1
|
Shintani T, Higaki M, Rosli SNZ, Okamoto T. Potential treatment of squamous cell carcinoma by targeting heparin-binding protein 17/fibroblast growth factor-binding protein 1 with vitamin D 3 or eldecalcitol. In Vitro Cell Dev Biol Anim 2024; 60:583-589. [PMID: 38713345 PMCID: PMC11286729 DOI: 10.1007/s11626-024-00913-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/16/2024] [Indexed: 05/08/2024]
Abstract
Heparin-binding protein 17 (HBp17), first purified in 1991 from the conditioned medium of the human A431 squamous cell carcinoma (SCC) cell line, was later renamed fibroblast growth factor-binding protein 1 (FGFBP-1). HBp17/FGFBP-1 is specifically expressed and secreted by epithelial cells, and it reversibly binds to fibroblast growth factor (FGF)-1 and FGF-2, as well as FGFs-7, -10, and -22, indicating a crucial involvement in the transportation and function of these FGFs. Our laboratory has investigated and reported several studies to elucidate the function of HBp17/FGFBP-1 in SCC cells and its potential as a molecular therapeutic target. HBp17/FGFBP-1 transgene exoression in A431-4 cells, a clonal subline of A431 that lacks tumorigenicity and does not express HBp17/FGFBP-1, demonstrated a significantly enhanced proliferation in vitro compared with A431-4 cells, and it acquired tumorigenicity in the subcutis of nude mice. Knockout (KO) of the HBp17/FGFBP-1 by genome editing significantly suppressed tumor growth, cell motility, and tumorigenicity compared with control cells. A comprehensive analysis of expressed molecules in both cell types revealed that molecules that promote epithelial cell differentiation were highly expressed in HBp17/FGFBP-1 KO cells. Additionally, we reported that 1α,25(OH)2D3 or eldecalcitol (ED-71), which is an analog of 1α,25(OH)2D3, suppresses HBp17/FGFBP-1 expression and tumor growth in vitro and in vivo by inhibiting the nuclear factor kappa-light-chain-enhancer of activated B cells signaling pathway. Here, we discuss the prospects of molecular targeted therapy targeting HBp17/FGFBP-1 with 1α,25(OH)2D3 or ED71 in SCC and oral SCC.
Collapse
Affiliation(s)
- Tomoaki Shintani
- Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima, 734-8551, Japan.
| | - Mirai Higaki
- Department of Molecular Oral Medicine and Maxilofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Siti Nur Zawani Rosli
- Department of Molecular Oral Medicine and Maxilofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
- Infectious Disease Research Center, Institute for Medical Research, Bacteriology Unit, National Institutes of Health, Ministry of Health Malaysia, 40170, Setia Alam, Malaysia
| | - Tetsuji Okamoto
- Department of Molecular Oral Medicine and Maxilofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
- School of Medical Sciences, University of East Asia, Shimonoseki, 751-8503, Japan
| |
Collapse
|
2
|
Heparin-Binding Protein 17/Fibroblast Growth Factor-Binding Protein-1 Knockout Inhibits Proliferation and Induces Differentiation of Squamous Cell Carcinoma Cells. Cancers (Basel) 2021; 13:cancers13112684. [PMID: 34072393 PMCID: PMC8199440 DOI: 10.3390/cancers13112684] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 01/17/2023] Open
Abstract
Simple Summary Fibroblast growth factor (FGF) plays an important role in tumor growth by inducing angiogenesis in addition to promoting the proliferation of squamous cell carcinoma (SCC) and oral squamous cell carcinoma (OSCC) cells. Heparin-binding protein 17/fibroblast growth factor-binding protein-1 (HBp17/FGFBP-1) purified from A431 cell-conditioned media based on its capacity to bind to FGF-1 and FGF-2 is recognized as a pro-angiogenic molecule as a consequence of its interaction with FGF-2. In this study, we have examined the functional role of HBp17/FGFBP-1 in A431 and HO-1-N-1 cells using the CRISPR/Cas9 technology. Our results showed that HBp17/FGFBP-1 knockout inhibited cell proliferation, colony formation, and cell motility compared to control. The amount of FGF-2 was decreased in culture medium conditioned by HBp17/FGFBP-1 knockout cells compared to control. We performed cDNA/protein expression analysis followed by Gene Ontology and protein–protein interaction analysis. The results demonstrate that both gene and protein expression related to epidermal development, cornification, and keratinization were upregulated in HBp17/FGFBP-1-knockout A431 and HO-1-N-1 cells. Abstract Heparin-binding protein 17/fibroblast growth factor-binding protein-1 (HBp17/FGFBP-1) has been observed to induce the tumorigenic potential of epithelial cells and is highly expressed in oral cancer cell lines and tissues. It is also recognized as a pro-angiogenic molecule because of its interaction with fibroblast growth factor (FGF)-2. In this study, we examined the functional role of HBp17/FGFBP-1 in A431 and HO-1-N-1 cells. Originally, HBp17/FGFBP-1 was purified from A431 cell-conditioned media based on its capacity to bind to FGF-1 and FGF-2. We isolated and established HBp17/FGFBP-1-knockout (KO)-A431 and KO-HO-1-N-1 cell lines using the clusters of regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) gene editing technology. The amount of FGF-2 secreted into conditioned medium decreased for A431-HBp17-KO and HO-1-N-1-HBp17-KO cells compared to their WT counterparts. Functional assessment showed that HBp17/FGFBP-1 KO inhibited cell proliferation, colony formation, and cell motility in vitro. It also inhibited tumor growth in vivo compared to controls, which confirmed the significant difference in growth in vitro between HBp17-KO cells and wild-type (WT) cells, indicating that HBp17/FGFBP-1 is a potent therapeutic target in squamous cell carcinomas (SCC) and oral squamous cell carcinomas (OSCC). In addition, complementary DNA/protein expression analysis followed by Gene Ontology and protein–protein interaction (PPI) analysis using the Database for Visualization and Integrated Discovery and Search Tool for the Retrieval of Interacting Genes/Proteins showed that both gene and protein expression related to epidermal development, cornification, and keratinization were upregulated in A431-HBp17-KO and HO-1-N-1-KO cells. This is the first discovery of a novel role of HBp17/FGFBP-1 that regulates SCC and OSCC cell differentiation.
