1
|
Grafe EL, Fontaine CJ, Thomas JD, Christie BR. Effects of prenatal ethanol exposure on choline-induced long-term depression in the hippocampus. J Neurophysiol 2021; 126:1622-1634. [PMID: 34495785 DOI: 10.1152/jn.00136.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Choline is an essential nutrient under evaluation as a cognitive enhancing treatment for fetal alcohol spectrum disorders (FASD) in clinical trials. As a result, there is increased pressure to identify therapeutic mechanism(s) of action. Choline is not only a precursor for several essential cell membrane components and signaling molecules but also has the potential to directly affect synaptic mechanisms that are believed important for cognitive processes. In the current work, we study how the direct application of choline can affect synaptic transmission in the dentate gyrus (DG) of hippocampal slices obtained from adolescent (postnatal days 21-28) Sprague-Dawley rats (Rattus norvegicus). The acute administration of choline chloride (2 mM) reliably induced a long-term depression (LTD) of field excitatory postsynaptic potentials (fEPSPs) in the DG in vitro. The depression required the involvement of M1 receptors, and the magnitude of the effect was similar in slices obtained from male and female animals. To further study the impact of choline in an animal model of FASD, we examined offspring from dams fed an ethanol-containing diet (35.5% ethanol-derived calories) throughout gestation. In slices from the adolescent animals that experienced prenatal ethanol exposure (PNEE), we found that the choline induced an LTD that uniquely involved the activation of N-methyl-d-aspartate (NMDA) and M1 receptors. This study provides a novel insight into how choline can modulate hippocampal transmission at the level of the synapse and that it can have unique effects following PNEE.NEW & NOTEWORTHY Choline supplementation is a nutraceutical therapy with significant potential for a variety of developmental disorders; however, the mechanisms involved in its therapeutic effects remain poorly understood. Our research shows that choline directly impacts synaptic communication in the brain, inducing a long-term depression of synaptic efficacy in brain slices. The depression is equivalent in male and female animals, involves M1 receptors in control animals, but uniquely involves NMDA receptors in a model of FASD.
Collapse
Affiliation(s)
- Erin L Grafe
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Christine J Fontaine
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Jennifer D Thomas
- Department of Psychology, San Diego State University, San Diego, California
| | - Brian R Christie
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada.,Island Medical Program, Department of Cellular and Physiological Sciences, University of British Columbia, Victoria, British Columbia, Canada
| |
Collapse
|
2
|
Varaschin RK, Allen NA, Rosenberg MJ, Valenzuela CF, Savage DD. Prenatal Alcohol Exposure Increases Histamine H 3 Receptor-Mediated Inhibition of Glutamatergic Neurotransmission in Rat Dentate Gyrus. Alcohol Clin Exp Res 2018; 42:295-305. [PMID: 29315624 PMCID: PMC5785429 DOI: 10.1111/acer.13574] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/28/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND We have reported that prenatal alcohol exposure (PAE)-induced deficits in dentate gyrus, long-term potentiation (LTP), and memory are ameliorated by the histamine H3 receptor inverse agonist ABT-239. Curiously, ABT-239 did not enhance LTP or memory in control offspring. Here, we initiated an investigation of how PAE alters histaminergic neurotransmission in the dentate gyrus and other brain regions employing combined radiohistochemical and electrophysiological approaches in vitro to examine histamine H3 receptor number and function. METHODS Long-Evans rat dams voluntarily consumed either a 0% or 5% ethanol solution 4 hours each day throughout gestation. This pattern of drinking, which produces a mean peak maternal serum ethanol concentration of 60.8 ± 5.8 mg/dl, did not affect maternal weight gain, litter size, or offspring birthweight. RESULTS Radiohistochemical studies in adult offspring revealed that specific [3 H]-A349821 binding to histamine H3 receptors was not different in PAE rats compared to controls. However, H3 receptor-mediated Gi /Go protein-effector coupling, as measured by methimepip-stimulated [35 S]-GTPγS binding, was significantly increased in cerebral cortex, cerebellum, and dentate gyrus of PAE rats compared to control. A LIGAND analysis of detailed methimepip concentration-response curves in dentate gyrus indicated that PAE significantly elevates receptor-effector coupling by a lower affinity H3 receptor population without significantly altering the affinities of H3 receptor subpopulations. In agreement with the [35 S]-GTPγS studies, a similar range of methimepip concentrations also inhibited electrically evoked field excitatory postsynaptic potential responses and increased paired-pulse ratio, a measure of decreased glutamate release, to a significantly greater extent in dentate gyrus slices from PAE rats than in controls. CONCLUSIONS These results suggest that a PAE-induced elevation in H3 receptor-mediated inhibition of glutamate release from perforant path terminals as 1 mechanism contributing the LTP deficits previously observed in the dentate gyrus of PAE rats, as well as providing a mechanistic basis for the efficacy of H3 receptor inverse agonists for ameliorating these deficits.
Collapse
Affiliation(s)
- Rafael K Varaschin
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, 87131
| | - Nyika A Allen
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, 87131
| | - Martina J Rosenberg
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, 87131
| | - C Fernando Valenzuela
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, 87131
| | - Daniel D Savage
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, 87131
| |
Collapse
|
3
|
Olsen RW, Liang J. Role of GABA A receptors in alcohol use disorders suggested by chronic intermittent ethanol (CIE) rodent model. Mol Brain 2017; 10:45. [PMID: 28931433 PMCID: PMC5605989 DOI: 10.1186/s13041-017-0325-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/05/2017] [Indexed: 11/10/2022] Open
Abstract
GABAergic inhibitory transmission is involved in the acute and chronic effects of ethanol on the brain and behavior. One-dose ethanol exposure induces transient plastic changes in GABAA receptor subunit levels, composition, and regional and subcellular localization. Rapid down-regulation of early responder δ subunit-containing GABAA receptor subtypes mediating ethanol-sensitive tonic inhibitory currents in critical neuronal circuits corresponds to rapid tolerance to ethanol's behavioral responses. Slightly slower, α1 subunit-containing GABAA receptor subtypes mediating ethanol-insensitive synaptic inhibition are down-regulated, corresponding to tolerance to additional ethanol behaviors plus cross-tolerance to other GABAergic drugs including benzodiazepines, anesthetics, and neurosteroids, especially sedative-hypnotic effects. Compensatory up-regulation of synaptically localized α4 and α2 subunit-containing GABAA receptor subtypes, mediating ethanol-sensitive synaptic inhibitory currents follow, but exhibit altered physio-pharmacology, seizure susceptibility, hyperexcitability, anxiety, and tolerance to GABAergic positive allosteric modulators, corresponding to heightened alcohol withdrawal syndrome. All these changes (behavioral, physiological, and biochemical) induced by ethanol administration are transient and return to normal in a few days. After chronic intermittent ethanol (CIE) treatment the same changes are observed but they become persistent after 30 or more doses, lasting for at least 120 days in the rat, and probably for life. We conclude that the ethanol-induced changes in GABAA receptors represent aberrant plasticity contributing critically to ethanol dependence and increased voluntary consumption. We suggest that the craving, drug-seeking, and increased consumption in the rat model are tied to ethanol-induced plastic changes in GABAA receptors, importantly the development of ethanol-sensitive synaptic GABAA receptor-mediating inhibitory currents that participate in maintained positive reward actions of ethanol on critical neuronal circuits. These probably disinhibit nerve endings of inhibitory GABAergic neurons on dopamine reward circuit cells, and limbic system circuits mediating anxiolysis in hippocampus and amygdala. We further suggest that the GABAA receptors contributing to alcohol dependence in the rat and presumably in human alcohol use disorders (AUD) are the ethanol-induced up-regulated subtypes containing α4 and most importantly α2 subunits. These mediate critical aspects of the positive reinforcement of ethanol in the dependent chronic user while alleviating heightened withdrawal symptoms experienced whenever ethanol is absent. The speculative conclusions based on firm observations are readily testable.
