1
|
Liang X, Zhao Y, Yan J, Zhang Q, James TD, Lin W. Mechanosensitive fluorescence lifetime probes for investigating the dynamic mechanism of ferroptosis. Proc Natl Acad Sci U S A 2024; 121:e2316450121. [PMID: 39356672 PMCID: PMC11474025 DOI: 10.1073/pnas.2316450121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 08/27/2024] [Indexed: 10/04/2024] Open
Abstract
Deciphering the dynamic mechanism of ferroptosis can provide insights into pathogenesis, which is valuable for disease diagnosis and treatment. However, due to the lack of suitable time-resolved mechanosensitive tools, researchers have been unable to determine the membrane tension and morphology of the plasma membrane and the nuclear envelope during ferroptosis. With this research, we propose a rational strategy to develop robust mechanosensitive fluorescence lifetime probes which can facilitate simultaneous fluorescence lifetime imaging of the plasma membrane and nuclear envelope. Fluorescence lifetime imaging microscopy using the unique mechanosensitive probes reveal a dynamic mechanism for ferroptosis: The membrane tension of both the plasma membrane and the nuclear envelope decreases during ferroptosis, and the nuclear envelope exhibits budding during the advanced stage of ferroptosis. Significantly, the membrane tension of the plasma membrane is always larger than that of the nuclear envelope, and the membrane tension of the nuclear envelope is slightly larger than that of the nuclear membrane bubble. Meanwhile, the membrane lesions are repaired in the low-tension regions through exocytosis.
Collapse
Affiliation(s)
- Xing Liang
- School of Chemistry and Chemical Engineering, Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi530004, People’s Republic of China
| | - Yuping Zhao
- School of Chemistry and Chemical Engineering, Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi530004, People’s Republic of China
| | - Jun Yan
- School of Chemistry and Chemical Engineering, Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi530004, People’s Republic of China
| | - Qian Zhang
- School of Chemistry and Chemical Engineering, Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi530004, People’s Republic of China
| | - Tony D. James
- Department of Chemistry, University of Bath, BathBA2 7AY, United Kingdom
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang453007, People’s Republic of China
| | - Weiying Lin
- School of Chemistry and Chemical Engineering, Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi530004, People’s Republic of China
| |
Collapse
|
2
|
Herrera-Ochoa D, Bravo I, Garzón-Ruiz A. Monitoring cancer treatments in melanoma cells using a fluorescence lifetime nanoprobe based on a CdSe/ZnS quantum dot functionalized with a peptide containing D-penicillamine and histidine. Colloids Surf B Biointerfaces 2024; 245:114265. [PMID: 39321721 DOI: 10.1016/j.colsurfb.2024.114265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/12/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
Anticancer therapies with cisplatin and volasertib (BI-6727) were monitored by fluorescence lifetime imaging microscopy (FLIM) in live SK-Mel-2 melanoma cells. A CdSe/ZnS quantum dot functionalized with a peptide containing D-penicillamine and histidine (CdSe/ZnS-PH) was used as intracellular pH fluorescent probe. A faster cytosol acidification was observed for cells treated with cisplatin when compared to volasertib. The first changes in the intracellular pH were found after 2 hours of treatment with cisplatin and 8 hours with volasertib. Additionally, the relationship between cytosol acidification and apoptosis was investigated using an innovative methodology based on time-resolved fluorescence measurements. Similar low percentages of apoptotic cells were observed after short incubation periods (2 - 8 hours) with both drugs. In contrast, late apoptosis and death were found for a large fraction of cells during 24-hour incubation with cisplatin but not volasertib. Thus, the early acidification observed in cisplatin treatment could accelerate apoptosis and cell death. Despite volasertib treatment shows slower mechanism of action than cisplatin, similar inhibitory effects were found for both drugs at longer incubation periods (72 hours). This study proves the potential of CdSe/ZnS-PH nanoparticle as a fluorescence lifetime probe in the study of the mechanism of action of antitumor drugs.
Collapse
Affiliation(s)
- Diego Herrera-Ochoa
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr. José María Sánchez Ibáñez, s/n, Albacete 02071, Spain
| | - Iván Bravo
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr. José María Sánchez Ibáñez, s/n, Albacete 02071, Spain; Centro Regional de Investigaciones Biomédicas (CRIB), Unidad Asociada de Biomedicina (UCLM-CSIC), C/ Almansa, 14, Albacete 02008, Spain
| | - Andrés Garzón-Ruiz
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr. José María Sánchez Ibáñez, s/n, Albacete 02071, Spain.
| |
Collapse
|
3
|
Mariano N, Wolf H, Vivekanand P. Isoginkgetin exerts apoptotic effects on A375 melanoma cells. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001324. [PMID: 39381637 PMCID: PMC11461025 DOI: 10.17912/micropub.biology.001324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/02/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
Many plants produce secondary metabolites, known as flavonoids, which are thought to exhibit anti-cancer properties. Ginkgo biloba , a plant traditionally used in Chinese herbal medicine, is known to produce over 40 different secondary metabolites. Isoginkgetin, a biflavanoid from this species, has been demonstrated to be cytotoxic to different cancer cell lines. In this study, the anti-cancer effects of isoginkgetin were tested on A375 melanoma cells. XTT cell viability analysis revealed that isoginkgetin treatment resulted in a concentration dependent decrease in cell viability. To investigate whether apoptosis was induced in A375 cell treated with isoginkgetin, a western blot analysis was performed to detect PARP cleavage which is indicative of apoptosis. PARP cleavage was detected at all concentrations tested, with more pronounced cleavage observed with increasing isoginkgetin concentrations. To obtain insight into the potential mechanism of isoginkgetin induced apoptosis, we examined the involvement of the MAPK signaling pathway. We detected phosphorylated ERK in A375 cells treated with isoginkgetin which suggests that isoginkgetin might induce apoptosis of A375 cells through activation of the MAPK signaling pathway.
Collapse
Affiliation(s)
- Nina Mariano
- Biology Department, Susquehanna University, Selinsgrove, Pennsylvania, United States
| | - Hunter Wolf
- Biology Department, Susquehanna University, Selinsgrove, Pennsylvania, United States
| | - Pavithra Vivekanand
- Biology Department, Susquehanna University, Selinsgrove, Pennsylvania, United States
| |
Collapse
|
4
|
Shieu MK, Lin CC, Ho HY, Lo YS, Chuang YC, Hsieh MJ. Picrasidine I Regulates Apoptosis in Melanoma Cell Lines by Activating ERK and JNK Pathways and Suppressing AKT Signaling. ENVIRONMENTAL TOXICOLOGY 2024. [PMID: 39194337 DOI: 10.1002/tox.24404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/21/2024] [Accepted: 08/10/2024] [Indexed: 08/29/2024]
Abstract
World Health Organization data indicate a continuous increase in melanoma incidence, with metastatic melanoma characterized by poor prognosis and drug resistance. The exploration of therapeutics derived from natural products remains an active area of in vitro research. The aim of this study was to determine the antitumor effects of picrasidine I, a natural compound extracted from Picrasma quassioides, against two melanoma cell lines. We selected two metastatic melanoma cell lines, HMY-1 and A2058, for molecular studies, including Western blotting, 4',6-diamidino-2-phenylindole staining, and flow cytometry. Picrasidine I demonstrated cytotoxic effects against the HMY-1 and A2058 melanoma cell lines. It induced cell cycle arrest in the sub-G1 phase and downregulated cell cycle-related proteins (e.g., cyclin A2, D1, cyclin-dependent kinases 4, and 6). In the intrinsic apoptosis pathway, picrasidine I activated proapoptotic proteins (e.g., Bax, Bak, t-Bid, BimL/S) and suppressed the expression of antiapoptotic proteins (e.g., Bcl-2, Bcl-xL), with an observed increase in the quantity of depolarized cells. In addition, the apoptotic effects of picrasidine I were linked to the activation of the c-Jun N-terminal kinase and extracellular signal-regulated kinase pathways and the inhibition of the protein kinase B signaling pathway. A human apoptosis array indicated claspin inhibition upon picrasidine I treatment, suggesting the potential involvement of picrasidine I in apoptosis and cell cycle regulation. Our findings suggest that picrasidine I has potential as a candidate for treating advanced melanoma, and thus these findings warrant further investigation. The modulation of claspin expression by picrasidine I could be investigated further as a potential biomarker to predict its efficacy in related to advanced stages of melanoma.
Collapse
Affiliation(s)
- Mu-Kuei Shieu
- Department of Dermatology, Changhua Christian Hospital, Changhua, Taiwan
| | - Chia-Chieh Lin
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Hsin-Yu Ho
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Yu-Sheng Lo
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Yi-Ching Chuang
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Ming-Ju Hsieh
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Doctoral Program in Tissue Engineering and Regenerative Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
5
|
Stefàno E, De Castro F, Ciccarese A, Muscella A, Marsigliante S, Benedetti M, Fanizzi FP. An Overview of Altered Pathways Associated with Sensitivity to Platinum-Based Chemotherapy in Neuroendocrine Tumors: Strengths and Prospects. Int J Mol Sci 2024; 25:8568. [PMID: 39201255 PMCID: PMC11354135 DOI: 10.3390/ijms25168568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Neuroendocrine neoplasms (NENs) are a diverse group of malignancies with a shared phenotype but varying prognosis and response to current treatments. Based on their morphological features and rate of proliferation, NENs can be classified into two main groups with a distinct clinical behavior and response to treatment: (i) well-differentiated neuroendocrine tumors (NETs) or carcinoids (with a low proliferation rate), and (ii) poorly differentiated small- or large-cell neuroendocrine carcinomas (NECs) (with a high proliferation rate). For certain NENs (such as pancreatic tumors, higher-grade tumors, and those with DNA damage repair defects), chemotherapy is the main therapeutic approach. Among the different chemotherapic agents, cisplatin and carboplatin, in combination with etoposide, have shown the greatest efficacy in treating NECs compared to NETs. The cytotoxic effects of cisplatin and carboplatin are primarily due to their binding to DNA, which interferes with normal DNA transcription and/or replication. Consistent with this, NECs, which often have mutations in pathways involved in DNA repair (such as Rb, MDM2, BRCA, and PTEN), have a high response to platinum-based chemotherapy. Identifying mutations that affect molecular pathways involved in the initiation and progression of NENs can be crucial in predicting the response to platinum chemotherapy. This review aims to highlight targetable mutations that could serve as predictors of therapeutic response to platinum-based chemotherapy in NENs.
Collapse
Affiliation(s)
| | | | | | | | | | - Michele Benedetti
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy; (E.S.); (F.D.C.); (A.C.); (A.M.); (S.M.); (F.P.F.)
| | | |
Collapse
|
6
|
Liang A, Wu Z, Zhuo T, Zhu Y, Li Z, Chen S, Dai L, Wang Y, Tan X, Chen M. TONSL promotes lung adenocarcinoma progression, immune escape and drug sensitivity. Clin Transl Oncol 2024:10.1007/s12094-024-03627-w. [PMID: 39097545 DOI: 10.1007/s12094-024-03627-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/19/2024] [Indexed: 08/05/2024]
Abstract
PURPOSE The tonsoku-like DNA repair protein (TONSL) encoded by the TONSL gene, located on chromosome 8q24.3, is crucial for repairing DNA double-strand breaks through homologous recombination. However, TONSL overexpression in lung adenocarcinoma (LUAD) promotes tumor development, leading to a poor prognosis. METHODS TONSL was verified as a reliable prognostic marker for LUAD using bioinformatics, and clinical features related to LUAD prognosis were screened from the TCGA database to establish the relationship between risk factors and TONSL expression. In addition, TONSL expression in normal and LUAD tissues was verified using real-time quantitative polymerase chain reaction and immunohistochemistry. To elucidate the possible functions of TONSL, TONSL-related differentially expressed genes were screened, and functional enrichment analysis was performed. Subsequently, siRNA was used to knock down TONSL expression in lung cancer cells for cytobehavioral experiments. The effects of TONSL expression on tumor immune escape were analyzed using the ESTIMATE algorithm and tumor immune-infiltration analysis. In addition, the half-maximal inhibitory concentration of LUAD with varying TONSL expression levels in response to first-line chemotherapeutic drugs and epidermal growth factor receptor-tyrosine kinase inhibitors was analyzed for drug sensitivity. RESULTS Up-regulation of TONSL in LUAD promotes the proliferation, migration, and invasion of lung cancer cells, thereby contributing to a poor prognosis. Furthermore, TONSL overexpression promotes immune escape and drug sensitivity in LUAD. CONCLUSION TONSL serves as a reliable prognostic marker for LUAD, and its up-regulation is associated with increased immune escape and drug sensitivity. These findings suggest that TONSL holds potential as a novel therapeutic target for LUAD.
Collapse
Affiliation(s)
- Anru Liang
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zuotao Wu
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Ting Zhuo
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yongjie Zhu
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zihao Li
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Sirong Chen
- Department of Radiotherapy, Guangxi Medical University Cancer Hospital, No. 71 Hedi Rd, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Lei Dai
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yongyong Wang
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiang Tan
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Mingwu Chen
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
7
|
Ferreira-Silva GÁ, Rodrigues DA, Pressete CG, Caixeta ES, Gamero AMC, Miyazawa M, Hanemann JAC, Fraga CAM, Aissa AF, Ionta M. Selective inhibition of HDAC6 by N-acylhydrazone derivative reduces the proliferation and induces senescence in carcinoma hepatocellular cells. Toxicol In Vitro 2024; 99:105884. [PMID: 38945376 DOI: 10.1016/j.tiv.2024.105884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Hepatocellular carcinoma (HCC) is a significant contributor to cancer-related deaths globally. Systemic therapy is the only treatment option for HCC at an advanced stage, with limited therapeutic response. In this study, we evaluated the antitumor potential of four N-acylhydrazone (NAH) derivatives, namely LASSBio-1909, 1911, 1935, and 1936, on HCC cell lines. We have previously demonstrated that the aforementioned NAH derivatives selectively inhibit histone deacetylase 6 (HDAC6) in lung cancer cells, but their effects on HCC cells have not been explored. Thus, the present study aimed to evaluate the effects of NAH derivatives on the proliferative behavior of HCC cells. LASSBio-1911 was the most cytotoxic compound against HCC cells, however its effects were minimal on normal cells. Our results showed that LASSBio-1911 inhibited HDAC6 in HCC cells leading to cell cycle arrest and decreased cell proliferation. There was also an increase in the frequency of cells in mitosis onset, which was associated with disturbing mitotic spindle formation. These events were accompanied by elevated levels of CDKN1A mRNA, accumulation of CCNB1 protein, and sustained ERK1 phosphorylation. Furthermore, LASSBio-1911 induced DNA damage, resulting in senescence and/or apoptosis. Our findings indicate that selective inhibition of HDAC6 may provide an effective therapeutic strategy for the treatment of advanced HCC, including tumor subtypes with integrated viral genome. Further, in vivo studies are required to validate the antitumor effect of LASSBio-1911 on liver cancer.
