the endothelin type A receptor and thromboxane A2 synthase, and increased the excretion of 8-isoprostane F2α and the microarteriolar ROS and contractions to a thromboxane A2 (TxA2) agonist (U-46,619) and endothelin 1 (ET1). These were all prevented in Nrf2 knockout mice. Moreover, the increases in ROS and contractility were prevented in COX1 knockout mice with blockade of COX2 and by blockade of thromboxane prostanoid receptors (TPRs). In conclusion, the activation of Nrf2 over 3 days of Ang II infusion enhances microarteriolar ROS and contractility, which are dependent on COX1, COX2 and TPRs. Therefore, the blockade of these pathways may diminish the early adverse cardiovascular disease events that have been recorded during the initiation of Nrf2 therapy.
Collapse
Affiliation(s)
- Dan Wang
- Division of Nephrology and Hypertension and Hypertension Center, Georgetown University, Washington, DC 20007, USA
| | - Cheng Wang
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Xueqin Hao
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang 471023, China
| | - Gabriela Carter
- Division of Nephrology and Hypertension and Hypertension Center, Georgetown University, Washington, DC 20007, USA
| | - Rafaela Carter
- Division of Nephrology and Hypertension and Hypertension Center, Georgetown University, Washington, DC 20007, USA
| | - William J Welch
- Division of Nephrology and Hypertension and Hypertension Center, Georgetown University, Washington, DC 20007, USA
| | - Christopher S Wilcox
- Division of Nephrology and Hypertension and Hypertension Center, Georgetown University, Washington, DC 20007, USA
| |
Collapse
|
5
|
Hattori K, Matsuda N, Hattori Y. [Vascular hyperpermeable molecules potentially contributing to the development of pulmonary edema in sepsis-associated ARDS]. Nihon Yakurigaku Zasshi 2022; 157:226-231. [PMID: 35781449 DOI: 10.1254/fpj.22013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The acute respiratory distress syndrome (ARDS) is an important cause of respiratory failure in critically ill patients and may become a life-threatening condition where inflammation of the lungs may begin in one lung but eventually affects both, leading to damage to the alveoli and surrounding small blood vessels. ARDS is particularly characterized by noncardiogenic pulmonary edema caused by an increase in pulmonary capillary permeability. Several clinical disorders can precipitate in ARDS, including pneumonia, sepsis, aspiration of gastric contents, and major trauma. The most common cause of ARDS is sepsis, which is a serious and widespread infection of the bloodstream and is now defined as life-threatening organ dysfunction due to a dysregulated reponse of the host to infection. In sepsis, a number of vascular hyperpermeable factors, such as histamine, nitric oxide, thromboxane A2, and vascular endothelial growth factor, can be overproducted and contribute to the development of pulmonary edema. Given that sepsis can be regarded as a gene-related disorder, the nucleic-acid based gene therapeutic strategy to regulate some transcription factors involved in expression of vascular hyperpermeable genes may be considered to be a promising novel approach for treatment of ARDS in sepsis.
Collapse
Affiliation(s)
- Kohshi Hattori
- Department of Anesthesiology, Center Hospital of the National Center for Global Health and Medicine
| | - Naoyuki Matsuda
- Department of Emergency and Critical Care Medicine, Nagoya University Graduate School of Medicine
| | - Yuichi Hattori
- Advanced Research Promotion Center, Health Sciences University of Hokkaido
| |
Collapse
|
6
|
Mata A, Cadenas S. The Antioxidant Transcription Factor Nrf2 in Cardiac Ischemia-Reperfusion Injury. Int J Mol Sci 2021; 22:11939. [PMID: 34769371 PMCID: PMC8585042 DOI: 10.3390/ijms222111939] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 10/30/2021] [Indexed: 12/25/2022] Open
Abstract
Nuclear factor erythroid-2 related factor 2 (Nrf2) is a transcription factor that controls cellular defense responses against toxic and oxidative stress by modulating the expression of genes involved in antioxidant response and drug detoxification. In addition to maintaining redox homeostasis, Nrf2 is also involved in various cellular processes including metabolism and inflammation. Nrf2 activity is tightly regulated at the transcriptional, post-transcriptional and post-translational levels, which allows cells to quickly respond to pathological stress. In the present review, we describe the molecular mechanisms underlying the transcriptional regulation of Nrf2. We also focus on the impact of Nrf2 in cardiac ischemia-reperfusion injury, a condition that stimulates the overproduction of reactive oxygen species. Finally, we analyze the protective effect of several natural and synthetic compounds that induce Nrf2 activation and protect against ischemia-reperfusion injury in the heart and other organs, and their potential clinical application.
Collapse
Affiliation(s)
- Ana Mata
- Centro de Biología Molecular “Severo Ochoa” (CSIC/UAM), 28049 Madrid, Spain;
- Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006 Madrid, Spain
| | - Susana Cadenas
- Centro de Biología Molecular “Severo Ochoa” (CSIC/UAM), 28049 Madrid, Spain;
- Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006 Madrid, Spain
| |
Collapse
|
7
|
Emori C, Ito H, Fujii W, Naito K, Sugiura K. Oocytes suppress FOXL2 expression in cumulus cells in mice†. Biol Reprod 2021; 103:85-93. [PMID: 32307529 DOI: 10.1093/biolre/ioaa054] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/07/2020] [Accepted: 04/16/2020] [Indexed: 11/15/2022] Open
Abstract
Cumulus cells and mural granulosa cells (MGCs) play distinct roles during follicular development, and normal development of these cell lineages is critical for the female fertility. Transcriptomic diversification between the two cell lineages is obviously a critical mechanism for their functional diversification; however, the transcriptional regulators responsible for this event have not been fully defined. In this study, we sought to identify key transcriptional regulators responsible for the differential gene expression between the two cell lineages. In silico analysis of transcriptomic comparison between cumulus cells and MGCs identified several candidate regulators responsible for the diversification of the two cell lineages. Among them, we herein focused on forkhead box L2 (FOXL2) and showed that expressions of FOXL2 as well as its target transcripts were differentially regulated between cumulus cells and MGCs. The lower expression of FOXL2 in cumulus cells seemed to be due to the suppression by oocyte-derived paracrine signals. These results suggest that FOXL2 is one of the critical transcription factors that determine cumulus cell and MGC lineages under the control of oocytes.
Collapse
Affiliation(s)
- Chihiro Emori
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Haruka Ito
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Wataru Fujii
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kunihiko Naito
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Koji Sugiura
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Abstract
The gene expression program induced by NRF2 transcription factor plays a critical role in cell defense responses against a broad variety of cellular stresses, most importantly oxidative stress. NRF2 stability is fine-tuned regulated by KEAP1, which drives its degradation in the absence of oxidative stress. In the context of cancer, NRF2 cytoprotective functions were initially linked to anti-oncogenic properties. However, in the last few decades, growing evidence indicates that NRF2 acts as a tumor driver, inducing metastasis and resistance to chemotherapy. Constitutive activation of NRF2 has been found to be frequent in several tumors, including some lung cancer sub-types and it has been associated to the maintenance of a malignant cell phenotype. This apparently contradictory effect of the NRF2/KEAP1 signaling pathway in cancer (cell protection against cancer versus pro-tumoral properties) has generated a great controversy about its functions in this disease. In this review, we will describe the molecular mechanism regulating this signaling pathway in physiological conditions and summarize the most important findings related to the role of NRF2/KEAP1 in lung cancer. The focus will be placed on NRF2 activation mechanisms, the implication of those in lung cancer progression and current therapeutic strategies directed at blocking NRF2 action.
Collapse
|
9
|
NRF2, a Transcription Factor for Stress Response and Beyond. Int J Mol Sci 2020; 21:ijms21134777. [PMID: 32640524 PMCID: PMC7369905 DOI: 10.3390/ijms21134777] [Citation(s) in RCA: 743] [Impact Index Per Article: 185.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 12/16/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor that regulates the cellular defense against toxic and oxidative insults through the expression of genes involved in oxidative stress response and drug detoxification. NRF2 activation renders cells resistant to chemical carcinogens and inflammatory challenges. In addition to antioxidant responses, NRF2 is involved in many other cellular processes, including metabolism and inflammation, and its functions are beyond the originally envisioned. NRF2 activity is tightly regulated through a complex transcriptional and post-translational network that enables it to orchestrate the cell’s response and adaptation to various pathological stressors for the homeostasis maintenance. Elevated or decreased NRF2 activity by pharmacological and genetic manipulations of NRF2 activation is associated with many metabolism- or inflammation-related diseases. Emerging evidence shows that NRF2 lies at the center of a complex regulatory network and establishes NRF2 as a truly pleiotropic transcription factor. Here we summarize the complex regulatory network of NRF2 activity and its roles in metabolic reprogramming, unfolded protein response, proteostasis, autophagy, mitochondrial biogenesis, inflammation, and immunity.
Collapse
|
10
|
Carlson J, Price L, Deng H. Nrf2 and the Nrf2-Interacting Network in Respiratory Inflammation and Diseases. NRF2 AND ITS MODULATION IN INFLAMMATION 2020. [PMCID: PMC7241096 DOI: 10.1007/978-3-030-44599-7_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Atmospheric pollutants and cigarette smoke influence the human respiratory system and induce airway inflammation, injury, and pathogenesis. Activation of the NF-E2-related factor 2 (Nrf2) transcription factor and downstream antioxidant response element (ARE)-mediated transcriptions play a central role in protecting respiratory cells against reactive oxidative species (ROS) that are induced by airway toxins and inflammation. Recent studies have revealed that Nrf2 can also target and activate many genes involved in developmental programs such as cell proliferation, cell differentiation, cell death, and metabolism. Nrf2 is closely regulated by the interaction with kelch-like ECH-associated protein 1 (Keap1), while also directly interacts with a number of other proteins, including inflammatory factors, transcription factors, autophagy mediators, kinases, epigenetic modifiers, etc. It is believed that the multiple target genes and the complicated interacting network of Nrf2 account for the roles of Nrf2 in physiologies and pathogeneses. This chapter summarizes the molecular functions and protein interactions of Nrf2, as well as the roles of Nrf2 and the Nrf2-interacting network in respiratory inflammation and diseases, including acute lung injury (ALI), asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis (PF), cystic fibrosis (CF), viral/bacterial infections, and lung cancers. Therapeutic applications that target Nrf2 and its interacting proteins in respiratory diseases are also reviewed.
