1
|
Batianis C, van Rosmalen RP, Moñino Fernández P, Labanaris K, Asin-Garcia E, Martin-Pascual M, Jeschek M, Weusthuis RA, Suarez-Diez M, Martins Dos Santos VAP. Computer-assisted multilevel optimization of malonyl-CoA availability in Pseudomonas putida. Metab Eng 2025; 90:165-177. [PMID: 40107409 DOI: 10.1016/j.ymben.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/21/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Malonyl-CoA is the major precursor for the biosynthesis of diverse industrially valuable products such as fatty acids/alcohols, flavonoids, and polyketides. However, its intracellular availability is limited in most microbial hosts, hampering the industrial production of such chemicals. To address this limitation, we present a multilevel optimization workflow using modern metabolic engineering technologies to systematically increase the malonyl-CoA levels in Pseudomonas putida. The workflow involves the identification of gene downregulations, chassis selection, and optimization of the acetyl-CoA carboxylase complex through ribosome binding site engineering. Computational tools and high-throughput screening with a malonyl-CoA biosensor enabled the rapid evaluation of numerous genetic targets. Combining the most beneficial targets led to a 5.8-fold enhancement in the production titer of the valuable polyketide phloroglucinol. This study demonstrates the effective integration of computational and genetic technologies for engineering P. putida, opening new avenues for the development of industrially relevant strains and the investigation of fundamental biological questions.
Collapse
Affiliation(s)
- Christos Batianis
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, 6708 WE, the Netherlands; Bioprocess Engineering, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands
| | - Rik P van Rosmalen
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, 6708 WE, the Netherlands
| | - Pedro Moñino Fernández
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, 6708 WE, the Netherlands; Bioprocess Engineering, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands
| | - Konstantinos Labanaris
- Bioprocess Engineering, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands
| | - Enrique Asin-Garcia
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, 6708 WE, the Netherlands; Bioprocess Engineering, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands
| | - Maria Martin-Pascual
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, 6708 WE, the Netherlands; Bioprocess Engineering, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands
| | - Markus Jeschek
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, CH-4058, Switzerland; Institute of Microbiology, Synthetic Microbiology Group, University of Regensburg, Regensburg D-93053, Germany
| | - Ruud A Weusthuis
- Bioprocess Engineering, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, 6708 WE, the Netherlands
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, 6708 WE, the Netherlands; Bioprocess Engineering, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands; LifeGlimmer GmbH, Berlin, 12163, Germany.
| |
Collapse
|
2
|
Zhang H, Feng T, Chang Q. Impact of molecular regulation on plant oil synthesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 354:112428. [PMID: 39947332 DOI: 10.1016/j.plantsci.2025.112428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 02/05/2025] [Accepted: 02/10/2025] [Indexed: 03/01/2025]
Abstract
The synthesis of lipids in plants is essential for their growth and development, and it has wide-ranging applications in various fields, including diet and industry. In the majority of plants, the principal unsaturated fatty acids (UFAs) are three C18 varieties: oleic acid (18:1), linoleic acid (18:2), and α-linolenic acid (18:3). Despite the clear delineation of the principal biosynthetic pathways of fatty acids in plants, numerous unresolved issues persist. The regulation of transcription factors can significantly influence the rate of fatty acid synthesis in plants. Consequently, several transcription factors associated with oil synthesis have been identified in recent years, among which the WRINKLED1 (WRI1) and V-myb avian myeloblastosis viral oncogene homolog (MYB) transcription factors play central roles. This study will explain how plants make essential lipids, bring up many unanswered questions, and describe the regulatory network of many transcription factors involved in oil production, with a focus on recent progress in research related to WRI1 and MYB1. The aim is to provide insights for the biological cultivation of high-quality oilseed crops.
Collapse
Affiliation(s)
- Hansheng Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China
| | - Tinghui Feng
- College of Life Sciences, Northwest A&F University, 712100, China
| | - Qinxiang Chang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China; Taiyuan University, 030032, China.
| |
Collapse
|
3
|
Jadhav DB, Roy S. Circadian Proteomics Reassesses the Temporal Regulation of Metabolic Rhythms by Chlamydomonas Clock. PLANT, CELL & ENVIRONMENT 2025; 48:3512-3528. [PMID: 39777639 DOI: 10.1111/pce.15354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025]
Abstract
Circadian clocks execute temporal regulation of metabolism by modulating the timely expression of genes. Clock regulation of mRNA synthesis was envisioned as the primary driver of these daily rhythms. mRNA oscillations often do not concur with the downstream protein oscillations, revealing the importance to study protein oscillations. Chlamydomonas reinhardtii is a well-studied miniature plant model. We quantitatively probed the Chlamydomonas proteome for two subsequent circadian cycles using high throughput SWATH-DIA mass spectrometry. We quantified > 1000 proteins, half of which demonstrate circadian rhythms. Among these rhythmic proteins, > 90% peak around subjective midday or midnight. We uncovered key enzymes involved in Box C/D pathway, amino acid biosynthesis, fatty acid (FA) biosynthesis and peroxisomal β-oxidation of FAs are driven by the clock, which were undocumented from earlier transcriptomic studies. Proteins associated with key biological processes such as photosynthesis, redox, carbon fixation, glycolysis and TCA cycle show extreme temporal regulation. We conclude that circadian proteomics is required to complement transcriptomic studies to understand the complex clock regulation of organismal biology. We believe our study will not only refine and enrich the evaluation of temporal metabolic processes in C. reinhardtii but also provide a novel understanding of clock regulation across species.