Collapse
Affiliation(s)
| | - Daniel Alencar Rodrigues
- Laboratory of Evaluation and Synthesis of Bioactive Substances (LASSBio), Institute of Biomedical Sciences, Federal University of Rio de Janeiro, CCS, Rio de Janeiro, RJ, Brazil
| | | | | | - Angel Mauricio Castro Gamero
- Human Genetics Laboratory, Institute of Natural Science, Federal University of Alfenas, zip-code 37130-001, Alfenas, MG, Brazil
| | - Marta Miyazawa
- School of Dentistry, Federal University of Alfenas, 37130-001 MG, Brazil
| | | | - Carlos Alberto Manssour Fraga
- Laboratory of Evaluation and Synthesis of Bioactive Substances (LASSBio), Institute of Biomedical Sciences, Federal University of Rio de Janeiro, CCS, Rio de Janeiro, RJ, Brazil
| | - Alexandre Ferro Aissa
- Institute of Biomedical Sciences, Federal University of Alfenas, MG 37130-001, Brazil.
| | - Marisa Ionta
- Institute of Biomedical Sciences, Federal University of Alfenas, MG 37130-001, Brazil.
| |
Collapse
|
8
|
Malamos P, Papanikolaou C, Gavriatopoulou M, Dimopoulos MA, Terpos E, Souliotis VL. The Interplay between the DNA Damage Response (DDR) Network and the Mitogen-Activated Protein Kinase (MAPK) Signaling Pathway in Multiple Myeloma. Int J Mol Sci 2024; 25:6991. [PMID: 39000097 PMCID: PMC11241508 DOI: 10.3390/ijms25136991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
The DNA damage response (DDR) network and the mitogen-activated protein kinase (MAPK) signaling pathway are crucial mechanisms for the survival of all living beings. An accumulating body of evidence suggests that there is crosstalk between these two systems, thus favoring the appropriate functioning of multi-cellular organisms. On the other hand, aberrations within these mechanisms are thought to play a vital role in the onset and progression of several diseases, including cancer, as well as in the emergence of drug resistance. Here, we provide an overview of the current knowledge regarding alterations in the DDR machinery and the MAPK signaling pathway as well as abnormalities in the DDR/MAPK functional crosstalk in multiple myeloma, the second most common hematologic malignancy. We also present the latest advances in the development of anti-myeloma drugs targeting crucial DDR- and MAPK-associated molecular components. These data could potentially be exploited to discover new therapeutic targets and effective biomarkers as well as for the design of novel clinical trials. Interestingly, they might provide a new approach to increase the efficacy of anti-myeloma therapy by combining drugs targeting the DDR network and the MAPK signaling pathway.
Collapse
Affiliation(s)
- Panagiotis Malamos
- Institute of Chemical Biology, National Hellenic Research Foundation, 116 35 Athens, Greece; (P.M.); (C.P.)
| | - Christina Papanikolaou
- Institute of Chemical Biology, National Hellenic Research Foundation, 116 35 Athens, Greece; (P.M.); (C.P.)
| | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (M.G.); (M.A.D.); (E.T.)
| | - Meletios A. Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (M.G.); (M.A.D.); (E.T.)
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (M.G.); (M.A.D.); (E.T.)
| | - Vassilis L. Souliotis
- Institute of Chemical Biology, National Hellenic Research Foundation, 116 35 Athens, Greece; (P.M.); (C.P.)
| |
Collapse
|
9
|
Lee YS, Mun JG, Park SY, Hong DY, Kim HY, Kim SJ, Lee SB, Jang JH, Han YH, Kee JY. Saikosaponin D Inhibits Lung Metastasis of Colorectal Cancer Cells by Inducing Autophagy and Apoptosis. Nutrients 2024; 16:1844. [PMID: 38931199 PMCID: PMC11206761 DOI: 10.3390/nu16121844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Saikosaponin D (SSD), derived from Bupleurum falcatum L., has various pharmacological properties, including immunoregulatory, anti-inflammatory, and anti-allergic effects. Several studies have investigated the anti-tumor effects of SSD on cancer in multiple organs. However, its role in colorectal cancer (CRC) remains unclear. Therefore, this study aimed to elucidate the suppressive effects of SSD on CRC cell survival and metastasis. SSD reduced the survival and colony formation ability of CRC cells. SSD-induced autophagy and apoptosis in CRC cells were measured using flow cytometry. SSD treatment increased LC3B and p62 autophagic factor levels in CRC cells. Moreover, SSD-induced apoptosis occurred through the cleavage of caspase-9, caspase-3, and PARP, along with the downregulation of the Bcl-2 family. In the in vivo experiment, a reduction in the number of metastatic tumor nodules in the lungs was observed after the oral administration of SSD. Based on these results, SSD inhibits the metastasis of CRC cells to the lungs by inducing autophagy and apoptosis. In conclusion, SSD suppressed the proliferation and metastasis of CRC cells, suggesting its potential as a novel substance for the metastatic CRC treatment.
Collapse
Affiliation(s)
- Yoon-Seung Lee
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea
| | - Jeong-Geon Mun
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea
| | - Shin-Young Park
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea
| | - Dah Yun Hong
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea
| | - Ho-Yoon Kim
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea
| | - Su-Jin Kim
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea
| | - Sun-Bin Lee
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea
| | - Jeong-Ho Jang
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea
| | - Yo-Han Han
- Department of Microbiology, Wonkwang University School of Medicine, Iksan 54538, Jeonbuk, Republic of Korea
| | - Ji-Ye Kee
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea
| |
Collapse
|
10
|
Chang CS, Bai LY, Chiu CF, Hu JL, Weng JR. Discovery of the tryptanthrin-derived indoloquinazoline as an anti-breast cancer agent via ERK/JNK activation. ENVIRONMENTAL TOXICOLOGY 2024; 39:3710-3720. [PMID: 38511855 DOI: 10.1002/tox.24226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/25/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024]
Abstract
Tryptanthrin, an alkaloid applied in traditional Chinese medicine, exhibits a variety of pharmacological activities. This study aimed to investigate the anti-tumor activity of the tryptanthrin derivative (8-cyanoindolo[2,1-b]quinazoline-6,12-dione [CIQ]) in breast cancer cells. In both MDA-MB-231 and MCF-7 breast cancer cells, CIQ inhibited cell viability and promoted caspase-dependent apoptosis. At the concentration- and time-dependent ways, CIQ increased the levels of p-ERK, p-JNK, and p-p38 in breast cancer cells. We found that exposure to the JNK inhibitor or the ERK inhibitor partially reversed CIQ's viability. We also observed that CIQ increased reactive oxygen species (ROS) generation, and upregulated the phosphorylation and expression of H2AX. However, the pretreatment of the antioxidants did not protect the cells against CIQ's effects on cell viability and apoptosis, which suggested that ROS does not play a major role in the mechanism of action of CIQ. In addition, CIQ inhibited the invasion of MDA-MB-231 cells and decreased the expression of the prometastatic factors (MMP-2 and Snail). These findings demonstrated that the possibility of this compound to show promise in playing an important role against breast cancer.
Collapse
Affiliation(s)
| | - Li-Yuan Bai
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Chang-Fang Chiu
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- Cancer Center, China Medical University Hospital, Taichung, Taiwan
| | - Jing-Lan Hu
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Jing-Ru Weng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Master Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
11
|
Jiang Y, Huang S, Zhang L, Zhou Y, Zhang W, Wan T, Gu H, Ouyang Y, Zheng X, Liu P, Pan B, Xiang H, Ju M, Luo R, Jia W, Huang S, Li J, Zheng M. Targeting the Cdc2-like kinase 2 for overcoming platinum resistance in ovarian cancer. MedComm (Beijing) 2024; 5:e537. [PMID: 38617434 PMCID: PMC11016135 DOI: 10.1002/mco2.537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 04/16/2024] Open
Abstract
Platinum resistance represents a major barrier to the survival of patients with ovarian cancer (OC). Cdc2-like kinase 2 (CLK2) is a major protein kinase associated with oncogenic phenotype and development in some solid tumors. However, the exact role and underlying mechanism of CLK2 in the progression of OC is currently unknown. Using microarray gene expression profiling and immunostaining on OC tissues, we found that CLK2 was upregulated in OC tissues and was associated with a short platinum-free interval in patients. Functional assays showed that CLK2 protected OC cells from platinum-induced apoptosis and allowed tumor xenografts to be more resistant to platinum. Mechanistically, CLK2 phosphorylated breast cancer gene 1 (BRCA1) at serine 1423 (Ser1423) to enhance DNA damage repair, resulting in platinum resistance in OC cells. Meanwhile, in OC cells treated with platinum, p38 stabilized CLK2 protein through phosphorylating at threonine 343 of CLK2. Consequently, the combination of CLK2 and poly ADP-ribose polymerase inhibitors achieved synergistic lethal effect to overcome platinum resistance in patient-derived xenografts, especially those with wild-type BRCA1. These findings provide evidence for a potential strategy to overcome platinum resistance in OC patients by targeting CLK2.
Collapse
Affiliation(s)
- Yinan Jiang
- Department of Gynecology, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Shuting Huang
- Department of Gynecology, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Lan Zhang
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer HospitalYunnan Cancer CenterKunmingChina
| | - Yun Zhou
- Department of Gynecology, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Wei Zhang
- Department of Clinical Immunology, The Third Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Ting Wan
- Department of Gynecology, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Haifeng Gu
- Department of Gynecology, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Yi Ouyang
- Department of Radiation Oncology, Sun Yat‐Sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Xiaojing Zheng
- Department of Gynecology, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Pingping Liu
- Department of Gynecology, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Baoyue Pan
- Department of Gynecology, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Huiling Xiang
- Department of Gynecology, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Mingxiu Ju
- Department of Gynecology, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Rongzhen Luo
- Department of Pathology, Sun Yat‐Sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Weihua Jia
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Shenjiao Huang
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Jundong Li
- Department of Gynecology, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Min Zheng
- Department of Gynecology, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| |
Collapse
|
12
|
Suman I, Šimić L, Čanadi Jurešić G, Buljević S, Klepac D, Domitrović R. The interplay of mitophagy, autophagy, and apoptosis in cisplatin-induced kidney injury: involvement of ERK signaling pathway. Cell Death Discov 2024; 10:98. [PMID: 38402208 PMCID: PMC10894217 DOI: 10.1038/s41420-024-01872-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 02/26/2024] Open
Abstract
AKI induced by CP chemotherapy remains an obstacle during patient treatments. Extracellular signal-regulated protein kinases 1/2 (ERK), key participants in CP-induced nephrotoxicity, are suggested to be involved in the regulation of mitophagy, autophagy, and apoptosis. Human renal proximal tubular cells (HK-2) and BALB/cN mice were used to determine the role of ERK in CP-induced AKI. We found that active ERK is involved in cell viability reduction during apoptotic events but exerts a protective role in the early stages of treatment. Activation of ERK acts as a maintainer of the mitochondrial population and is implicated in mitophagy initiation but has no significant role in its conduction. In the late stages of CP treatment when ATP is deprived, general autophagy that requires ERK activation is initiated as a response, in addition to apoptosis activation. Furthermore, activation of ERK is responsible for the decrease in reserve respiratory capacity and controls glycolysis regulation during CP treatment. Additionally, we found that ERK activation is also required for the induction of NOXA gene and protein expression as well as FoxO3a nuclear translocation, but not for the regular ERK-induced phosphorylation of FoxO3a on Ser294. In summary, this study gives detailed insight into the involvement of ERK activation and its impact on key cellular processes at different time points during CP-induced kidney injury. Inhibitors of ERK activation, including Mirdametinib, are important in the development of new therapeutic strategies for the treatment of AKI in patients receiving CP chemotherapy.
Collapse
Affiliation(s)
- Iva Suman
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| | - Lidija Šimić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Point-of-Care Laboratory, Emergency Department Sušak, Clinical Hospital Center Rijeka, Rijeka, Croatia
| | - Gordana Čanadi Jurešić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Sunčica Buljević
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Damir Klepac
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Centre for Micro- and Nanosciences and Technologies, University of Rijeka, Rijeka, Croatia
| | - Robert Domitrović
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| |
Collapse
|
13
|
Liu C, Huang W, He X, Feng Z, Chen Q. Research Advances on Swine Acute Diarrhea Syndrome Coronavirus. Animals (Basel) 2024; 14:448. [PMID: 38338091 PMCID: PMC10854734 DOI: 10.3390/ani14030448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a virulent pathogen that causes acute diarrhea in piglets. The virus was first discovered in Guangdong Province, China, in 2017 and has since emerged in Jiangxi, Fujian, and Guangxi Provinces. The outbreak exhibited a localized and sporadic pattern, with no discernable temporal continuity. The virus can infect human progenitor cells and demonstrates considerable potential for cross-species transmission, representing a potential risk for zoonotic transmission. Therefore, continuous surveillance of and comprehensive research on SADS-CoV are imperative. This review provides an overview of the temporal and evolutionary features of SADS-CoV outbreaks, focusing on the structural characteristics of the virus, which serve as the basis for discussing its potential for interspecies transmission. Additionally, the review summarizes virus-host interactions, including the effects on host cells, as well as apoptotic and autophagic behaviors, and discusses prevention and treatment modalities for this viral infection.
Collapse
Affiliation(s)
- Chuancheng Liu
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; (C.L.); (W.H.); (X.H.)
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China
| | - Weili Huang
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; (C.L.); (W.H.); (X.H.)
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China
| | - Xinyan He
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; (C.L.); (W.H.); (X.H.)
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China
| | - Zhihua Feng
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; (C.L.); (W.H.); (X.H.)
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China
| | - Qi Chen
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; (C.L.); (W.H.); (X.H.)