Collapse
|
11
|
Effects of Docosahexaenoic Acid and Its Peroxidation Product on Amyloid-β Peptide-Stimulated Microglia. Mol Neurobiol 2019; 57:1085-1098. [PMID: 31677009 DOI: 10.1007/s12035-019-01805-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/26/2019] [Indexed: 12/13/2022]
Abstract
Growing evidence suggests that docosahexaenoic acid (DHA) exerts neuroprotective effects, although the mechanism(s) underlying these beneficial effects are not fully understood. Here we demonstrate that DHA, but not arachidonic acid (ARA), suppressed oligomeric amyloid-β peptide (oAβ)-induced reactive oxygen species (ROS) production in primary mouse microglia and immortalized mouse microglia (BV2). Similarly, DHA but not ARA suppressed oAβ-induced increases in phosphorylated cytosolic phospholipase A2 (p-cPLA2), inducible nitric oxide synthase (iNOS), and tumor necrosis factor-α (TNF-α) in BV2 cells. LC-MS/MS assay indicated the ability for DHA to cause an increase in 4-hydroxyhexenal (4-HHE) and suppress oAβ-induced increase in 4-hydroxynonenal (4-HNE). Although oAβ did not alter the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, exogenous DHA, ARA as well as low concentrations of 4-HHE and 4-HNE upregulated this pathway and increased production of heme oxygenase-1 (HO-1) in microglial cells. These results suggest that DHA modulates ARA metabolism in oAβ-stimulated microglia through suppressing oxidative and inflammatory pathways and upregulating the antioxidative stress pathway involving Nrf2/HO-1. Understanding the mechanism(s) underlying the beneficial effects of DHA on microglia should shed light into nutraceutical therapy for the prevention and treatment of Alzheimer's disease (AD).
Collapse
|
12
|
Vallée A, Vallée JN, Lecarpentier Y. Metabolic reprogramming in atherosclerosis: Opposed interplay between the canonical WNT/β-catenin pathway and PPARγ. J Mol Cell Cardiol 2019; 133:36-46. [PMID: 31153873 DOI: 10.1016/j.yjmcc.2019.05.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 01/08/2023]
Abstract
Atherosclerosis, a chronic inflammatory and age-related disease, is a complex mechanism presenting a dysregulation of vessel structures. During this process, the canonical WNT/β-catenin pathway is increased whereas PPARγ is downregulated. The two systems act in an opposite manner. This paper reviews the opposing interplay of these systems and their metabolic-reprogramming pathway in atherosclerosis. Activation of the WNT/β-catenin pathway enhances the transcription of targets involved in inflammation, endothelial dysfunction, the proliferation of vascular smooth muscle cells, and vascular calcification. This complex mechanism, which is partly controlled by the WNT/β-catenin pathway, presents several metabolic dysfunctions. This phenomenon, called aerobic glycolysis (or the Warburg effect), consists of a shift in ATP production from mitochondrial oxidative phosphorylation to aerobic glycolysis, leading to the overproduction of intracellular lactate. This mechanism is partially due to the injury of mitochondrial respiration and an increase in the glycolytic pathway. In contrast, PPARγ agonists downregulate the WNT/β-catenin pathway. Therefore, the development of therapeutic targets, such as PPARγ agonists, for the treatment of atherosclerosis could be an interesting and innovative way of counteracting the canonical WNT pathway.
Collapse
Affiliation(s)
- Alexandre Vallée
- Diagnosis and Therapeutic Center, Hypertension and Cardiovascular Prevention Unit, Hotel-Dieu Hospital, AP-HP, Université Paris Descartes, Paris, France.
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), 80054 Amiens, France; Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, Poitiers, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), 6-8 rue Saint-fiacre, 77100 Meaux, France
| |
Collapse
|
13
|
Hwang JS, Lee WJ, Hur J, Lee HG, Kim E, Lee GH, Choi MJ, Lim DS, Paek KS, Seo HG. Rosiglitazone-dependent dissociation of HuR from PPAR-γ regulates adiponectin expression at the posttranscriptional level. FASEB J 2019; 33:7707-7720. [PMID: 30897345 DOI: 10.1096/fj.201802643r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Peroxisome proliferator-activated receptor (PPAR)-γ has been implicated as a key player in the regulation of adiponectin levels via both transcriptional and posttranscriptional mechanisms. Herein, we show that PPAR-γ interacts with human antigen R (HuR) and that the PPAR-γ-HuR complex dissociates following activation of PPAR-γ by rosiglitazone, a specific ligand of PPAR-γ. This rosiglitazone-dependent dissociation of HuR from PPAR-γ leads to nucleocytoplasmic shuttling of HuR and its binding to the 3'-UTR of adiponectin mRNA. PPAR-γ with H321A and H447A double mutation (PPAR-γH321/447A), a mutant lacking ligand-binding activity, impaired HuR dissociation from the PPAR-γ-HuR complex, resulting in reduced nucleocytoplasmic shuttling, even in the presence of rosiglitazone. Consequently, rosiglitazone up-regulated adiponectin levels by modulating the stability of adiponectin mRNA, whereas these effects were abolished by HuR ablation or blocked in cells expressing the PPAR-γH321/447A mutant, indicating that the interaction of PPAR-γ and HuR is a critical event during adiponectin expression. Taken together, the findings demonstrate a novel mechanism for regulating adiponectin expression at the posttranscriptional level and suggest that ligand-mediated activation of PPAR-γ to interfere with interaction of HuR could offer a therapeutic strategy for inflammation-associated diseases that involve decreased adiponectin mRNA stability.-Hwang, J. S., Lee, W. J., Hur, J., Lee, H. G., Kim, E., Lee, G. H., Choi, M.-J., Lim, D.-S., Paek, K. S., Seo, H. G. Rosiglitazone-dependent dissociation of HuR from PPAR-γ regulates adiponectin expression at the posttranscriptional level.
Collapse
Affiliation(s)
- Jung Seok Hwang
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| | - Won Jin Lee
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| | - Jinwoo Hur
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| | - Hyuk Gyoon Lee
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| | - Eunsu Kim
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| | - Gyeong Hee Lee
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| | - Mi-Jung Choi
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| | - Dae-Seog Lim
- Department of Biotechnology, CHA University, Seongnam, Korea
| | | | - Han Geuk Seo
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| |
Collapse
|
14
|
Digoxin sensitizes gemcitabine-resistant pancreatic cancer cells to gemcitabine via inhibiting Nrf2 signaling pathway. Redox Biol 2019; 22:101131. [PMID: 30735911 PMCID: PMC6365940 DOI: 10.1016/j.redox.2019.101131] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/16/2019] [Accepted: 01/29/2019] [Indexed: 12/21/2022] Open
Abstract
Chemoresistance is a major therapeutic obstacle in the treatment of human pancreatic ductal adenocarcinoma (PDAC). As an oxidative stress responsive transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2) regulates the expression of cytoprotective genes. Nrf2 not only plays a critical role in chemoprevention, but also contributes to chemoresistance. In this study, we found that digoxin markedly reversed drug resistance of gemcitabine by inhibiting Nrf2 signaling in SW1990/Gem and Panc-1/Gem cells. Further research revealed that digoxin regulated Nrf2 at transcriptional level. In in vivo study, we found that digoxin and gemcitabine in combination inhibited tumor growth more substantially when compared with gemcitabine treatment alone in SW1990/Gem-shControl cells-derived xenografts. In the meantime, SW1990/Gem-shNrf2 cells-derived xenografts responded to gemcitabine and combination treatment similarly, suggesting that digoxin sensitized gemcitabine-resistant human pancreatic cancer to gemcitabine, which was Nrf2 dependent. These results demonstrated that digoxin might be used as a promising adjuvant sensitizer to reverse chemoresistance of gemcitabine-resistant pancreatic cancer to gemcitabine via inhibiting Nrf2 signaling. Digoxin could reverse drug resistance of gemcitabine in gemcitabine-resistant pancreatic cancer cells. Digoxin significantly inhibited Nrf2 signaling in gemcitabine-resistant pancreatic cancer cells. Digoxin-mediated reversing drug resistance of gemcitabine in gemcitabine-resistant pancreatic cancer cells was Nrf2 dependent.
Collapse
|
15
|
Abstract
SIGNIFICANCE Nuclear factor E2-related factor 2 (Nrf2) is a transcription factor that coordinates the basal and stress-inducible activation of a vast array of cytoprotective genes. Understanding the regulation of Nrf2 activity and downstream pathways has major implications for human health. Recent Advances: Nrf2 regulates the transcription of components of the glutathione and thioredoxin antioxidant systems, as well as enzymes involved in phase I and phase II detoxification of exogenous and endogenous products, NADPH regeneration, and heme metabolism. It therefore represents a crucial regulator of the cellular defense mechanisms against xenobiotic and oxidative stress. In addition to antioxidant responses, Nrf2 is involved in other cellular processes, such as autophagy, intermediary metabolism, stem cell quiescence, and unfolded protein response. Given the wide range of processes that Nrf2 controls, its activity is tightly regulated at multiple levels. Here, we review the different modes of regulation of Nrf2 activity and the current knowledge of Nrf2-mediated transcriptional control. CRITICAL ISSUES It is now clear that Nrf2 lies at the center of a complex regulatory network. A full comprehension of the Nrf2 program will require an integrated consideration of all the different factors determining Nrf2 activity. FUTURE DIRECTIONS Additional computational and experimental studies are needed to obtain a more dynamic global view of Nrf2-mediated gene regulation. In particular, studies comparing how the Nrf2-dependent network changes from a physiological to a pathological condition can provide insight into mechanisms of disease and instruct new treatment strategies.