Collapse
Affiliation(s)
| | - Sougata Roy
- Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonipat, India
| |
Collapse
|
4
|
Zhang W, Zhang H, Shang Y, Luo Y, Wu H, Wu H. High-Yield Biosynthesis of 3-Hydroxypropionic Acid from Acetate in Metabolically Engineered Escherichia coli. ACS Synth Biol 2025. [PMID: 40267313 DOI: 10.1021/acssynbio.5c00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
The third-generation biorefineries aimed at "carbon-negative" production of fuels and chemicals utilizing one-carbon molecules and renewable energy sources were raised to tackle the pressing climate change and food scarcity issues. Acetate derived from syngas fermentation, a viable nonfood carbon source, has recently been elevated in bulk chemicals biosynthesis. In this study, we successfully engineered Escherichia coli to produce 3-hydroxypropionic acid (3-HP) from acetate via the malonyl-CoA pathway. Initially, the constitutive promoter of the 3-HP biosynthetic pathway for efficient 3-HP production was screened in acetate-based medium. Then, efforts were focused on reducing the competition for malonyl-CoA by inhibiting the fatty acids (FAs) synthesis pathway. Furthermore, we enhanced the supply of NADPH and acetyl-CoA through cofactor engineering. The engineered strain ZWR18(M*DA) accumulated 5.53 g/L 3-HP, corresponding to a yield of 0.732 g/g, and achieved 97.60% of the theoretical yield. In whole-cell catalysis, ZWR18(M*DA) produced 23.89 g/L 3-HP with a yield of 0.734 g/g, reaching 97.87% of the theoretical yield. Utilizing syngas-derived acetate for whole-cell catalysis allowed ZWR18(M*DA) to accumulate 18.87 g/L 3-HP with a yield of 0.58 g/g. These results indicate that acetate from syngas can serve as a cost-effective and environmentally friendly alternative to traditional carbon sources, offering a sustainable biorefinery pathway for industrial biomanufacturing.
Collapse
Affiliation(s)
- Wenrui Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Hongjun Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yanzhe Shang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Yuanchan Luo
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Hui Wu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
- Key Laboratory of Bio-based Material Engineering of China National Light Industry Council, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
5
|
Saito A, Taniguchi H, Matsumoto T, Yamada R, Ogino H. Sortase A-Mediated Ligation Facilitates Metabolic Channeling in Saccharomyces cerevisiae. ACS Synth Biol 2025. [PMID: 40254838 DOI: 10.1021/acssynbio.4c00841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Although the yeast Saccharomyces cerevisiae has been utilized for the bioproduction of various valuable substances, improving product concentration and production rate remains a challenge in its practical application. In this respect, metabolic channeling represents a potential strategy for addressing this issue. In the metabolic pathway for synthesizing a target product, closing enzymes induce substrate channeling, in which intermediates are transferred to the following enzyme to facilitate processing. To close enzymes in proximity, protein ligation is one of the solutions. However, genetic fusion often causes the generation of inactive complexes, and few techniques exist for ligating enzymes in yeast without loss of enzyme activity. Herein, we focused on sortase A, which links a short peptide tag between two target proteins. First, we demonstrated sortase A-mediated ligation in yeast using split-green fluorescent protein. Then, sortase A-mediated ligation was applied to ligate metabolic enzymes related to 3-hydroxypropionic acid, which improved 3-HP production by 2.42-fold. This strategy represents a novel approach for improving yeast bioproduction.
Collapse
Affiliation(s)
- Akira Saito
- Department of Chemical Engineering, Osaka Metropolitan University, Osaka 599-8531, Japan
| | - Hikaru Taniguchi
- Department of Chemical Engineering, Osaka Metropolitan University, Osaka 599-8531, Japan
| | - Takuya Matsumoto
- Department of Chemical Engineering, Osaka Metropolitan University, Osaka 599-8531, Japan
| | - Ryosuke Yamada
- Department of Chemical Engineering, Osaka Metropolitan University, Osaka 599-8531, Japan
| | - Hiroyasu Ogino
- Department of Chemical Engineering, Osaka Metropolitan University, Osaka 599-8531, Japan
| |
Collapse
|
6
|
Dziurzyński M, Nowak ME, Furman M, Okrasińska A, Pawłowska J, Fondi M. Insights into optimization of oleaginous fungi - genome-scale metabolic reconstruction and analysis of Umbelopsis sp. WA50703. Comput Struct Biotechnol J 2025; 27:1431-1439. [PMID: 40242294 PMCID: PMC12002602 DOI: 10.1016/j.csbj.2025.03.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
Oleaginous fungi-known for their high lipid content of up to 80 % of dry mass-are of significant interest for biotechnological applications, particularly in biofuel and fatty acid production. Among these, the genus Umbelopsis, a common soil saprotroph of the Mucoromycota phylum, stands out for its rapid growth, low nutritional requirements, and ability to produce substantial amounts of lipids, especially polyunsaturated fatty acids (PUFAs). Despite previous studies on lipid production in Umbelopsis, metabolic engineering has been underexplored. This study fills that gap by presenting the first comprehensive metabolic model for Umbelopsis sp. WA50703, encompassing 2418 metabolites, 2215 reactions, and 1627 genes (iUmbe1). The model demonstrated a strong predictive accuracy correctly predicting metabolic capabilities in 81.05 % of cases when evaluated against experimental data. The Flux Scanning based on Enforced Objective Flux (FSEOF) algorithm was utilized to identify gene targets for enhancing lipid production. This analysis revealed 33 genes associated with 23 metabolic reactions relevant to lipid biosynthesis. Notably, the reactions catalysed by acetyl-CoA carboxylase and carbonic anhydrase emerged as prime candidates for up-regulation. These findings provide clear guidelines for future metabolic engineering efforts to optimize PUFA production in Umbelopsis strains.
Collapse
Affiliation(s)
- Mikołaj Dziurzyński
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, FI 50019, Italy
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, Warsaw 02-089, Poland
| | - Maksymilian E. Nowak
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, Warsaw 02-089, Poland
| | - Maria Furman
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, Warsaw 02-089, Poland
| | - Alicja Okrasińska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, Warsaw 02-089, Poland
| | - Julia Pawłowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, Warsaw 02-089, Poland
| | - Marco Fondi
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, FI 50019, Italy
| |
Collapse
|
7
|
Kumari P, Sharma J, Khare P. Recent Advancements and Strategies for Omega-3 Fatty Acid Production in Yeast. J Basic Microbiol 2025; 65:e2400491. [PMID: 39801130 DOI: 10.1002/jobm.202400491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/18/2024] [Accepted: 12/28/2024] [Indexed: 03/06/2025]
Abstract
Recently, the biosynthesis of omega-3 fatty acids (ω3 FAs) in yeast has witnessed significant advancements. Notably, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) play crucial roles in overall human growth, encompassing neurological development, cardiovascular health, and immune function. However, traditional sources of ω3 FAs face limitations such as environmental concerns. Yeast, as a genetically tractable organism, offers a promising alternative for its sustainable production. Recent advancements and strategies in yeast through metabolic engineering led to significant improvements in ω3 FA production, including the optimization of metabolic pathways, enhancement of precursor supplies, and manipulation of gene expression. Moreover, innovative bioprocess approaches, such as fermentation conditions and bioreactor design, have been devised to further maximize its yields. This review aims to comprehensively summarize recent strategies in ω3 FA production within yeast systems, highlighting their contribution to meeting global ω3 FA demand while mitigating environmental impact and ensuring food security.