Collapse
|
3
|
Cottarelli A, Corada M, Beznoussenko GV, Mironov AA, Globisch MA, Biswas S, Huang H, Dimberg A, Magnusson PU, Agalliu D, Lampugnani MG, Dejana E. Fgfbp1 promotes blood-brain barrier development by regulating collagen IV deposition and maintaining Wnt/β-catenin signaling. Development 2020; 147:dev.185140. [PMID: 32747434 DOI: 10.1242/dev.185140] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 07/20/2020] [Indexed: 12/17/2022]
Abstract
Central nervous system (CNS) blood vessels contain a functional blood-brain barrier (BBB) that is necessary for neuronal survival and activity. Although Wnt/β-catenin signaling is essential for BBB development, its downstream targets within the neurovasculature remain poorly understood. To identify targets of Wnt/β-catenin signaling underlying BBB maturation, we performed a microarray analysis that identified Fgfbp1 as a novel Wnt/β-catenin-regulated gene in mouse brain endothelial cells (mBECs). Fgfbp1 is expressed in the CNS endothelium and secreted into the vascular basement membrane during BBB formation. Endothelial genetic ablation of Fgfbp1 results in transient hypervascularization but delays BBB maturation in specific CNS regions, as evidenced by both upregulation of Plvap and increased tracer leakage across the neurovasculature due to reduced Wnt/β-catenin activity. In addition, collagen IV deposition in the vascular basement membrane is reduced in mutant mice, leading to defective endothelial cell-pericyte interactions. Fgfbp1 is required cell-autonomously in mBECs to concentrate Wnt ligands near cell junctions and promote maturation of their barrier properties in vitro Thus, Fgfbp1 is a crucial extracellular matrix protein during BBB maturation that regulates cell-cell interactions and Wnt/β-catenin activity.
Collapse
Affiliation(s)
- Azzurra Cottarelli
- FIRC Institute of Molecular Oncology Foundation (IFOM), 20139 Milan, Italy.,Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Monica Corada
- FIRC Institute of Molecular Oncology Foundation (IFOM), 20139 Milan, Italy
| | | | | | - Maria A Globisch
- Rudbeck Laboratory, Department of Immunology, Genetics & Pathology, Uppsala University, Uppsala 75237, Sweden
| | - Saptarshi Biswas
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hua Huang
- Rudbeck Laboratory, Department of Immunology, Genetics & Pathology, Uppsala University, Uppsala 75237, Sweden
| | - Anna Dimberg
- Rudbeck Laboratory, Department of Immunology, Genetics & Pathology, Uppsala University, Uppsala 75237, Sweden
| | - Peetra U Magnusson
- Rudbeck Laboratory, Department of Immunology, Genetics & Pathology, Uppsala University, Uppsala 75237, Sweden
| | - Dritan Agalliu
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA .,Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Maria Grazia Lampugnani
- FIRC Institute of Molecular Oncology Foundation (IFOM), 20139 Milan, Italy .,Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy
| | - Elisabetta Dejana
- FIRC Institute of Molecular Oncology Foundation (IFOM), 20139 Milan, Italy .,Rudbeck Laboratory, Department of Immunology, Genetics & Pathology, Uppsala University, Uppsala 75237, Sweden.,Department of Oncology and Haemato-Oncology, School of Medicine, University of Milan, 20122 Milan, Italy
| |
Collapse
|
4
|
Mol P, Kannegundla U, Dey G, Gopalakrishnan L, Dammalli M, Kumar M, Patil AH, Basavaraju M, Rao A, Ramesha KP, Prasad TSK. Bovine Milk Comparative Proteome Analysis from Early, Mid, and Late Lactation in the Cattle Breed, Malnad Gidda (Bos indicus). OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 22:223-235. [PMID: 29389253 DOI: 10.1089/omi.2017.0162] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Bovine milk is important for both veterinary medicine and human nutrition. Understanding the bovine milk proteome at different stages of lactation has therefore broad significance for integrative biology and clinical medicine as well. Indeed, different lactation stages have marked influence on the milk yield, milk constituents, and nourishment of the neonates. We performed a comparative proteome analysis of the bovine milk obtained at different stages of lactation from the Indian indigenous cattle Malnad Gidda (Bos indicus), a widely available breed. The milk differential proteome during the lactation stages in B. indicus has not been investigated to date. Using high-resolution mass spectrometry-based quantitative proteomics of the bovine whey proteins at early, mid, and late lactation stages, we identified a total of 564 proteins, out of which 403 proteins were found to be differentially abundant at different lactation stages. As is expected of any body fluid proteome, 51% of the proteins identified in the milk were found to have signal peptides. Gene ontology analyses were carried out to categorize proteins altered across different lactation stages based on biological process and molecular function, which enabled us to correlate their significance in each lactation stage. We also investigated the potential pathways enriched in different lactation stages using bioinformatics pathway analysis tools. To the best of our knowledge, this study represents the first and largest inventory of milk proteins identified to date for an Indian cattle breed. We believe that the current study broadly informs both veterinary omics research and the emerging field of nutriproteomics during lactation stages.