Collapse
Affiliation(s)
- Richard W. Olsen
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 USA
| | - Jing Liang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 USA
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90089 USA
| |
Collapse
|
4
|
Tuem KB, Atey TM. Neuroactive Steroids: Receptor Interactions and Responses. Front Neurol 2017; 8:442. [PMID: 28894435 PMCID: PMC5581316 DOI: 10.3389/fneur.2017.00442] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/11/2017] [Indexed: 12/21/2022] Open
Abstract
Neuroactive steroids (NASs) are naturally occurring steroids, which are synthesized centrally as de novo from cholesterol and are classified as pregnane, androstane, and sulfated neurosteroids (NSs). NASs modulate many processes via interacting with gamma-aminobutyric acid (GABA), N-methyl-d-aspartate, serotonin, voltage-gated calcium channels, voltage-dependent anion channels, α-adrenoreceptors, X-receptors of the liver, transient receptor potential channels, microtubule-associated protein 2, neurotrophin nerve growth factor, and σ1 receptors. Among these, NSs (especially allopregnanolone) have high potency and extensive GABA-A receptors and hence demonstrate anticonvulsant, anesthetic, central cytoprotectant, and baroreflex inhibitory effects. NSs are also involved in mood and learning via serotonin and anti-nociceptive activity via T-type voltage-gated Ca2+ channels. Moreover, they are modulators of mitochondrial function, synaptic plasticity, or regulators of apoptosis, which have a role in neuroprotective via voltage-dependent anion channels receptors. For proper functioning, NASs need to be in their normal level, whereas excess and deficiency may lead to abnormalities. When they are below the normal, NSs could have a part in development of depression, neuro-inflammation, multiple sclerosis, experimental autoimmune encephalitis, epilepsy, and schizophrenia. On the other hand, stress and attention deficit disorder could occur during excessive level. Overall, NASs are very important molecules with major neuropsychiatric activity.
Collapse
Affiliation(s)
- Kald Beshir Tuem
- Department of Pharmacology, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Tesfay Mehari Atey
- Clinical Pharmacy Unit, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| |
Collapse
|
5
|
Bird CW, Candelaria-Cook FT, Magcalas CM, Davies S, Valenzuela CF, Savage DD, Hamilton DA. Moderate prenatal alcohol exposure enhances GluN2B containing NMDA receptor binding and ifenprodil sensitivity in rat agranular insular cortex. PLoS One 2015; 10:e0118721. [PMID: 25747876 PMCID: PMC4351952 DOI: 10.1371/journal.pone.0118721] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/06/2015] [Indexed: 12/31/2022] Open
Abstract
Prenatal exposure to alcohol affects the expression and function of glutamatergic neurotransmitter receptors in diverse brain regions. The present study was undertaken to fill a current gap in knowledge regarding the regional specificity of ethanol-related alterations in glutamatergic receptors in the frontal cortex. We quantified subregional expression and function of glutamatergic neurotransmitter receptors (AMPARs, NMDARs, GluN2B-containing NMDARs, mGluR1s, and mGluR5s) by radioligand binding in the agranular insular cortex (AID), lateral orbital area (LO), prelimbic cortex (PrL) and primary motor cortex (M1) of adult rats exposed to moderate levels of ethanol during prenatal development. Increased expression of GluN2B-containing NMDARs was observed in AID of ethanol-exposed rats compared to modest reductions in other regions. We subsequently performed slice electrophysiology measurements in a whole-cell patch-clamp preparation to quantify the sensitivity of evoked NMDAR-mediated excitatory postsynaptic currents (EPSCs) in layer II/III pyramidal neurons of AID to the GluN2B negative allosteric modulator ifenprodil. Consistent with increased GluN2B expression, ifenprodil caused a greater reduction in NMDAR-mediated EPSCs from prenatal alcohol-exposed rats than saccharin-exposed control animals. No alterations in AMPAR-mediated EPSCs or the ratio of AMPARs/NMDARs were observed. Together, these data indicate that moderate prenatal alcohol exposure has a significant and lasting impact on GluN2B-containing receptors in AID, which could help to explain ethanol-related alterations in learning and behaviors that depend on this region.
Collapse
Affiliation(s)
- Clark W. Bird
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | | | - Christy M. Magcalas
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Suzy Davies
- Department of Neurosciences, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - C. Fernando Valenzuela
- Department of Neurosciences, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Daniel D. Savage
- Department of Neurosciences, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Derek A. Hamilton
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico, United States of America
- Department of Neurosciences, University of New Mexico, Albuquerque, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
6
|
Varaschin RK, Rosenberg MJ, Hamilton DA, Savage DD. Differential effects of the histamine H(3) receptor agonist methimepip on dentate granule cell excitability, paired-pulse plasticity and long-term potentiation in prenatal alcohol-exposed rats. Alcohol Clin Exp Res 2014; 38:1902-11. [PMID: 24818819 PMCID: PMC5094461 DOI: 10.1111/acer.12430] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 03/21/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND We previously reported that prenatal alcohol-induced deficits in dentate gyrus (DG) long-term potentiation (LTP) are ameliorated by the histamine H3 receptor inverse agonist ABT-239. ABT-239 did not enhance LTP in control rats, suggesting that the possibility of a heightened H3 receptor-mediated inhibition of LTP in prenatal alcohol-exposed (PAE) offspring. METHODS To further investigate this mechanism, we examined the effect of methimepip, a selective histamine H3 receptor agonist, on DG granule cell responses and LTP in saccharin control and PAE rats. Long-Evans rat dams voluntarily consumed either a 0 or 5% ethanol solution 4 hours each day throughout gestation. Adult male offspring from these dams were anesthetized with urethane and electrodes implanted into the entorhinal cortical perforant path and the DG. RESULTS In control offspring, methimepip reduced the coupling of fast excitatory postsynaptic field potentials to population spikes (E-S coupling), the probability of glutamate release, as measured by paired-pulse ratio (PPR) and diminished DG LTP. Similar reductions in E-S coupling and LTP were observed in saline-treated PAE offspring. In contrast to the control group, methimepip did not exacerbate PAE-induced reductions in E-S coupling or LTP. CONCLUSIONS While the effects of methimepip in control offspring were consistent with speculation of a PAE-induced enhancement of H3 receptor-mediated inhibition of E-S coupling and LTP, the absence of an added effect of methimepip in PAE offspring could indicate either an inability to further inhibit these responses with methimepip in PAE rats or the presence of more complex regulatory neural interactions with in vivo recordings in PAE rats. Follow-up studies of H3 receptor-mediated responses in DG slice preparations are under way to provide clearer insights into the role of the H3 receptor regulation of excitatory transmission in PAE rats.