Collapse
|
8
|
Ranzau B, Robinson TD, Scully JM, Kapelczak ED, Dean TS, TeSlaa T, Schmitt DL. A Genetically Encoded Fluorescent Biosensor for Intracellular Measurement of Malonyl-CoA. ACS BIO & MED CHEM AU 2025; 5:184-193. [PMID: 39990938 PMCID: PMC11843332 DOI: 10.1021/acsbiomedchemau.4c00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 02/25/2025]
Abstract
Malonyl-CoA is the essential building block of fatty acids and regulates cell function through protein malonylation and allosteric regulation of signaling networks. Accordingly, the production and use of malonyl-CoA is finely tuned by the cellular energy status. Most studies of malonyl-CoA dynamics rely on bulk approaches that take only a snapshot of the average metabolic state of a population of cells, missing out on heterogeneous differences in malonyl-CoA and fatty acid biosynthesis that could be occurring among a cell population. To overcome this limitation, we have developed a genetically encoded fluorescent protein-based biosensor for malonyl-CoA that can be used to capture malonyl-CoA dynamics in single cells. This biosensor, termed Malibu (malonyl-CoA intracellular biosensor to understand dynamics), exhibits an excitation-ratiometric change in response to malonyl-CoA binding. We first used Malibu to monitor malonyl-CoA dynamics during inhibition of fatty acid biosynthesis using cerulenin in Escherichia coli, observing an increase in Malibu response in a time- and dose-dependent manner. In HeLa cells, we used Malibu to monitor the impact of fatty acid biosynthesis inhibition on malonyl-CoA dynamics in single cells, finding that two inhibitors of fatty acid biosynthesis, cerulenin and orlistat, which inhibit different steps of fatty acid biosynthesis, increase malonyl-CoA levels. Altogether, we have developed a new genetically encoded biosensor for malonyl-CoA, which can be used to study malonyl-CoA dynamics in single cells, providing an unparalleled view into fatty acid biosynthesis.
Collapse
Affiliation(s)
- Brodie
L. Ranzau
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Tiffany D. Robinson
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jack M. Scully
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Edmund D. Kapelczak
- Department
of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Teagan S. Dean
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Tara TeSlaa
- Department
of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
- Molecular
Biology Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Danielle L. Schmitt
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Molecular
Biology Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Institute
for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
9
|
Ge J, Wang T, Yu H, Ye L. De novo biosynthesis of nylon 12 monomer ω-aminododecanoic acid. Nat Commun 2025; 16:175. [PMID: 39747160 PMCID: PMC11695860 DOI: 10.1038/s41467-024-55739-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
Nylon 12 is valued for its exceptional properties and diverse industrial applications. Traditional chemical synthesis of nylon 12 faces significant technical challenges and environmental concerns, while bioproduction from plant-extracted decanoic acid (DDA) raises issues related to deforestation and biodiversity loss. Here, we show the development of an engineered Escherichia coli cell factory capable of biosynthesizing the nylon 12 monomer, ω-aminododecanoic acid (ω-AmDDA), from glucose. We enable de novo biosynthesis of ω-AmDDA by introducing a thioesterase specific to C12 acyl-ACP and a multi-enzyme cascade converting DDA to ω-AmDDA. Through modular pathway engineering, redesign and dimerization enhancement of the rate-limiting P450, reconstruction of redox and energy homeostasis, and enhancement of oxidative stress tolerance, we achieve a production level of 471.5 mg/L ω-AmDDA from glucose in shake flasks. This work paves the way for sustainable nylon 12 production and offers insights for bioproduction of other fatty acid-derived products.
Collapse
Affiliation(s)
- Jiawei Ge
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Ting Wang
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Hongwei Yu
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Lidan Ye
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China.
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
10
|
Ohkubo T, Sakumura Y, Zhang F, Kunida K. A hybrid in silico/in-cell controller that handles process-model mismatches using intracellular biosensing. Sci Rep 2024; 14:27252. [PMID: 39557912 PMCID: PMC11574193 DOI: 10.1038/s41598-024-76029-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/09/2024] [Indexed: 11/20/2024] Open
Abstract
The discrepancy between model predictions and actual processes, known as process-model mismatch (PMM), remains a substantial challenge in bioprocess optimization. We previously introduced a hybrid in silico/in-cell controller (HISICC) that combines model-based optimization with cell-based feedback to address this problem. Here, we extended this approach to regulate a key enzyme level using intracellular biosensing. The extended HISICC was implemented using an Escherichia coli strain engineered for fatty acid production (FA3). This strain contains a genetically encoded feedback controller that decelerates the expression of acetyl-CoA carboxylase (ACC) in response to malonyl-CoA synthesized through the enzymatic reaction. We modeled FA3 to allow the HISICC to optimize an inducer input that accelerates the enzyme expression. Simulations showed that the HISICC slowed the unexpectedly rapid accumulation of ACC resulting from PMMs before it reached cytotoxic levels, thereby improving fatty acid yields. These results highlight the potential of our approach, particularly in cases where monitoring intracellular biomolecules is required to handle PMMs.