Collapse
Affiliation(s)
- Praseeda Mol
- 1 Institute of Bioinformatics , International Technology Park, Bangalore, India .,2 Amrita School of Biotechnology , Amrita Vishwa Vidyapeetham, Kollam, India
| | | | - Gourav Dey
- 1 Institute of Bioinformatics , International Technology Park, Bangalore, India .,4 Centre for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University) , Mangalore, India .,5 Manipal Academy of Higher Education , Manipal, Karnataka, India
| | - Lathika Gopalakrishnan
- 1 Institute of Bioinformatics , International Technology Park, Bangalore, India .,4 Centre for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University) , Mangalore, India .,5 Manipal Academy of Higher Education , Manipal, Karnataka, India
| | - Manjunath Dammalli
- 1 Institute of Bioinformatics , International Technology Park, Bangalore, India .,6 Department of Biotechnology, Siddaganga Institute of Technology , Tumkur, India
| | - Manish Kumar
- 1 Institute of Bioinformatics , International Technology Park, Bangalore, India .,5 Manipal Academy of Higher Education , Manipal, Karnataka, India
| | - Arun H Patil
- 1 Institute of Bioinformatics , International Technology Park, Bangalore, India .,4 Centre for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University) , Mangalore, India .,7 School of Biotechnology, KIIT University , Bhubaneswar, India
| | | | - Akhila Rao
- 3 National Dairy Research Institute , Bangalore, India
| | | | - Thottethodi Subrahmanya Keshava Prasad
- 1 Institute of Bioinformatics , International Technology Park, Bangalore, India .,4 Centre for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University) , Mangalore, India
| |
Collapse
|
5
|
Bu D, Bionaz M, Wang M, Nan X, Ma L, Wang J. Transcriptome difference and potential crosstalk between liver and mammary tissue in mid-lactation primiparous dairy cows. PLoS One 2017; 12:e0173082. [PMID: 28291785 PMCID: PMC5349457 DOI: 10.1371/journal.pone.0173082] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 02/15/2017] [Indexed: 12/15/2022] Open
Abstract
Liver and mammary gland are among the most important organs during lactation in dairy cows. With the purpose of understanding both the different and the complementary roles and the crosstalk of those two organs during lactation, a transcriptome analysis was performed on liver and mammary tissues of 10 primiparous dairy cows in mid-lactation. The analysis was performed using a 4×44K Bovine Agilent microarray chip. The transcriptome difference between the two tissues was analyzed using SAS JMP Genomics using ANOVA with a false discovery rate correction (FDR). The analysis uncovered >9,000 genes differentially expressed (DEG) between the two tissues with a FDR<0.001. The functional analysis of the DEG uncovered a larger metabolic (especially related to lipid) and inflammatory response capacity in liver compared with mammary tissue while the mammary tissue had a larger protein synthesis and secretion, proliferation/differentiation, signaling, and innate immune system capacity compared with the liver. A plethora of endogenous compounds, cytokines, and transcription factors were estimated to control the DEG between the two tissues. Compared with mammary tissue, the liver transcriptome appeared to be under control of a large array of ligand-dependent nuclear receptors and, among endogenous chemical, fatty acids and bacteria-derived compounds. Compared with liver, the transcriptome of the mammary tissue was potentially under control of a large number of growth factors and miRNA. The in silico crosstalk analysis between the two tissues revealed an overall large communication with a reciprocal control of lipid metabolism, innate immune system adaptation, and proliferation/differentiation. In summary the transcriptome analysis confirmed prior known differences between liver and mammary tissue, especially considering the indication of a larger metabolic activity in liver compared with the mammary tissue and the larger protein synthesis, communication, and proliferative capacity in mammary tissue compared with the liver. Relatively novel is the indication by the data that the transcriptome of the liver is highly regulated by dietary and bacteria-related compounds while the mammary transcriptome is more under control of hormones, growth factors, and miRNA. A large crosstalk between the two tissues with a reciprocal control of metabolism and innate immune-adaptation was indicated by the network analysis that allowed uncovering previously unknown crosstalk between liver and mammary tissue for several signaling molecules.