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
14
|
Devi PJ, Singh AR, Singh NT, Singh LR, Devi SK, Singh LS. Antheraea proylei J. Sericin Induces Apoptosis in a Caspase-dependent Manner in A549 and HeLa Cells. Anticancer Agents Med Chem 2024; 24:709-717. [PMID: 36999411 DOI: 10.2174/1871520623666230329123437] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 02/02/2023] [Accepted: 02/14/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND In spite of much progress in cancer, the global cancer burden is still significant and increasing. Sericin, an adhesive protein of silk cocoons, has been shown to be a potential protein in various biomedical applications, including cancer therapeutics. The present study evaluates the anticancer property of sericin from cocoons of Antheraea proylei J (SAP) against human lung cancer (A549) and cervical cancer (HeLa) cell lines. This is the first report of anti-cancer activity of the non-mulberry silkworm A. proylei J. OBJECTIVE Establish the antiproliferative potential of SAP. 2. Identify the molecular mechanism of cell death induced by SAP on two different cell lines. AIMS To investigate the anticancer activity of sericin preparation from cocoons of A. proylei. METHODS SAP was prepared from cocoons of A. proylei J. by the process of the degumming method. Cytotoxic activity was assessed by MTT assay, and genotoxicity was assessed by comet assay. Cleavage of caspase and PARP proteins and phosphorylation of MAPK pathway members were analysed by Western blotting. Cell cycle analysis was done by flow cytometer. RESULTS SAP causes cytotoxicity to A549 and HeLa cell lines with the IC50 values 3.8 and 3.9 μg/μl respectively. SAP induces apoptosis in a dose-dependent manner through caspase-3 and p38, MAPK pathways in A549 and HeLa cells. Moreover, in A549 and HeLa cells, SAP induces cell cycle arrest at the S phase in a dose-dependent manner. CONCLUSION The difference in the molecular mechanisms of apoptosis induced by SAP in A549 and HeLa cell lines may be due to the difference in the genotypes of the cancer cell lines. However, further investigation is warranted. The overall results of the present study envisage the possibility of using SAP as an anti-tumorigenic agent.
Collapse
Affiliation(s)
- Potsangbam Jolly Devi
- Department of Biochemistry, Laboratory of Protein Biochemistry, Manipur University, Canchipur Imphal, Manipur, 795003, India
| | - Asem Robinson Singh
- Department of Biotechnology, Cancer and Molecular Biology Division, Manipur University, Canchipur Imphal, Manipur, 795003, India
| | - Naorem Tarundas Singh
- Department of Biotechnology, Cancer and Molecular Biology Division, Manipur University, Canchipur Imphal, Manipur, 795003, India
| | - Laishram Rupachandra Singh
- Department of Biochemistry, Laboratory of Protein Biochemistry, Manipur University, Canchipur Imphal, Manipur, 795003, India
| | - Sanjenbam Kunjeshwori Devi
- Department of Biochemistry, Laboratory of Protein Biochemistry, Manipur University, Canchipur Imphal, Manipur, 795003, India
| | - Lisam Shanjukumar Singh
- Department of Biotechnology, Cancer and Molecular Biology Division, Manipur University, Canchipur Imphal, Manipur, 795003, India
| |
Collapse
|
15
|
Liu Y, Dai S, Xu Y, Xiang Y, Zhang Y, Xu Z, Sun L, Zhang GCX, Shu Q. Integration of Network Pharmacology and Experimental Validation to Explore Jixueteng - Yinyanghuo Herb Pair Alleviate Cisplatin-Induced Myelosuppression. Integr Cancer Ther 2024; 23:15347354241237969. [PMID: 38462913 DOI: 10.1177/15347354241237969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
Jixueteng, the vine of the bush Spatholobus suberectus Dunn., is widely used to treat irregular menstruation and arthralgia. Yinyanghuo, the aboveground part of the plant Epimedium brevicornum Maxim., has the function of warming the kidney to invigorate yang. This research aimed to investigate the effects and mechanisms of the Jixueteng and Yinyanghuo herbal pair (JYHP) on cisplatin-induced myelosuppression in a mice model. Firstly, ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) screened 15 effective compounds of JYHP decoction. Network pharmacology enriched 10 genes which may play a role by inhibiting the apoptosis of bone marrow (BM) cells. Then, a myelosuppression C57BL/6 mice model was induced by intraperitoneal (i.p.) injection of cis-Diaminodichloroplatinum (cisplatin, CDDP) and followed by the intragastric (i.g.) administration of JYHP decoction. The efficacy was evaluated by blood cell count, reticulocyte count, and histopathological analysis of bone marrow and spleen. Through the vivo experiments, we found the timing of JYHP administration affected the effect of drug administration, JYHP had a better therapeutical effect rather than a preventive effect. JYHP obviously recovered the hematopoietic function of bone marrow from the peripheral blood cell test and pathological staining. Flow cytometry data showed JYHP decreased the apoptosis rate of BM cells and the western blotting showed JYHP downregulated the cleaved Caspase-3/Caspase-3 ratios through RAS/MEK/ERK pathway. In conclusion, JYHP alleviated CDDP-induced myelosuppression by inhibiting the apoptosis of BM cells through RAS/MEK/ERK pathway and the optimal timing of JYHP administration was after CDDP administration.
Collapse
Affiliation(s)
- Yi Liu
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shuying Dai
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yixiao Xu
- School of Pharmaceutical Sciences of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yuying Xiang
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yao Zhang
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zeting Xu
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Lin Sun
- Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, China
| | | | - Qijin Shu
- Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, China
| |
Collapse
|
16
|
Kim C, Kwak W, Won DH, Kim J, Hwang DB, Kim N, Kang M, Jeon Y, Park YI, Park JW, Yun JW. Loss of Dact2 alleviates cisplatin-induced nephrotoxicity through regulation of the Igfl-MAPK pathway axis. Cell Biol Toxicol 2023; 39:3197-3217. [PMID: 37603122 DOI: 10.1007/s10565-023-09827-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/13/2023] [Indexed: 08/22/2023]
Abstract
Wnt signaling is a principal pathway regulating the essential activities of cell proliferation. Here, we investigated the effect of Wnt/β-catenin signaling on in vivo drug-induced renal injury through the deletion of Dact2, a Wnt antagonist, and deciphered the underlying mechanism. Wild-type (WT) and Dact2 knockout (KO) mice were administered a single intraperitoneal injection of cisplatin to induce renal injury. The injury was alleviated in Dact2 KO mice, which showed lower levels of blood urea nitrogen and creatinine. RNA sequencing revealed 194 differentially expressed genes (DEGs) between WT and Dact2 KO mouse kidney before cisplatin treatment. Among them, higher levels of Igf1, one of the Wnt target genes responsible for "Positive regulation of cell proliferation" in KO mice, were confirmed along with the induction of Ki67 expression. In RNA-seq analysis comparing WT and Dact2 KO mice after cisplatin treatment, genes related to "Apoptosis" and "Activation of mitogen-activated protein kinase (MAPK) activity" were among the downregulated DEGs in KO mice. These results were corroborated in western blotting of proteins related to apoptosis and proapoptotic MAPK pathway; the expression of which was found to be lower in cisplatin-treated KO mice. Importantly, β-catenin was found to directly bind to and regulate the transcription of Igf1, leading to the alleviation of cisplatin-induced cytotoxicity by the Wnt agonist, CHIR-99021. In addition, Igf1 knockdown accelerated cisplatin-induced cytotoxicity, accompanied by the MAPK upregulation. Our findings suggest that Dact2 knockout could protect cisplatin-induced nephrotoxicity by inhibiting apoptosis, possibly through the regulation of the Igf1-MAPK axis associated with Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Changuk Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Woori Kwak
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Dong-Hoon Won
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Jina Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Da-Bin Hwang
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Nahyun Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Minhwa Kang
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Jeon
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yong Il Park
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Jun Won Park
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jun-Won Yun
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
17
|
Giordano F, Comità S, Venneri G, Rago V, Naimo GD, De Amicis F, De Bartolo A, Tundis R, Mauro L, Panno ML. Poncirus trifoliata (L.) Raf. Seed Extract Induces Cell Cycle Arrest and Apoptosis in the Androgen Receptor Positive LNCaP Prostate Cancer Cells. Int J Mol Sci 2023; 24:16351. [PMID: 38003541 PMCID: PMC10671002 DOI: 10.3390/ijms242216351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Prostate cancer (PCa) is the second most common male cancer. Its incidence derives from the interaction between modifiable and non-modifiable factors. The progression of prostate cancer into a more aggressive phenotype is associated with chronic inflammation and increased ROS production. For their biological properties, some phytochemicals from fruits and vegetable emerge as a promise strategy for cancer progression delay. These bioactive compounds are found in the highest amounts in peels and seeds. Poncirus trifoliata (L.) Raf. (PT) has been widely used in traditional medicine and retains anti-inflammatory, anti-bacterial, and anticancer effects. The seeds of P. trifoliata were exhaustively extracted by maceration with methanol as the solvent. The cell proliferation rate was performed by MTT and flow cytometry, while the apoptosis signals were analyzed by Western blotting and TUNEL assay. P. trifoliata seed extract reduced LNCaP and PC3 cell viability and induced cell cycle arrest at the G0/G1phase and apoptosis. In addition, a reduction in the AKT/mTOR pathway has been observed together with the up-regulation of stress-activated MAPK (p38 and c-Jun N-terminal kinase). Based on the study, the anti-growth effects of PT seed extract on prostate tumor cells give indications on the potential of the phytochemical drug for the treatment of this type of cancer. However, future in-depth studies are necessary to identify which components are mainly responsible for the anti-neoplastic response.
Collapse
Affiliation(s)
- Francesca Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.C.); (G.V.); (V.R.); (G.D.N.); (F.D.A.); (R.T.); (M.L.P.)
| | - Stefano Comità
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.C.); (G.V.); (V.R.); (G.D.N.); (F.D.A.); (R.T.); (M.L.P.)
| | - Giulia Venneri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.C.); (G.V.); (V.R.); (G.D.N.); (F.D.A.); (R.T.); (M.L.P.)
| | - Vittoria Rago
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.C.); (G.V.); (V.R.); (G.D.N.); (F.D.A.); (R.T.); (M.L.P.)
| | - Giuseppina Daniela Naimo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.C.); (G.V.); (V.R.); (G.D.N.); (F.D.A.); (R.T.); (M.L.P.)
| | - Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.C.); (G.V.); (V.R.); (G.D.N.); (F.D.A.); (R.T.); (M.L.P.)
| | - Anna De Bartolo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy;
| | - Rosa Tundis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.C.); (G.V.); (V.R.); (G.D.N.); (F.D.A.); (R.T.); (M.L.P.)
| | - Loredana Mauro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.C.); (G.V.); (V.R.); (G.D.N.); (F.D.A.); (R.T.); (M.L.P.)
| | - Maria Luisa Panno
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.C.); (G.V.); (V.R.); (G.D.N.); (F.D.A.); (R.T.); (M.L.P.)
| |
Collapse
|
18
|
Mukherjee O, Rakshit S, Shanmugam G, Sarkar K. Role of chemotherapeutic drugs in immunomodulation of cancer. CURRENT RESEARCH IN IMMUNOLOGY 2023; 4:100068. [PMID: 37692091 PMCID: PMC10491645 DOI: 10.1016/j.crimmu.2023.100068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023] Open
Abstract
The immune system has a variety of potential effects on a tumor microenvironment and the course of chemotherapy may vary according to that. Anticancer treatments can encourage the release of unwanted signals from senescent tumor cells or the removal of immune-suppressive cells, which can lead to immune system activation. Hence, by inducing an immunological response and conversely making cancer cells more vulnerable to immune attack, chemotherapeutic agents can destroy cancer cells. Furthermore, chemotherapy can activate anticancer immune effectors directly or indirectly by thwarting immunosuppressive pathways. Therefore, in this review, we discuss how chemotherapeutic agents take part in immunomodulation and the molecular mechanisms underlying them. We also focus on the importance of carefully addressing the conflicting effects of chemotherapy on immune responses when developing successful combination treatments based on chemotherapy and immune modulators.
Collapse
Affiliation(s)
- Oishi Mukherjee
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Sudeshna Rakshit
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Geetha Shanmugam
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| |
Collapse
|
19
|
Zhang H, Cheng W, Zeng S, Wang B, Song X. Probing fluctuations in sulfur dioxide and viscosity levels during mitochondrial dysfunction using a dual-response fluorescent probe with good water solubility. Analyst 2023; 148:4174-4179. [PMID: 37525998 DOI: 10.1039/d3an01067h] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Mitochondrial dysfunction is associated with increased viscosity and reactive oxygen species (ROS) levels. As an effective antioxidant, sulfur dioxide (SO2) can actively scavenge excess ROS to regulate the redox state and protect cells from oxidative stress. However, few studies have evaluated the connection between viscosity and SO2 during mitochondrial dysfunction. Herein, a water-soluble fluorescent probe (MBI) is designed and synthesized for dual-detecting SO2 and viscosity. The probe rapidly detects SO2 within 12 s based on Michael's addition reaction. Meanwhile, increasing viscosity further inhibits the intramolecular rotation, causing the probe to show a greatly enhanced fluorescence. Probe MBI possesses mitochondria targeting capability due to its quaternary ammonium salt. More importantly, probe MBI successfully supports SO2 and viscosity imaging in living cells and can effectively monitor them during mitochondrial dysfunction and cell apoptosis.
Collapse
Affiliation(s)
- Hankun Zhang
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Wenshuo Cheng
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Siqi Zeng
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Benhua Wang
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
- Shenzhen Research Institute of Central South University, Shenzhen 518057, China
| | - Xiangzhi Song
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
- Shenzhen Research Institute of Central South University, Shenzhen 518057, China
| |
Collapse
|
20
|
Zhao S, Gu T, Weng K, Zhang Y, Cao Z, Zhang Y, Zhao W, Chen G, Xu Q. Phosphoproteome Reveals Extracellular Regulated Protein Kinase Phosphorylation Mediated by Mitogen-Activated Protein Kinase Kinase-Regulating Granulosa Cell Apoptosis in Broody Geese. Int J Mol Sci 2023; 24:12278. [PMID: 37569653 PMCID: PMC10418642 DOI: 10.3390/ijms241512278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Geese have strong brooding abilities, which severely affect their egg-laying performance. Phosphorylation is widely involved in regulating reproductive activities, but its role in goose brooding behavior is unclear. In this study, we investigated differences in the phosphoprotein composition of ovarian tissue between laying and brooding geese. Brooding geese exhibited ovarian and follicular atrophy, as well as significant oxidative stress and granulosa cell apoptosis. We identified 578 highly phosphorylated proteins and 281 lowly phosphorylated proteins, and a KEGG pathway analysis showed that these differentially phosphorylated proteins were mainly involved in cell apoptosis, adhesion junctions, and other signaling pathways related to goose brooding behavior. The extracellular regulated protein kinase (ERK)-B-Cell Lymphoma 2(BCL2) signaling pathway was identified as playing an important role in regulating cell apoptosis. The phosphorylation levels of ERK proteins were significantly lower in brooding geese than in laying geese, and the expression of mitogen-activated protein kinase kinase (MEK) was downregulated. Overexpression of MEK led to a significant increase in ERK phosphorylation and BCL2 transcription in H2O2-induced granulosa cells (p < 0.05), partially rescuing cell death. Conversely, granulosa cells receiving MEK siRNA exhibited the opposite trend. In conclusion, geese experience significant oxidative stress and granulosa cell apoptosis during brooding, with downregulated MEK expression, decreased phosphorylation of ERK protein, and inhibited expression of BCL2.