Collapse
Affiliation(s)
- Tomoki Ohkubo
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 8916-5, Japan.
| | - Yuichi Sakumura
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 8916-5, Japan
- Data Science Center, Nara Institute of Science and Technology, Ikoma, Nara, 8916-5, Japan
| | - Fuzhong Zhang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Katsuyuki Kunida
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 8916-5, Japan
- School of Medicine, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| |
Collapse
|
11
|
Zheng W, Wang Y, Cui J, Guo G, Li Y, Hou J, Tu Q, Yin Y, Stewart AF, Zhang Y, Bian X, Wang X. ReaL-MGE is a tool for enhanced multiplex genome engineering and application to malonyl-CoA anabolism. Nat Commun 2024; 15:9790. [PMID: 39532871 PMCID: PMC11557832 DOI: 10.1038/s41467-024-54191-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
The complexities encountered in microbial metabolic engineering continue to elude prediction and design. Unravelling these complexities requires strategies that go beyond conventional genetics. Using multiplex mutagenesis with double stranded (ds) DNA, we extend the multiplex repertoire previously pioneered using single strand (ss) oligonucleotides. We present ReaL-MGE (Recombineering and Linear CRISPR/Cas9 assisted Multiplex Genome Engineering). ReaL-MGE enables precise manipulation of numerous large DNA sequences as demonstrated by the simultaneous insertion of multiple kilobase-scale sequences into E. coli, Schlegelella brevitalea and Pseudomonas putida genomes without any off-target errors. ReaL-MGE applications to enhance intracellular malonyl-CoA levels in these three genomes achieved 26-, 20-, and 13.5-fold elevations respectively, thereby promoting target polyketide yields by more than an order of magnitude. In a further round of ReaL-MGE, we adapt S. brevitalea to malonyl-CoA elevation utilizing a restricted carbon source (lignocellulose from straw) to realize production of the anti-cancer secondary metabolite, epothilone from lignocellulose. Multiplex mutagenesis with dsDNA enables the incorporation of lengthy segments that can fully encode additional functions. Additionally, the utilization of PCR to generate the dsDNAs brings flexible design advantages. ReaL-MGE presents strategic options in microbial metabolic engineering.
Collapse
Affiliation(s)
- Wentao Zheng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China
- Suzhou Research Institute of Shandong University, Room607, Building B of NUSP, NO.388 Ruoshui Road, SIP, Suzhou, Jiangsu, P. R. China
- Shenzhen Research Institute of Shandong University, A301 Virtual University Park in South District of Shenzhen, Guangdong, P. R. China
| | - Yuxuan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China
| | - Jie Cui
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China
| | - Guangyao Guo
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Yufeng Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China
| | - Qiang Tu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China
| | | | - A Francis Stewart
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China.
- Genomics, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-51, Dresden, Germany.
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia.
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China.
| | - Xiaoying Bian
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China.
| | - Xue Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China.
| |
Collapse
|
12
|
Silva de Sousa A, Lohman JR. Purification of heteromeric acetyl-CoA carboxylases from Escherichia coli for structure solution. Methods Enzymol 2024; 708:45-65. [PMID: 39572149 DOI: 10.1016/bs.mie.2024.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
The primary role of acetyl-CoA carboxylases (ACCs) is to generate malonyl-CoA for use in fatty acid and lipid biosynthesis. However, malonyl-CoA is also used in other various metabolic processes such as secondary metabolite biosynthesis. The diverse utilization of malonyl-CoA makes ACCs targets for the development of inhibitors and also a target for engineering allosteric regulation for biofuel and secondary metabolite production. The ACC from Escherichia coli is representative most of bacterial systems, and is heteromeric, being comprised of four proteins encompassing three distinct subunits. Historically the purification of active E. coli ACC complexes has been problematic due to the reported facile dissociation into subunits. Most studies on heteromeric ACCs study the isolated subunits, which are active on their own. Nevertheless, in reconstituted systems, the subunits appear to have allosteric interactions. In this chapter, we provide methods to generate, purify and characterize these heteromeric ACCs complexes. We have used these methods to solve cryogenic electron microscopy structures of active E. coli ACC complexes. Purification of active ACC complexes represents a significant step forward in our ability to characterize how allosteric interactions and effectors alter catalytic activity. We expect future studies on the heteromeric ACC complexes will enable rational engineering of new antibiotics and biofuel production.
Collapse
Affiliation(s)
- Amanda Silva de Sousa
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Jeremy R Lohman
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
13
|
Weselake RJ, Fell DA, Wang X, Scofield S, Chen G, Harwood JL. Increasing oil content in Brassica oilseed species. Prog Lipid Res 2024; 96:101306. [PMID: 39566857 DOI: 10.1016/j.plipres.2024.101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
Brassica oilseed species are the third most important in the world, providing approximately 15 % of the total vegetable oils. Three species (Brassica rapa, B. juncea, B. napus) dominate with B. napus being the most common in Canada, China and Europe. Originally, B. napus was a crop producing seed with high erucic acid content, which still persists today, to some extent, and is used for industrial purposes. In contrast, cultivars which produce seed used for food and feed are low erucic acid cultivars which also have reduced glucosinolate content. Because of the limit to agricultural land, recent efforts have been made to increase productivity of oil crops, including Brassica oilseed species. In this article, we have detailed research in this regard. We have covered modern genetic, genomic and metabolic control analysis approaches to identifying potential targets for the manipulation of seed oil content. Details of work on the use of quantitative trait loci, genome-wide association and comparative functional genomics to highlight factors influencing seed oil accumulation are given and functional proteins which can affect this process are discussed. In summary, a wide variety of inputs are proving useful for the improvement of Brassica oilseed species, as major sources of global vegetable oil.