Collapse
Affiliation(s)
- Dengpan Bu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
- CAAS-ICRAF Joint Laboratory on Agroforestry and Sustainable Animal Husbandry, World Agroforestry Centre, East and Central Asia, Beijing, China
- Synergetic Innovation Center of Food Safety and Nutrition, Harbin, China
| | - Massimo Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, United States of America
| | - Mengzhi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, P.R. China
| | - Xuemei Nan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Lu Ma
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| |
Collapse
|
6
|
|
7
|
Polanska UM, Fernig DG, Kinnunen T. Extracellular interactome of the FGF receptor-ligand system: complexities and the relative simplicity of the worm. Dev Dyn 2009; 238:277-93. [PMID: 18985724 DOI: 10.1002/dvdy.21757] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Fibroblast growth factors (FGFs) and their receptors (FGFRs) regulate a multitude of biological functions in embryonic development and in adult. A major question is how does one family of growth factors and their receptors control such a variety of functions? Classically, specificity was thought to be imparted by alternative splicing of the FGFRs, resulting in isoforms that bind specifically to a subset of the FGFs, and by different saccharide sequences in the heparan sulfate proteoglycan (HSPG) co-receptor. A growing number of noncanonical co-receptors such as integrins and neural cell adhesion molecule (NCAM) are now recognized as imparting additional complexity to classic FGFR signaling. This review will discuss the noncanonical FGFR ligands and speculate on the possibility that they provide additional and alternative means to determining the functional specificity of FGFR signaling. We will also discuss how invertebrate models such as C. elegans may advance our understanding of noncanonical FGFR signaling.
Collapse
Affiliation(s)
- Urszula M Polanska
- School of Biological Sciences, University of Liverpool, Liverpool, United Kingdom
| | | | | |
Collapse
|
8
|
Zhang W, Chen Y, Swift MR, Tassi E, Stylianou DC, Gibby KA, Riegel AT, Wellstein A. Effect of FGF-binding protein 3 on vascular permeability. J Biol Chem 2008; 283:28329-37. [PMID: 18669637 PMCID: PMC2568920 DOI: 10.1074/jbc.m802144200] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 07/18/2008] [Indexed: 11/06/2022] Open
Abstract
Fibroblast growth factor-binding protein 1 (FGF-BP1 is BP1) is involved in the regulation of embryonic development, tumor growth, and angiogenesis by mobilizing endogenous FGFs from their extracellular matrix storage. Here we describe a new member of the FGF-BP family, human BP3. We show that the hBP3 protein is secreted from cells, binds to FGF2 in vitro and in intact cells, and inhibits FGF2 binding to heparin. To determine the function of hBP3 in vivo, hBP3 was transiently expressed in chicken embryos and resulted in > 50% lethality within 24 h because of vascular leakage. The onset of vascular permeability was monitored by recording the extravasation kinetics of FITC-labeled 40-kDa dextran microperfused into the vitelline vein of 3-day-old embryos. Vascular permeability increased as early as 8 h after expression of hBP3. The increased vascular permeability caused by hBP3 was prevented by treatment of embryos with PD173074, a selective FGFR kinase inhibitor. Interestingly, a C-terminal 66-amino acid fragment (C66) of hBP3, which contains the predicted FGF binding domain, still inhibited binding of FGF2 to heparin similar to full-length hBP3. However, expression of the C66 fragment did not increase vascular permeability on its own, but required the administration of exogenous FGF2 protein. We conclude that the FGF binding domain and the heparin binding domain are necessary for the hBP3 interaction with endogenous FGF and the activation of FGFR signaling in vivo.