Collapse
Affiliation(s)
- Shuai Zhao
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China; (S.Z.)
| | - Tiantian Gu
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China; (S.Z.)
| | - Kaiqi Weng
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China; (S.Z.)
| | - Yu Zhang
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China; (S.Z.)
| | - Zhengfeng Cao
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China; (S.Z.)
| | - Yang Zhang
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China; (S.Z.)
| | - Wenming Zhao
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China; (S.Z.)
| | - Guohong Chen
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China; (S.Z.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Qi Xu
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China; (S.Z.)
| |
Collapse
|
21
|
Kale VP, Hengst JA, Sharma AK, Golla U, Dovat S, Amin SG, Yun JK, Desai DH. Characterization of Anticancer Effects of the Analogs of DJ4, a Novel Selective Inhibitor of ROCK and MRCK Kinases. Pharmaceuticals (Basel) 2023; 16:1060. [PMID: 37630974 PMCID: PMC10458458 DOI: 10.3390/ph16081060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/17/2023] [Accepted: 07/22/2023] [Indexed: 08/27/2023] Open
Abstract
The Rho associated coiled-coil containing protein kinase (ROCK1 and ROCK2) and myotonic dystrophy-related Cdc-42 binding kinases (MRCKα and MRCKβ) are critical regulators of cell proliferation and cell plasticity, a process intimately involved in cancer cell migration and invasion. Previously, we reported the discovery of a novel small molecule (DJ4) selective multi-kinase inhibitor of ROCK1/2 and MRCKα/β. Herein, we further characterized the anti-proliferative and apoptotic effects of DJ4 in non-small cell lung cancer and triple-negative breast cancer cells. To further optimize the ROCK/MRCK inhibitory potency of DJ4, we generated a library of 27 analogs. Among the various structural modifications, we identified four additional active analogs with enhanced ROCK/MRCK inhibitory potency. The anti-proliferative and cell cycle inhibitory effects of the active analogs were examined in non-small cell lung cancer, breast cancer, and melanoma cell lines. The anti-proliferative effectiveness of DJ4 and the active analogs was further demonstrated against a wide array of cancer cell types using the NCI-60 human cancer cell line panel. Lastly, these new analogs were tested for anti-migratory effects in highly invasive MDA-MB-231 breast cancer cells. Together, our results demonstrate that selective inhibitors of ROCK1/2 (DJE4, DJ-Allyl) inhibited cell proliferation and induced cell cycle arrest at G2/M but were less effective in cell death induction compared with dual ROCK1/2 and MRCKα/β (DJ4 and DJ110).
Collapse
Affiliation(s)
- Vijay Pralhad Kale
- Department of Pharmacology Penn State College of Medicine, Hershey, PA 17033, USA (J.A.H.); (S.G.A.)
| | - Jeremy A. Hengst
- Department of Pharmacology Penn State College of Medicine, Hershey, PA 17033, USA (J.A.H.); (S.G.A.)
| | - Arati K. Sharma
- Department of Pharmacology Penn State College of Medicine, Hershey, PA 17033, USA (J.A.H.); (S.G.A.)
| | - Upendarrao Golla
- Department of Medicine, Penn State College of Medicine, Hershey, PA 17033, USA;
| | - Sinisa Dovat
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA 17033, USA;
| | - Shantu G. Amin
- Department of Pharmacology Penn State College of Medicine, Hershey, PA 17033, USA (J.A.H.); (S.G.A.)
| | - Jong K. Yun
- Department of Pharmacology Penn State College of Medicine, Hershey, PA 17033, USA (J.A.H.); (S.G.A.)
| | - Dhimant H. Desai
- Department of Pharmacology Penn State College of Medicine, Hershey, PA 17033, USA (J.A.H.); (S.G.A.)
| |
Collapse
|
22
|
Netterfield TS, Ostheimer GJ, Tentner AR, Joughin BA, Dakoyannis AM, Sharma CD, Sorger PK, Janes KA, Lauffenburger DA, Yaffe MB. Biphasic JNK-Erk signaling separates the induction and maintenance of cell senescence after DNA damage induced by topoisomerase II inhibition. Cell Syst 2023; 14:582-604.e10. [PMID: 37473730 PMCID: PMC10627503 DOI: 10.1016/j.cels.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 03/24/2023] [Accepted: 06/13/2023] [Indexed: 07/22/2023]
Abstract
Genotoxic stress in mammalian cells, including those caused by anti-cancer chemotherapy, can induce temporary cell-cycle arrest, DNA damage-induced senescence (DDIS), or apoptotic cell death. Despite obvious clinical importance, it is unclear how the signals emerging from DNA damage are integrated together with other cellular signaling pathways monitoring the cell's environment and/or internal state to control different cell fates. Using single-cell-based signaling measurements combined with tensor partial least square regression (t-PLSR)/principal component analysis (PCA) analysis, we show that JNK and Erk MAPK signaling regulates the initiation of cell senescence through the transcription factor AP-1 at early times after doxorubicin-induced DNA damage and the senescence-associated secretory phenotype (SASP) at late times after damage. These results identify temporally distinct roles for signaling pathways beyond the classic DNA damage response (DDR) that control the cell senescence decision and modulate the tumor microenvironment and reveal fundamental similarities between signaling pathways responsible for oncogene-induced senescence (OIS) and senescence caused by topoisomerase II inhibition. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Tatiana S Netterfield
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gerard J Ostheimer
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Andrea R Tentner
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Brian A Joughin
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alexandra M Dakoyannis
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Charvi D Sharma
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Computer Science and Molecular Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Kevin A Janes
- Department of Biomedical Engineering and Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael B Yaffe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Division of Acute Care Surgery, Trauma, and Surgical Critical Care, and Division of Surgical Oncology, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
23
|
Natarajan P, Manne M, Koduru SK, Bokkasam TS. 3-deazaadenosine: A promising novel p38γ antagonist with potential as a breast cancer therapeutic agent. Cancer Treat Res Commun 2023; 36:100744. [PMID: 37481995 DOI: 10.1016/j.ctarc.2023.100744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
Human p38γ protein kinase, or MAPK12, is a crucial signaling protein that is important in channelizing membrane signals to the nucleus in the MAPK cascade pathway, associated with breast and colorectal cancer, besides other forms of malignancies and atherosclerotic lesions too. P38γ has a significant contribution to the progression of breast carcinoma due to its multifaceted functions. Targeting p38γ for defining potent antagonists against p38γ can turn out to be an attractive and novel means of breast cancer therapeutics. Novel and potent lead molecules were designed utilizing computational drug design methodologies. Using high-throughput virtual screening, 1909 geometrically similar analogs of known inhibitors were generated, primarily using BIRB796, SB202190, ANP, CHEBI: 620708, and CHEBI: 524699. Chemical correctness was ensured using LigPrep for the standalone library, and Prep Wizard for p38γ using Maestro v.11.5. Using the Glide v5.5 flexible docking procedure on a standalone library of p38γ binding sites, we defined 18 potential leads and assessed their ADMET properties. Lead "1", among the proposed four p38γ antagonists with high-scoring and favorable interactions, was considered for 100 ns molecular dynamics simulations. Among the four proposed leads, Lead '1' displayed consistent and stable bonding interactions with p38γ throughout the 100 ns molecular dynamics (MD) simulations. Additionally, it formed water bridges, contributing to its strong association with the protein. Notably, Lead '1' (3-deazaadenosine) exhibited favorable root-mean-square deviation (RMSD) and root-mean-square fluctuation (RMSF) within the acceptable range of pharmacological properties. Thus, 3-deazaadenosine and its mimetic might be promising new directions for developing a novel class of antagonists for breast cancer treatment.
Collapse
Affiliation(s)
- Pradeep Natarajan
- Bioinformatics Center, Department of Biotechnology, Anna University, Chennai, Tamil Nadu 600025, India.
| | - Munikumar Manne
- Clinical Division, ICMR-National Institute of Nutrition, Jamai-Osmania (Post), Hyderabad, 500007 Telangana, India.
| | - Swetha Kumari Koduru
- Department of Bio-sciences and Sericulture, Sri Padmavati Mahila Visvavidyalayam Women's University, Tirupati, Andhra Pradesh 517502, India
| | - Teja Sree Bokkasam
- Department of Biotechnology, Sri Padmavati Mahila Visvavidyalayam Women's University, Tirupati, Andhra Pradesh 517502, India
| |
Collapse
|
24
|
Steele TM, Tsamouri MM, Siddiqui S, Lucchesi CA, Vasilatis D, Mooso BA, Durbin-Johnson BP, Ma AH, Hejazi N, Parikh M, Mudryj M, Pan CX, Ghosh PM. Cisplatin-induced increase in heregulin 1 and its attenuation by the monoclonal ErbB3 antibody seribantumab in bladder cancer. Sci Rep 2023; 13:9617. [PMID: 37316561 PMCID: PMC10267166 DOI: 10.1038/s41598-023-36774-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 06/09/2023] [Indexed: 06/16/2023] Open
Abstract
Cisplatin-based combination chemotherapy is the foundation for treatment of advanced bladder cancer (BlCa), but many patients develop chemoresistance mediated by increased Akt and ERK phosphorylation. However, the mechanism by which cisplatin induces this increase has not been elucidated. Among six patient-derived xenograft (PDX) models of BlCa, we observed that the cisplatin-resistant BL0269 express high epidermal growth factor receptor, ErbB2/HER2 and ErbB3/HER3. Cisplatin treatment transiently increased phospho-ErbB3 (Y1328), phospho-ERK (T202/Y204) and phospho-Akt (S473), and analysis of radical cystectomy tissues from patients with BlCa showed correlation between ErbB3 and ERK phosphorylation, likely due to the activation of ERK via the ErbB3 pathway. In vitro analysis revealed a role for the ErbB3 ligand heregulin1-β1 (HRG1/NRG1), which is higher in chemoresistant lines compared to cisplatin-sensitive cells. Additionally, cisplatin treatment, both in PDX and cell models, increased HRG1 levels. The monoclonal antibody seribantumab, that obstructs ErbB3 ligand-binding, suppressed HRG1-induced ErbB3, Akt and ERK phosphorylation. Seribantumab also prevented tumor growth in both the chemosensitive BL0440 and chemoresistant BL0269 models. Our data demonstrate that cisplatin-associated increases in Akt and ERK phosphorylation is mediated by an elevation in HRG1, suggesting that inhibition of ErbB3 phosphorylation may be a useful therapeutic strategy in BlCa with high phospho-ErbB3 and HRG1 levels.
Collapse
Affiliation(s)
- Thomas M Steele
- Research Service, VA Northern California Health Care System, Mather, CA, USA
- Department of Urological Surgery, University of California Davis School of Medicine, 4860 Y Street, Suite 3500, Sacramento, CA, 95817, USA
| | - Maria Malvina Tsamouri
- Research Service, VA Northern California Health Care System, Mather, CA, USA
- Department of Urological Surgery, University of California Davis School of Medicine, 4860 Y Street, Suite 3500, Sacramento, CA, 95817, USA
| | - Salma Siddiqui
- Research Service, VA Northern California Health Care System, Mather, CA, USA
| | - Christopher A Lucchesi
- Research Service, VA Northern California Health Care System, Mather, CA, USA
- Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, USA
| | - Demitria Vasilatis
- Research Service, VA Northern California Health Care System, Mather, CA, USA
- Department of Urological Surgery, University of California Davis School of Medicine, 4860 Y Street, Suite 3500, Sacramento, CA, 95817, USA
| | - Benjamin A Mooso
- Research Service, VA Northern California Health Care System, Mather, CA, USA
| | - Blythe P Durbin-Johnson
- Division of Biostatistics, Department of Public Health Sciences, University of California Davis, Davis, CA, USA
| | - Ai-Hong Ma
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, USA
| | - Nazila Hejazi
- Research Service, VA Northern California Health Care System, Mather, CA, USA
- Yosemite Pathology Medical Group, Inc., Modesto, CA, USA
| | - Mamta Parikh
- Division of Hematology and Oncology, Department of Internal Medicine, University of California Davis, Sacramento, CA, USA
| | - Maria Mudryj
- Research Service, VA Northern California Health Care System, Mather, CA, USA
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
| | - Chong-Xian Pan
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Paramita M Ghosh
- Research Service, VA Northern California Health Care System, Mather, CA, USA.
- Department of Urological Surgery, University of California Davis School of Medicine, 4860 Y Street, Suite 3500, Sacramento, CA, 95817, USA.
- Division of Biostatistics, Department of Public Health Sciences, University of California Davis, Davis, CA, USA.
| |
Collapse
|
25
|
Zhao JH, Xu QL, Ma S, Li CY, Zhang HC, Zhao LJ, Zhang ZY. Recent advance of small-molecule drugs for clinical treatment of multiple myeloma. Eur J Med Chem 2023; 257:115492. [PMID: 37210838 DOI: 10.1016/j.ejmech.2023.115492] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
Multiple myeloma (MM) is a hematologic neoplasm of plasma cells that is currently deemed incurable. Despite the introduction of novel immunomodulators and proteasome inhibitors, MM remains a challenging disease with high rates of relapse and refractoriness. The management of refractory and relapsed MM patients remains a formidable task, primarily due to the emergence of multiple drug resistance. Consequently, there is an urgent need for novel therapeutic agents to address this clinical challenge. In recent years, a significant amount of research has been dedicated to the discovery of novel therapeutic agents for the treatment of MM. The clinical utilization of proteasome inhibitor carfilzomib and immunomodulator pomalidomide has been successively introduced. As basic research continues to advance, novel therapeutic agents, including panobinostat, a histone deacetylase inhibitor, and selinexor, a nuclear export inhibitor, have progressed to the clinical trial and application phase. This review aims to furnish a comprehensive survey of the clinical applications and synthetic pathways of select drugs, with the intention of imparting valuable insights for future drug research and development geared towards MM.