Collapse
Affiliation(s)
- Randall J Weselake
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada
| | - David A Fell
- Department of Biological and Molecular Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Xiaoyu Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada
| | - Simon Scofield
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.
| |
Collapse
|
14
|
Ranzau BL, Robinson TD, Scully JM, Kapelczack ED, Dean TS, TeSlaa T, Schmitt DL. A Genetically Encoded Fluorescent Biosensor for Intracellular Measurement of Malonyl-CoA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.27.615526. [PMID: 39386450 PMCID: PMC11463626 DOI: 10.1101/2024.09.27.615526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Malonyl-CoA is the essential building block of fatty acids and regulates cell function through protein malonylation and allosteric regulation of signaling networks. Accordingly, the production and use of malonyl-CoA is finely tuned by the cellular energy status. Most studies of malonyl-CoA dynamics rely on bulk approaches that take only a snapshot of the average metabolic state of a population of cells, missing out on dynamic changes in malonyl-CoA and fatty acid biosynthesis that could be occurring within a single cell. To overcome this limitation, we have developed a genetically encoded fluorescent protein-based biosensor for malonyl-CoA that can be used to capture malonyl-CoA dynamics in single cells. This biosensor, termed Malibu (malonyl-CoA intracellular biosensor to understand dynamics), exhibits an excitation-ratiometric change in response to malonyl-CoA binding. We first used Malibu to monitor malonyl-CoA dynamics during inhibition of fatty acid biosynthesis using cerulenin in E. coli, observing an increase in Malibu response in a time- and dose-dependent manner. In HeLa cells, we used Malibu to monitor the impact of fatty acid biosynthesis inhibition on malonyl-CoA dynamics in single cells, finding that two inhibitors of fatty acid biosynthesis, cerulenin and orlistat, which inhibit different steps of fatty acid biosynthesis, increase malonyl-CoA levels. Altogether, we have developed a new genetically encoded biosensor for malonyl-CoA, which can be used to sensitively study malonyl-CoA dynamics in single cells, providing an unparalleled view into fatty acid biosynthesis.
Collapse
Affiliation(s)
- Brodie L. Ranzau
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
- These authors contributed equally
| | - Tiffany D. Robinson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
- These authors contributed equally
| | - Jack M. Scully
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Edmund D. Kapelczack
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Teagan S. Dean
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tara TeSlaa
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Danielle L. Schmitt
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
15
|
Garavaglia M, McGregor C, Bommareddy RR, Irorere V, Arenas C, Robazza A, Minton NP, Kovacs K. Stable Platform for Mevalonate Bioproduction from CO 2. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:13486-13499. [PMID: 39268049 PMCID: PMC11388446 DOI: 10.1021/acssuschemeng.4c03561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024]
Abstract
Stable production of value-added products using a microbial chassis is pivotal for determining the industrial suitability of the engineered biocatalyst. Microbial cells often lose the multicopy expression plasmids during long-term cultivations. Owing to the advantages related to titers, yields, and productivities when using a multicopy expression system compared with genomic integrations, plasmid stability is essential for industrially relevant biobased processes. Cupriavidus necator H16, a facultative chemolithoautotrophic bacterium, has been successfully engineered to convert inorganic carbon obtained from CO2 fixation into value-added products. The application of this unique capability in the biotech industry has been hindered by C. necator H16 inability to stably maintain multicopy plasmids. In this study, we designed and tested plasmid addiction systems based on the complementation of essential genes. Among these, implementation of a plasmid addiction tool based on the complementation of mutants lacking RubisCO, which is essential for CO2 fixation, successfully stabilized a multicopy plasmid. Expressing the mevalonate pathway operon (MvaES) using this addiction system resulted in the production of ∼10 g/L mevalonate with carbon yields of ∼25%. The mevalonate titers and yields obtained here using CO2 are the highest achieved to date for the production of C6 compounds from C1 feedstocks.
Collapse
Affiliation(s)
- Marco Garavaglia
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, The University of Nottingham, Nottingham NG7 2RD, U.K
| | - Callum McGregor
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, The University of Nottingham, Nottingham NG7 2RD, U.K
- Better Dairy Limited, Unit J/K Bagel Factory, 24 White Post Lane, London E9 5SZ, U.K
| | - Rajesh Reddy Bommareddy
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, The University of Nottingham, Nottingham NG7 2RD, U.K
- Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Ellison Building, Newcastle upon Tyne NE1 8ST, U.K
| | - Victor Irorere
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, The University of Nottingham, Nottingham NG7 2RD, U.K
- DSM-Firmenich, 250 Plainsboro Road, Plainsboro, New Jersey 08536, United States
| | - Christian Arenas
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, The University of Nottingham, Nottingham NG7 2RD, U.K
- Better Dairy Limited, Unit J/K Bagel Factory, 24 White Post Lane, London E9 5SZ, U.K
| | - Alberto Robazza
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, The University of Nottingham, Nottingham NG7 2RD, U.K
- Karlsruhe Institute of Technology (KIT), PO Box 6980, Karlsruhe 76049, Germany
| | - Nigel Peter Minton
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, The University of Nottingham, Nottingham NG7 2RD, U.K
| | - Katalin Kovacs
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, The University of Nottingham, Nottingham NG7 2RD, U.K
- School of Pharmacy, University Park, The University of Nottingham, Nottingham NG7 2RD, U.K
| |
Collapse
|
16
|
Tang H, Wei W, Wu J, Cui X, Wang W, Qian T, Wo J, Ye BC. Engineering Streptomyces albus B4 for Enhanced Production of ( R)-Mellein: A High-Titer Heterologous Biosynthesis Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17499-17509. [PMID: 39045837 DOI: 10.1021/acs.jafc.4c02463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The natural compound (R)-(-)-mellein exhibits antiseptic and fungicidal activities. We investigated its biosynthesis using the polyketide synthase encoded by SACE_5532 (pks8) from Saccharopolyspora erythraea heterologously expressed in Streptomyces albus B4, a chassis chosen for its fast growth, genetic manipulability, and ample large short-chain acyl-CoA precursor supply. High-level heterologous (R)-(-)-mellein yield was achieved by pks8 overexpression and duplication. The precursor supply pathways were strengthened by overexpression of SACE_0028 (encoding acetyl-CoA carboxylase) and four genes involved in β-oxidation (fadD, fadE, fadB, and fadA). Cell growth inhibition by (R)-(-)-mellein production at high concentration was relieved by in situ adsorption using Amberlite XAD16 resin. The final strain, B4mel12, produced (R)-(-)-mellein at 6395.2 mg/L in shake-flask fermentation. Overall, this is the first report of heterologous (R)-(-)-mellein synthesis in microorganism with a high titer. (R)-(-)-mellein prototype in this study opens a possibility for the overproduction of valuable melleins in S. albus B4.