Collapse
Affiliation(s)
- Rafael K. Varaschin
- Department of Neurosciences, University of New Mexico, Albuquerque, New Mexico, 87131, USA
| | - Martina J. Rosenberg
- Department of Neurosciences, University of New Mexico, Albuquerque, New Mexico, 87131, USA
| | - Derek A. Hamilton
- Department of Neurosciences, University of New Mexico, Albuquerque, New Mexico, 87131, USA
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico, 87131, USA
| | - Daniel D. Savage
- Department of Neurosciences, University of New Mexico, Albuquerque, New Mexico, 87131, USA
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico, 87131, USA
- Department of Pediatrics, University of New Mexico, Albuquerque, New Mexico, 87131, USA
| |
Collapse
|
7
|
Dihydromyricetin prevents fetal alcohol exposure-induced behavioral and physiological deficits: the roles of GABAA receptors in adolescence. Neurochem Res 2014; 39:1147-61. [PMID: 24676702 DOI: 10.1007/s11064-014-1291-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/18/2014] [Accepted: 03/20/2014] [Indexed: 10/25/2022]
Abstract
Fetal alcohol exposure (FAE) can lead to a variety of behavioral and physiological disturbances later in life. Understanding how alcohol (ethanol, EtOH) affects fetal brain development is essential to guide the development of better therapeutics for FAE. One of EtOH's many pharmacological targets is the γ-aminobutyric acid type A receptor (GABAAR), which plays a prominent role in early brain development. Acute EtOH potentiates inhibitory currents carried by certain GABAAR subtypes, whereas chronic EtOH leads to persistent alterations in GABAAR subunit composition, localization and function. We recently introduced a flavonoid compound, dihydromyricetin (DHM), which selectively antagonizes EtOH's intoxicating effects in vivo and in vitro at enhancing GABAAR function as a candidate for alcohol abuse pharmacotherapy. Here, we studied the effect of FAE on physiology, behavior and GABAAR function of early adolescent rats and tested the utility of DHM as a preventative treatment for FAE-induced disturbances. Gavage administration of EtOH (1.5, 2.5, or 5.0 g/kg) to rat dams on day 5, 8, 10, 12, and 15 of pregnancy dose-dependently reduced female/male offspring ratios (largely through decreased numbers of female offspring) and offspring body weights. FAE (2.5 g/kg) rats tested on postnatal days (P) 25-32 also exhibited increased anxiety and reduced pentylenetetrazol (PTZ)-induced seizure threshold. Patch-clamp recordings from dentate gyrus granule cells (DGCs) in hippocampal slices from FAE (2.5 g/kg) rats at P25-35 revealed reduced sensitivity of GABAergic miniature inhibitory postsynaptic currents (mIPSCs) and tonic current (Itonic) to potentiation by zolpidem (0.3 μM). Interestingly, potentiation of mIPSCs by gaboxadol increased, while potentiation of Itonic decreased in DGCs from FAE rats. Co-administration of EtOH (1.5 or 2.5 g/kg) with DHM (1.0 mg/kg) in pregnant dams prevented all of the behavioral, physiological, and pharmacological alterations observed in FAE offspring. DHM administration alone in pregnant rats had no adverse effect on litter size, progeny weight, anxiety level, PTZ seizure threshold, or DGC GABAAR function. Our results indicate that FAE induces long-lasting alterations in physiology, behavior, and hippocampal GABAAR function and that these deficits are prevented by DHM co-treatment of EtOH-exposed dams. The absence of adverse side effects and the ability of DHM to prevent FAE consequences suggest that DHM is an attractive candidate for development as a treatment for prevention of fetal alcohol spectrum disorders.
Collapse
|
8
|
Helfer JL, White ER, Christie BR. Prenatal ethanol (EtOH) exposure alters the sensitivity of the adult dentate gyrus to acute EtOH exposure. Alcohol Clin Exp Res 2013; 38:135-43. [PMID: 23915337 DOI: 10.1111/acer.12227] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 05/17/2013] [Indexed: 01/02/2023]
Abstract
BACKGROUND Prenatal ethanol (EtOH) exposure results in a spectrum of structural, cognitive, and behavioral abnormalities, collectively termed "fetal alcohol spectrum disorders" (FASDs). The hippocampal formation, an area of the brain strongly linked with learning and memory, is particularly vulnerable to the teratogenic effects of EtOH. Prenatal EtOH exposure can lead to long-lasting impairments in the ability to process spatial information, as well as produce long-lasting deficits in the ability of animals to exhibit long-term potentiation (LTP), a biological model of learning and memory processing. These deficits also have the ability to facilitate EtOH and/or other drug abuse later in life. This study sought to determine prenatal EtOH exposure altered the effects of acute EtOH application on synaptic plasticity. METHODS Prenatal EtOH exposure was modeled using a liquid diet where dams were given 1 of 3 diets: (i) a liquid diet containing EtOH (35.5% EtOH-derived calories), (ii) a liquid diet, isocaloric to the EtOH diet, but with maltose-dextrin substituting for the EtOH-derived calories, and (iii) an ad libitum diet of standard rat chow. Extracellular recordings from transverse brain slices (350 μm) prepared from 50- to 70-day-old rats, following prenatal EtOH exposure (gestational day 1 to 21). LTP was examined in the dentate gyrus following acute EtOH exposure (0, 20, or 50 mM) in these slices. RESULTS Prenatal EtOH exposure attenuated LTP in the adult dentate gyrus. In control offspring, acute application of EtOH in adulthood attenuated (20 mM) or blocked (50 mM) LTP. Conversely, the effect of acute EtOH application on LTP was not as pronounced in prenatal EtOH offspring. CONCLUSIONS Prenatal EtOH exposure alters the sensitivity of the adult dentate gyrus to acute EtOH application producing a long-lasting tolerance to the inhibitory effects of EtOH. This decreased sensitivity may provide a mechanism promoting the formation of drug-associated memories and help explain the increased likelihood of developing an alcohol dependency often observed in individuals with FASDs.
Collapse
Affiliation(s)
- Jennifer L Helfer
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada; Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | | | | |
Collapse
|
9
|
Helfer JL, White ER, Christie BR. Enhanced deficits in long-term potentiation in the adult dentate gyrus with 2nd trimester ethanol consumption. PLoS One 2012; 7:e51344. [PMID: 23227262 PMCID: PMC3515437 DOI: 10.1371/journal.pone.0051344] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 11/05/2012] [Indexed: 12/05/2022] Open
Abstract
Ethanol exposure during pregnancy can cause structural and functional changes in the brain that can impair cognitive capacity. The hippocampal formation, an area of the brain strongly linked with learning and memory, is particularly vulnerable to the teratogenic effects of ethanol. In the present experiments we sought to determine if the functional effects of developmental ethanol exposure could be linked to ethanol exposure during any single trimester-equivalent. Ethanol exposure during the 1st or 3rd trimester-equivalent produced only minor changes in synaptic plasticity in adult offspring. In contrast, ethanol exposure during the 2nd trimester equivalent resulted in a pronounced decrease in long-term potentiation, indicating that the timing of exposure influences the severity of the deficit. Together, the results from these experiments demonstrate long-lasting alterations in synaptic plasticity as the result of developmental ethanol exposure and dependent on the timing of exposure. Furthermore, these results allude to neural circuit malfunction within the hippocampal formation, perhaps relating to the learning and memory deficits observed in individuals with fetal alcohol spectrum disorders.
Collapse
Affiliation(s)
- Jennifer L. Helfer
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Emily R. White
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Graduate Program in Neuroscience, University of Victoria, Victoria, British Columbia, Canada
| | - Brian R. Christie
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
- Graduate Program in Neuroscience, University of Victoria, Victoria, British Columbia, Canada
- Graduate Program in Neuroscience and the Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- The Brain Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
10
|
Zink M, Ferbert T, Frank ST, Seufert P, Gebicke-Haerter PJ, Spanagel R. Perinatal exposure to alcohol disturbs spatial learning and glutamate transmission-related gene expression in the adult hippocampus. Eur J Neurosci 2011; 34:457-68. [DOI: 10.1111/j.1460-9568.2011.07776.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Puglia MP, Valenzuela CF. Ethanol acutely inhibits ionotropic glutamate receptor-mediated responses and long-term potentiation in the developing CA1 hippocampus. Alcohol Clin Exp Res 2010; 34:594-606. [PMID: 20102565 DOI: 10.1111/j.1530-0277.2009.01128.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Developmental ethanol (EtOH) exposure damages the hippocampus, causing long-lasting alterations in learning and memory. Alterations in glutamatergic synaptic transmission and plasticity may play a role in the mechanism of action of EtOH. This signaling is fundamental for synaptogenesis, which occurs during the third trimester of human pregnancy (first 12 days of life in rats). METHODS Acute coronal brain slices were prepared from 7- to 9-day-old rats. Extracellular and patch-clamp electrophysiological recording techniques were used to characterize the acute effects of EtOH on alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor (AMPAR)- and N-methyl-D-aspartate receptor (NMDAR)-mediated responses and long-term potentiation (LTP) in the CA1 hippocampal region. RESULTS Ethanol (40 and 80 mM) inhibited AMPAR- and NMDAR-mediated field excitatory postsynaptic potentials (fEPSPs). EtOH (80 mM) also reduced AMPAR-mediated fEPSPs in the presence of an inhibitor of Ca2+ permeable AMPARs. The effect of 80 mM EtOH on NMDAR-mediated fEPSPs was significantly greater in the presence of Mg2+. EtOH (80 mM) neither affected the paired-pulse ratio of AMPAR-mediated fEPSPs nor the presynaptic volley. The paired-pulse ratio of AMPAR-mediated excitatory postsynaptic currents was not affected either, and the amplitude of these currents was inhibited to a lesser extent than that of fEPSPs. EtOH (80 mM) inhibited LTP of AMPAR-mediated fEPSPs. CONCLUSIONS Acute EtOH exposure during the third-trimester equivalent of human pregnancy inhibits hippocampal glutamatergic transmission and LTP induction, which could alter synapse refinement and ultimately contribute to the pathophysiology of fetal alcohol spectrum disorder.