Collapse
Affiliation(s)
- Jian-Hui Zhao
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Qin-Li Xu
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Shuai Ma
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Chao-Yuan Li
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Hong-Chao Zhang
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Li-Jie Zhao
- The Rogel Cancer Center, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, United States.
| | - Zi-Yan Zhang
- Department of Orthopedics, The Second Hospital, Jilin University, Changchun, 130021, China.
| |
Collapse
|
26
|
Jiang Y, Song L, Lin Y, Nowialis P, Gao Q, Li T, Li B, Mao X, Song Q, Xing C, Zheng G, Huang S, Jin L. ROS-mediated SRMS activation confers platinum resistance in ovarian cancer. Oncogene 2023; 42:1672-1684. [PMID: 37020040 PMCID: PMC10231978 DOI: 10.1038/s41388-023-02679-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023]
Abstract
Ovarian cancer is the leading cause of death among gynecological malignancies. Checkpoint blockade immunotherapy has so far only shown modest efficacy in ovarian cancer and platinum-based chemotherapy remains the front-line treatment. Development of platinum resistance is one of the most important factors contributing to ovarian cancer recurrence and mortality. Through kinome-wide synthetic lethal RNAi screening combined with unbiased datamining of cell line platinum response in CCLE and GDSC databases, here we report that Src-Related Kinase Lacking C-Terminal Regulatory Tyrosine And N-Terminal Myristylation Sites (SRMS), a non-receptor tyrosine kinase, is a novel negative regulator of MKK4-JNK signaling under platinum treatment and plays an important role in dictating platinum efficacy in ovarian cancer. Suppressing SRMS specifically sensitizes p53-deficient ovarian cancer cells to platinum in vitro and in vivo. Mechanistically, SRMS serves as a "sensor" for platinum-induced ROS. Platinum treatment-induced ROS activates SRMS, which inhibits MKK4 kinase activity by directly phosphorylating MKK4 at Y269 and Y307, and consequently attenuates MKK4-JNK activation. Suppressing SRMS leads to enhanced MKK4-JNK-mediated apoptosis by inhibiting MCL1 transcription, thereby boosting platinum efficacy. Importantly, through a "drug repurposing" strategy, we uncovered that PLX4720, a small molecular selective inhibitor of B-RafV600E, is a novel SRMS inhibitor that can potently boost platinum efficacy in ovarian cancer in vitro and in vivo. Therefore, targeting SRMS with PLX4720 holds the promise to improve the efficacy of platinum-based chemotherapy and overcome chemoresistance in ovarian cancer.
Collapse
Affiliation(s)
- Yunhan Jiang
- Department of Molecular Medicine, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Lina Song
- Department of Molecular Medicine, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Yizhu Lin
- Department of Cell and Tissue Biology, School of Dentistry, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Pawel Nowialis
- Department of Molecular Medicine, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Qiongmei Gao
- Department of Molecular Medicine, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Tao Li
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Bin Li
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Xiaobo Mao
- Institute for Cell Engineering, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Qianqian Song
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA
| | - Chengguo Xing
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Shuang Huang
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Lingtao Jin
- Department of Molecular Medicine, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
27
|
Tang D, Wang G, Liu Z, Wang B, Yao M, Wang Q, Hou X, Zheng Y, Sheng C, Zhou Z. Transcriptomic analysis of the effects of the HPV18 E6E7 gene on the cell death mode in esophageal squamous cell carcinoma. Oncol Lett 2023; 25:167. [PMID: 36960186 PMCID: PMC10028223 DOI: 10.3892/ol.2023.13753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 02/21/2023] [Indexed: 03/25/2023] Open
Abstract
Human papillomavirus (HPV) infection is one of the main causes of esophageal carcinoma (ESCA), and its carcinogenic mechanisms in ESCA require further investigation. E6 and E7 are HPV oncogenes, and their genomic integration is a crucial reason for the transformation of host cells into cancer cells. In order to reveal the role of oncogenes E6 and E7 in ESCA cells, the RNA-Seq raw data for HPV18-positive and -negative esophageal squamous cell carcinoma (ESCC) samples derived from the NCBI BioProject database were analyzed, and the differentially expressed genes were identified. Moreover, differentially expressed genes were enriched significantly in multiple cell death pathways, including apoptosis (cyclin-dependent kinase inhibitor 2A, plakophilin 1 and desmoglein 3), pyroptosis (gasdermin A, gasdermin C, NLR family pyrin domain containing 3, absent in melanoma 2, NLR family pyrin domain containing 1 and Toll like receptor 1) and autophagy (Unc-51 like autophagy activating kinase 1, adrenoceptor beta 2). Consequently, the effects of cisplatin-induced apoptosis and Hank's balanced salt solution-induced autophagy, and α-ketoglutarate-induced pyroptosis in the ESCC-expressing E6 and E7 cells were verified. Therefore, the expression of E6E7 may culminate in the inhibition of multiple cell death modes, which may also be one of the mechanisms of oncogene-induced carcinogenesis.
Collapse
Affiliation(s)
- Duo Tang
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P.R. China
| | - Guozhen Wang
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P.R. China
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Zijia Liu
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P.R. China
| | - Biqi Wang
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P.R. China
| | - Mengfei Yao
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P.R. China
| | - Qian Wang
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P.R. China
| | - Xiaonan Hou
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P.R. China
| | - Yuchen Zheng
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P.R. China
| | - Chao Sheng
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P.R. China
| | - Zhixiang Zhou
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P.R. China
- Correspondence to: Professor Zhixiang Zhou, Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, 100 Pingleyuan, Chaoyang, Beijing 100124, P.R. China, E-mail:
| |
Collapse
|
28
|
Long Y, Wang W, Zhang Y, Du F, Zhang S, Li Z, Deng J, Li J. Photoprotective Effects of Dendrobium nobile Lindl. Polysaccharides against UVB-Induced Oxidative Stress and Apoptosis in HaCaT Cells. Int J Mol Sci 2023; 24:ijms24076120. [PMID: 37047098 PMCID: PMC10094248 DOI: 10.3390/ijms24076120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Acute ultraviolet (UV)-B radiation is the major external factor causing photodamage. In this study, we aimed to determine the effects of Dendrobium nobile Lindl. polysaccharides (DNPs) on photodamage in HaCaT keratinocytes after UVB irradiation and the underlying mechanisms. We found that DNPs significantly attenuated the decline in the viability and proliferation of HaCaT cells after UVB irradiation. Moreover, DNPs scavenged reactive oxygen species (ROS), improved the activities of endogenous antioxidant enzymes, including superoxide dismutase, catalase, and glutathione peroxidase, and reduced the levels of malondialdehyde, while partially attenuating cell cycle arrest, suggesting their antioxidant and anti-apoptotic properties. The mitogen-activated protein kinase (MAPK) pathway was found to be important for the attenuation of UVB-induced photodamage in the HaCaT cells. Furthermore, DNPs exerted cytoprotective effects by downregulating UVB-induced ROS-mediated phosphorylation of MAPKs, including p38, c-Jun N-terminal kinase, and extracellular signal-regulated kinase, and by inhibiting p53 expression as well as the apoptotic cascade response. Therefore, DNPs ameliorated UVB-induced oxidative damage and apoptosis in HaCaT cells via the regulation of MAPKs. Our findings thus highlight the Dendrobium nobile Lindl polysaccharides as promising therapeutic candidates for UVB-induced photodamage.
Collapse
Affiliation(s)
- Yunluan Long
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Wuji Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Yanyan Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Fanpan Du
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Shiqian Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Zheng Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Jiang Deng
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Jingjie Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| |
Collapse
|
29
|
Liu XM, Li Z, Xie XR, Wang JQ, Qiao X, Qiao X, Xie CZ, Xu JY. Combination of DNA Damage, Autophagy, and ERK Inhibition: Novel Evodiamine-Inspired Multi-Action Pt(IV) Prodrugs with High-Efficiency and Low-Toxicity Antitumor Activity. J Med Chem 2023; 66:1852-1872. [PMID: 36715603 DOI: 10.1021/acs.jmedchem.2c01660] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Exploring multi-targeting chemotherapeutants with advantages over single-targeting agents and drug combinations is of great significance in drug discovery. Herein, we employed phytogenic evodiamine (EVO) and conventional Pt(II) drugs to design and synthesize multi-target EVO-Pt(IV) anticancer prodrugs (4-14). Among them, compound 10 exhibited a 118-fold enhancement in the IC50 value compared to cisplatin and low toxicity to normal cells. Further studies proved that 10 significantly enhanced intracellular Pt accumulation and DNA damage, perturbed mitochondrial membrane potential, inhibited cell migration and invasion, upregulated reactive oxygen species levels, and induced apoptosis and autophagic cell death. Molecular docking assay revealed that 10 fits perfectly into the extracellular signal-regulated protein kinase (ERK)-1 pocket, which was verified to produce profound ERK suppression. Most strikingly, compound 10 exhibited superior in vivo antitumor efficiency and effectively attenuated systemic toxicity. Our results emphasize that functionalizing platinum drugs with the multi-target EVO could generate synergistically excellent anticancer activity with low toxicity and decreased resistance, which may represent a brand-new cancer therapy modality.
Collapse
Affiliation(s)
- Xiao-Meng Liu
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Zhe Li
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Xin-Ru Xie
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Jia-Qian Wang
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Xin Qiao
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Xin Qiao
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Cheng-Zhi Xie
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Jing-Yuan Xu
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.,Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
30
|
PD-1/PD-L1 and DNA Damage Response in Cancer. Cells 2023; 12:cells12040530. [PMID: 36831197 PMCID: PMC9954559 DOI: 10.3390/cells12040530] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
The application of immunotherapy for cancer treatment is rapidly becoming more widespread. Immunotherapeutic agents are frequently combined with various types of treatments to obtain a more durable antitumor clinical response in patients who have developed resistance to monotherapy. Chemotherapeutic drugs that induce DNA damage and trigger DNA damage response (DDR) frequently induce an increase in the expression of the programmed death ligand-1 (PD-L1) that can be employed by cancer cells to avoid immune surveillance. PD-L1 exposed on cancer cells can in turn be targeted to re-establish the immune-reactive tumor microenvironment, which ultimately increases the tumor's susceptibility to combined therapies. Here we review the recent advances in how the DDR regulates PD-L1 expression and point out the effect of etoposide, irinotecan, and platinum compounds on the anti-tumor immune response.
Collapse
|
31
|
Wu DD, Dai LJ, Tan HW, Zhao XY, Wei QY, Zhong QH, Ji YC, Yin XH, Yu FY, Jin DY, Li SQ, Lau AT, Xu YM. Transcriptional upregulation of MAPK15 by NF-κB signaling boosts the efficacy of combination therapy with cisplatin and TNF-α. iScience 2022; 25:105459. [PMID: 36425765 PMCID: PMC9678736 DOI: 10.1016/j.isci.2022.105459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/26/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022] Open
Abstract
The efficacy of cisplatin in treating advanced non-small cell lung cancer is limited mainly because of insensitivity and/or acquired resistance. MAPK15, previously shown by us to enhance the sensitivity of the anti-cancer drug arsenic trioxide, could also enhance the sensitivity of other anti-cancer drugs. Here, we explore the potential role of MAPK15 in chemosensitivity to cisplatin in human lung cancer cells. Our results indicated that the expression level of MAPK15 was positively correlated with cisplatin sensitivity through affecting the DNA repair capacity of cisplatin-treated cells. The expression of MAPK15 was transcriptionally regulated by the TNF-α-activated NF-κB signaling pathway, and TNF-α synergized with cisplatin, in a MAPK15-dependent manner, to exert cytotoxicity in vitro and in vivo. Therefore, levels of TNF-α dictate the responsiveness/sensitivity of lung cancer cells to cisplatin by transcriptionally upregulating MAPK15 to enhance chemosensitivity, suggesting manipulation of MAPK15 as a strategy to improve the therapeutic efficacy of chemotherapeutic drugs.
Collapse
Affiliation(s)
- Dan-Dan Wu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, People’s Republic of China
| | - Li-Juan Dai
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, People’s Republic of China
| | - Heng Wee Tan
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, People’s Republic of China
| | - Xiao-Yun Zhao
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, People’s Republic of China
| | - Qi-Yao Wei
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, People’s Republic of China
| | - Qiu-Hua Zhong
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, People’s Republic of China
| | - Yan-Chen Ji
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, People’s Republic of China
| | - Xiao-Hui Yin
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, People’s Republic of China
| | - Fei-Yuan Yu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, People’s Republic of China
| | - Dong-Yan Jin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - Sheng-Qing Li
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, People’s Republic of China
| | - Andy T.Y. Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, People’s Republic of China
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, People’s Republic of China
| |
Collapse
|
32
|
Huang YJ, Chen JY, Yan M, Davis AG, Miyauchi S, Chen L, Hao Y, Katz S, Bejar R, Abdel-Wahab O, Fu XD, Zhang DE. RUNX1 deficiency cooperates with SRSF2 mutation to induce multilineage hematopoietic defects characteristic of MDS. Blood Adv 2022; 6:6078-6092. [PMID: 36206200 PMCID: PMC9772487 DOI: 10.1182/bloodadvances.2022007804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/15/2022] [Accepted: 09/13/2022] [Indexed: 12/15/2022] Open
Abstract
Myelodysplastic syndromes (MDSs) are a heterogeneous group of hematologic malignancies with a propensity to progress to acute myeloid leukemia. Causal mutations in multiple classes of genes have been identified in patients with MDS with some patients harboring more than 1 mutation. Interestingly, double mutations tend to occur in different classes rather than the same class of genes, as exemplified by frequent cooccurring mutations in the transcription factor RUNX1 and the splicing factor SRSF2. This prototypic double mutant provides an opportunity to understand how their divergent functions in transcription and posttranscriptional regulation may be altered to jointly promote MDS. Here, we report a mouse model in which Runx1 knockout was combined with the Srsf2 P95H mutation to cause multilineage hematopoietic defects. Besides their additive and synergistic effects, we also unexpectedly noted a degree of antagonizing activity of single mutations in specific hematopoietic progenitors. To uncover the mechanism, we further developed a cellular model using human K562 cells and performed parallel gene expression and splicing analyses in both human and murine contexts. Strikingly, although RUNX1 deficiency was responsible for altered transcription in both single and double mutants, it also induced dramatic changes in global splicing, as seen with mutant SRSF2, and only their combination induced missplicing of genes selectively enriched in the DNA damage response and cell cycle checkpoint pathways. Collectively, these data reveal the convergent impact of a prototypic MDS-associated double mutant on RNA processing and suggest that aberrant DNA damage repair and cell cycle regulation critically contribute to MDS development.