Collapse
Affiliation(s)
- Wentao Zhang
- Lombardi Cancer Center, Georgetown University, Washington, DC 20057, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Hughes FJ, Turner W, Belibasakis G, Martuscelli G. Effects of growth factors and cytokines on osteoblast differentiation. Periodontol 2000 2006; 41:48-72. [PMID: 16686926 DOI: 10.1111/j.1600-0757.2006.00161.x] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Francis J Hughes
- Centre for Adult Oral Health, Barts and The London, Queen Mary's School of Medicine and Dentistry, London, UK
| | | | | | | |
Collapse
|
10
|
Kawakami A, Hirayama K, Kawakami F, Kawakami H, Fujihara M, Ohtsuki K. Purification and biochemical characterization of a fibroblast growth factor-binding protein (FGF-BP) from the lactoferrin fraction of bovine milk. Biochim Biophys Acta Gen Subj 2006; 1760:421-31. [PMID: 16412577 DOI: 10.1016/j.bbagen.2005.11.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Revised: 10/31/2005] [Accepted: 11/15/2005] [Indexed: 02/07/2023]
Abstract
By means of gel filtration on a TSK-gel HPLC column in the presence of 8 M urea, a 37-kDa polypeptide (p37) was completely separated from lactoferrin (LF) in the heparin HII fraction of the partially purified LF fraction prepared from bovine milk. Purified p37 was identified as a fibroblast growth factor-binding protein (FGF-BP), since its N-terminal 14 amino acid residues (KKEGRNRRGSKASA) were 100% identical to the corresponding sequence of bovine FGF-BP. It was found, in vitro, that (i) p37 had a higher binding affinity with bFGF than bLF; (ii) p37 functioned as a phosphate acceptor for at least three protein kinases (PKA, CK1 and CK2); (iii) bLF stimulated about 3-fold the PKA-mediated phosphorylation of p37, but suppressed its phosphorylation by CK1; and (iv) galloyl pedunculagin was an effective inhibitor for the phosphorylation of p37 by PKA and CK1. Furthermore, the physiological correlation between p37 and bLF may be regulated through specific phosphorylation of p37 by PKA, since p37 fully phosphorylated by PKA did not bind to bLF in vitro. The sulfatide-induced conformational changes in p37 enabled the phosphorylation of p37 by CK1 and also reduced its ability to bind with bLF in vitro. From these results presented here, it is concluded that (i) p37 (FGF-BP) may be tightly associated with bLF in bovine milk; and (ii) the physiological correlation between p37 and bLF may be regulated by the PKA-mediated full phosphorylation of p37 or by the direct binding of sulfatide to p37 in vivo.
Collapse
Affiliation(s)
- Akio Kawakami
- Laboratory of Genetical Biochemistry and Signal Biology, Graduate School of Medical Sciences, Kitasato University, Kitasato 1-15-1, Sagamihara 228-8555, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Xie B, Tassi E, Swift MR, McDonnell K, Bowden ET, Wang S, Ueda Y, Tomita Y, Riegel AT, Wellstein A. Identification of the Fibroblast Growth Factor (FGF)-interacting Domain in a Secreted FGF-binding Protein by Phage Display. J Biol Chem 2006; 281:1137-44. [PMID: 16257968 DOI: 10.1074/jbc.m510754200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Fibroblast growth factor-binding proteins (FGF-BP) are secreted carrier proteins that release fibroblast growth factors (FGFs) from the extracellular matrix storage and thus enhance FGF activity. Here we have mapped the interaction domain between human FGF-BP1 and FGF-2. For this, we generated T7 phage display libraries of N-terminally and C-terminally truncated FGF-BP1 fragments that were then panned against immobilized FGF-2. From this panning, a C-terminal fragment of FGF-BP1 (amino acids 193-234) was identified as the minimum binding domain for FGF. As a recombinant protein, this C-terminal fragment binds to FGF-2 and enhances FGF-2-induced signaling in NIH-3T3 fibroblasts and GM7373 endothelial cells, as well as mitogenesis and chemotaxis of NIH-3T3 cells. The FGF interaction domain in FGF-BP1 is distinct from the heparin-binding domain (amino acids 110-143), and homology modeling supports the notion of a distinct domain in the C terminus that is conserved across different species. This domain also contains conserved positioning of cysteine residues with the Cys-214/Cys-222 positions in the human protein predicted to participate in disulfide bridge formation. Phage display of a C214A mutation of FGF-BP1 reduced binding to FGF-2, indicating the functional significance of this disulfide bond. We concluded that the FGF interaction domain is contained in the C terminus of FGF-BP1.
Collapse
Affiliation(s)
- Bin Xie
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abuharbeid S, Czubayko F, Aigner A. The fibroblast growth factor-binding protein FGF-BP. Int J Biochem Cell Biol 2005; 38:1463-8. [PMID: 16324873 DOI: 10.1016/j.biocel.2005.10.017] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Revised: 10/21/2005] [Accepted: 10/26/2005] [Indexed: 12/25/2022]
Abstract
Fibroblast growth factors (FGFs) are important regulators of cell migration, proliferation and differentiation, e.g., during embryogenesis and wound healing, and under several pathological conditions including tumor growth and tumor angiogenesis. Since heparin-binding FGFs are tightly bound to heparansulfate proteoglycans, and therefore, trapped in the extracellular matrix, their release through the action of an FGF-binding protein (FGF-BP) is one of the critical steps in FGF bioactivation. FGF-BP expression is highly tissue specific and strictly regulated through different promoter elements. Besides its role in embryogenesis and wound healing, FGF-BP is upregulated in several tumors and it is associated especially with early stages of tumor formation, where angiogenesis plays a critical role. Concomitantly, in several mouse tumor models, targeting of FGF-BP by ribozymes or RNA interference (RNAi) abolishes or reduces tumor growth and tumor angiogenesis. This indicates that FGF-BP can be rate-limiting for tumor growth and serves as an angiogenic switch molecule, and that it represents an increasingly promising target molecule in anti-tumor therapy.