Collapse
Affiliation(s)
- Michael P Puglia
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131-0001, USA
| | | |
Collapse
|
12
|
Samudio-Ruiz SL, Allan AM, Sheema S, Caldwell KK. Hippocampal N-methyl-D-aspartate receptor subunit expression profiles in a mouse model of prenatal alcohol exposure. Alcohol Clin Exp Res 2009; 34:342-53. [PMID: 19951292 DOI: 10.1111/j.1530-0277.2009.01096.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Although several reports have been published showing prenatal ethanol exposure is associated with alterations in N-methyl-D-aspartate (NMDA) receptor subunit levels and, in a few cases, subcellular distribution, results of these studies are conflicting. METHODS We used semi-quantitative immunoblotting techniques to analyze NMDA receptor NR1, NR2A, and NR2B subunit levels in the adult mouse hippocampal formation isolated from offspring of dams who consumed moderate amounts of ethanol throughout pregnancy. We employed subcellular fractionation and immunoprecipitation techniques to isolate synaptosomal membrane- and postsynaptic density protein-95 (PSD-95)-associated pools of receptor subunits. RESULTS We found that, compared to control animals, fetal alcohol-exposed (FAE) adult mice had: (i) increased synaptosomal membrane NR1 levels with no change in association of this subunit with PSD-95 and no difference in total NR1 expression in tissue homogenates; (ii) decreased NR2A subunit levels in hippocampal homogenates, but no alterations in synaptosomal membrane NR2A levels and no change in NR2A-PSD-95 association; and (iii) no change in tissue homogenate or synaptosomal membrane NR2B levels but a reduction in PSD-95-associated NR2B subunits. No alterations were found in mRNA levels of NMDA receptor subunits suggesting that prenatal alcohol-associated differences in subunit protein levels are the result of differences in post-transcriptional regulation of subunit localization. CONCLUSIONS Our results demonstrate that prenatal alcohol exposure induces selective changes in NMDA receptor subunit levels in specific subcellular locations in the adult mouse hippocampal formation. Of particular interest is the finding of decreased PSD-95-associated NR2B levels, suggesting that synaptic NR2B-containing NMDA receptor concentrations are reduced in FAE animals. This result is consistent with various biochemical, physiological, and behavioral findings that have been linked with prenatal alcohol exposure.
Collapse
Affiliation(s)
- Sabrina L Samudio-Ruiz
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| | | | | | | |
Collapse
|
13
|
Samudio-Ruiz SL, Allan AM, Valenzuela CF, Perrone-Bizzozero NI, Caldwell KK. Prenatal ethanol exposure persistently impairs NMDA receptor-dependent activation of extracellular signal-regulated kinase in the mouse dentate gyrus. J Neurochem 2009; 109:1311-23. [PMID: 19317851 DOI: 10.1111/j.1471-4159.2009.06049.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The dentate gyrus (DG) is the central input region to the hippocampus and is known to play an important role in learning and memory. Previous studies have shown that prenatal alcohol is associated with hippocampal-dependent learning deficits and a decreased ability to elicit long-term potentiation (LTP) in the DG in adult animals. Given that activation of the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling cascade by NMDA receptors is required for various forms of learning and memory, as well as LTP, in hippocampal regions, including the DG, we hypothesized that fetal alcohol-exposed adult animals would have deficits in hippocampal NMDA receptor-dependent ERK1/2 activation. We used immunoblotting and immunohistochemistry techniques to detect NMDA-stimulated ERK1/2 activation in acute hippocampal slices prepared from adult fetal alcohol-exposed mice. We present the first evidence linking prenatal alcohol exposure to deficits in NMDA receptor-dependent ERK1/2 activation specifically in the DG of adult offspring. This deficit may account for the LTP deficits previously observed in the DG, as well as the life-long cognitive deficits, associated with prenatal alcohol exposure.
Collapse
Affiliation(s)
- Sabrina L Samudio-Ruiz
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | | | | | | | | |
Collapse
|
14
|
Kuhn P, Sarkar DK. Ethanol induces apoptotic death of beta-endorphin neurons in the rat hypothalamus by a TGF-beta 1-dependent mechanism. Alcohol Clin Exp Res 2008; 32:706-14. [PMID: 18341643 DOI: 10.1111/j.1530-0277.2008.00627.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND We have previously shown that developing beta-endorphin neurons, in the arcuate nucleus of the hypothalamus become increasingly apoptotic when exposed to ethanol. As in the previous study we have observed an involvement in transforming growth factor beta 1 (TGF-beta1) in mediation of the apoptotic process, the present study was conducted to determine the ethanol-induced changes in this apoptotic regulatory peptide signaling in the arcuate nucleus of the hypothalamus of neonatal rats. METHODS Pups were exposed to 11.34% ethanol in a milk-based diet or control diet on postnatal day (PND) 3 to PND7. Two hours after the last daily feeding, brains were collected and frozen in liquid nitrogen for analysis of various apoptosis regulatory proteins in the arcuate tissue by Western blots. Some animals were fixed in 4% paraformaldehyde and analyzed immunohistochemically. RESULTS Ethanol exposure increased apoptotic death of beta-endorphin neurons in the arcuate nucleus of the hypothalamus. The cell death was associated with an increase in the tissue levels of TGF-beta1 in the mediobasal hypothalamus. This was correlated with a reduction in the arcuate level of retinoblastoma protein (Rb) phosphorylation. The reduced level of Rb phosphorylation was associated with an increased protein level of the cyclin dependent kinase inhibitor p27/kip but with a decreased protein level of cyclin dependent kinase 4 and cyclin D3. In addition, the apoptotic cell death was positively correlated with the level of Bclxs but negatively correlated with the level of the Bcl2. CONCLUSIONS These results suggest that ethanol exposure increases TGF-beta1 signaling involving Bcl2 and Rb repression that may lead to apoptotic death of cells including beta-endorphin neurons in the arcuate nucleus of the hypothalamus.
Collapse
Affiliation(s)
- Peter Kuhn
- Endocrine Program, Center of Alcohol Studies and Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA
| | | |
Collapse
|
15
|
Nagy J. Alcohol related changes in regulation of NMDA receptor functions. Curr Neuropharmacol 2008; 6:39-54. [PMID: 19305787 PMCID: PMC2645546 DOI: 10.2174/157015908783769662] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 07/19/2007] [Accepted: 10/20/2007] [Indexed: 12/25/2022] Open
Abstract
Long-term alcohol exposure may lead to development of alcohol dependence in consequence of altered neurotransmitter functions. Accumulating evidence suggests that the N-methyl-D-aspartate (NMDA) type of glutamate receptors is a particularly important site of ethanol's action. Several studies showed that ethanol potently inhibits NMDA receptors (NMDARs) and prolonged ethanol exposition leads to a compensatory "up-regulation" of NMDAR mediated functions. Therefore, alterations in NMDAR function are supposed to contribute to the development of ethanol tolerance, dependence as well as to the acute and late signs of ethanol withdrawal.A number of publications report alterations in the expression and phosphorylation states of NMDAR subunits, in their interaction with scaffolding proteins or other receptors in consequence of chronic ethanol treatment. Our knowledge on the regulatory processes, which modulate NMDAR functions including factors altering transcription, protein expression and post-translational modifications of NMDAR subunits, as well as those influencing their interactions with different regulatory proteins or other downstream signaling elements are incessantly increasing. The aim of this review is to summarize the complex chain of events supposedly playing a role in the up-regulation of NMDAR functions in consequence of chronic ethanol exposure.