Collapse
Affiliation(s)
- Yi-Jou Huang
- Moores Cancer Center, UC San Diego (UCSD), La Jolla, CA
- Department of Molecular Biology, UCSD, La Jolla, CA
| | - Jia-Yu Chen
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA
| | - Ming Yan
- Moores Cancer Center, UC San Diego (UCSD), La Jolla, CA
| | - Amanda G. Davis
- Moores Cancer Center, UC San Diego (UCSD), La Jolla, CA
- Department of Molecular Biology, UCSD, La Jolla, CA
| | | | - Liang Chen
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA
| | - Yajing Hao
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA
| | - Sigrid Katz
- Moores Cancer Center, UC San Diego (UCSD), La Jolla, CA
| | - Rafael Bejar
- Moores Cancer Center, UC San Diego (UCSD), La Jolla, CA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Xiang-Dong Fu
- Moores Cancer Center, UC San Diego (UCSD), La Jolla, CA
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA
| | - Dong-Er Zhang
- Moores Cancer Center, UC San Diego (UCSD), La Jolla, CA
- Department of Molecular Biology, UCSD, La Jolla, CA
- Department of Pathology, UC San Diego, La Jolla, CA
| |
Collapse
|
33
|
Abe K, Yamamoto K, Myoda T, Fujii T, Niwa K. Protective effects of volatile components of aged garlic extract against ultraviolet B-induced apoptosis in human skin fibroblasts. J Food Biochem 2022; 46:e14482. [PMID: 36219767 DOI: 10.1111/jfbc.14482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/10/2022] [Accepted: 09/28/2022] [Indexed: 01/14/2023]
Abstract
Aged garlic extract (AGE) has been shown to protect the skin against UV-induced damage, but effects of its volatile components remain unknown. We investigated the effects of the volatile fraction of AGE on the responses of cultured skin fibroblasts subjected to UV-B irradiation. UV-B irradiation (20 mJ/cm2 ) reduced the cell viability to 55% of control. The nonvolatile and volatile fractions of AGE inhibited the UV-B-induced reduction of cell viability; the cell viabilities were 100% and 73%, respectively. The volatile fraction inhibited the UV-B-induced increase in apoptotic cell death by 28%. The volatile fraction also inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs) induced by UV-B irradiation. GC-MS analysis revealed that a large number of volatile compounds were generated during aging of garlic. These results suggest that the volatile fraction of AGE has protective effects against the UV-B-induced death of skin fibroblasts, and that this effect may partly be due to an inhibition of apoptosis via the downregulation of MAPK signaling. The volatile compounds of AGE may have beneficial applications for skin health. PRACTICAL APPLICATIONS: In this study, we investigated the effects of AGE against cell damage of UV-B-irradiated human skin fibroblasts. The aging process of garlic produced characteristic volatile compounds that have significant protective effects against UV-induced cell damage. Our results demonstrated that the aging process is a suitable method to develop added value in garlic extracts to improve skin health.
Collapse
Affiliation(s)
- Kazuki Abe
- Department of Food, Aroma and Cosmetic Chemistry, Faculty of Bioindustry, Tokyo University of Agriculture, Abashiri City, Japan.,Healthcare Research and Development Division, Wakunaga Pharmaceutical Co. Ltd., Akitakata, Hiroshima, Japan
| | - Kumiko Yamamoto
- Department of Food, Aroma and Cosmetic Chemistry, Faculty of Bioindustry, Tokyo University of Agriculture, Abashiri City, Japan
| | - Takao Myoda
- Department of Food, Aroma and Cosmetic Chemistry, Faculty of Bioindustry, Tokyo University of Agriculture, Abashiri City, Japan
| | - Takuto Fujii
- Healthcare Research and Development Division, Wakunaga Pharmaceutical Co. Ltd., Akitakata, Hiroshima, Japan
| | - Koichi Niwa
- Department of Food, Aroma and Cosmetic Chemistry, Faculty of Bioindustry, Tokyo University of Agriculture, Abashiri City, Japan
| |
Collapse
|
34
|
Altamura G, Borzacchiello G. Anti-EGFR monoclonal antibody Cetuximab displays potential anti-cancer activities in feline oral squamous cell carcinoma cell lines. Front Vet Sci 2022; 9:1040552. [PMID: 36467642 PMCID: PMC9712204 DOI: 10.3389/fvets.2022.1040552] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/02/2022] [Indexed: 10/15/2023] Open
Abstract
Feline oral squamous cell carcinoma (FOSCC) is a malignant tumor characterized by an aggressive behavior and poor prognosis, for which no fully effective therapies are available. Studies of comparative oncology suggest that epidermal growth factor receptor (EGFR) may be a therapeutic target in FOSCC, similarly to human head and neck SCC (HNSCC), where the use of anti-EGFR monoclonal antibody Cetuximab has entered the clinical practice. The aim of this study was to assess the efficacy of Cetuximab in three validated preclinical models of FOSCC (SCCF1, SCCF2, SCCF3). Sequencing of tyrosine kinase domain of EGFR in the cell lines revealed a wild-type genotype, excluding the presence of activating mutations. Western blotting experiments demonstrated that Cetuximab inhibited activation of EGFR and its downstream kinase Akt in SCCF1, SCCF2 and SCCF3 along with HNSCC cell line CAL 27 included as control. Importantly, CCK-8 and trypan blue exclusion assays revealed that treatment with Cetuximab caused a decrease in cell proliferation and cell viability in all cell lines, with a general dose- and time-dependent trend. Cell death induced by Cetuximab was associated with cleavage of PARP, indicating occurrence of apoptosis. Taken together, our data suggest that Cetuximab exerts potential anti-cancer activities in FOSCC, paving the way for future translational studies aimed at assessing its employment in the therapy of this lethal cancer of cats.
Collapse
Affiliation(s)
| | - Giuseppe Borzacchiello
- General Pathology and Anatomic Pathology Section, Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| |
Collapse
|
35
|
Potočnjak I, Šimić L, Batičić L, Križan H, Domitrović R. Sinomenine mitigates cisplatin-induced kidney injury by targeting multiple signaling pathways. Food Chem Toxicol 2022; 171:113538. [DOI: 10.1016/j.fct.2022.113538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
|
36
|
Gazdova M, Michalkova R, Kello M, Vilkova M, Kudlickova Z, Baloghova J, Mirossay L, Mojzis J. Chalcone-Acridine Hybrid Suppresses Melanoma Cell Progression via G2/M Cell Cycle Arrest, DNA Damage, Apoptosis, and Modulation of MAP Kinases Activity. Int J Mol Sci 2022; 23:12266. [PMID: 36293123 PMCID: PMC9603750 DOI: 10.3390/ijms232012266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022] Open
Abstract
This study was focused on investigating the antiproliferative effects of chalcone hybrids in melanoma cancer cells. Among seven chalcone hybrids, the chalcone-acridine hybrid 1C was the most potent and was selected for further antiproliferative mechanism studies. This in vitro study revealed the potent antiproliferative effect of 1C via cell cycle arrest and apoptosis induction. Cell cycle arrest at the G2/M phase was associated with modulation of expression or phosphorylation of specific cell cycle-associated proteins (cyclin B1, p21, and ChK1), tubulins, as well as with the activation of the DNA damage response pathway. Chalcone 1C also induced apoptosis accompanied by mitochondrial dysfunction evidenced by a decrease in mitochondrial membrane potential, increase in Bax/Bcl-xL ratio and cytochrome c release followed by caspase 3/7 activation. In addition, increased phosphorylation of MAP kinases (Erk1/2, p38 and JNK) was observed in chalcone 1C-treated melanoma cells. The strong antiproliferative activities of this chalcone-acridine hybrid suggest that it may be useful as an antimelanoma agent in humans.
Collapse
Affiliation(s)
- Maria Gazdova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Radka Michalkova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Maria Vilkova
- NMR Laboratory, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Zuzana Kudlickova
- NMR Laboratory, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Janette Baloghova
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Ladislav Mirossay
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Jan Mojzis
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| |
Collapse
|
37
|
Tung KL, Wu SZ, Yang CC, Chang HY, Chang CS, Wang YH, Huang BM, Lan YY. Cordycepin Induces Apoptosis through JNK-Mediated Caspase Activation in Human OEC-M1 Oral Cancer Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:1842363. [PMID: 38023774 PMCID: PMC10667060 DOI: 10.1155/2022/1842363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 12/01/2023]
Abstract
Cordycepin, a bioactive compound extracted from Cordyceps sinensis, can induce apoptosis in human OEC-M1 oral cancer cells. However, the exact mechanism is still unclear. The present study aimed to investigate the underlying mechanism of cordycepin-induced apoptosis in OEC-M1 cells. Following treatment with cordycepin, apoptosis was examined and quantified using a DNA laddering assay and a cytokeratin 18 fragment enzyme-linked immunosorbent assay, respectively. Expressions of mitogen-activated protein kinases (MAPKs) and apoptosis-related proteins were detected by the western blot analysis. Our results show that a pan-caspase inhibitor, Z-VAD-FMK, could significantly inhibit cordycepin-induced apoptosis in OEC-M1 cells. In addition, treatment with cordycepin not only activated caspase-8, caspase-9, and caspase-3 but also induced Bid and poly ADP-ribose polymerase cleavages. Furthermore, cordycepin also induced the activation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase, and p38 MAPKs. Among MAPKs, activation of JNK solely contributed to cordycepin-induced apoptosis with the activation of caspase-8, caspase-9, and caspase-3 and cleavage of PARP. Taken together, the present study demonstrated that cordycepin activated JNK and caspase pathways to induce apoptosis in OEC-M1 cells.
Collapse
Affiliation(s)
- Kuo-Lung Tung
- Department of Oral Hygiene, Shu-Zen Junior College of Medicine and Management, Kaohsiung 82144, Taiwan
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Su-Zhen Wu
- Department of Anesthesia, Chi-Mei Medical Center, Liouying, Tainan 73657, Taiwan
- Department of Nursing, Min-Hwei Junior College of Health Care Management, Tainan 73658, Taiwan
| | - Chun-Chuan Yang
- Department of Dental Technology, Shu-Zen Junior College of Medicine and Management, Kaohsiung 82144, Taiwan
| | - Hong-Yi Chang
- Department of Biotechnology and Food Technology, College of Engineering, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan
| | - Chun-Sheng Chang
- Department of Biotechnology and Food Technology, College of Engineering, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan
| | - Yan-Hsiung Wang
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Bu-Miin Huang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yu-Yan Lan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
| |
Collapse
|
38
|
Mohammed RA, Sayed RH, El-Sahar AE, Khattab MA, Saad MA. Insights into the role of pERK1/2 signaling in post-cerebral ischemia reperfusion sexual dysfunction in rats. Eur J Pharmacol 2022; 933:175258. [PMID: 36096157 DOI: 10.1016/j.ejphar.2022.175258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/15/2022] [Accepted: 09/05/2022] [Indexed: 11/15/2022]
Abstract
The purpose of the present study was to investigate the effects of ERK1/2 inhibition on both the amygdala and hippocampal structures, and to investigate its role in regulating memory for sexual information. This study utilized a cerebral ischemia reperfusion (IR) model to produce a stressful brain condition that highlights the possible involvement of a hippocampal GC/pERK1/2/BDNF pathway in the resulting sexual consequences of this ailment. Male Wistar rats were divided into four groups: (1) sham; (2) IR: subjected to 45 min of ischemia followed by 48 h of reperfusion; (3) PD98059: received PD98059 at 0.3 mg/kg, i.p.; (4) IR + PD98059. This study provides new evidence for cerebral IR-induced amygdala injury and the sexual impairments that are associated with motor and cognitive deficits in rats. These findings were correlated with histopathological changes that are defined by extensive neuronal loss in both the hippocampus and the amygdala. The current study postulated that the ERK inhibitor PD98059 could reverse IR-induced injury in the amygdala as well as reversing IR-induced sexual impairments. This hypothesis is supported by the ability of PD98059 to: (1) restore luteinizing hormone and testosterone levels; (2) increase sexual arousal and copulatory performance (as evidenced by modulating mount, intromission, ejaculation latencies, and post-ejaculatory intervals); (3) improve the histological profile in the amygdala that is associated with reduced glutamate levels, c-Fos expression, and elevated gamma aminobutyric acid levels. In conclusion, the present findings introduce pERK1/2 inhibition as a possible strategy for enhancing sexual activity in survivors of IR.
Collapse
Affiliation(s)
- Reham A Mohammed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Ayman E El-Sahar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed A Khattab
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Muhammed A Saad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman, 4184, United Arab Emirates
| |
Collapse
|
39
|
Bhattacharjee R, Dey T, Kumar L, Kar S, Sarkar R, Ghorai M, Malik S, Jha NK, Vellingiri B, Kesari KK, Pérez de la Lastra JM, Dey A. Cellular landscaping of cisplatin resistance in cervical cancer. Biomed Pharmacother 2022; 153:113345. [PMID: 35810692 DOI: 10.1016/j.biopha.2022.113345] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 12/11/2022] Open
Abstract
Cervical cancer (CC) caused by human papillomavirus (HPV) is one of the largest causes of malignancies in women worldwide. Cisplatin is one of the widely used drugs for the treatment of CC is rendered ineffective owing to drug resistance. This review highlights the cause of resistance and the mechanism of cisplatin resistance cells in CC to develop therapeutic ventures and strategies that could be utilized to overcome the aforementioned issue. These strategies would include the application of nanocarries, miRNA, CRIPSR/Cas system, and chemotherapeutics in synergy with cisplatin to not only overcome the issues of drug resistance but also enhance its anti-cancer efficiency. Moreover, we have also discussed the signaling network of cisplatin resistance cells in CC that would provide insights to develop therapeutic target sites and inhibitors. Furthermore, we have discussed the role of CC metabolism on cisplatin resistance cells and the physical and biological factors affecting the tumor microenvironments.
Collapse
Affiliation(s)
- Rahul Bhattacharjee
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Tanima Dey
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Lamha Kumar
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, Kerala, India
| | - Sulagna Kar
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Ritayan Sarkar
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Mimosa Ghorai
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand 834001, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India.