Collapse
Affiliation(s)
- Claudia Tonelli
- 1 Cold Spring Harbor Laboratory , Cold Spring Harbor, New York
| | | | - David A Tuveson
- 1 Cold Spring Harbor Laboratory , Cold Spring Harbor, New York.,2 Lustgarten Foundation Pancreatic Cancer Research Laboratory , Cold Spring Harbor, New York
| |
Collapse
|
16
|
Wang G, Wang L, Sun XG, Tang J. Haematoma scavenging in intracerebral haemorrhage: from mechanisms to the clinic. J Cell Mol Med 2017; 22:768-777. [PMID: 29278306 PMCID: PMC5783832 DOI: 10.1111/jcmm.13441] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 09/14/2017] [Indexed: 01/22/2023] Open
Abstract
The products of erythrocyte lyses, haemoglobin (Hb) and haem, are recognized as neurotoxins and the main contributors to delayed cerebral oedema and tissue damage after intracerebral haemorrhage (ICH). Finding a means to efficiently promote absorption of the haemolytic products (Hb and haem) around the bleeding area in the brain through stimulating the function of the body's own garbage cleaning system is a novel clinical challenge and critical for functional recovery after ICH. In this review, available information of the brain injury mechanisms underlying ICH and endogenous haematoma scavenging system is provided. Meanwhile, potential intervention strategies are discussed. Intracerebral blood itself has ‘toxic’ effects beyond its volume effect after ICH. Haptoglobin–Hb–CD163 as well as haemopexin–haem–LRP1 is believed to be the most important endogenous scavenging pathway which participates in blood components resolution following ICH. PPARγ–Nrf2 activates the aforementioned clearance pathway and then accelerates haematoma clearance. Meanwhile, the scavenger receptors as novel targets for therapeutic interventions to treat ICH are also highlighted.
Collapse
Affiliation(s)
- Gaiqing Wang
- The second Hospital of Shanxi Medical University, Tai Yuan, China
| | - Li Wang
- The second Hospital of Shanxi Medical University, Tai Yuan, China
| | - Xin-Gang Sun
- The second Hospital of Shanxi Medical University, Tai Yuan, China
| | - Jiping Tang
- Department of Physiology, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
17
|
Cai W, Yang T, Liu H, Han L, Zhang K, Hu X, Zhang X, Yin KJ, Gao Y, Bennett MVL, Leak RK, Chen J. Peroxisome proliferator-activated receptor γ (PPARγ): A master gatekeeper in CNS injury and repair. Prog Neurobiol 2017; 163-164:27-58. [PMID: 29032144 DOI: 10.1016/j.pneurobio.2017.10.002] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/06/2017] [Accepted: 10/08/2017] [Indexed: 01/06/2023]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a widely expressed ligand-modulated transcription factor that governs the expression of genes involved in inflammation, redox equilibrium, trophic factor production, insulin sensitivity, and the metabolism of lipids and glucose. Synthetic PPARγ agonists (e.g. thiazolidinediones) are used to treat Type II diabetes and have the potential to limit the risk of developing brain injuries such as stroke by mitigating the influence of comorbidities. If brain injury develops, PPARγ serves as a master gatekeeper of cytoprotective stress responses, improving the chances of cellular survival and recovery of homeostatic equilibrium. In the acute injury phase, PPARγ directly restricts tissue damage by inhibiting the NFκB pathway to mitigate inflammation and stimulating the Nrf2/ARE axis to neutralize oxidative stress. During the chronic phase of acute brain injuries, PPARγ activation in injured cells culminates in the repair of gray and white matter, preservation of the blood-brain barrier, reconstruction of the neurovascular unit, resolution of inflammation, and long-term functional recovery. Thus, PPARγ lies at the apex of cell fate decisions and exerts profound effects on the chronic progression of acute injury conditions. Here, we review the therapeutic potential of PPARγ in stroke and brain trauma and highlight the novel role of PPARγ in long-term tissue repair. We describe its structure and function and identify the genes that it targets. PPARγ regulation of inflammation, metabolism, cell fate (proliferation/differentiation/maturation/survival), and many other processes also has relevance to other neurological diseases. Therefore, PPARγ is an attractive target for therapies against a number of progressive neurological disorders.
Collapse
Affiliation(s)
- Wei Cai
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Tuo Yang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Huan Liu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Lijuan Han
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kai Zhang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Xiaoming Hu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh PA, USA
| | - Xuejing Zhang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ke-Jie Yin
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Michael V L Bennett
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA.
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh PA, USA.
| |
Collapse
|
18
|
The Role of Nrf2 in Cardiovascular Function and Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9237263. [PMID: 29104732 PMCID: PMC5618775 DOI: 10.1155/2017/9237263] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/27/2017] [Indexed: 02/07/2023]
Abstract
Free radicals, reactive oxygen/nitrogen species (ROS/RNS), hydrogen sulphide, and hydrogen peroxide play an important role in both intracellular and intercellular signaling; however, their production and quenching need to be closely regulated to prevent cellular damage. An imbalance, due to exogenous sources of free radicals and chronic upregulation of endogenous production, contributes to many pathological conditions including cardiovascular disease and also more general processes involved in aging. Nuclear factor erythroid 2-like 2 (NFE2L2; commonly known as Nrf2) is a transcription factor that plays a major role in the dynamic regulation of a network of antioxidant and cytoprotective genes, through binding to and activating expression of promoters containing the antioxidant response element (ARE). Nrf2 activity is regulated by many mechanisms, suggesting that tight control is necessary for normal cell function and both hypoactivation and hyperactivation of Nrf2 are indicated in playing a role in different aspects of cardiovascular disease. Targeted activation of Nrf2 or downstream genes may prove to be a useful avenue in developing therapeutics to reduce the impact of cardiovascular disease. We will review the current status of Nrf2 and related signaling in cardiovascular disease and its relevance to current and potential treatment strategies.
Collapse
|
19
|
Feng X, Yu W, Li X, Zhou F, Zhang W, Shen Q, Li J, Zhang C, Shen P. Apigenin, a modulator of PPARγ, attenuates HFD-induced NAFLD by regulating hepatocyte lipid metabolism and oxidative stress via Nrf2 activation. Biochem Pharmacol 2017; 136:136-149. [PMID: 28414138 DOI: 10.1016/j.bcp.2017.04.014] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/12/2017] [Indexed: 02/07/2023]
Abstract
Lipid metabolic disorders and oxidative stress in the liver are key steps in the progression of nonalcoholic fatty liver disease (NAFLD), which is a major risk factor for the development of metabolic syndrome. To date, no pharmacological treatment for this condition has been approved. Our previous study has found that the food-derived compound apigenin (Api) significantly attenuates obesity-induced metabolic syndrome by acting as a peroxisome proliferator-activated receptor gamma modulator (PPARM). Herein, a high fat diet (HFD) induced NAFLD model was used to dig out whether Api had the effect on NAFLD. The results showed that Api had obvious effect in restraining NAFLD progression, including attenuating HFD induced lipid accumulation and oxidative stress in vivo. As a PPARM, although Api did significantly inhibit the expression of PPARγ target genes encoding the protein associated with lipid metabolism, it had no obvious activating effect on PPARγ. Interestingly, we found that Api promoted Nrf2 into the nucleus, thereby markedly activating Nrf2 to inhibit the lipid metabolism related genes and increase the oxidative stress related genes. Further Nrf2 knockdown/knockout and overexpression experiments showed that Api regulating PPARγ target genes was dependent on Nrf2 activation and the activation of Nrf2 counteracted the activation effect of PPARγ by Api. Importantly, we also found that Api might bind with Nrf2 via auto dock and ITC assay. Therefore, our results indicate that Api ameliorates NAFLD by a novel regulating mode of Nrf2 and PPARγ in inhibiting lipid metabolism and oxidative stress abnormity.
Collapse
Affiliation(s)
- Xiujing Feng
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210023, China
| | - Wen Yu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210023, China
| | - Xinda Li
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210023, China
| | - Feifei Zhou
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210023, China
| | - Wenlong Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210023, China
| | - Qi Shen
- Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jianxin Li
- Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Can Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China; Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Pingping Shen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
20
|
Cariou B, Fruchart JC, Staels B. Review: Vascular protective effects of peroxisome proliferator-activated receptor agonists. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/14746514050050030301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
ardiovascular disease is significantly increased in patients with the metabolic syndrome and type 2 diabetes. A clustering of risk factors, including dyslipidaemia, insulin resistance, hypertension, inflammation and coagulation disorders are acting in concert to promote cardiovascular events in these patients. Peroxisome proliferator-activated receptors (PPARs) are transcription factors that influence vascular function by altering gene expression in vascular tissue and indirectly via effects on other tissues. Indeed, PPAR activation displays beneficial effects on glucose homeostasis and lipid metabolism, and also on endothelial function and vessel wall inflammation. Clinically used PPARα agonists, such as fibrates, and PPARγ agonists, such as insulin-sensitising thiazolidinediones, may consequently alter the process of atherosclerosis, especially in subjects with the metabolic syndrome and type 2 diabetes. The present review highlights emerging evidence for beneficial effects of PPAR α and PPARγ in the prevention and treatment of atherosclerosis in such high-risk patients.
Collapse
Affiliation(s)
- Bertrand Cariou
- Département d'Athérosclérose, Institut Pasteur de Lille & Faculté de Pharmacie, Université de Lille2, Lille, France
| | - Jean-Charles Fruchart
- Département d'Athérosclérose, Institut Pasteur de Lille & Faculté de Pharmacie, Université de Lille2, Lille, France
| | - Bart Staels
- Département d'Athérosclérose, Institut Pasteur de Lille & Faculté de Pharmacie, Université de Lille2, Lille, France,
| |
Collapse
|
21
|
Harwardt T, Lukas S, Zenger M, Reitberger T, Danzer D, Übner T, Munday DC, Nevels M, Paulus C. Human Cytomegalovirus Immediate-Early 1 Protein Rewires Upstream STAT3 to Downstream STAT1 Signaling Switching an IL6-Type to an IFNγ-Like Response. PLoS Pathog 2016; 12:e1005748. [PMID: 27387064 PMCID: PMC4936752 DOI: 10.1371/journal.ppat.1005748] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/16/2016] [Indexed: 12/24/2022] Open
Abstract
The human cytomegalovirus (hCMV) major immediate-early 1 protein (IE1) is best known for activating transcription to facilitate viral replication. Here we present transcriptome data indicating that IE1 is as significant a repressor as it is an activator of host gene expression. Human cells induced to express IE1 exhibit global repression of IL6- and oncostatin M-responsive STAT3 target genes. This repression is followed by STAT1 phosphorylation and activation of STAT1 target genes normally induced by IFNγ. The observed repression and subsequent activation are both mediated through the same region (amino acids 410 to 445) in the C-terminal domain of IE1, and this region serves as a binding site for STAT3. Depletion of STAT3 phenocopies the STAT1-dependent IFNγ-like response to IE1. In contrast, depletion of the IL6 receptor (IL6ST) or the STAT kinase JAK1 prevents this response. Accordingly, treatment with IL6 leads to prolonged STAT1 instead of STAT3 activation in wild-type IE1 expressing cells, but not in cells expressing a mutant protein (IE1dl410-420) deficient for STAT3 binding. A very similar STAT1-directed response to IL6 is also present in cells infected with a wild-type or revertant hCMV, but not an IE1dl410-420 mutant virus, and this response results in restricted viral replication. We conclude that IE1 is sufficient and necessary to rewire upstream IL6-type to downstream IFNγ-like signaling, two pathways linked to opposing actions, resulting in repressed STAT3- and activated STAT1-responsive genes. These findings relate transcriptional repressor and activator functions of IE1 and suggest unexpected outcomes relevant to viral pathogenesis in response to cytokines or growth factors that signal through the IL6ST-JAK1-STAT3 axis in hCMV-infected cells. Our results also reveal that IE1, a protein considered to be a key activator of the hCMV productive cycle, has an unanticipated role in tempering viral replication. Our previous work has shown that the human cytomegalovirus (hCMV) major immediate-early 1 protein (IE1) modulates host cell signaling pathways involving proteins of the signal transducer and activator of transcription (STAT) family. IE1 has also long been known to facilitate viral replication by activating transcription. In this report we demonstrate that IE1 is as significant a repressor as it is an activator of host gene expression. Many genes repressed by IE1 are normally induced via STAT3 signaling triggered by interleukin 6 (IL6) or related cytokines, whereas many genes activated by IE1 are normally induced via STAT1 signaling triggered by interferon gamma (IFNγ). Our results suggest that the repression of STAT3- and the activation of STAT1-responsive genes by IE1 are coupled. By targeting STAT3, IE1 rewires upstream STAT3 to downstream STAT1 signaling. Consequently, genes normally induced by IL6 are repressed while genes normally induced by IFNγ become responsive to IL6 in the presence of IE1. We also demonstrate that, by switching an IL6 to an IFNγ-like response, IE1 tempers viral replication. These results suggest an unanticipated dual role for IE1 in either promoting or limiting hCMV propagation and demonstrate how a key viral regulatory protein merges two central cellular signaling pathways to divert cytokine responses relevant to hCMV pathogenesis.