Collapse
Affiliation(s)
- József Nagy
- Gedeon Richter Plc., Pharmacological and Drug Safety Research, Laboratory for Molecular Cell Biology, Budapest 10. P.O. Box 27, H-1475 Hungary.
| |
Collapse
|
16
|
Valenzuela CF, Partridge LD, Mameli M, Meyer DA. Modulation of glutamatergic transmission by sulfated steroids: role in fetal alcohol spectrum disorder. ACTA ACUST UNITED AC 2007; 57:506-19. [PMID: 17597219 PMCID: PMC2366116 DOI: 10.1016/j.brainresrev.2007.04.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 04/22/2007] [Accepted: 04/23/2007] [Indexed: 02/05/2023]
Abstract
It is well established that sulfated steroids regulate synaptic transmission by altering the function of postsynaptic neurotransmitter receptors. In recent years, evidence from several laboratories indicates that these agents also regulate glutamatergic synaptic transmission at the presynaptic level in an age-dependent manner. In developing neurons, pregnenolone sulfate (PREGS) increases the probability of glutamate release, as evidenced by an increase in the frequency of AMPA receptor-mediated miniature excitatory postsynaptic currents and a decrease in paired-pulse facilitation. In hippocampal slices from postnatal day 3-5 rats, this effect is mediated by an increase in Ca(2+) levels in the axonal terminal that depends on presynaptic NMDA receptors. This is followed by delayed potentiation of postsynaptic AMPA receptor currents. Importantly, depolarization of postsynaptic neurons, inhibition of hydroxysteroid sulfatase activity and acute exposure to ethanol mimics the effect of exogenous PREGS application. This developmental form of synaptic plasticity cannot be observed in slices from rats older than postnatal day 6, when presynaptic NMDA receptors are no longer expressed in CA1 hippocampal region. Both in the CA1 hippocampal region and the dentate gyrus of more mature rats, PREGS, dehydroepiandrosterone sulfate and hydroxysteroid sulfatase inhibitors increase paired-pulse facilitation, without affecting basal glutamate release probability. This effect depends on activation of sigma(1)-like receptors and G(i/o) and involves a target in the release machinery that is downstream of residual Ca(2+). These presynaptic actions of sulfated steroids could play important roles in physiological processes ranging from synapse maturation to learning and memory, as well as pathophysiological conditions such as fetal alcohol spectrum disorder.
Collapse
Affiliation(s)
- C Fernando Valenzuela
- Department of Neurosciences, MSC08 4740, 1 University of New Mexico, Albuquerque, NM 87131-0001, USA.
| | | | | | | |
Collapse
|
17
|
Dubois C, Naassila M, Daoust M, Pierrefiche O. Early chronic ethanol exposure in rats disturbs respiratory network activity and increases sensitivity to ethanol. J Physiol 2006; 576:297-307. [PMID: 16857714 PMCID: PMC1995622 DOI: 10.1113/jphysiol.2006.111138] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chronic ethanol exposure during the fetal period alters spontaneous neuronal discharge, excitatory and inhibitory amino acid neurotransmission and neuronal sensitivity to ethanol in the adult brain. However, nothing is known about the effects of such exposure on the central respiratory rhythmic network, which is highly dependent on ethanol-sensitive amino acid neurotransmission. In 3- to 4-week-old rats, we investigated (1) the effects of chronic ethanol exposure (10% v/v as only source of fluid) during gestation and lactation on phrenic (Phr) and hypoglossal (XII) nerve activity using an in situ preparation and on spontaneous breathing at rest in unanaesthetized animals using plethysmography; (2) the sensitivity of the respiratory system to ethanol re-exposure in situ; and (3) the phrenic nerve response to muscimol, a GABA(A) receptor agonist, applied systemically in an in situ preparation. In control rats, ethanol (10-80 mm) induced a concentration-dependent decrease in the amplitude of both XII and Phr motor outflows. At 80 mm ethanol, the amplitude of the activity of the two nerves displayed a difference in sensitivity to ethanol and respiratory frequency increased as a result of shortening of postinspiratory duration period. After chronic ethanol exposure, respiratory frequency was significantly reduced by 43% in situ and by 23% in unanaesthetized animals, as a result of a selective increase in expiratory duration. During Phr burst, the ramp was steeper, revealing modification of inspiratory patterning. Interestingly that re-exposure to ethanol in situ elicited a dramatic inhibitory effect. At 80 mm, ethanol abolished rhythmic XII nerve outflow in all cases and Phr nerve outflow in only 50% of cases. Furthermore, administration of 50 microm muscimol abolished Phr nerve activity in all control rats, but only in 50% of ethanol-exposed animals. Our results demonstrate that chronic ethanol exposure at an early stage of brain development depresses breathing in juvenile rats, and sensitizes the respiratory network to re-exposure to ethanol, which does not seem to involve GABAergic neurotransmission.
Collapse
Affiliation(s)
- C Dubois
- GRAP-JE 2462, Groupe de Recherche sur l'Alcool et les Pharmacodépendances, UFR de Pharmacie, 1, rue des Louvels, 80036 Amiens, France
| | | | | | | |
Collapse
|
18
|
Pillai R, Scintu F, Scorciapino L, Carta M, Murru L, Biggio G, Cabras S, Reali C, Sogos V. Human astrocytes can be induced to differentiate into cells with neuronal phenotype. Exp Cell Res 2006; 312:2336-46. [PMID: 16716298 DOI: 10.1016/j.yexcr.2006.03.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 03/30/2006] [Accepted: 03/30/2006] [Indexed: 11/23/2022]
Abstract
Several recent studies have proposed that astrocytes may contribute to neurogenesis, not only as a source of trophic substances regulating it, but also as stem cells themselves. In order to better understand these mechanisms, primary astrocyte cultures were established from human fetal brain. After 3-4 weeks in culture, astrocytes (about 95% GFAP+; neurofilament, NF-; neuro-specific enolase, NSE-) were treated with a cocktail of protein kinase activators and FGF-1. After 5 h of treatment, most cells showed morphological changes that increased progressively up to 24-48 h, exhibiting a round cell body with long processes. Immunocytochemistry showed that treatment-induced NF and NSE expression in about 40% of cells. Nestin expression increased after treatment, whereas GFAP immunostaining was not significantly modified. Western blot and RT-PCR confirmed the results. No neuronal electrophysiological properties were observed after treatment, suggesting an incomplete maturation under these experimental conditions. Understanding the regenerative capability and neurogenic potential of astrocytes might be useful in devising therapeutic approaches for a variety of neurological disorders.
Collapse
Affiliation(s)
- Rita Pillai
- Department of Cytomorphology, University of Cagliari, Cittadella Universitaria, 09042 Monserrato (CA), Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Mameli M, Valenzuela CF. Alcohol increases efficacy of immature synapses in a neurosteroid-dependent manner. Eur J Neurosci 2006; 23:835-9. [PMID: 16487164 DOI: 10.1111/j.1460-9568.2006.04597.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fetal ethanol exposure persistently affects hippocampal circuits leading to learning and memory disabilities. Although the mechanisms responsible for these effects are not fully understood, several studies implicate neurosteroids as mediators of the actions of ethanol. A neurosteroid that appears to be critical for the fetal actions of ethanol is pregnenolone sulfate (PREGS). We found that chronic prenatal ethanol exposure increases PREGS levels in the fetal brain and that an endogenous PREGS-like neurosteroid strengthens excitatory transmission in the neonatal hippocampus. Therefore, we hypothesized that ethanol could affect synaptic transmission in the developing hippocampus in a PREGS-dependent manner. We used patch-clamp electrophysiological techniques and found that 50 mm ethanol strengthens AMPA receptor-mediated transmission in the CA1 region by reducing the failure rate of low-efficacy synapses. This effect was age-dependent and was occluded by application of exogenous PREGS. An anti-PREGS antibody scavenger and blockade of PREGS synthesis prevented the effect of ethanol. These data indicate that the deleterious effects of ethanol on hippocampal development are mediated in part by alterations in neurosteroid production, which results in premature stabilization of excitatory synapses.