Collapse
Affiliation(s)
- Shaker Abuharbeid
- Department of Pharmacology and Toxicology, Philipps-University School of Medicine, Marburg, Germany
| | | | | |
Collapse
|
13
|
McDonnell K, Bowden ET, Cabal-Manzano R, Hoxter B, Riegel AT, Wellstein A. Vascular leakage in chick embryos after expression of a secreted binding protein for fibroblast growth factors. J Transl Med 2005; 85:747-55. [PMID: 15806140 DOI: 10.1038/labinvest.3700269] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Fibroblast growth factors (FGFs) have been implicated in a variety of physiologic and pathologic processes from embryonic development to tumor growth and angiogenesis. FGFs are immobilized in the extracellular matrix of different tissues and require release from this storage site to trigger a response. Secreted FGF-binding proteins (FGF-BPs) can release immobilized FGFs, enhance the activity of locally stored FGFs and can thus serve as an angiogenic switch molecule in cancer. Here, we report on the effect of human FGF-BP transgene expression in chicken embryos. To establish the transgenic model, plasmid-based reporter vectors expressing luciferase, beta-galactosidase or green fluorescent protein were introduced through different routes into 4- to 5-day-old embryos grown outside their egg shell on top of the yolk sac. This allows for easy manipulation and continuous observation of phenotypic effects. Expression of human FGF-BP induced dose-dependent vascular permeability, hemorrhage and embryonic lethality. Light and electron microscopic studies indicate that this hemorrhage results from compromised microvascular structure. An FGF-1 expression vector with an added secretory signal mimicked this vascular leakiness phenotype whereas wild-type FGF-1 required coexpression of a threshold amount of FGF-BP. This model is a powerful tool for real-time monitoring of the effects of transient transgene expression during embryogenesis.
Collapse
Affiliation(s)
- Kevin McDonnell
- Lombardi Cancer Center, Georgetown University, Washington, DC 20057, USA
| | | | | | | | | | | |
Collapse
|
14
|
West DC, Rees CG, Duchesne L, Patey SJ, Terry CJ, Turnbull JE, Delehedde M, Heegaard CW, Allain F, Vanpouille C, Ron D, Fernig DG. Interactions of multiple heparin binding growth factors with neuropilin-1 and potentiation of the activity of fibroblast growth factor-2. J Biol Chem 2005; 280:13457-64. [PMID: 15695515 DOI: 10.1074/jbc.m410924200] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The hypothesis that neuropilin-1 (Npn-1) may interact with heparin-binding proteins other than vascular endothelial growth factor has been tested using an optical biosensor-based binding assay. The results show that fibroblast growth factor (FGF) 1, 2, 4, and 7, FGF receptor 1, hepatocyte growth factor/scatter factor (HGF/SF), FGF-binding protein, normal protease sensitive form of prion protein, antithrombin III, and Npn-1 itself are all able to interact with Npn-1 immobilized on the sensor surface. FGF-2, FGF-4, and HGF/SF are also shown to interact with Npn-1 in a solution assay. Moreover, these protein-protein interactions are dependent on the ionic strength of the medium and are inhibited by heparin, and the kinetics of binding of FGF-2, FGF-4 and HGF/SF to Npn-1 are characterized by fast association rate constants (270,000-1,600,000 m(-1) s(-1)). These results suggest that Npn-1 possesses a "heparin" mimetic site that is able to interact at least in part through ionic bonding with the heparin binding site on many of the proteins studied. Npn-1 was also found to potentiate the growth stimulatory activity of FGF-2 on human umbilical vein endothelial cells, indicating that Npn-1 may not just bind but also regulate the activity of heparin-binding proteins.
Collapse
Affiliation(s)
- David C West
- School of Biological Sciences, Biosciences Building, University of Liverpool, Liverpool, L69 7ZB, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Aigner A, Renneberg H, Bojunga J, Apel J, Nelson PS, Czubayko F. Ribozyme-targeting of a secreted FGF-binding protein (FGF-BP) inhibits proliferation of prostate cancer cells in vitro and in vivo. Oncogene 2002; 21:5733-42. [PMID: 12173043 DOI: 10.1038/sj.onc.1205560] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2001] [Revised: 03/28/2002] [Accepted: 04/04/2002] [Indexed: 12/19/2022]
Abstract
Prostate cancer is one of the most common malignant tumors with increasing incidence rates in the aging male. Since locally advanced or metastatic prostate tumors are essentially incurable, identification of new target molecules and treatment strategies is of critical importance. Fibroblast growth factor-2 (FGF-2) acts as potent mitogen which is upregulated in prostate cancers modulating cancer cell proliferation and development of an invasive phenotype. Normally it is tightly bound to the extracellular matrix that quenches its biological activity. The FGF-binding proteins (FGF-BP, HBp17) is a secreted protein which is able to mobilize and activate FGF-2 from the extracellular matrix. Here we show that FGF-BP is highly expressed in prostate tumor cells. To study the functional role of FGF-BP, we use a ribozyme-targeting approach to selectively deplete FGF-BP in prostate cancer cells achieving a more than 50% reduction of FGF-BP mRNA and protein levels in two mass-transfected cell lines. FGF-BP depletion reduces proliferation of the cells in vitro without changes in cell cycle distribution or apoptosis. Using cDNA microarrays, Northern blotting and RT-PCR, we show a complex pattern of changes in the gene expression profiles upon FGF-BP depletion. Most strikingly, ribozyme-mediated reduction of FGF-BP levels completely abolishes the ability of the highly metastatic PC-3 prostate carcinoma cells to grow tumors in an athymic nude mouse in vivo model which is far beyond the effects of FGF-BP ribozyme targeting observed previously in cells from other tumors in the same model. Taken together, our study identifies FGF-BP as a potential rate-limiting factor for prostate cancer growth and, due to its restricted expression pattern in adults, a potentially attractive target for prostate cancer therapy.