Collapse
Affiliation(s)
- Thomas Harwardt
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Simone Lukas
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Marion Zenger
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Tobias Reitberger
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Daniela Danzer
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Theresa Übner
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Diane C. Munday
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, United Kingdom
| | - Michael Nevels
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, United Kingdom
- * E-mail: (MN); (CP)
| | - Christina Paulus
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, United Kingdom
- * E-mail: (MN); (CP)
| |
Collapse
|
22
|
Peroxisome proliferator-activated receptor (PPAR) gamma in cardiovascular disorders and cardiovascular surgery. J Cardiol 2015; 66:271-8. [DOI: 10.1016/j.jjcc.2015.05.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/08/2015] [Accepted: 05/14/2015] [Indexed: 12/28/2022]
|
23
|
Della-Morte D, Palmirotta R, Rehni AK, Pastore D, Capuani B, Pacifici F, De Marchis ML, Dave KR, Bellia A, Fogliame G, Ferroni P, Donadel G, Cacciatore F, Abete P, Dong C, Pileggi A, Roselli M, Ricordi C, Sbraccia P, Guadagni F, Rundek T, Lauro D. Pharmacogenomics and pharmacogenetics of thiazolidinediones: role in diabetes and cardiovascular risk factors. Pharmacogenomics 2015; 15:2063-82. [PMID: 25521362 DOI: 10.2217/pgs.14.162] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The most important goal in the treatment of patients with diabetes is to prevent the risk of cardiovascular disease (CVD), the first cause of mortality in these subjects. Thiazolidinediones (TZDs), a class of antidiabetic drugs, act as insulin sensitizers increasing insulin-dependent glucose disposal and reducing hepatic glucose output. TZDs including pioglitazone, rosiglitazone and troglitazone, by activating PPAR-γ have shown pleiotropic effects in reducing vascular risk factors and atherosclerosis. However, troglitazone was removed from the market due to its hepatoxicity, and rosiglitazone and pioglitazone both have particular warnings due to being associated with heart diseases. Specific genetic variations in genes involved in the pathways regulated by TDZs have demonstrated to modify the variability in treatment with these drugs, especially in their side effects. Therefore, pharmacogenomics and pharmacogenetics are an important tool in further understand intersubject variability per se but also to assess the therapeutic potential of such variability in drug individualization and therapeutic optimization.
Collapse
Affiliation(s)
- David Della-Morte
- Department of Systems Medicine, School of Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Le Lamer AC, Authier H, Rouaud I, Coste A, Boustie J, Pipy B, Gouault N. Protolichesterinic acid derivatives: α-methylene-γ-lactones as potent dual activators of PPARγ and Nrf2 transcriptional factors. Bioorg Med Chem Lett 2014; 24:3819-22. [PMID: 25027935 DOI: 10.1016/j.bmcl.2014.06.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/18/2014] [Accepted: 06/20/2014] [Indexed: 01/11/2023]
Abstract
PPARγ and Nrf2 are important transcriptional factors involved in many signaling pathways, especially in the anti-infectious response of macrophages. Compounds bearing a Michael acceptor moiety are well known to activate such transcriptional factors, we thus evaluated the potency of α,β-unsaturated lactones synthesized using fluorous phase organic synthesis. Compounds were first screened for their cytotoxicity in order to select lactones for PPARγ and Nrf2 activation evaluation. Among them, two α-methylene-γ-lactones were identified as potent dual activators of PPARγ and Nrf2 in macrophages.
Collapse
Affiliation(s)
- Anne-Cécile Le Lamer
- Equipe PNSCM, UMR CNRS 6226, Université de Rennes 1, 2 Avenue du Pr. Léon Bernard, F-35043 Rennes, France; Université de Toulouse III, 118, Route de Narbonne, F-31062 Toulouse Cedex 09, France.
| | - Hélène Authier
- Université de Toulouse III, UPS, PHARMA-DEV, UMR 152, 118, Route de Narbonne, F-31062 Toulouse Cedex 9, France; IRD, UMR 152, F-31062 Toulouse Cedex 9, France
| | - Isabelle Rouaud
- Equipe PNSCM, UMR CNRS 6226, Université de Rennes 1, 2 Avenue du Pr. Léon Bernard, F-35043 Rennes, France
| | - Agnès Coste
- Université de Toulouse III, UPS, PHARMA-DEV, UMR 152, 118, Route de Narbonne, F-31062 Toulouse Cedex 9, France; IRD, UMR 152, F-31062 Toulouse Cedex 9, France
| | - Joël Boustie
- Equipe PNSCM, UMR CNRS 6226, Université de Rennes 1, 2 Avenue du Pr. Léon Bernard, F-35043 Rennes, France
| | - Bernard Pipy
- Université de Toulouse III, UPS, PHARMA-DEV, UMR 152, 118, Route de Narbonne, F-31062 Toulouse Cedex 9, France; IRD, UMR 152, F-31062 Toulouse Cedex 9, France
| | - Nicolas Gouault
- Equipe PNSCM, UMR CNRS 6226, Université de Rennes 1, 2 Avenue du Pr. Léon Bernard, F-35043 Rennes, France
| |
Collapse
|
25
|
Namani A, Li Y, Wang XJ, Tang X. Modulation of NRF2 signaling pathway by nuclear receptors: implications for cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1875-85. [PMID: 24851839 DOI: 10.1016/j.bbamcr.2014.05.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 05/05/2014] [Accepted: 05/12/2014] [Indexed: 12/30/2022]
Abstract
Nuclear factor-erythroid 2 p45-related factor 2 (NRF2, also known as Nfe2l2) plays a critical role in regulating cellular defense against electrophilic and oxidative stress by activating the expression of an array of antioxidant response element-dependent genes. On one hand, NRF2 activators have been used in clinical trials for cancer prevention and the treatment of diseases associated with oxidative stress; on the other hand, constitutive activation of NRF2 in many types of tumors contributes to the survival and growth of cancer cells, as well as resistance to anticancer therapy. In this review, we provide an overview of the NRF2 signaling pathway and discuss its role in carcinogenesis. We also introduce the inhibition of NRF2 by nuclear receptors. Further, we address the biological significance of regulation of the NRF2 signaling pathway by nuclear receptors in health and disease. Finally, we discuss the possible impact of NRF2 inhibition by nuclear receptors on cancer therapy.
Collapse
Affiliation(s)
- Akhileshwar Namani
- Department of Biochemistry and Genetics, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Yulong Li
- Department of Biochemistry and Genetics, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Xiu Jun Wang
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, PR China.
| | - Xiuwen Tang
- Department of Biochemistry and Genetics, Zhejiang University School of Medicine, Hangzhou 310058, PR China.
| |
Collapse
|
26
|
Napoli E, Wong S, Hertz-Picciotto I, Giulivi C. Deficits in bioenergetics and impaired immune response in granulocytes from children with autism. Pediatrics 2014; 133:e1405-10. [PMID: 24753527 PMCID: PMC4006429 DOI: 10.1542/peds.2013-1545] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Despite the emerging role of mitochondria in immunity, a link between bioenergetics and the immune response in autism has not been explored. Mitochondrial outcomes and phorbol 12-myristate 13-acetate (PMA)-induced oxidative burst were evaluated in granulocytes from age-, race-, and gender-matched children with autism with severity scores of ≥7 (n = 10) and in typically developing (TD) children (n = 10). The oxidative phosphorylation capacity of granulocytes was 3-fold lower in children with autism than in TD children, with multiple deficits encompassing ≥1 Complexes. Higher oxidative stress in cells of children with autism was evidenced by higher rates of mitochondrial reactive oxygen species production (1.6-fold), higher mitochondrial DNA copy number per cell (1.5-fold), and increased deletions. Mitochondrial dysfunction in children with autism was accompanied by a lower (26% of TD children) oxidative burst by PMA-stimulated reduced nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase and by a lower gene expression (45% of TD children's mean values) of the nuclear factor erythroid 2-related factor 2 transcription factor involved in the antioxidant response. Given that the majority of granulocytes of children with autism exhibited defects in oxidative phosphorylation, immune response, and antioxidant defense, our results support the concept that immunity and response to oxidative stress may be regulated by basic mitochondrial functions as part of an integrated metabolic network.