Collapse
Affiliation(s)
- Hao Tang
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Wenping Wei
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Jing Wu
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Xingjun Cui
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Wenzong Wang
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Tao Qian
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Jing Wo
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Bang-Ce Ye
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
17
|
Liu X, Li L, Zhao G, Xiong P. Optimization strategies for CO 2 biological fixation. Biotechnol Adv 2024; 73:108364. [PMID: 38642673 DOI: 10.1016/j.biotechadv.2024.108364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/07/2024] [Accepted: 04/14/2024] [Indexed: 04/22/2024]
Abstract
Global sustainable development faces a significant challenge in effectively utilizing CO2. Meanwhile, CO2 biological fixation offers a promising solution. CO2 has the highest oxidation state (+4 valence state), whereas typical multi‑carbon chemicals have lower valence states. The Gibbs free energy (ΔG) changes of CO2 reductive reactions are generally positive and this renders it necessary to input different forms of energy. Although biological carbon fixation processes are friendly to operate, the thermodynamic obstacles must be overcome. To make this reaction occur favorably and efficiently, diverse strategies to enhance CO2 biological fixation efficiency have been proposed by numerous researchers. This article reviews recent advances in optimizing CO2 biological fixation and intends to provide new insights into achieving efficient biological utilization of CO2. It first outlines the thermodynamic characteristics of diverse carbon fixation reactions and proposes optimization directions for CO2 biological fixation. A comprehensive overview of the catalytic mechanisms, optimization strategies, and challenges encountered by common carbon-fixing enzymes is then provided. Subsequently, potential routes for improving the efficiency of biological carbon fixation are discussed, including the ATP supply, reducing power supply, energy supply, reactor design, and carbon enrichment system modules. In addition, effective artificial carbon fixation pathways were summarized and analyzed. Finally, prospects are made for the research direction of continuously improving the efficiency of biological carbon fixation.
Collapse
Affiliation(s)
- Xiutao Liu
- School of Life Sciences and Medicine, Shandong University of Technology, 255000 Zibo, China; International Joint Laboratory on Extremophilic Bacteria and Biological Synthesis, Shandong University of Technology, 255000 Zibo, China.
| | - Linqing Li
- School of Life Sciences and Medicine, Shandong University of Technology, 255000 Zibo, China; International Joint Laboratory on Extremophilic Bacteria and Biological Synthesis, Shandong University of Technology, 255000 Zibo, China
| | - Guang Zhao
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, China.
| | - Peng Xiong
- School of Life Sciences and Medicine, Shandong University of Technology, 255000 Zibo, China; International Joint Laboratory on Extremophilic Bacteria and Biological Synthesis, Shandong University of Technology, 255000 Zibo, China.
| |
Collapse
|
18
|
Stanley HM, Trent MS. Loss of YhcB results in overactive fatty acid biosynthesis. mBio 2024; 15:e0079024. [PMID: 38742872 PMCID: PMC11237625 DOI: 10.1128/mbio.00790-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/05/2024] [Indexed: 05/16/2024] Open
Abstract
Loss of the Escherichia coli inner membrane protein YhcB results in pleomorphic cell morphology and clear growth defects. Prior work suggested that YhcB was directly involved in cell division or peptidoglycan assembly. We found that loss of YhcB is detrimental in genetic backgrounds in which lipopolysaccharide (LPS) or glycerophospholipid (GPL) synthesis is altered. The growth defect of ΔyhcB could be rescued through inactivation of the Mla pathway, a system responsible for the retrograde transport of GPLs that are mislocalized to the outer leaflet of the outer membrane. Interestingly, this rescue was dependent upon the outer membrane phospholipase PldA that cleaves GPLs at the bacterial surface. Since the freed fatty acids resulting from PldA activity serve as a signal to the cell to increase LPS synthesis, this result suggested that outer membrane lipids are imbalanced in ΔyhcB. Mutations that arose in ΔyhcB populations during two independent suppressor screens were in genes encoding subunits of the acetyl coenzyme A carboxylase complex, which initiates fatty acid biosynthesis (FAB). These mutations fully restored cell morphology and reduced GPL levels, which were increased compared to wild-type bacteria. Growth of ΔyhcB with the FAB-targeting antibiotic cerulenin also increased cellular fitness. Furthermore, genetic manipulation of FAB and lipid biosynthesis showed that decreasing FAB rescued ΔyhcB filamentation, whereas increasing LPS alone could not. Altogether, these results suggest that YhcB may play a pivotal role in regulating FAB and, in turn, impact cell envelope assembly and cell division.IMPORTANCESynthesis of the Gram-negative cell envelope is a dynamic and complex process that entails careful coordination of many biosynthetic pathways. The inner and outer membranes are composed of molecules that are energy intensive to synthesize, and, accordingly, these synthetic pathways are under tight regulation. The robust nature of the Gram-negative outer membrane renders it naturally impermeable to many antibiotics and therefore a target of interest for antimicrobial design. Our data indicate that when the inner membrane protein YhcB is absent in Escherichia coli, the pathway for generating fatty acid substrates needed for all membrane lipid synthesis is dysregulated which leads to increased membrane material. These findings suggest a potentially novel regulatory mechanism for controlling the rate of fatty acid biosynthesis.
Collapse
Affiliation(s)
- Hannah M Stanley
- Department of Microbiology, College of Art and Sciences, University of Georgia, Athens, Georgia, USA
| | - M Stephen Trent
- Department of Microbiology, College of Art and Sciences, University of Georgia, Athens, Georgia, USA
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
19
|
Fivenson EM, Dubois L, Bernhardt TG. Co-ordinated assembly of the multilayered cell envelope of Gram-negative bacteria. Curr Opin Microbiol 2024; 79:102479. [PMID: 38718542 PMCID: PMC11695049 DOI: 10.1016/j.mib.2024.102479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 06/11/2024]
Abstract
Bacteria surround themselves with complex cell envelopes to maintain their integrity and protect against external insults. The envelope of Gram-negative organisms is multilayered, with two membranes sandwiching the periplasmic space that contains the peptidoglycan cell wall. Understanding how this complicated surface architecture is assembled during cell growth and division is a major fundamental problem in microbiology. Additionally, because the envelope is an important antibiotic target and determinant of intrinsic antibiotic resistance, understanding the mechanisms governing its assembly is relevant to therapeutic development. In the last several decades, most of the factors required to build the Gram-negative envelope have been identified. However, surprisingly, little is known about how the biogenesis of the different cell surface layers is co-ordinated. Here, we provide an overview of recent work that is beginning to uncover the links connecting the different envelope biosynthetic pathways and assembly machines to ensure uniform envelope growth.