Collapse
Affiliation(s)
- Manuel Mameli
- Department of Neurosciences, University of New Mexico, HSC, Albuquerque, NM 87131, USA
| | | |
Collapse
|
20
|
Strous RD, Maayan R, Weizman A. The relevance of neurosteroids to clinical psychiatry: from the laboratory to the bedside. Eur Neuropsychopharmacol 2006; 16:155-69. [PMID: 16257183 DOI: 10.1016/j.euroneuro.2005.09.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Revised: 08/08/2005] [Accepted: 09/15/2005] [Indexed: 11/28/2022]
Abstract
Neurosteroids are important neuroactive molecules with suggested central involvement in several neurophysiological and psychiatric disease processes. The discovery of neurosteroids followed the revelation that the brain exhibited the capacity to synthesize its own steroids in situ and thus be a potential site of steroidogenesis. In contrast to some steroids that exhibit traditional genomic steroid actions, most neurosteroids appear to regulate neuronal function by means of "non-genomic" mechanisms influencing neuronal excitability. Neurosteroids are synthesized either from CNS cholesterol or from peripheral steroid precursors and exhibit a wide range of modulatory effects on neurotransmitter receptor activity, most notably at the gamma-aminobutyric acid A (GABA(A)) receptor. Neurosteroids play an important role in neurodevelopment and neuroprotective effects, many aspects of which may have particular applicability to psychiatric disorders including various gender differences. Neurosteroids appear to be relevant to the pathophysiology and pharmacological treatment of many psychiatric disorders including the most notable mood and anxiety disorders, but also psychotic, childhood, eating, dementia, stress and postpartum disorders. It has been suggested that neurosteroids may become potential targets for pharmacological intervention in the future with further neurosteroid investigation contributing to a more comprehensive understanding of human behavior and psychopathology.
Collapse
Affiliation(s)
- Rael D Strous
- Beer Yaakov Mental Health Center, PO Box 1, Beer Yaakov 70350, Israel.
| | | | | |
Collapse
|
21
|
Mameli M, Carta M, Partridge LD, Valenzuela CF. Neurosteroid-induced plasticity of immature synapses via retrograde modulation of presynaptic NMDA receptors. J Neurosci 2006; 25:2285-94. [PMID: 15745954 PMCID: PMC6726098 DOI: 10.1523/jneurosci.3877-04.2005] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurosteroids are produced de novo in neuronal and glial cells, which begin to express steroidogenic enzymes early in development. Studies suggest that neurosteroids may play important roles in neuronal circuit maturation via autocrine and/or paracrine actions. However, the mechanism of action of these agents is not fully understood. We report here that the excitatory neurosteroid pregnenolone sulfate induces a long-lasting strengthening of AMPA receptor-mediated synaptic transmission in rat hippocampal neurons during a restricted developmental period. Using the acute hippocampal slice preparation and patch-clamp electrophysiological techniques, we found that pregnenolone sulfate increases the frequency of AMPA-mediated miniature excitatory postsynaptic currents in CA1 pyramidal neurons. This effect could not be observed in slices from rats older than postnatal day 5. The mechanism of action of pregnenolone sulfate involved a short-term increase in the probability of glutamate release, and this effect is likely mediated by presynaptic NMDA receptors containing the NR2D subunit, which is transiently expressed in the hippocampus. The increase in glutamate release triggered a long-term enhancement of AMPA receptor function that requires activation of postsynaptic NMDA receptors containing NR2B subunits. Importantly, synaptic strengthening could also be triggered by postsynaptic neuron depolarization, and an anti-pregnenolone sulfate antibody scavenger blocked this effect. This finding indicates that a pregnenolone sulfate-like neurosteroid is a previously unrecognized retrograde messenger that is released in an activity-dependent manner during development.
Collapse
Affiliation(s)
- Manuel Mameli
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | | | | | | |
Collapse
|
22
|
Purdy RH, Valenzuela CF, Janak PH, Finn DA, Biggio G, Bäckström T. Neuroactive steroids and ethanol. Alcohol Clin Exp Res 2006; 29:1292-8. [PMID: 16088987 DOI: 10.1097/01.alc.0000171486.97638.bc] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Robert H Purdy
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Galindo R, Frausto S, Wolff C, Caldwell KK, Perrone-Bizzozero NI, Savage DD. Prenatal ethanol exposure reduces mGluR5 receptor number and function in the dentate gyrus of adult offspring. Alcohol Clin Exp Res 2005; 28:1587-97. [PMID: 15597093 DOI: 10.1097/01.alc.0000141815.21602.82] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Previous studies in our laboratory indicated that metabotropic glutamate receptor (mGluR)-stimulated phosphoinositide hydrolysis is markedly reduced in the hippocampal formation of adult rat offspring whose mothers drank moderate amounts of ethanol during pregnancy. In the present study, we extended these observations by measuring the impact of prenatal ethanol exposure on proteins associated with the mGluR5 receptor-effector system along with two mGluR5 agonist-mediated responses in dentate gyrus of adult offspring. METHODS Sprague-Dawley rat dams consumed one of three diets throughout gestation: (1) a BioServ liquid diet that contained 5% ethanol (v/v), (2) pair-fed an isocalorically equivalent amount of 0% ethanol liquid diet, or (3) lab chow ad libitum. Microdissected slices of dentate gyrus were prepared from adult female offspring from each diet group and used for (1) Western blot analyses of mGluR5, the G-proteins Galphaq and Galpha11, and phospholipase C-beta1; (2) 2-chloro-5-hydroxyphenylglycine (CHPG)-stimulated growth associated protein 43 (GAP-43) phosphorylation; or (3) CHPG potentiation of electrically evoked [H]-D-aspartate (D-ASP) release from dentate gyrus slices. RESULTS In tissue prepared from untreated control rats, CHPG produced a dose-dependent increase in phosphate incorporation into GAP-43, with maximal agonist stimulation occurring at 20 microM of CHPG. CHPG produced a quantitatively similar dose-dependent increase in the potentiation of electrically evoked D-ASP release from dentate gyrus slices from untreated controls. Fetal ethanol exposure reduced the amount of dentate gyrus mGluR5 receptor protein by 36% compared with the diet control groups. There were no significant differences between diet groups in the two G-proteins or phospholipase C-beta1 protein. Fetal ethanol exposure reduced CHPG-stimulated GAP-43 phosphorylation to approximately one half the amount of CHPG stimulation observed in the control diet groups. Prenatal ethanol exposure also reduced CHPG potentiation of D-ASP release to a similar degree compared with control. CONCLUSIONS These results indicate that prenatal exposure to moderate quantities of ethanol reduces mGluR5 expression in the dentate gyrus of adult offspring. Although the subcellular site(s) for reduced mGluR5 expression cannot be discerned from Western blot data, the quantitatively similar effects of prenatal ethanol exposure on mGluR5 agonist stimulation of presynaptically localized GAP-43 phosphorylation and CHPG potentiation of evoked D-ASP release suggest that the presynaptic nerve terminal is one site where prenatal ethanol exposure has reduced mGluR5 receptor number and function. Furthermore, these data implicate these neurochemical alterations as one factor contributing to the hippocampal synaptic plasticity and behavioral deficits that we have observed previously in prenatal ethanol-exposed offspring.