Collapse
Affiliation(s)
- Eleonora Napoli
- Department of Molecular Biosciences, School of Veterinary Medicine
| | - Sarah Wong
- Department of Molecular Biosciences, School of Veterinary Medicine
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, School of Medicine, and,Medical Investigations of Neurodevelopmental Disorders (M. I. N. D.) Institute, University of California, Davis, Davis California
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, Medical Investigations of Neurodevelopmental Disorders (M. I. N. D.) Institute, University of California, Davis, Davis California
| |
Collapse
|
27
|
Xiang M, Namani A, Wu S, Wang X. Nrf2: bane or blessing in cancer? J Cancer Res Clin Oncol 2014; 140:1251-9. [PMID: 24599821 DOI: 10.1007/s00432-014-1627-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 02/22/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND The Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor-E2-related factor 2 (Nrf2)-antioxidant response element pathway serves a major function in endogenous cytoprotection in normal cells. Nrf2 is a transcription factor that mainly regulates the expression of a wide array of genes that produce the antioxidants and other proteins responsible for the detoxification of xenobiotics and reactive oxygen species. Nrf2 mediates the chemoprevention of cancer in normal cells. RESULTS AND DISCUSSION Growing body of evidence suggests that Nrf2 is not only involved in the chemoprevention of normal cells but also promotes the growth of cancer cells. However, the mechanism underlying the function of Nrf2 in oncogenesis and tumor protection in cancer cells remains unclear and thus requires further study. CONCLUSION This review aims to rationalize the existing functions of Nrf2 in chemoprevention and tumorigenesis, as well as the somatic mutations of Nrf2 and Keap1 in cancer and Nrf2 cross talk with miRNAs. This review also discusses the future challenges in Nrf2 research.
Collapse
Affiliation(s)
- MingJun Xiang
- Department of Biochemistry and Molecular Biology, College of Medical Science, Jishou University, Jishou, 416000, China,
| | | | | | | |
Collapse
|
28
|
Baldelli S, Aquilano K, Ciriolo MR. Punctum on two different transcription factors regulated by PGC-1α: Nuclear factor erythroid-derived 2-like 2 and nuclear respiratory factor 2. Biochim Biophys Acta Gen Subj 2013; 1830:4137-46. [DOI: 10.1016/j.bbagen.2013.04.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/21/2013] [Accepted: 04/02/2013] [Indexed: 12/30/2022]
|
29
|
Kim TH, Kim MY, Jo SH, Park JM, Ahn YH. Modulation of the transcriptional activity of peroxisome proliferator-activated receptor gamma by protein-protein interactions and post-translational modifications. Yonsei Med J 2013; 54:545-59. [PMID: 23549795 PMCID: PMC3635639 DOI: 10.3349/ymj.2013.54.3.545] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) belongs to a nuclear receptor superfamily; members of which play key roles in the control of body metabolism principally by acting on adipose tissue. Ligands of PPARγ, such as thiazolidinediones, are widely used in the treatment of metabolic syndromes and type 2 diabetes mellitus (T2DM). Although these drugs have potential benefits in the treatment of T2DM, they also cause unwanted side effects. Thus, understanding the molecular mechanisms governing the transcriptional activity of PPARγ is of prime importance in the development of new selective drugs or drugs with fewer side effects. Recent advancements in molecular biology have made it possible to obtain a deeper understanding of the role of PPARγ in body homeostasis. The transcriptional activity of PPARγ is subject to regulation either by interacting proteins or by modification of the protein itself. New interacting partners of PPARγ with new functions are being unveiled. In addition, post-translational modification by various cellular signals contributes to fine-tuning of the transcriptional activities of PPARγ. In this review, we will summarize recent advancements in our understanding of the post-translational modifications of, and proteins interacting with, PPARγ, both of which affect its transcriptional activities in relation to adipogenesis.
Collapse
Affiliation(s)
- Tae-Hyun Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Korea
- Integrative Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul, Korea
| | - Mi-Young Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Korea
- Integrative Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul, Korea
| | - Seong-Ho Jo
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
- Integrative Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul, Korea
| | - Joo-Man Park
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
- Integrative Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul, Korea
| | - Yong-Ho Ahn
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
- Integrative Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
30
|
Wang H, Liu K, Geng M, Gao P, Wu X, Hai Y, Li Y, Li Y, Luo L, Hayes JD, Wang XJ, Tang X. RXRα inhibits the NRF2-ARE signaling pathway through a direct interaction with the Neh7 domain of NRF2. Cancer Res 2013; 73:3097-108. [PMID: 23612120 DOI: 10.1158/0008-5472.can-12-3386] [Citation(s) in RCA: 274] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The transcription factor NRF2 (NFE2L2) is a pivotal activator of genes encoding cytoprotective and detoxifying enzymes that limit the action of cytotoxic therapies in cancer. NRF2 acts by binding antioxidant response elements (ARE) in its target genes, but there is relatively limited knowledge about how it is negatively controlled. Here, we report that retinoic X receptor alpha (RXRα) is a hitherto unrecognized repressor of NRF2. RNAi-mediated knockdown of RXRα increased basal ARE-driven gene expression and induction of ARE-driven genes by the NRF2 activator tert-butylhydroquinone (tBHQ). Conversely, overexpression of RXRα decreased ARE-driven gene expression. Biochemical investigations showed that RXRα interacts physically with NRF2 in cancer cells and in murine small intestine and liver tissues. Furthermore, RXRα bound to ARE sequences in the promoters of NRF2-regulated genes. RXRα loading onto AREs was concomitant with the presence of NRF2, supporting the hypothesis that a direct interaction between the two proteins on gene promoters accounts for the antagonism of ARE-driven gene expression. Mutation analyses revealed that interaction between the two transcription factors involves the DNA-binding domain of RXRα and a region comprising amino acids 209-316 in human NRF2 that had not been defined functionally, but that we now designate as the NRF2-ECH homology (Neh) 7 domain. In non-small cell lung cancer cells where NRF2 levels are elevated, RXRα expression downregulated NRF2 and sensitized cells to the cytotoxic effects of therapeutic drugs. In summary, our findings show that RXRα diminishes cytoprotection by NRF2 by binding directly to the newly defined Neh7 domain in NRF2.
Collapse
Affiliation(s)
- Hongyan Wang
- Department of Biochemistry and Genetics, School of Medicine, Zhejiang University, Hangzhou, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Papp D, Lenti K, Módos D, Fazekas D, Dúl Z, Türei D, Földvári-Nagy L, Nussinov R, Csermely P, Korcsmáros T. The NRF2-related interactome and regulome contain multifunctional proteins and fine-tuned autoregulatory loops. FEBS Lett 2012; 586:1795-802. [PMID: 22641035 PMCID: PMC7511993 DOI: 10.1016/j.febslet.2012.05.016] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 04/28/2012] [Accepted: 05/14/2012] [Indexed: 12/17/2022]
Abstract
NRF2 is a well-known, master transcription factor (TF) of oxidative and xenobiotic stress responses. Recent studies uncovered an even wider regulatory role of NRF2 influencing carcinogenesis, inflammation and neurodegeneration. Prompted by these advances here we present a systems-level resource for NRF2 interactome and regulome that includes 289 protein-protein, 7469 TF-DNA and 85 miRNA interactions. As systems-level examples of NRF2-related signaling we identified regulatory loops of NRF2 interacting proteins (e.g., JNK1 and CBP) and a fine-tuned regulatory system, where 35 TFs regulated by NRF2 influence 63 miRNAs that down-regulate NRF2. The presented network and the uncovered regulatory loops may facilitate the development of efficient, NRF2-based therapeutic agents.
Collapse
Affiliation(s)
- Diána Papp
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
- Department of Medical Chemistry, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Katalin Lenti
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - Dezső Módos
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
- Department of Medical Chemistry, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - Dávid Fazekas
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - Zoltán Dúl
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - Dénes Türei
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
- Department of Medical Chemistry, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | | | - Ruth Nussinov
- Center for Cancer Research Nanobiology Program, Science Applications International Corporation (SAIC)-Frederick, Frederick National Laboratory, National Cancer Institute, Frederick, MD, USA
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Péter Csermely
- Department of Medical Chemistry, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Tamás Korcsmáros
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
- Department of Medical Chemistry, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
32
|
Pareek TK, Belkadi A, Kesavapany S, Zaremba A, Loh SL, Bai L, Cohen ML, Meyer C, Liby KT, Miller RH, Sporn MB, Letterio JJ. Triterpenoid modulation of IL-17 and Nrf-2 expression ameliorates neuroinflammation and promotes remyelination in autoimmune encephalomyelitis. Sci Rep 2011; 1:201. [PMID: 22355716 PMCID: PMC3242013 DOI: 10.1038/srep00201] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 11/18/2011] [Indexed: 01/03/2023] Open
Abstract
Inflammatory cytokines and endogenous anti-oxidants are variables affecting disease progression in multiple sclerosis (MS). Here we demonstrate the dual capacity of triterpenoids to simultaneously repress production of IL-17 and other pro-inflammatory mediators while exerting neuroprotective effects directly through Nrf2-dependent induction of anti-oxidant genes. Derivatives of the natural triterpene oleanolic acid, namely CDDO-trifluoroethyl-amide (CDDO-TFEA), completely suppressed disease in a murine model of MS, experimental autoimmune encephalomyelitis (EAE), by inhibiting Th1 and Th17 mRNA and cytokine production. Encephalitogenic T cells recovered from treated mice were hypo-responsive to myelin antigen and failed to adoptively transfer the disease. Microarray analyses showed significant suppression of pro-inflammatory transcripts with concomitant induction of anti-inflammatory genes including Ptgds and Hsd11b1. Finally, triterpenoids induced oligodendrocyte maturation in vitro and enhanced myelin repair in an LPC-induced non-inflammatory model of demyelination in vivo. These results demonstrate the unique potential of triterpenoid derivatives for the treatment of neuroinflammatory disorders such as MS.