Collapse
Affiliation(s)
- Elayne M Fivenson
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, United States
| | - Laurent Dubois
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, United States
| | - Thomas G Bernhardt
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, United States; Howard Hughes Medical Institute, Boston, United States.
| |
Collapse
|
20
|
Xu X, de Sousa AS, Boram TJ, Jiang W, Lohman JR. Active E. coli heteromeric acetyl-CoA carboxylase forms polymorphic helical tubular filaments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596234. [PMID: 38854064 PMCID: PMC11160672 DOI: 10.1101/2024.05.28.596234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The Escherichia coli heteromeric acetyl-CoA carboxylase (ACC) has four subunits assumed to form an elusive catalytic complex and are involved in allosteric and transcriptional regulation. The E. coli ACC represents almost all ACCs from pathogenic bacteria making it a key antibiotic development target to fight growing antibiotic resistance. Furthermore, it is a model for cyanobacterial and plant plastid ACCs as biofuel engineering targets. Here we report the catalytic E. coli ACC complex surprisingly forms tubes rather than dispersed particles. The cryo-EM structure reveals key protein-protein interactions underpinning efficient catalysis and how transcriptional regulatory roles are masked during catalysis. Discovering the protein-protein interaction interfaces that facilitate catalysis, allosteric and transcriptional regulation provides new routes to engineering catalytic activity and new targets for drug discovery.
Collapse
Affiliation(s)
- Xueyong Xu
- Department of Biological Sciences, Purdue University; West Lafayette, IN 47907 USA
| | - Amanda Silva de Sousa
- Department of Biochemistry and Molecular Biology, Michigan State University; East Lansing, MI 48824 USA
- Department of Biochemistry, Purdue University; West Lafayette, IN 47907 USA
| | - Trevor J. Boram
- Department of Biochemistry, Purdue University; West Lafayette, IN 47907 USA
| | - Wen Jiang
- Department of Biological Sciences, Purdue University; West Lafayette, IN 47907 USA
| | - Jeremy R. Lohman
- Department of Biochemistry and Molecular Biology, Michigan State University; East Lansing, MI 48824 USA
- Department of Biochemistry, Purdue University; West Lafayette, IN 47907 USA
| |
Collapse
|
21
|
Sun HZ, Li Q, Shang W, Qiao B, Xu QM, Cheng JS. Combinatorial metabolic engineering of Bacillus subtilis for de novo production of polymyxin B. Metab Eng 2024; 83:123-136. [PMID: 38582143 DOI: 10.1016/j.ymben.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/07/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Polymyxin is a lipopeptide antibiotic that is effective against multidrug-resistant Gram-negative bacteria. However, its clinical development is limited due to low titer and the presence of homologs. To address this, the polymyxin gene cluster was integrated into Bacillus subtilis, and sfp from Paenibacillus polymyxa was expressed heterologously, enabling recombinant B. subtilis to synthesize polymyxin B. Regulating NRPS domain inhibited formation of polymyxin B2 and B3. The production of polymyxin B increased to 329.7 mg/L by replacing the native promoters of pmxA, pmxB, and pmxE with PfusA, C2up, and PfusA, respectively. Further enhancement in this production, up to 616.1 mg/L, was achieved by improving the synthesis ability of 6-methyloctanoic acid compared to the original strain expressing polymyxin heterologously. Additionally, incorporating an anikasin-derived domain into the hybrid nonribosomal peptide synthase of polymyxin increased the B1 ratio in polymyxin B from 57.5% to 62.2%. Through optimization of peptone supply in the fermentation medium and fermentation in a 5.0-L bioreactor, the final polymyxin B titer reached 962.1 mg/L, with a yield of 19.24 mg/g maltodextrin and a productivity of 10.02 mg/(L·h). This study demonstrates a successful approach for enhancing polymyxin B production and increasing the B1 ratio through combinatorial metabolic engineering.
Collapse
Affiliation(s)
- Hui-Zhong Sun
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China
| | - Qing Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China
| | - Wei Shang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China
| | - Bin Qiao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China
| | - Qiu-Man Xu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Binshuixi Road 393, Xiqing District, Tianjin 300387, China.
| | - Jing-Sheng Cheng
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China.
| |
Collapse
|
22
|
Kugler A, Stensjö K. Machine learning predicts system-wide metabolic flux control in cyanobacteria. Metab Eng 2024; 82:171-182. [PMID: 38395194 DOI: 10.1016/j.ymben.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Metabolic fluxes and their control mechanisms are fundamental in cellular metabolism, offering insights for the study of biological systems and biotechnological applications. However, quantitative and predictive understanding of controlling biochemical reactions in microbial cell factories, especially at the system level, is limited. In this work, we present ARCTICA, a computational framework that integrates constraint-based modelling with machine learning tools to address this challenge. Using the model cyanobacterium Synechocystis sp. PCC 6803 as chassis, we demonstrate that ARCTICA effectively simulates global-scale metabolic flux control. Key findings are that (i) the photosynthetic bioproduction is mainly governed by enzymes within the Calvin-Benson-Bassham (CBB) cycle, rather than by those involve in the biosynthesis of the end-product, (ii) the catalytic capacity of the CBB cycle limits the photosynthetic activity and downstream pathways and (iii) ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is a major, but not the most, limiting step within the CBB cycle. Predicted metabolic reactions qualitatively align with prior experimental observations, validating our modelling approach. ARCTICA serves as a valuable pipeline for understanding cellular physiology and predicting rate-limiting steps in genome-scale metabolic networks, and thus provides guidance for bioengineering of cyanobacteria.