Collapse
Affiliation(s)
- Rafael Galindo
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131-0001, USA
| | | | | | | | | | | |
Collapse
|
24
|
Izumi Y, Kitabayashi R, Funatsu M, Izumi M, Yuede C, Hartman RE, Wozniak DF, Zorumski CF. A single day of ethanol exposure during development has persistent effects on bi-directional plasticity, N-methyl-d-aspartate receptor function and ethanol sensitivity. Neuroscience 2005; 136:269-79. [PMID: 16181739 DOI: 10.1016/j.neuroscience.2005.07.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 07/06/2005] [Accepted: 07/06/2005] [Indexed: 11/22/2022]
Abstract
To determine factors that contribute to the learning deficits observed in individuals with fetal alcohol syndrome, we examined the effects of early postnatal ethanol exposure on forms of synaptic plasticity thought to underlie memory. Treatment of rat pups with ethanol on postnatal day 7 impaired the induction of N-methyl-D-aspartate receptor-dependent long-term potentiation and abolished homosynaptic long-term depression in the CA1 region of hippocampal slices prepared at postnatal day 30. An N-methyl-D-aspartate receptor-independent form of long-term potentiation induced by very high frequency stimulation could be induced in slices from ethanol-treated rats. Defects in long-term depression correlated with a diminished contribution of ifenprodil-sensitive N-methyl-D-aspartate receptors to synaptic transmission and defects in a spontaneous alternation behavioral task. Rats exposed to ethanol on postnatal day 7 also exhibited diminished sensitivity of synaptic N-methyl-D-aspartate receptors to block by ethanol at postnatal day 30 and decreased behavioral sedation to systemic ethanol injections. These results indicate that changes in synaptic plasticity and N-methyl-D-aspartate receptor function are likely to provide a neural substrate for the cognitive and behavioral changes that follow developmental ethanol exposure.
Collapse
Affiliation(s)
- Y Izumi
- Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Honse Y, Randall PK, Leslie SW. Prenatal ethanol exposure modifies [3H]MK-801 binding to NMDA receptors: spermidine and ifenprodil. Alcohol Clin Exp Res 2004; 27:1993-2001. [PMID: 14691388 DOI: 10.1097/01.alc.0000099029.55026.c6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND It has been suggested that abnormalities seen in fetal alcohol syndrome are linked with NMDA receptor malfunction. Our laboratory has previously shown that prenatal ethanol treatment decreases [3H]MK-801 binding density at postnatal day 21, when NMDA receptor subunit protein levels were unaltered. Thus, the focus of the present study was to examine whether prenatal ethanol modifies native NMDA receptor levels. METHODS Cerebral cortices were taken from offspring born to three treatment groups of pregnant Sprague Dawley(R) rats: an ethanol group given an ethanol liquid diet during the gestational period, a pair-fed control group that received a liquid diet without ethanol, and an ad libitum group fed rat chow and tap water. Western blot studies were carried out at postnatal days 1, 7, 14, and 21 to examine total protein expression of NR1 and NR1b splice variants. NR2 subunit levels were examined by [3H]MK-801 binding studies using spermidine, an endogenous polyamine, and ifenprodil, a selective NR2B antagonist. RESULTS [3H]MK-801 binding density was significantly reduced in prenatal ethanol-treated groups compared with ad libitum and pair-fed control groups. Spermidine increased [3H]MK-801 binding, although potentiation by spermidine was not significantly different among all three experimental groups. Furthermore, no significant differences in total protein expression of NR1 or NR1b splice variants were observed in cortical membrane homogenates at postnatal days 1 through 21. [3H]MK-801 binding in the presence of ifenprodil showed that prenatal ethanol treatment significantly decreased low-affinity ifenprodil binding. High-affinity ifenprodil binding was reduced in both pair-fed and ethanol-treated groups. CONCLUSIONS These results suggest that prenatal ethanol treatment reduces [3H]MK-801 binding and that this reduction may be due to a decrease in NR2A subunits.
Collapse
Affiliation(s)
- Yumiko Honse
- Division of Pharmacology and Toxicology, College of Pharmacy and Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, USA.
| | | | | |
Collapse
|
26
|
Honse Y, Nixon KM, Browning MD, Leslie SW. Cell surface expression of NR1 splice variants and NR2 subunits is modified by prenatal ethanol exposure. Neuroscience 2004; 122:689-98. [PMID: 14622912 DOI: 10.1016/s0306-4522(03)00603-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
N-methyl-D-aspartate receptor dysfunction has been strongly suggested to link with the abnormalities seen in fetal alcohol syndrome. Thus, the effects of prenatal ethanol exposure on the total expression of NR1 splice variants and the cell surface expression of both NR1 and NR2 subunits in brain were investigated in rats. Western blot studies of membrane homogenates from cerebral cortices at postnatal days 1 through 21 indicate that prenatal ethanol treatment does not alter total NR1 expression or differential expression of NR1 splice variants during development. However, immunoprecipitation studies using PSD95 suggest that both C2'-terminal variants and NR2A subunits at the cortical postsynaptic membrane of postnatal day 21 were significantly reduced after prenatal ethanol treatment. Moreover, C1-terminal variants were decreased in both pair-fed and ethanol-treated groups, while no significant differences in the levels of total NR1 subunits, NR1 splice variants containing the N- or C2-terminal cassettes, or NR2B subunits were observed. Thus, these results suggest that prenatal exposure to ethanol may influence neuronal function by selective regulation of expression of C2'-terminal variants and NR2A subunits at the cell surface.
Collapse
Affiliation(s)
- Y Honse
- Division of Pharmacology and Toxicology, College of Pharmacy and Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA.
| | | | | | | |
Collapse
|
27
|
Cannizzaro C, D'Amico M, Altobelli D, Preziosi P, Martire M. Neurosteroid modulation of the presynaptic NMDA receptors regulating hippocampal noradrenaline release in normal rats and those exposed prenatally to diazepam. Neurochem Int 2003; 43:121-7. [PMID: 12620280 DOI: 10.1016/s0197-0186(02)00226-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Prenatal exposure to diazepam (DZ), a positive allosteric modulator of the gamma-aminobutyric acid(A) (GABA(A)) receptor complex, exerts profound effects that become more evident during puberty and in many cases are sex-specific, suggesting that such exposure interferes with the activity of steroid hormones. Apart from their well known effects on the genome, the reduced metabolites of many steroid hormones also interact directly with membrane receptors, including those for N-methyl-D-aspartate (NMDA). In this study, we compared the effects of several neurosteroids on NMDA receptors from normal rats and those exposed in utero to DZ (1.25mg/kg per day) from the 14th through the 20th day of gestation. In superfused rat hippocampal synaptosomes, activation of the NMDA receptor stimulates the basal release of [3H]noradrenaline ([3H]NA), which was used in our study as an index of receptor function. [3H]NA release was evoked in a concentration-dependent manner by NMDA (100 microM) plus glycine (GLY). The maximal increase (68.23+/-3.86%) with respect to basal release was achieved with a GLY concentration of 10 microM, and the EC(50) for GLY was 0.1 microM. Release stimulated by 100 microM NMDA + 0.1 microM GLY was not modified by any of the neurosteroids tested, with the exception of pregnenolone sulfate (PREG-S), which produced a 78.57+/-3.94% reduction in release at the maximal concentration used (0.3 microM). In synaptosomes from animals exposed in utero to DZ, the inhibitory effect of PREG-S was reduced by 46.55+/-2.33%. Given the important roles played by NMDA receptors in physiological and pathological processes within the central nervous system (CNS), characterization of NMDA receptor modulation is an important objective. The fact that this modulation can be altered by exposure in utero to DZ indicates that the behavioral abnormalities observed in exposed animals might be partially attributed to an altered sensitivity of NMDA receptors to the modulatory effects of neurosteroids.