Collapse
Affiliation(s)
- Tej K. Pareek
- Department of Pediatrics/Division of Pediatric Hematology-Oncology, University Hospitals Case Medical Center and The Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH44106
| | - Abdelmadjid Belkadi
- Centers for Stem Cells and Regenerative Medicine, Translational Neuroscience, Department of Neurosciences, Case Western Reserve University, School of Medicine, Ohio 44106, Cleveland
| | - Sashi Kesavapany
- Department of Biochemistry, Neurobiology Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597
| | - Anita Zaremba
- Centers for Stem Cells and Regenerative Medicine, Translational Neuroscience, Department of Neurosciences, Case Western Reserve University, School of Medicine, Ohio 44106, Cleveland
| | - Sook L. Loh
- Department of Biochemistry, Neurobiology Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597
| | - Lianhua Bai
- Centers for Stem Cells and Regenerative Medicine, Translational Neuroscience, Department of Neurosciences, Case Western Reserve University, School of Medicine, Ohio 44106, Cleveland
| | - Mark L. Cohen
- Department of Pathology, Case Western Reserve University, OH 44106
| | - Colin Meyer
- Reata Pharmaceuticals Inc., Irving, TX 75063
| | - Karen T. Liby
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755
| | - Robert H. Miller
- Centers for Stem Cells and Regenerative Medicine, Translational Neuroscience, Department of Neurosciences, Case Western Reserve University, School of Medicine, Ohio 44106, Cleveland
| | - Michael B. Sporn
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755
| | - John J. Letterio
- Department of Pediatrics/Division of Pediatric Hematology-Oncology, University Hospitals Case Medical Center and The Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH44106
| |
Collapse
|
33
|
Baird L, Dinkova-Kostova AT. The cytoprotective role of the Keap1-Nrf2 pathway. Arch Toxicol 2011; 85:241-72. [PMID: 21365312 DOI: 10.1007/s00204-011-0674-5] [Citation(s) in RCA: 744] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 02/08/2011] [Indexed: 12/11/2022]
Abstract
An elaborate network of highly inducible proteins protects aerobic cells against the cumulative damaging effects of reactive oxygen intermediates and toxic electrophiles, which are the major causes of neoplastic and chronic degenerative diseases. These cytoprotective proteins share common transcriptional regulation, through the Keap1-Nrf2 pathway, which can be activated by various exogenous and endogenous small molecules (inducers). Inducers chemically react with critical cysteine residues of the sensor protein Keap1, leading to stabilisation and nuclear translocation of transcription factor Nrf2, and ultimately to coordinate enhanced expression of genes coding for cytoprotective proteins. In addition, inducers inhibit pro-inflammatory responses, and there is a linear correlation spanning more than six orders of magnitude of concentrations between inducer and anti-inflammatory activity. Genetic deletion of transcription factor Nrf2 renders cells and animals much more sensitive to the damaging effects of electrophiles, oxidants and inflammatory agents in comparison with their wild-type counterparts. Conversely, activation of the Keap1-Nrf2 pathway allows survival and adaptation under various conditions of stress and has protective effects in many animal models. Cross-talks with other signalling pathways broadens the role of the Keap1-Nrf2 pathway in determining the fate of the cell, impacting fundamental biological processes such as proliferation, apoptosis, angiogenesis and metastasis.
Collapse
Affiliation(s)
- Liam Baird
- Biomedical Research Institute, University of Dundee, Dundee, Scotland, UK
| | | |
Collapse
|
34
|
Goettsch C, Goettsch W, Brux M, Haschke C, Brunssen C, Muller G, Bornstein SR, Duerrschmidt N, Wagner AH, Morawietz H. Arterial flow reduces oxidative stress via an antioxidant response element and Oct-1 binding site within the NADPH oxidase 4 promoter in endothelial cells. Basic Res Cardiol 2011; 106:551-61. [PMID: 21399967 DOI: 10.1007/s00395-011-0170-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 02/15/2011] [Accepted: 03/02/2011] [Indexed: 11/25/2022]
Abstract
The main sources of oxidative stress in the vessel wall are nicotine adenine dinucleotide phosphate (NADPH) oxidase (Nox) complexes. The endothelium mainly expresses the Nox4-containing complex; however, the mechanism by which shear stress in endothelial cells regulates Nox4 is not well understood. This study demonstrates that long-term application of arterial laminar shear stress using a cone-and-plate viscometer reduces endothelial superoxide anion formation and Nox4 expression. In primary human endothelial cells, we identified a 47 bp 5'-untranslated region of Nox4 mRNA by 5'-rapid amplification of cDNA ends (5'-RACE) PCR. Cloning and functional analysis of human Nox4 promoter revealed a range between -1,490 and -1,310 bp responsible for flow-dependent downregulation. Mutation of an overlapping antioxidative response element (ARE)-like and Oct-1 binding site at -1,376 bp eliminated shear stress-dependent Nox4 downregulation. Consistent with these observations, electrophoretic mobility shift assays (EMSA) demonstrated an enhanced shear stress-dependent binding of Nox4 oligonucleotide containing the ARE-like/Oct-1 binding site, which could be inhibited by specific antibodies against the transcription factors nuclear factor erythroid 2-related factor 2 (Nrf2) and octamer transcription factor 1 (Oct-1). Furthermore, shear stress caused the translocation of Nrf2 and Oct-1 from the cytoplasm to the nucleus. Knockdown of Nrf2 by short hairpin RNA (shRNA) increased Nox4 expression twofold, indicating a direct cross-talk between Nrf2 and Nox4. In conclusion, an ARE-like/Oct-1 binding site was noticed to be essential for shear stress-dependent downregulation of Nox4. This novel mechanism may be involved in the flow-dependent downregulation of endothelial superoxide anion formation.
Collapse
Affiliation(s)
- Claudia Goettsch
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University of Technology Dresden, Fetscherstrasse 74, Dresden, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
The nuclear hormone receptor PPARγ is activated by several agonists, including members of the thiazolidinedione group of insulin sensitizers. Pleiotropic beneficial effects of these agonists, independent of their blood glucose-lowering effects, have recently been demonstrated in the vasculature. PPARγ agonists have been shown to lower blood pressure in animals and humans, perhaps by suppressing the renin-angiotensin (Ang)-aldosterone system (RAAS), including the inhibition of Ang II type 1 receptor expression, Ang-II-mediated signaling pathways, and Ang-II-induced adrenal aldosterone synthesis/secretion. PPARγ agonists also inhibit the progression of atherosclerosis in animals and humans, possibly through a pathway involving the suppression of RAAS and the thromboxane A₂ system, as well as the protection of endothelial function. Moreover, PPARγ-agonist-mediated renal protection, especially the reduction of albuminuria, has been observed in diabetic nephropathy, including animal models of the disease, and in non-diabetic renal dysfunction. The renal protective activities may reflect, at least in part, the ability of PPARγ agonists to lower blood pressure, protect endothelial function, and cause vasodilation of the glomerular efferent arterioles. Additionally, anti-neoplastic effects of PPARγ agonists have recently been described. Based on the multiple therapeutic actions of PPARγ agonists, they will no doubt lead to novel approaches in the treatment of lifestyle-related and other diseases.
Collapse
Affiliation(s)
- Akira Sugawara
- Department of Advanced Biological Sciences for Regeneration, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Activation of the KEAP1-NRF2 signaling pathway is an adaptive response to environmental and endogenous stresses and serves to render animals resistant to chemical carcinogenesis and other forms of toxicity, whereas disruption of the pathway exacerbates these outcomes. This pathway, which can be activated by sulfhydryl-reactive, small-molecule pharmacologic agents, regulates the inducible expression of an extended battery of cytoprotective genes, often by direct binding of the transcription factor to antioxidant response elements in the promoter regions of target genes. However, it is becoming evident that some of the protective effects may be mediated indirectly through cross talk with additional pathways affecting cell survival and other aspects of cell fate. These interactions provide a multi-tiered, integrated response to chemical stresses. This review highlights recent observations on the molecular interactions and their functional consequences between NRF2 and the arylhydrocarbon receptor (AhR), NF-κB, p53, and Notch1 signaling pathways.
Collapse
Affiliation(s)
- Nobunao Wakabayashi
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
37
|
Hayes JD, McMahon M, Chowdhry S, Dinkova-Kostova AT. Cancer chemoprevention mechanisms mediated through the Keap1-Nrf2 pathway. Antioxid Redox Signal 2010; 13:1713-48. [PMID: 20446772 DOI: 10.1089/ars.2010.3221] [Citation(s) in RCA: 424] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The cap'n'collar (CNC) bZIP transcription factor Nrf2 controls expression of genes for antioxidant enzymes, metal-binding proteins, drug-metabolising enzymes, drug transporters, and molecular chaperones. Many chemicals that protect against carcinogenesis induce Nrf2-target genes. These compounds are all thiol-reactive and stimulate an adaptive response to redox stress in cells. Such agents induce the expression of genes that posses an antioxidant response element (ARE) in their regulatory regions. Under normal homeostatic conditions, Nrf2 activity is restricted through a Keap1-dependent ubiquitylation by Cul3-Rbx1, which targets the CNC-bZIP transcription factor for proteasomal degradation. However, as the substrate adaptor function of Keap1 is redox-sensitive, Nrf2 protein evades ubiquitylation by Cul3-Rbx1 when cells are treated with chemopreventive agents. As a consequence, Nrf2 accumulates in the nucleus where it heterodimerizes with small Maf proteins and transactivates genes regulated through an ARE. In this review, we describe synthetic compounds and phytochemicals from edible plants that induce Nrf2-target genes. We also discuss evidence for the existence of different classes of ARE (a 16-bp 5'-TMAnnRTGABnnnGCR-3' versus an 11-bp 5'-RTGABnnnGCR-3', with or without the embedded activator protein 1-binding site 5'-TGASTCA-3'), species differences in the ARE-gene battery, and the identity of critical Cys residues in Keap1 required for de-repression of Nrf2 by chemopreventive agents.
Collapse
Affiliation(s)
- John D Hayes
- Biomedical Research Institute, Ninewells Hospital, University of Dundee, Scotland, United Kingdom.
| | | | | | | |
Collapse
|
38
|
Sutliff RL, Kang BY, Hart CM. PPARgamma as a potential therapeutic target in pulmonary hypertension. Ther Adv Respir Dis 2010; 4:143-60. [PMID: 20530063 DOI: 10.1177/1753465809369619] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pulmonary hypertension (PH) is a progressive disorder of the pulmonary circulation associated with significant morbidity and mortality. The pathobiology of PH involves a complex series of derangements causing endothelial dysfunction, vasoconstriction and abnormal proliferation of pulmonary vascular wall cells that lead to increases in pulmonary vascular resistance and pressure. Recent evidence indicates that the ligand-activated transcription factor, peroxisome proliferator-activated receptor gamma (PPARgamma) can have a favorable impact on a variety of pathways involved in the pathogenesis of PH. This review summarizes PPARgamma biology and the emerging evidence that therapies designed to activate this receptor may provide novel approaches to the treatment of PH. Mediators of PH that are regulated by PPARgamma are reviewed to provide insights into potential mechanisms underlying therapeutic effects of PPARgamma ligands in PH.