Collapse
Affiliation(s)
- Achim Aigner
- Department of Pharmacology and Toxicology, Philipps-University School of Medicine, Marburg, Germany.
| | | | | | | | | | | |
Collapse
|
16
|
Tassi E, Al-Attar A, Aigner A, Swift MR, McDonnell K, Karavanov A, Wellstein A. Enhancement of fibroblast growth factor (FGF) activity by an FGF-binding protein. J Biol Chem 2001; 276:40247-53. [PMID: 11509569 DOI: 10.1074/jbc.m104933200] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fibroblast growth factor-binding protein (FGF-BP) 1 is a secreted protein that can bind fibroblast growth factors (FGFs) 1 and 2. These FGFs are typically stored on heparan sulfate proteoglycans in the extracellular matrix in an inactive form, and it has been proposed that FGF-BP1 functions as a chaperone molecule that can mobilize locally stored FGF and present the growth factor to its tyrosine kinase receptor. FGF-BP1 is up-regulated in squamous cell, colon, and breast cancers and can act as an angiogenic switch during malignant progression of epithelial cells. For the present studies, we focused on FGF-1 and -2 and investigated interactions with recombinant human FGF-BP1 protein as well as effects on signal transduction, cell proliferation, and angiogenesis. We show that recombinant FGF-BP1 specifically binds FGF-2 and that this binding is inhibited by FGF-1, heparan sulfate, and heparinoids. Furthermore, FGF-BP1 enhances FGF-1- and FGF-2-dependent proliferation of NIH-3T3 fibroblasts and FGF-2-induced extracellular signal-regulated kinase 2 phosphorylation. Finally, in the chicken chorioallantoic membrane angiogenesis assay, FGF-BP1 synergizes with exogenously added FGF-2. We conclude that FGF-BP1 binds directly to FGF-1 and FGF-2 and positively modulates the biological activities of these growth factors.
Collapse
Affiliation(s)
- E Tassi
- Lombardi Cancer Center, Georgetown University, 3970 Reservoir Road NW, Washington, D.C. 20007, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Sherif ZA, Nakai S, Pirollo KF, Rait A, Chang EH. Downmodulation of bFGF-binding protein expression following restoration of p53 function. Cancer Gene Ther 2001; 8:771-82. [PMID: 11687900 DOI: 10.1038/sj.cgt.7700361] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2001] [Indexed: 12/23/2022]
Abstract
Angiogenesis is a requirement for solid tumor growth. Therefore, inhibition of this neovascularization is one mechanism by which restoration of wtp53 function may lead to tumor regression. Here we report that adenoviral vector-mediated wild-type p53 transduction results in growth inhibition of squamous cell carcinoma of the head and neck tumor cells both in vitro and in a xenograft mouse model. This growth inhibition is associated with the down-regulation of the expression of fibroblast growth factor binding protein, a secreted protein required for the activation of angiogenic factor basic FGF. These findings suggest that wtp53-induced tumor regression is due, at least in part, to antiangiogenesis mediated by the downmodulation of fibroblast growth factor binding protein.
Collapse
Affiliation(s)
- Z A Sherif
- Department of Oncology, Lombardi Cancer Center, Georgetown University Medical Center, Washington, District of Columbia 20007, USA
| | | | | | | | | |
Collapse
|
18
|
Aigner A, Butscheid M, Kunkel P, Krause E, Lamszus K, Wellstein A, Czubayko F. An FGF-binding protein (FGF-BP) exerts its biological function by parallel paracrine stimulation of tumor cell and endothelial cell proliferation through FGF-2 release. Int J Cancer 2001; 92:510-7. [PMID: 11304685 DOI: 10.1002/1097-0215(20010515)92:4<510::aid-ijc1227>3.0.co;2-h] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Fibroblast growth factors FGF-1 (aFGF) and FGF-2 (bFGF) are found in most embryonic and adult normal and tumor tissues, where they are immobilized in the extracellular matrix (ECM). Mobilization of these FGFs is part of a tightly controlled process resulting in the activation of high-affinity FGF receptors. Recently, we have shown that a secreted FGF-binding protein (FGF-BP) binds non-covalently to FGF-2 and is able to release it from the ECM. This process of growth factor bioactivation seems to play a pivotal role in the growth of squamous cell carcinomas, especially through induction of tumor angiogenesis. Since previous studies provided only indirect evidence for the proposed mechanism of FGF-BP-mediated FGF-2 release, we decided to use recombinant purified FGF-BP to study further the underlying mechanism of FGF-BP action. Here we show that FGF-BP is able to bind directly to FGF-2 without additional cofactors and to exhibit bioactivity. The purified recombinant FGF-BP stimulates tumor cell growth as well as endothelial cell growth and chemotaxis, indicating a dual growth-supporting role of FGF-BP in tumors. We show that this paracrine FGF-BP effect is dependent on endogenously expressed FGF-2, since it can be completely blocked by anti-FGF-2 antibodies. In tumor xenografts and in tumor cells, we detected a pattern of specific FGF-BP-immunoreactive high molecular weight forms, which presumably represent stable covalent complexes of FGF-BP and show marked differences in their occurrence in different tumors and in their heparin binding affinity. By providing further insight into the mechanism of FGF-BP action, our results emphasize the relevance of FGF-BP and of FGF-2 in tumor growth.