Collapse
Affiliation(s)
- Carla Cannizzaro
- Institute of Pharmacology, Hospital P. Giaccone, University of Palermo, Palermo, Italy
| | | | | | | | | |
Collapse
|
28
|
Carta M, Partridge LD, Savage DD, Valenzuela CF. Neurosteroid modulation of glutamate release in hippocampal neurons: lack of an effect of a chronic prenatal ethanol exposure paradigm. Alcohol Clin Exp Res 2003; 27:1194-8. [PMID: 12878928 DOI: 10.1097/01.alc.0000075828.50697.70] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Pregnenolone sulfate (PREGS) is a promnesic neurosteroid that is abundantly expressed in the hippocampus of rodents. Studies have shown that the modulation of postsynaptic ligand-gated ion channels by this neurosteroid is impaired in preparations from the brains of fetal ethanol-exposed animals. In this study, we examined whether the presynaptic actions of PREGS also are affected by exposure to ethanol in utero. METHODS Rat dams were exposed to one of the following diets during pregnancy: (1) 5% ethanol liquid diet, (2) 0% ethanol liquid diet with pair-feeding, and (3) ad libitum controls. We then studied the presynaptic actions of PREGS on (1) alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor-mediated miniature excitatory postsynaptic currents (mEPSCs) recorded from cultured hippocampal neurons in the whole-cell patch-clamp configuration and (2) paired-pulse facilitation of NMDA receptor-dependent excitatory postsynaptic potentials that were intracellularly recorded from CA1 pyramidal neurons in hippocampal slices from adult rats. RESULTS Chronic prenatal ethanol exposure affected neither basal mEPSC frequency nor its potentiation by PREGS. Basal paired-pulse facilitation (i.e., in the absence of PREGS) was unaffected by fetal ethanol exposure. Chronic prenatal ethanol exposure did not affect the PREGS-induced potentiation of paired-pulse facilitation. CONCLUSIONS Chronic prenatal ethanol exposure does not affect the basal probability of glutamate release in immature or mature hippocampal neurons. Moreover, the presynaptic actions of the neurosteroid PREGS also are unaffected by this exposure. Given that modulation of glutamate release could have a role in the mechanism of the promnesic actions of this neurosteroid, future studies are warranted to determine whether PREGS can ameliorate learning and memory deficits in fetal ethanol-exposed animals.
Collapse
Affiliation(s)
- Mario Carta
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, USA
| | | | | | | |
Collapse
|
29
|
Maekawa S, Iino S, Miyata S. Molecular characterization of the detergent-insoluble cholesterol-rich membrane microdomain (raft) of the central nervous system. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1610:261-70. [PMID: 12648779 DOI: 10.1016/s0005-2736(03)00023-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Many fundamental neurological issues such as neuronal polarity, the formation and remodeling of synapses, synaptic transmission, and the pathogenesis of the neuronal cell death are closely related to the membrane dynamics. The elucidation of functional roles of a detergent-insoluble cholesterol-rich domain (raft) could therefore provide good clues to the molecular understanding of these important phenomena, for the participation of the raft in the fundamental cell functions, such as signal transduction and selective transport of lipids and proteins, has been elucidated in nonneural cells. Interestingly, the brain is rich in raft and the brain-derived raft differs in its lipid and protein components from other tissue-derived rafts. Since many excellent reviews are written on the membrane lipid dynamics of this microdomain, signal transduction, and neuronal glycolipids, we review on the characterization of the raft proteins recovered in the detergent-insoluble low-density fraction from rat brain. Special focus is addressed on the biochemical characterization of a neuronal enriched protein, NAP-22, for the lipid organizing activity of this protein has become increasingly clear.
Collapse
Affiliation(s)
- Shohei Maekawa
- Department of Life Science, Graduate School of Science and Technology, Kobe University, Rokkodai 1-1, Kobe 657-8501, Japan.
| | | | | |
Collapse
|
30
|
Savage DD, Becher M, Torre AJ, Sutherland RJ. Dose-Dependent Effects of Prenatal Ethanol Exposure on Synaptic Plasticity and Learning in Mature Offspring. Alcohol Clin Exp Res 2002. [DOI: 10.1111/j.1530-0277.2002.tb02480.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Dose-Dependent Effects of Prenatal Ethanol Exposure on Synaptic Plasticity and Learning in Mature Offspring. Alcohol Clin Exp Res 2002. [DOI: 10.1097/00000374-200211000-00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Meyer DA, Carta M, Partridge LD, Covey DF, Valenzuela CF. Neurosteroids enhance spontaneous glutamate release in hippocampal neurons. Possible role of metabotropic sigma1-like receptors. J Biol Chem 2002; 277:28725-32. [PMID: 12042305 DOI: 10.1074/jbc.m202592200] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Pregnenolone sulfate (PREGS), one of the most abundantly produced neurosteroids in the mammalian brain, improves cognitive performance in rodents. The mechanism of this effect has been attributed to its allosteric modulatory actions on glutamate- and gamma-aminobutyric acid-gated ion channels. Here we report a novel effect of PREGS that could also mediate some of its actions in the nervous system. We found that PREGS induces a robust potentiation of the frequency but not the amplitude of miniature excitatory postsynaptic currents (mEPSCs) mediated by alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors in cultured hippocampal neurons. PREGS also decreased paired pulse facilitation of autaptic EPSCs evoked by depolarization, indicating that it modulates glutamate release probability presynaptically. PREGS potentiation of mEPSCs was mimicked by dehydroepiandrosterone sulfate and (+)-pentazocine but not by (-)-pentazocine, the synthetic (-)-enantiomer of PREGS or the inactive steroid isopregnanolone. The sigma receptor antagonists, haloperidol and BD-1063, blocked the effect of PREGS on mEPSCs, as did pertussis toxin and the membrane-permeable Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (acetoxymethyl) ester. These results suggest that PREGS increases spontaneous glutamate release via activation of a presynaptic G(i/o)-coupled sigma receptor and an elevation in intracellular Ca2+ levels. We postulate that presynaptic actions of neurosteroids have a role in the maturation and/or maintenance of synaptic networks and the processing of information in the central nervous system.
Collapse
Affiliation(s)
- Douglas A Meyer
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | | | | | | | | |
Collapse
|
33
|
Chronic prenatal ethanol exposure increases GABA(A) receptor subunit protein expression in the adult guinea pig cerebral cortex. J Neurosci 2001. [PMID: 11404424 DOI: 10.1523/jneurosci.21-12-04381.2001] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Excessive consumption of ethanol during pregnancy can produce teratogenic effects in offspring and is the leading cause of mental deficiency in the Western world. The objective of this study was to examine the effects of chronic prenatal ethanol exposure on the number of GABA(A) receptors and relative protein levels for GABA(A) receptor alpha1 and beta2/3 subunits in the adult guinea pig cerebral cortex. Timed pregnant Dunkin-Hartley strain guinea pigs were given one of the following oral treatments daily throughout gestation: 4 gm of ethanol per kilogram of maternal body weight, isocaloric-sucrose with pair feeding, or isovolumetric water with ad libitum access to food. The ethanol treatment resulted in a peak maternal blood ethanol concentration of 328 +/- 55 mg/dl (71.3 +/- 12.0 mm) on gestational day 57 (term, approximately 68 d). Chronic prenatal exposure to ethanol resulted in increased spontaneous locomotor activity throughout development and decreased cerebral cortical weight in adult offspring. The number of cerebral cortical [(3)H]muscimol binding sites was increased in adult offspring from the ethanol treatment group, and there was a corresponding increase in the amount of GABA(A) receptor alpha1 and beta2/3 subunit proteins in these same animals. For individual offspring, there were correlations between locomotor activity and cerebral cortical weight, as well as between cerebral cortical weight and GABA(A) receptor neurochemistry. There was no effect of chronic prenatal ethanol exposure on [(3)H]MK-801 binding in this tissue. These data demonstrate that chronic prenatal ethanol exposure has long-term consequences on the regulation of GABA(A) receptor expression in the cerebral cortex.
Collapse
|