Collapse
Affiliation(s)
- Roy L Sutliff
- Division of Pulmonary, Allergy and Critical Care Medicine, Atlanta VA Medical Center, Decatur, GA 30033, USA.
| | | | | |
Collapse
|
39
|
Sykiotis GP, Bohmann D. Stress-activated cap'n'collar transcription factors in aging and human disease. Sci Signal 2010; 3:re3. [PMID: 20215646 DOI: 10.1126/scisignal.3112re3] [Citation(s) in RCA: 615] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cap'n'collar (Cnc) transcription factors are conserved in metazoans and have important developmental and homeostatic functions. The vertebrate Nrf1, Nrf2, and Nrf3; the Caenorhabditis elegans SKN-1; and the Drosophila CncC comprise a subgroup of Cnc factors that mediate adaptive responses to cellular stress. The most studied stress-activated Cnc factor is Nrf2, which orchestrates the transcriptional response of cells to oxidative stressors and electrophilic xenobiotics. In rodent models, signaling by Nrf2 defends against oxidative stress and aging-associated disorders, such as neurodegeneration, respiratory diseases, and cancer. In humans, polymorphisms that decrease Nrf2 abundance have been associated with various pathologies of the skin, respiratory system, and digestive tract. In addition to preventing disease in rodents and humans, Cnc factors have life-span-extending and anti-aging functions in invertebrates. However, despite the pro-longevity and antioxidant roles of stress-activated Cnc factors, their activity paradoxically declines in aging model organisms and in humans suffering from progressive respiratory disease or neurodegeneration. We review the roles and regulation of stress-activated Cnc factors across species, present all reported instances in which their activity is paradoxically decreased in aging and disease, and discuss the possibility that the pharmacological restoration of Nrf2 signaling may be useful in the prevention and treatment of age-related diseases.
Collapse
Affiliation(s)
- Gerasimos P Sykiotis
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | | |
Collapse
|
40
|
Yousefipour Z, Oyekan A, Newaz M. Interaction of oxidative stress, nitric oxide and peroxisome proliferator activated receptor gamma in acute renal failure. Pharmacol Ther 2010; 125:436-45. [PMID: 20117134 DOI: 10.1016/j.pharmthera.2009.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 12/24/2009] [Indexed: 01/23/2023]
Abstract
Oxidative stress has been reported to play a critical role in the pathology of acute renal failure (ARF). An interaction between different reactive species and/or their sources have been the focus of extensive studies. The exact sources of reactive species generated in biological systems under different disease states are always elusive because they are also a part of physiological processes. Exaggerated involvement of different oxidation pathways including NAD(P)H oxidase has been proposed in different models of ARF. An interaction between oxygen species and nitrogen species has drawn extensive attention because of the deleterious effects of peroxynitrite and their possible effects on antioxidant systems. Recent advances in molecular biology have allowed us to understand glomerular function more precisely, especially the organization and importance of the slit diaphragm. Identification of slit diaphragm proteins came as a breakthrough and a possibility of therapeutic manipulation in ARF is encouraging. Transcriptional regulation of the expression of slit diaphragm protein is of particular importance because their presence is crucial in the maintenance of glomerular function. This review highlights the involvement of oxidative stress in ARF, sources of these reactive species, a possible interaction between different reactive species, and involvement of PPARgamma, a nuclear transcription factor in this process.
Collapse
Affiliation(s)
- Zivar Yousefipour
- Center for Cardiovascular Diseases, Texas Southern University, Houston, Texas, United States
| | | | | |
Collapse
|
41
|
Sugawara A, Uruno A, Kudo M, Matsuda K, Yang CW, Ito S. Effects of PPARγ on hypertension, atherosclerosis, and chronic kidney disease. Endocr J 2010; 57:847-52. [PMID: 20890053 DOI: 10.1507/endocrj.k10e-281] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR) γ is a nuclear hormone receptor that is trans-activated by its ligands including insulin-sensitizing thiazolidinediones. PPARγ has recently been reported to demonstrate pleiotropic beneficial effects in the vasculatures, independent of its blood glucose-lowering effects. Firstly, PPARγ ligands have been shown to lower blood pressure in both animals and human. The effect may possibly be mediated via the PPARγ-mediated inhibition of the angiotensin (Ang) II type 1 receptor expression as well as Ang II-mediated signaling pathways, which may result in the suppression of the renin-angiotensin system (RAS). Secondly, the progression of atherosclerosis was also prevented by PPARγ ligands in both animals and human. In addition to the PPARγ-mediated suppression of the RAS and the thromboxane A(2) system, protective effects of PPARγ ligands on endothelial function may also be involved. Thirdly, reno-protective effects of PPARγ ligands, especially on reducing urinary albumin, have been observed in both animals and human not only in diabetic nephropathy but also in non-diabetic renal diseases. The reno-protective effects may be mediated, at least in part, via the PPARγ ligand-induced blood pressure-lowering effects, protective effects on endothelial function, and vasodilating effects on the glomerular efferent arterioles. Additionally, anti-cancer effects of PPARγ ligands have recently been reported. Taken together, usefulness and effectiveness of PPARγ ligands on lifestyle related diseases will be increasingly appreciated.
Collapse
Affiliation(s)
- Akira Sugawara
- Department of Advanced Biological Sciences for Regeneration, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | | | | | | | | | | |
Collapse
|
42
|
Peredo H, Mayer M, Carranza A, Puyó A. Pioglitazone and Losartan Modify Hemodynamic and Metabolic Parameters and Vascular Prostanoids in Fructose-Overloaded Rats. Clin Exp Hypertens 2009; 30:159-69. [DOI: 10.1080/10641960801946889] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
43
|
Hayes JD, McMahon M. NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer. Trends Biochem Sci 2009; 34:176-88. [PMID: 19321346 DOI: 10.1016/j.tibs.2008.12.008] [Citation(s) in RCA: 673] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 12/08/2008] [Accepted: 12/10/2008] [Indexed: 12/26/2022]
Abstract
Transcription factor nuclear factor-erythroid 2-related factor 2 (NRF2) controls cellular adaptation to oxidants and electrophiles by inducing antioxidant and detoxification genes in response to redox stress. NRF2 is negatively regulated by Kelch-like ECH-associated protein 1 (KEAP1). Tumours from approximately 15% of patients with lung cancer harbour somatic mutations in KEAP1 that prevent effective NRF2 repression. Recently, two NRF2 mutation 'hot-spots' were identified in approximately 10% of patients with lung cancer, enabling the transcription factor to evade KEAP1-mediated repression. Somatic mutations in KEAP1 and NRF2 provide an insight into the molecular mechanisms by which NRF2 is regulated. Moreover, constitutive NRF2 activation might cause drug resistance in tumours, and an understanding of how the transcription factor is regulated indicates ways in which this could be overcome.
Collapse
Affiliation(s)
- John D Hayes
- Biomedical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK.
| | | |
Collapse
|
44
|
Gannon AM, Kinsella BT. Regulation of the human thromboxane A2 receptor gene by Sp1, Egr1, NF-E2, GATA-1, and Ets-1 in megakaryocytes. J Lipid Res 2008; 49:2590-604. [PMID: 18698092 DOI: 10.1194/jlr.m800256-jlr200] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The alpha and beta isoforms of the human thromboxane A(2) (TXA(2)) receptor (TP) are encoded by a single gene but are transcriptionally regulated by distinct promoters, termed promoter 1 (Prm1) and Prm3, respectively. Herein, it was sought to identify factors regulating Prm1 within the megakaryocytic human erythroleukemia 92.1.7 cell line. Through gene deletion and reporter assays, the core Prm1 was localized to between nucleotides -6,320 and -5,895, proximal to the transcription initiation site. Furthermore, two upstream repressor and two upstream activator regions were identified. Site-directed mutagenesis of four overlapping Sp1/Egr1 elements and an NF-E2/AP1 element within the proximal region substantially reduced Prm1 activity. Deletion/mutation of GATA and Ets elements disrupted the upstream activator sequence located between -7,962 and -7,717, significantly impairing Prm1 activity. Electrophoretic mobility shift assays and chromatin immunoprecipitations confirmed that Sp1, Egr1, and NF-E2 bind to elements within the core promoter, whereas GATA-1 and Ets-1 factors bind to the upstream activator sequence (between -7,962 and -7,717). Collectively, these data establish that Sp1, Egr1, and NF-E2 regulate core Prm1 activity in the megakaryocytic-platelet progenitor cells, whereas GATA-1 and Ets-1 act as critical upstream activators, hence providing the first genetic basis for the expression of the human TXA(2) receptor (TP) within the vasculature.
Collapse
Affiliation(s)
- AnneMarie M Gannon
- University College Dublin School of Biomolecular and Biomedical Sciences, University College Dublin Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | | |
Collapse
|
45
|
Hernandez-Trujillo Y, Rodriguez-Esparragon F, Macias-Reyes A, Caballero-Hidalgo A, Rodriguez-Perez JC. Rosiglitazone but not losartan prevents Nrf-2 dependent CD36 gene expression up-regulation in an in vivo atherosclerosis model. Cardiovasc Diabetol 2008; 7:3. [PMID: 18302760 PMCID: PMC2266907 DOI: 10.1186/1475-2840-7-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Accepted: 02/26/2008] [Indexed: 12/17/2022] Open
Abstract
Background Thiazolidinediones exert anti-inflammatory and anti-oxidative roles and attenuate atherosclerosis by mechanisms partially independent of their metabolizing actions. High doses of angiotensin type 1 receptor (AT1R) blocker losartan (LST) seem to promote fat cell formation by preserving PPARγ activity. Methods C57BL/6J diet-induced atherosclerotic susceptible mice randomly received a normal or a high-fat high-cholesterol (HFHC) diet and were treated with rosiglitazone (RG), LST or a vehicle for 12 weeks. Results HFHC was associated with increased PPARγ gene expression without an over regulation of PPARγ responsive genes, whereas RG and LST treatments were found to maintain PPARγ activity without resulting in increased PPARγ gene expression. A better anti-inflammatory and antioxidant profile in mice treated with RG regarding LST was observed in spite of a similar PPARγ preserved activity. Chromatin immunoprecipitation (ChIP) assays revealed that animals under HFHC diet treated with RG showed a significant nuclear factor erythroid 2-like 2 (Nrf2)-dependent down-regulation of the expression of the CD36 gene. Conclusion The PPARγ agonist RG exerts antioxidant properties that significantly reduced Nrf-2-dependent CD-36 up-regulation in mice under HFHC diet. Because LST treatment was also associated with a preserved PPARγ activity, our data suggests that these RG antioxidant effects are partially independent of its PPARγ metabolizing properties.