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641-046, India
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, Espoo 00076, Finland; Department of Bio-products and Bio-systems, School of Chemical Engineering, Aalto University, Espoo 00076, Finland
| | - José M Pérez de la Lastra
- Biotechnology of Macromolecules, Instituto de Productos Naturales y Agrobiología, IPNA (CSIC), Avda. Astrofísico Francisco Sánchez, 3, 38206 San Cristóbal de la Laguna (Santa Cruz de Tenerife), Spain.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India.
| |
Collapse
|
40
|
He X, Wang S, Liu B, Jiang D, Chen F, Mao G, Jin W, Pan H, Zhong W. Sulfated modification of hyaluronan tetrasaccharide enhances its antitumor activity on human lung adenocarcinoma A549 cells in vitro and in vivo. Bioorg Med Chem Lett 2022; 75:128945. [PMID: 35987509 DOI: 10.1016/j.bmcl.2022.128945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/06/2022] [Accepted: 08/12/2022] [Indexed: 11/19/2022]
Abstract
Hyaluronan (HA) is a glycosaminoglycan polymer involved in cell phenotype change, inflammation modulation, and tumor metastasis progression. HA oligosaccharides have a higher solubility and drug-forming ability than polysaccharides. HA tetrasaccharide was reported as the smallest fragment required for inhibiting triple-negative breast cancer, but the anti-tumor activity of HA tetrasaccharide (HA4) and its sulfated derivatives in lung cancer is still unknown. In this study, HA4 was prepared via HA degradation by chondroitinase ABC (CSABC), while its sulfated derivatives were prepared by sulfur pyridine trioxide complex in N, N-dimethylformamide (DMF). Then, the anti-tumor activity was detected via MTT assay and xenograft tumor experiments, while the expression level change of apoptosis genes was analyzed by qRT-PCR. Electrospray mass spectrometry (ESI-MS) analysis showed several HA4 sulfated derivatives, GlcA2GlcNAc2 (SO3H)n contains 0-6 sulfation groups, which mainly contain 3-6, 2-3, and 0-1 sulfation groups were classified as HA4S1, HA4S2, and HA4S3, respectively. After the addition of 1.82 mg/mL HA4, HA4S1, HA4S2, and HA4S3, the cell viability of A549 cells was reduced to 81.2 %, 62.1 %, 50.3 %, and 65.9 %, respectively. Thus, HA4S2 was chosen for further measurement, the qRT-PCR results showed it significantly up-regulated the expression of genes in the apoptosis pathway. Moreover, HA4S2 exhibited stronger antitumor activity than HA4 in vivo and the tumor inhibition rate reached 36.90 %. In summary, this study indicated that the CSABC enzyme could effectively degrade HA into oligosaccharides, and sulfation modification was an effective method to enhance the antitumor activity of HA tetrasaccharides.
Collapse
Affiliation(s)
- Xinyue He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Sanying Wang
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310013, China
| | - Bing Liu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Di Jiang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Fen Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Genxiang Mao
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310013, China
| | - Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Hongying Pan
- Center for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
41
|
Mavrogonatou E, Angelopoulou M, Rizou SV, Pratsinis H, Gorgoulis VG, Kletsas D. Activation of the JNKs/ATM-p53 axis is indispensable for the cytoprotection of dermal fibroblasts exposed to UVB radiation. Cell Death Dis 2022; 13:647. [PMID: 35879280 PMCID: PMC9314411 DOI: 10.1038/s41419-022-05106-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 01/21/2023]
Abstract
Although UVB radiation is mainly absorbed by the epidermis, ~5-10% of its photons reach and affect the upper part of the dermis. Physiologically relevant UVB doses, able to provoke erythema, induce apoptosis in human dermal fibroblasts in vitro, as well as in the dermis of SKH-1 mice. Given the sparse and even contradictory existing information on the effect of UVB radiation on dermal fibroblasts' viability, aim of this work was to unravel the crucial signaling pathways regulating the survival of UVB-treated human dermal fibroblasts. We found that UVB radiation immediately stimulates the phosphorylation of MAPK family members, as well as Akt, and is genotoxic leading to the delayed ATM-p53 axis activation. Akt phosphorylation after UVB radiation is EGFR-mediated and EGFR inhibition leads to a further decrease of viability, while the Akt activator SC79 rescues fibroblasts to an extent by a mechanism involving Nrf2 activation. The known Nrf2 activator sulforaphane also exerts a partial protective effect, although by acting in a distinct mechanism from SC79. On the other hand, inhibition of JNKs or of the ATM-p53 axis leads to a complete loss of viability after UVB irradiation. Interestingly, JNKs activation is necessary for p53 phosphorylation, while the ATM-p53 pathway is required for the long-term activation of JNKs and Akt, reassuring the protection from UVB. Although UVB radiation results in intense and prolonged increase of intracellular ROS levels, classical anti-oxidants, such as Trolox, are unable to affect Akt, JNKs, or p53 phosphorylation and to reverse the loss of fibroblasts' viability. Collectively, here we provide evidence that the main viability-regulating UVB-triggered biochemical pathways act synergistically towards the protection of human dermal fibroblasts, with EGFR/Akt and Nrf2 serving as auxiliary anti-apoptotic machineries, while JNKs/ATM-p53 activation and interplay being overriding and indispensable for the perpetuation of cellular defense and the maintenance of cell viability.
Collapse
Affiliation(s)
- Eleni Mavrogonatou
- grid.6083.d0000 0004 0635 6999Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, 15341 Athens, Greece
| | - Maria Angelopoulou
- grid.6083.d0000 0004 0635 6999Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, 15341 Athens, Greece
| | - Sophia V. Rizou
- grid.5216.00000 0001 2155 0800Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Harris Pratsinis
- grid.6083.d0000 0004 0635 6999Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, 15341 Athens, Greece
| | - Vassilis G. Gorgoulis
- grid.5216.00000 0001 2155 0800Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece ,grid.417593.d0000 0001 2358 8802Biomedical Research Foundation, Academy of Athens, Athens, Greece ,grid.5379.80000000121662407Faculty of Biology, Medicine and Health Manchester Cancer Research Centre, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK ,grid.5216.00000 0001 2155 0800Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece ,grid.8241.f0000 0004 0397 2876Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Dimitris Kletsas
- grid.6083.d0000 0004 0635 6999Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, 15341 Athens, Greece
| |
Collapse
|
42
|
Hess JD, Macias LH, Gutierrez DA, Moran-Santibanez K, Contreras L, Medina S, Villanueva PJ, Kirken RA, Varela-Ramirez A, Penichet ML, Aguilera RJ. Identification of a Unique Cytotoxic Thieno[2,3-c]Pyrazole Derivative with Potent and Selective Anticancer Effects In Vitro. BIOLOGY 2022; 11:biology11060930. [PMID: 35741451 PMCID: PMC9219615 DOI: 10.3390/biology11060930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/03/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022]
Abstract
In recent years, the thienopyrazole moiety has emerged as a pharmacologically active scaffold with antitumoral and kinase inhibitory activity. In this study, high-throughput screening of 2000 small molecules obtained from the ChemBridge DIVERset library revealed a unique thieno[2,3-c]pyrazole derivative (Tpz-1) with potent and selective cytotoxic effects on cancer cells. Compound Tpz-1 consistently induced cell death at low micromolar concentrations (0.19 μM to 2.99 μM) against a panel of 17 human cancer cell lines after 24 h, 48 h, or 72 h of exposure. Furthermore, an in vitro investigation of Tpz-1's mechanism of action revealed that Tpz-1 interfered with cell cycle progression, reduced phosphorylation of p38, CREB, Akt, and STAT3 kinases, induced hyperphosphorylation of Fgr, Hck, and ERK 1/2 kinases, and disrupted microtubules and mitotic spindle formation. These findings support the continued exploration of Tpz-1 and other thieno[2,3-c]pyrazole-based compounds as potential small-molecule anticancer agents.
Collapse
Affiliation(s)
- Jessica D. Hess
- Department of Biological Sciences and Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, The University of Texas at El Paso (UTEP), El Paso, TX 79902, USA; (J.D.H.); (L.H.M.); (D.A.G.); (K.M.-S.); (L.C.); (S.M.); (P.J.V.); (R.A.K.); (A.V.-R.)
| | - Luca H. Macias
- Department of Biological Sciences and Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, The University of Texas at El Paso (UTEP), El Paso, TX 79902, USA; (J.D.H.); (L.H.M.); (D.A.G.); (K.M.-S.); (L.C.); (S.M.); (P.J.V.); (R.A.K.); (A.V.-R.)
| | - Denisse A. Gutierrez
- Department of Biological Sciences and Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, The University of Texas at El Paso (UTEP), El Paso, TX 79902, USA; (J.D.H.); (L.H.M.); (D.A.G.); (K.M.-S.); (L.C.); (S.M.); (P.J.V.); (R.A.K.); (A.V.-R.)
| | - Karla Moran-Santibanez
- Department of Biological Sciences and Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, The University of Texas at El Paso (UTEP), El Paso, TX 79902, USA; (J.D.H.); (L.H.M.); (D.A.G.); (K.M.-S.); (L.C.); (S.M.); (P.J.V.); (R.A.K.); (A.V.-R.)
| | - Lisett Contreras
- Department of Biological Sciences and Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, The University of Texas at El Paso (UTEP), El Paso, TX 79902, USA; (J.D.H.); (L.H.M.); (D.A.G.); (K.M.-S.); (L.C.); (S.M.); (P.J.V.); (R.A.K.); (A.V.-R.)
| | - Stephanie Medina
- Department of Biological Sciences and Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, The University of Texas at El Paso (UTEP), El Paso, TX 79902, USA; (J.D.H.); (L.H.M.); (D.A.G.); (K.M.-S.); (L.C.); (S.M.); (P.J.V.); (R.A.K.); (A.V.-R.)
| | - Paulina J. Villanueva
- Department of Biological Sciences and Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, The University of Texas at El Paso (UTEP), El Paso, TX 79902, USA; (J.D.H.); (L.H.M.); (D.A.G.); (K.M.-S.); (L.C.); (S.M.); (P.J.V.); (R.A.K.); (A.V.-R.)
| | - Robert A. Kirken
- Department of Biological Sciences and Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, The University of Texas at El Paso (UTEP), El Paso, TX 79902, USA; (J.D.H.); (L.H.M.); (D.A.G.); (K.M.-S.); (L.C.); (S.M.); (P.J.V.); (R.A.K.); (A.V.-R.)
| | - Armando Varela-Ramirez
- Department of Biological Sciences and Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, The University of Texas at El Paso (UTEP), El Paso, TX 79902, USA; (J.D.H.); (L.H.M.); (D.A.G.); (K.M.-S.); (L.C.); (S.M.); (P.J.V.); (R.A.K.); (A.V.-R.)
| | - Manuel L. Penichet
- Division of Surgical Oncology, Department of Surgery and Department of Microbiology, Immunology and Molecular Genetics, The Molecular Biology Institute, AIDS Institute, Jonsson Comprehensive Cancer Center, The University of California, Los Angeles, CA 90095, USA;
| | - Renato J. Aguilera
- Department of Biological Sciences and Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, The University of Texas at El Paso (UTEP), El Paso, TX 79902, USA; (J.D.H.); (L.H.M.); (D.A.G.); (K.M.-S.); (L.C.); (S.M.); (P.J.V.); (R.A.K.); (A.V.-R.)
- Correspondence: ; Tel.: +1-915-747-6852
| |
Collapse
|
43
|
Cerrato A, Mattheolabakis G, Spano D. Editorial: Combinatorial Approaches for Cancer Treatment: From Basic to Translational Research. Front Oncol 2022; 12:842114. [PMID: 35186769 PMCID: PMC8847383 DOI: 10.3389/fonc.2022.842114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/10/2022] [Indexed: 01/03/2023] Open
Affiliation(s)
- Aniello Cerrato
- Institute Experimental Endocrinology and Oncology "Gaetano Salvatore", National Research Council, Naples, Italy
| | - George Mattheolabakis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, United States
| | - Daniela Spano
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| |
Collapse
|
44
|
Wang Y, Xu J, Wang Y, Xiang L, He X. S-20, a steroidal saponin from the berries of black nightshade, exerts anti-multidrug resistance activity in K562/ADR cells through autophagic cell death and ERK activation. Food Funct 2022; 13:2200-2215. [PMID: 35119449 DOI: 10.1039/d1fo03191k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multidrug resistance (MDR) is a major cause of chemotherapy failure. Adriamycin (ADR) has been widely used to treat cancer, however, as a substrate of the adenosine triphosphate binding cassette (ABC) transporter, it is easy to develop drug resistance during the treatment. Here, we demonstrated that steroidal saponin S-20 isolated from the berries of black nightshade has comparable cytotoxicity in ADR-sensitive and resistant K562 cell lines. Autophagy is generally considered to be a protective mechanism to mediate MDR during treatment. However, we found that S-20-induced cell death in K562/ADR is associated with autophagy. We further explored the underlying mechanisms and found that S-20 induces caspase-dependent apoptosis in ADR-sensitive and resistant K562 cell lines. Most importantly, S-20-induced autophagy activates the ERK pathway and then inhibits the expression of drug resistance protein, which is the main reason to overcome K562/ADR resistance, rather than apoptosis. Taken together, our findings emphasize that S-20 exerts anti-multidrug resistance activity in K562/ADR cells through autophagic cell death and ERK activation, which may be considered as an effective strategy.