Collapse
Affiliation(s)
- A Aigner
- Department of Pharmacology and Toxicology, Philipps-University Medical School, Marburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
19
|
Liu XH, Aigner A, Wellstein A, Ray PE. Up-regulation of a fibroblast growth factor binding protein in children with renal diseases. Kidney Int 2001; 59:1717-28. [PMID: 11318942 DOI: 10.1046/j.1523-1755.2001.0590051717.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Basic fibroblast growth factor (bFGF) is an angiogenic growth factor that is involved in renal growth and the pathogenesis of renal diseases. We have detected high levels of bFGF accumulated in the kidney of HIV-transgenic mice and in children with HIV-associated renal diseases and the hemolytic uremic syndrome (HUS). However, the mechanism modulating the activity of bFGF under these circumstances is poorly understood. We carried out experiments to determine whether a secreted binding protein (FGF-BP) that modulates the activity of bFGF during the process of tumor growth was expressed in pediatric kidneys and to define whether the expression of FGF-BP was altered in pediatric renal diseases associated with high levels of bFGF. METHODS Immunohistochemistry and in situ hybridization studies were done in 41 renal sections from children with HIV nephropathies, HUS, other pediatric renal diseases, controls, and fetal kidneys. Western blots and reverse transcriptase-polymerase chain reaction studies were done in selected urine samples and cultured renal cells. Recombinant FGF-BP was produced to study the mitogenic activity of FGF-BP in cultured human renal proximal tubular epithelial cells (RPTEcs). RESULTS The expression of FGF-BP was up-regulated predominately in renal tubular epithelial cells in children with renal tubular injury, HIV-associated nephropathy (HIVAN), and HUS, and FGF-BP was secreted in the urine of these patients. FGF-BP was also abundantly expressed in developing fetal renal tubules. Recombinant FGF-BP enhanced the mitogenic effects of bFGF in cultured human RPTEcs. CONCLUSIONS The localization of FGF-BP in renal tubular epithelial cells could provide a mechanism by which the activity of bFGF is modulated in developing and regenerating renal tubules of children.
Collapse
Affiliation(s)
- X H Liu
- Children's Research Institute, Research Center for Molecular Physiology, Children's National Medical Center, Washington DC 20010, USA
| | | | | | | |
Collapse
|
20
|
Mongiat M, Otto J, Oldershaw R, Ferrer F, Sato JD, Iozzo RV. Fibroblast growth factor-binding protein is a novel partner for perlecan protein core. J Biol Chem 2001; 276:10263-71. [PMID: 11148217 DOI: 10.1074/jbc.m011493200] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Perlecan, a widespread heparan sulfate proteoglycan, functions as a bioactive reservoir for growth factors by stabilizing them against misfolding or proteolysis. These factors, chiefly members of the fibroblast growth factor (FGF) gene family, are coupled to the N-terminal heparan sulfate chains, which augment high affinity binding and receptor activation. However, rather little is known about biological partners of the protein core. The major goal of this study was to identify novel proteins that interact with the protein core of perlecan. Using the yeast two-hybrid system and domain III of perlecan as bait, we screened approximately 0.5 10(6) cDNA clones from a keratinocyte library and identified a strongly interactive clone. This cDNA corresponded to FGF-binding protein (FGF-BP), a secreted protein previously shown to bind acidic and basic FGF and to modulate their activities. Using a panel of deletion mutants, FGF-BP binding was localized to the second EGF repeat of domain III, a region very close to the binding site for FGF7. FGF-BP could be coimmunoprecipitated with an antibody against perlecan and bound in solution to recombinant domain III-alkaline phosphatase fusion protein. Immunohistochemical analyses revealed colocalization of FGF-BP and perlecan in the pericellular stroma of various squamous cell carcinomas suggesting a potential in vivo interaction. Thus, FGF-BP should be considered a novel biological ligand for perlecan, an interaction that could influence cancer growth and tissue remodeling.
Collapse
Affiliation(s)
- M Mongiat
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | |
Collapse
|