Collapse
Affiliation(s)
- Y Hernandez-Trujillo
- Research Unit, Hospital Universitario de Gran Canaria Dr, Negrín, Las Palmas de Gran Canaria, Spain.
| | | | | | | | | |
Collapse
|
46
|
Redox regulation of lung inflammation: role of NADPH oxidase and NF-kappaB signalling. Biochem Soc Trans 2008; 35:1151-5. [PMID: 17956299 DOI: 10.1042/bst0351151] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Regulation of reduction/oxidation (redox) state is critical for cell viability, activation, proliferation and organ function, and imbalance of oxidant/antioxidant balance is implicated in various chronic respiratory inflammatory diseases, such as asthma, pulmonary fibrosis and chronic obstructive pulmonary disease. CS (cigarette smoke) is a complex mixture of various noxious gases and condensed tar particles. These components elicit oxidative stress in lungs by continuous generation of ROS (reactive oxygen species) and various inflammatory mediators. In the present review, we have discussed the role of oxidative stress in triggering the inflammatory response in the lungs in response to CS by demonstrating the role of NADPH oxidase, redox-sensitive transcription factors, such as pro-inflammatory NF-kappaB (nuclear factor kappaB) and antioxidant Nrf2 (nuclear factor-erythroid 2 p45 subunit-related factor 2), as well as HDAC (histone deacetylase) in pro-inflammatory cytokine release by disruption of HDAC-RelA/p65 NF-kappaB complex.
Collapse
|
47
|
Wittwer J, Hersberger M. The two faces of the 15-lipoxygenase in atherosclerosis. Prostaglandins Leukot Essent Fatty Acids 2007; 77:67-77. [PMID: 17869078 DOI: 10.1016/j.plefa.2007.08.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 07/12/2007] [Accepted: 08/01/2007] [Indexed: 01/02/2023]
Abstract
Chronic inflammation plays a major role in atherogenesis and understanding the role of inflammation and its resolution will offer novel approaches to interfere with atherogenesis. The 15(S)-lipoxygenase (15-LOX) plays a janus-role in inflammation with pro-inflammatory and anti-inflammatory effects in cell cultures and primary cells and even opposite effects on atherosclerosis in two different animal species. There is evidence for a pro-atherosclerotic effect of 15-LOX including the direct contribution to LDL oxidation and to the recruitment of monocytes to the vessel wall, its role in angiotensin II mediated mechanisms and in vascular smooth muscle cell proliferation. In contrast to the pro-atherosclerotic effects of 15-LOX, there is also a broad line of evidence that 15-LOX metabolites of arachidonic and linoleic acid have anti-inflammatory effects. The 15-LOX arachidonic acid metabolite 15-HETE inhibits superoxide production and polymorphonuclear neutrophil (PMN) migration across cytokine-activated endothelium and can be further metabolized to the anti-inflammatory lipoxins. These promote vasorelaxation in the aorta and counteract the action of most other pro-inflammatory factors like leukotrienes and prostanoids. Anti-atherogenic properties are also reported for the linoleic acid oxidation product 13-HODE through inhibition of adhesion of several blood cells to the endothelium. Furthermore, there is evidence that 15-LOX is involved in the metabolism of the long-chain omega-3 fatty acid docosahexaenoic acid (DHA) leading to a family of anti-inflammatory resolvins and protectins. From these cell culture and animal studies the role of the 15-LOX in human atherosclerosis cannot be predicted. However, recent genetic studies characterized the 15-LOX haplotypes in Caucasians and discovered a functional polymorphism in the human 15-LOX promoter. This will now allow large studies to investigate an association of 15-LOX with coronary artery disease and to answer the question whether 15-LOX is pro- or anti-atherogenic in humans.
Collapse
Affiliation(s)
- Jonas Wittwer
- Institute of Clinical Chemistry, Center for Integrative Human Physiology, University Hospital Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland
| | | |
Collapse
|
48
|
Berry A, Balard P, Coste A, Olagnier D, Lagane C, Authier H, Benoit-Vical F, Lepert JC, Séguéla JP, Magnaval JF, Chambon P, Metzger D, Desvergne B, Wahli W, Auwerx J, Pipy B. IL-13 induces expression of CD36 in human monocytes through PPARγ activation. Eur J Immunol 2007; 37:1642-52. [PMID: 17458857 DOI: 10.1002/eji.200636625] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The class B scavenger receptor CD36 is a component of the pattern recognition receptors on monocytes that recognizes a variety of molecules. CD36 expression in monocytes depends on exposure to soluble mediators. We demonstrate here that CD36 expression is induced in human monocytes following exposure to IL-13, a Th2 cytokine, via the peroxisome proliferator-activated receptor (PPAR)gamma pathway. Induction of CD36 protein was paralleled by an increase in CD36 mRNA. The PPARgamma pathway was demonstrated using transfection of a PPARgamma expression plasmid into the murine macrophage cell line RAW264.7, expressing very low levels of PPARgamma, and in peritoneal macrophages from PPARgamma-conditional null mice. We also show that CD36 induction by IL-13 via PPARgamma is dependent on phospholipase A2 activation and that IL-13 induces the production of endogenous 15-deoxy-Delta12,14-prostaglandin J2, an endogenous PPARgamma ligand, and its nuclear localization in human monocytes. Finally, we demonstrate that CD36 and PPARgamma are involved in IL-13-mediated phagocytosis of Plasmodium falciparum-parasitized erythrocytes. These results reveal a novel role for PPARgamma in the alternative activation of monocytes by IL-13, suggesting that endogenous PPARgamma ligands, produced by phospholipase A2 activation, could contribute to the biochemical and cellular functions of CD36.
Collapse
Affiliation(s)
- Antoine Berry
- Macrophages, Mediateurs de l'Inflammation et Interactions Cellulaires, Université Paul Sabatier Toulouse III, INSERM IFR 31, Toulouse, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Yousefipour Z, Hercule H, Truong L, Oyekan A, Newaz M. Ciglitazone, a Peroxisome Proliferator-Activated Receptor γ Inducer, Ameliorates Renal Preglomerular Production and Activity of Angiotensin II and Thromboxane A2 in Glycerol-Induced Acute Renal Failure. J Pharmacol Exp Ther 2007; 322:461-8. [PMID: 17494862 DOI: 10.1124/jpet.107.122473] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARgamma), a nuclear transcription factor, modulates vascular responses to angiotensin II (AII) or thromboxane A(2) (TxA(2)) via regulation of their gene/receptor. Increased vasoconstriction and deteriorating renal function in glycerol-induced acute renal failure (ARF) may be attributed to down-regulation of PPARgamma. In this study, we investigated the effect of ciglitazone (CG), a PPARgamma inducer, on AII and TxA(2) production and activity in glycerol-induced ARF. Vascular responses to AII or 9,11-dideoxy-11alpha,9alpha-epoxymethano prostaglandin F(2alpha) (U46619), a TxA(2) mimetic, were determined in preglomerular vessels following induction of ARF with glycerol. Renal damage and function were assessed in CG-treated (9 nmol/kg for 21 days) rats. PPARgamma protein expression and activity, which were significantly lower in ARF rats, were enhanced by CG (26 and 30%). CG also increased PPARgamma mRNA by 67 +/- 6%, which was reduced in ARF. In ARF, there was significant tubular necrosis and apoptosis, a 5-fold increase in proteinuria and a 2-fold enhancement in vasoconstriction to AII and U46619. CG reduced proteinuria (49 +/- 3%), enhanced Na(+) (124 +/- 35%) and creatinine excretion (92 +/- 25%), markedly diminished tubular necrosis, and reduced ARF-induced increase in AII (40 +/- 3%) and TxA(2) (39 +/- 2%) production, the attending increase in vasoconstriction to AII (36 +/- 2%) and U46619 (50 +/- 11%), and the increase in angiotensin receptor-1 (AT(1)) (23 +/- 3%) or thromboxane prostaglandin (TP) receptor (13 +/- 1%). CG reduced free radical generation by 55 +/- 14% while elevating nitrite excretion (65 +/- 13%). Our results suggest that enhanced activity of AII and TxA(2), increased AT(1) or TP receptor expression, and renal injury in glycerol-induced ARF are consequent to down-regulation of PPARgamma gene. CG ameliorated glycerol-induced effects through maintaining PPARgamma gene.
Collapse
Affiliation(s)
- Zivar Yousefipour
- Center for Cardiovascular Diseases, Texas Southern University, 3100 Cleburne Avenue, Houston, TX 77004, USA
| | | | | | | | | |
Collapse
|
50
|
von Knethen A, Soller M, Tzieply N, Weigert A, Johann AM, Jennewein C, Köhl R, Brüne B. PPARgamma1 attenuates cytosol to membrane translocation of PKCalpha to desensitize monocytes/macrophages. ACTA ACUST UNITED AC 2007; 176:681-94. [PMID: 17325208 PMCID: PMC2064025 DOI: 10.1083/jcb.200605038] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recently, we provided evidence that PKCα depletion in monocytes/macrophages contributes to cellular desensitization during sepsis. We demonstrate that peroxisome proliferator–activated receptor γ (PPARγ) agonists dose dependently block PKCα depletion in response to the diacylglycerol homologue PMA in RAW 264.7 and human monocyte–derived macrophages. In these cells, we observed PPARγ-dependent inhibition of nuclear factor-κB (NF-κB) activation and TNF-α expression in response to PMA. Elucidating the underlying mechanism, we found PPARγ1 expression not only in the nucleus but also in the cytoplasm. Activation of PPARγ1 wild type, but not an agonist-binding mutant of PPARγ1, attenuated PMA-mediated PKCα cytosol to membrane translocation. Coimmunoprecipitation assays pointed to a protein–protein interaction of PKCα and PPARγ1, which was further substantiated using a mammalian two-hybrid system. Applying PPARγ1 mutation and deletion constructs, we identified the hinge helix 1 domain of PPARγ1 that is responsible for PKCα binding. Therefore, we conclude that PPARγ1-dependent inhibition of PKCα translocation implies a new model of macrophage desensitization.
Collapse
Affiliation(s)
- Andreas von Knethen
- Institute of Biochemistry I, Faculty of Medicine, Johann Wolfgang Goethe University, 60590 Frankfurt, Theodor-Stern-Kai 7, Germany.
| | | | | | | | | | | | | | | |
Collapse
|