Collapse
Affiliation(s)
- Yi Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Jingwen Xu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China. .,Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, 510006, China
| | - Yihai Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China. .,Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, 510006, China
| | - Limin Xiang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China. .,Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, 510006, China
| | - Xiangjiu He
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China. .,Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, 510006, China
| |
Collapse
|
45
|
Zhang J, Zhang L, Shi H, Feng S, Feng T, Chen J, Zhang X, Han Y, Liu J, Wang Y, Ji Z, Jing Z, Liu D, Shi D, Feng L. Swine acute diarrhea syndrome coronavirus replication is reduced by inhibition of the extracellular signal-regulated kinase (ERK) signaling pathway. Virology 2022; 565:96-105. [PMID: 34768113 PMCID: PMC8556614 DOI: 10.1016/j.virol.2021.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 01/04/2023]
Abstract
Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a newly discovered enteric coronavirus. We have previously shown that the caspase-dependent FASL-mediated and mitochondrion-mediated apoptotic pathways play a central role in SADS-CoV-induced apoptosis, which facilitates viral replication. However, the roles of intracellular signaling pathways in SADS-CoV-mediated cell apoptosis and the relative advantages that such pathways confer on the host or virus remain largely unknown. In this study, we show that SADS-CoV induces the activation of ERK during infection, irrespective of viral biosynthesis. The knockdown or chemical inhibition of ERK1/2 significantly suppressed viral protein expression and viral progeny production. The inhibition of ERK activation also circumvented SADS-CoV-induced apoptosis. Taken together, these data suggest that ERK activation is important for SADS-CoV replication, and contributes to the virus-mediated changes in host cells. Our findings demonstrate the takeover of a particular host signaling mechanism by SADS-CoV and identify a potential approach to inhibiting viral spread.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Da Shi
- Corresponding author. Harbin Veterinary Research Institute, CAAS, 678 Haping Road Xiangfang District, Harbin, 150069, China
| | - Li Feng
- Corresponding author. Harbin Veterinary Research Institute, CAAS, 678 Haping Road Xiangfang District, Harbin, 150069, China
| |
Collapse
|
46
|
Chung KS, Yoo CB, Lee JH, Lee HH, Park SE, Han HS, Lee SY, Kwon BM, Choi JH, Lee KT. Regulation of ROS-Dependent JNK Pathway by 2'-Hydroxycinnamaldehyde Inducing Apoptosis in Human Promyelocytic HL-60 Leukemia Cells. Pharmaceutics 2021; 13:pharmaceutics13111794. [PMID: 34834209 PMCID: PMC8618870 DOI: 10.3390/pharmaceutics13111794] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/28/2022] Open
Abstract
The present study demonstrated that 2'-hydroxycinnamaldehyde (2'-HCA) induced apoptosis in human promyelocytic leukemia HL-60 cells through the activation of mitochondrial pathways including (1) translocation of Bim and Bax from the cytosol to mitochondria, (2) downregulation of Bcl-2 protein expression, (3) cytochrome c release into the cytosol, (4) loss of mitochondrial membrane potential (ΔΨm), and (5) caspase activation. 2'-HCA also induced the activation of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase1/2 (ERK1/2) in HL-60 cells. The pharmacological and genetic inhibition of JNK effectively prevented 2'-HCA-induced apoptosis and activator protein-1 (AP-1)-DNA binding. In addition, 2'-HCA resulted in the accumulation of reactive oxygen species (ROS) and depletion of intracellular glutathione (GSH) and protein thiols (PSH) in HL-60 cells. NAC treatment abrogated 2'-HCA-induced JNK phosphorylation, AP-1-DNA binding, and Bim mitochondrial translocation, suggesting that oxidative stress may be required for 2'-HCA-induced intrinsic apoptosis. Xenograft mice inoculated with HL-60 leukemia cells demonstrated that the intraperitoneal administration of 2'-HCA inhibited tumor growth by increasing of TUNEL staining, the expression levels of nitrotyrosine and pro-apoptotic proteins, but reducing of PCNA protein expression. Taken together, our findings suggest that 2'-HCA induces apoptosis via the ROS-dependent JNK pathway and could be considered as a potential therapeutic agent for leukemia.
Collapse
Affiliation(s)
- Kyung-Sook Chung
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Korea; (K.-S.C.); (C.-B.Y.); (J.-H.L.); (H.-H.L.); (S.-E.P.); (H.-S.H.); (S.-Y.L.)
| | - Chae-Bin Yoo
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Korea; (K.-S.C.); (C.-B.Y.); (J.-H.L.); (H.-H.L.); (S.-E.P.); (H.-S.H.); (S.-Y.L.)
| | - Jeong-Hun Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Korea; (K.-S.C.); (C.-B.Y.); (J.-H.L.); (H.-H.L.); (S.-E.P.); (H.-S.H.); (S.-Y.L.)
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Korea;
| | - Hwi-Ho Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Korea; (K.-S.C.); (C.-B.Y.); (J.-H.L.); (H.-H.L.); (S.-E.P.); (H.-S.H.); (S.-Y.L.)
| | - Sang-Eun Park
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Korea; (K.-S.C.); (C.-B.Y.); (J.-H.L.); (H.-H.L.); (S.-E.P.); (H.-S.H.); (S.-Y.L.)
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmarcy, Kyung Hee University, Seoul 02447, Korea
| | - Hee-Soo Han
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Korea; (K.-S.C.); (C.-B.Y.); (J.-H.L.); (H.-H.L.); (S.-E.P.); (H.-S.H.); (S.-Y.L.)
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Korea;
| | - Su-Yeon Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Korea; (K.-S.C.); (C.-B.Y.); (J.-H.L.); (H.-H.L.); (S.-E.P.); (H.-S.H.); (S.-Y.L.)
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmarcy, Kyung Hee University, Seoul 02447, Korea
| | - Byoung-Mok Kwon
- Laboratory of Chemical Biology and Genomics, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
| | - Jung-Hye Choi
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Korea;
- Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Korea
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Korea; (K.-S.C.); (C.-B.Y.); (J.-H.L.); (H.-H.L.); (S.-E.P.); (H.-S.H.); (S.-Y.L.)
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Korea;
- Correspondence: ; Tel.: +82-2-961-0860
| |
Collapse
|
47
|
Lan YY, Chen YH, Liu C, Tung KL, Wu YT, Lin SC, Wu CH, Chang HY, Chen YC, Huang BM. Role of JNK activation in paclitaxel-induced apoptosis in human head and neck squamous cell carcinoma. Oncol Lett 2021; 22:705. [PMID: 34457060 PMCID: PMC8358625 DOI: 10.3892/ol.2021.12966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
It has been reported that paclitaxel activates cell cycle arrest and increases caspase protein expression to induce apoptosis in head and neck squamous cell carcinoma (HNSCC) cell lines. However, the potential signaling pathway regulating this apoptotic phenomenon remains unclear. The present study used OEC-M1 cells to investigate the underlying molecular mechanism of paclitaxel-induced apoptosis. Following treatment with paclitaxel, cell viability was assessed via the MTT assay. Necrosis, apoptosis, cell cycle and mitochondrial membrane potential (∆Ψm) were analyzed via flow cytometric analyses, respectively. Western blot analysis was performed to detect the expression levels of proteins associated with the MAPK and caspase signaling pathways. The results demonstrated that low-dose paclitaxel (50 nM) induced apoptosis but not necrosis in HNSCC cells. In addition, paclitaxel activated the c-Jun N-terminal kinase (JNK), but not extracellular signal-regulated kinase or p38 mitogen-activated protein kinase. The paclitaxel-activated JNK contributed to paclitaxel-induced apoptosis, activation of caspase-3, -6, -7, -8 and -9, and reduction of ∆Ψm. In addition, caspase-8 and -9 inhibitors, respectively, significantly decreased paclitaxel-induced apoptosis. Notably, Bid was truncated following treatment with paclitaxel. Taken together, the results of the present study suggest that paclitaxel-activated JNK is required for caspase activation and loss of ∆Ψm, which results in apoptosis of HNSCC cells. These results may provide mechanistic basis for designing more effective paclitaxel-combining regimens to treat HNSCC.
Collapse
Affiliation(s)
- Yu-Yan Lan
- Department of Physical Therapy, Shu-Zen Junior College of Medicine and Management, Kaohsiung 82144, Taiwan, R.O.C
| | - Ying-Hui Chen
- Department of Anesthesia, Chi-Mei Medical Center, Liouying, Tainan 73657, Taiwan, R.O.C
| | - Cheng Liu
- Department of Optometry, Shu-Zen Junior College of Medicine and Management, Kaohsiung 82144, Taiwan, R.O.C.,Department of Health and Beauty, Shu-Zen Junior College of Medicine and Management, Kaohsiung 82144, Taiwan, R.O.C
| | - Kuo-Lung Tung
- Department of Optometry, Shu-Zen Junior College of Medicine and Management, Kaohsiung 82144, Taiwan, R.O.C
| | - Yen-Ting Wu
- Department of Pathology, Golden Hospital, Pingtung 90049, Taiwan, R.O.C
| | - Sheng-Chieh Lin
- Department of Optometry, Shu-Zen Junior College of Medicine and Management, Kaohsiung 82144, Taiwan, R.O.C
| | - Chin-Han Wu
- Department of Optometry, Shu-Zen Junior College of Medicine and Management, Kaohsiung 82144, Taiwan, R.O.C
| | - Hong-Yi Chang
- Department of Biotechnology and Food Technology, College of Engineering, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan, R.O.C
| | - Yung-Chia Chen
- Department of Anatomy, School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Bu-Miin Huang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan, R.O.C.,Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan, R.O.C
| |
Collapse
|
48
|
Chen G, Xu Y, Yao Y, Cao Y, Liu Y, Chai H, Chen W, Chen X. IKKε knockout alleviates angiotensin II-induced apoptosis and excessive autophagy in vascular smooth muscle cells by regulating the ERK1/2 pathway. Exp Ther Med 2021; 22:1051. [PMID: 34434265 PMCID: PMC8353624 DOI: 10.3892/etm.2021.10485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 06/18/2021] [Indexed: 12/21/2022] Open
Abstract
Inhibitor of nuclear factor-κB kinase subunit ε (IKKε) is an important signal regulator in the formation of abdominal aortic aneurysm (AAA). However, the underlying mechanism remains to be elucidated. Therefore, the present study aimed to investigate the mechanism underlying IKKε function in AAA formation by studying apoptosis and autophagy in angiotensin II (Ang II)-induced vascular smooth muscle cells (VSMCs). AngII was used to stimulate VSMCs for 24 h to simulate the process of AAA formation. VSMCs were transfected with IKKε small interfering RNA to investigate the effect of IKKε on AAA formation, cell apoptosis and autophagy. IKKε deficiency led to reduced mitochondrial damage and apoptosis in VSMCs in the early stage of apoptosis in vitro, as demonstrated using a JC-1 probe. IKKε deficiency also reduced autophagy and decreased the formation of autophagic vacuoles in VSMCs, demonstrated using transmission electron microscopy. The decrease in apoptosis caused by IKKε knockdown was reversed when the autophagic flow was blocked using bafilomycin A1. Western blot analysis further revealed that IKKε deficiency negatively regulated the ERK1/2 signaling pathway to reduce autophagy. Collectively, the results of the present study revealed that IKKε played a key role in apoptosis by inducing excessive autophagy, thereby potentially contributing to AAA formation. These findings further revealed the mechanism underlying IKKε function in the formation of AAA.
Collapse
Affiliation(s)
- Ganyi Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yueyue Xu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yiwei Yao
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yide Cao
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yafeng Liu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Hao Chai
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Wen Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Xin Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| |
Collapse
|
49
|
Zhu Z, Jiang T, Suo H, Xu S, Zhang C, Ying G, Yan Z. Metformin Potentiates the Effects of Anlotinib in NSCLC via AMPK/mTOR and ROS-Mediated Signaling Pathways. Front Pharmacol 2021; 12:712181. [PMID: 34421608 PMCID: PMC8373262 DOI: 10.3389/fphar.2021.712181] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/21/2021] [Indexed: 12/24/2022] Open
Abstract
Anlotinib is a novel multi-targeted tyrosine kinase inhibitor with activity against soft tissue sarcoma, small cell lung cancer, and non-small cell lung cancer (NSCLC). Potentiating the anticancer effect of anlotinib in combination strategies remains a clinical challenge. Metformin is an oral agent that is used as a first-line therapy for type 2 diabetes. Interesting, metformin also exerts broad anticancer effects through the activation of AMP-activated protein kinase (AMPK) and inhibition of mammalian target of rapamycin (mTOR). Here, we evaluated the possible synergistic effect of anlotinib and metformin in NSCLC cells. The results showed that metformin enhanced the antiproliferative effect of anlotinib. Moreover, anlotinib combined with metformin induced apoptosis and oxidative stress, which was associated with the activation of AMPK and inhibition of mTOR. Reactive oxygen species (ROS)- mediated p38/JNK MAPK and ERK signaling may be involved in the anticancer effects of this combination treatment. Our results show that metformin potentiates the efficacy of anlotinib in vivo by increasing the sensitivity of NSCLC cells to the drug. These data provide a potential rationale for the combination of anlotinib and metformin for the treatment of patients with NSCLC or other cancers.
Collapse
Affiliation(s)
- Zhongling Zhu
- Department of Clinical Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Teng Jiang
- Department of Clinical Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Huirong Suo
- Department of Pharmacy, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Shan Xu
- Department of Clinical Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Cai Zhang
- Department of Clinical Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Guoguang Ying
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zhao Yan
- Department of Clinical Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Continuing Education and Science and Technology Service, China Anti-cancer Association, Tianjin, China
| |
Collapse
|
50
|
Integrin α5 mediates intrinsic cisplatin resistance in three-dimensional nasopharyngeal carcinoma spheroids via the inhibition of phosphorylated ERK /caspase-3 induced apoptosis. Exp Cell Res 2021; 406:112765. [PMID: 34358523 DOI: 10.1016/j.yexcr.2021.112765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 07/17/2021] [Accepted: 08/01/2021] [Indexed: 02/07/2023]
Abstract
Nasopharyngeal carcinoma (NPC) originates in the nasopharynx epithelium. Although concurrent chemoradiation therapy followed by chemotherapy is considered as an effective treatment, there is substantial drug resistance in locally advanced NPC patients. One major contributor to the chemoresistance includes aberrant expression of cell adhesion molecules, such as integrin α and β subunits, giving rise to cell adhesion-mediated drug resistance. Thus, the aim of this study was to investigate the effect of integrin α5 on the development of intrinsic cisplatin resistance in NPC and the associated underlying mechanisms using in vitro three-dimensional (3D) spheroid models, as well as induced cisplatin-resistant NPC (NPCcisR). We demonstrated that established 3D highly- (5-8F) and lowly- (6-10B) metastatic NPC spheroids overexpressed integrin α5 and aggravated their resistance to cisplatin. Besides, enhanced integrin α5 resulted in substantially reduced growth, corresponding to G0/G1 and G2/M cell cycle arrest. In addition, 5-8FcisR and 6-10BcisR cells in 3D forms synergistically strengthened endurance of their spheroids to cisplatin treatment as observed by increased resistance index (RI) and decreased apoptosis. Mechanistically, the aberrantly expressed integrin α5 decreased drug susceptibility in NPC spheroids by inactivating ERK and inhibition of caspase-3 inducing apoptosis. Furthermore, the effect of integrin α5 inducing intrinsic resistance was verified via treatment with ATN-161, a peptide inhibitor for integrin α5β1. The results showed dramatic reduction in integrin α5 expression, reversal of ERK phosphorylation and caspase-3 cleavage, together with elevated cisplatin sensitivity, indicating regulation of innate drug resistance via integrin α5. Taken together, our findings suggest that integrin α5 could act as a promising target to enhance the chemotherapeutic sensitivity in NPC.
Collapse
|