Collapse
Affiliation(s)
- Amit Kugler
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-751 20, Uppsala, Sweden
| | - Karin Stensjö
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-751 20, Uppsala, Sweden.
| |
Collapse
|
23
|
Yang Y, Tian J, Xu W, Ping C, Du X, Ye Y, Zhu B, Huang Y, Li Y, Jiang Q, Zhao Y. Comparative metabolomics analysis investigating the impact of melatonin-enriched diet on energy metabolism in the crayfish, Cherax destructor. J Comp Physiol B 2023; 193:615-630. [PMID: 37833417 DOI: 10.1007/s00360-023-01518-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/01/2023] [Accepted: 09/11/2023] [Indexed: 10/15/2023]
Abstract
Melatonin is a multifunctional bioactive molecule present in almost all organisms and has been gradually used in the aquaculture industry in recent years. Energy metabolism is an essential process for individuals to maintain their life activities; however, the process through which melatonin regulates energy metabolism in aquatic animals remains unclear. The present study aimed to conduct a comprehensive analysis of the regulatory mechanism of melatonin for energy metabolism in Cherax destructor by combining metabolomics analysis with the detection of the key substance content, enzymatic activity, and gene expression levels in the energy metabolism process after culturing with dietary melatonin supplementation for 8 weeks. Our results showed that dietary melatonin increased the content of glycogen, triglycerides, and free fatty acids; decreased lactate levels; and promoted the enzymatic activity of pyruvate kinase (PK), malate dehydrogenase (MDH), and acetyl-CoA carboxylase. The results of gene expression analysis showed that dietary melatonin also increased the expression levels of hexokinase, PK, MDH, lactate dehydrogenase, lipase, and fatty acid synthase genes. The results of metabolomics analysis showed that differentially expressed metabolites were significantly enriched in lysine degradation and glycerophospholipid metabolism. In conclusion, our study demonstrates that dietary melatonin increased oxidative phosphorylation, improved glucose utilization, and promoted storage of glycogen and lipids in C. destructor. These lipids are used not only for energy storage but also to maintain the structure and function of cell membranes. Our results further add to the understanding of the mechanisms of energy regulation by melatonin in crustaceans.
Collapse
Affiliation(s)
- Ying Yang
- School of Life Science, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Jiangtao Tian
- School of Life Science, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Wenyue Xu
- School of Life Science, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Cuobaima Ping
- School of Life Science, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Xinglin Du
- School of Life Science, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Yucong Ye
- School of Life Science, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Bihong Zhu
- School of Life Science, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Yizhou Huang
- School of Life Science, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Yiming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai, 200092, China
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing, 210017, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China.
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
24
|
Matsuoka Y, Fujie N, Nakano M, Koshiba A, Kondo A, Tanaka T. Triacetic acid lactone production using 2-pyrone synthase expressing Yarrowia lipolytica via targeted gene deletion. J Biosci Bioeng 2023; 136:320-326. [PMID: 37574415 DOI: 10.1016/j.jbiosc.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023]
Abstract
An environmentally sustainable world can be realized by using microorganisms to produce value-added materials from renewable biomass. Triacetic acid lactone (TAL) is a high-value-added compound that is used as a precursor of various organic compounds such as food additives and pharmaceuticals. In this study, we used metabolic engineering to produce TAL from glucose using an oleaginous yeast Yarrowia lipolytica. We first introduced TAL-producing gene 2-pyrone synthase into Y. lipolytica, which enabled TAL production. Next, we increased TAL production by engineering acetyl-CoA and malonyl-CoA biosynthesis pathways by redirecting carbon flux to glycolysis. Finally, we optimized the carbon and nitrogen ratios in the medium, culminating in the production of 4078 mg/L TAL. The strategy presented in this study had the potential to improve the titer and yield of polyketide biosynthesis.
Collapse
Affiliation(s)
- Yuta Matsuoka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Naofumi Fujie
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Mariko Nakano
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Ayumi Koshiba
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Tsutomu Tanaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
| |
Collapse
|
25
|
Teng W, Fu H, Li Z, Zhang Q, Xu C, Yu H, Kong L, Liu S, Li Q. Parallel evolution in Crassostrea oysters along the latitudinal gradient is associated with variation in multiple genes involved in adipogenesis. Mol Ecol 2023; 32:5276-5287. [PMID: 37606178 DOI: 10.1111/mec.17108] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023]
Abstract
Parallel diversification provides a proper framework for studying the role of natural selection in evolution. Yet, empirical studies from ecological 'non-model' species of invertebrates are limited at the whole genome level. Here, we presented a chromosome-scale genome assembly for Crassostrea angulata and investigated the parallel genomic evolution in oysters. Specifically, we used population genomics approaches to compare two southern-northern oyster species pairs (C. angulata-C. gigas and southern-northern C. ariakensis) along the coast of China. The estimated divergence time of C. angulata and C. gigas is earlier than that of southern and northern C. ariakensis, which aligns with the overall elevated genome-wide divergence. However, the southern-northern C. ariakensis FST profile represented more extremely divergent "islands". Combined with recent reciprocal hybridization studies, we proposed that they are currently at an early stage of speciation. These two southern-northern oyster species pairs exhibited significant repeatability in patterns of genome-wide differentiation, especially in genomic regions with extremely high and low divergence. This suggested that divergent and purifying selection has contributed to the genomic parallelism between southern and northern latitudes. Top differentiated genomic regions shared in these two oyster species pairs contained candidate genes enriched for functions in energy metabolism, especially adipogenesis, which are closely related to reproductive behaviours. These genes might be good candidates for further investigation in vivo. In conclusion, our results suggest that similar divergent selection and shared genomic features could predictably transform standing genetic variation within one species pair into differences in another.
Collapse
Affiliation(s)
- Wen Teng
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Huiru Fu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Zhuanzhuan Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Qian Zhang
- Public Technology Service Center, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Chengxun Xu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
26
|
Madhavan A, Arun KB, Alex D, Anoopkumar AN, Emmanual S, Chaturvedi P, Varjani S, Tiwari A, Kumar V, Reshmy R, Awasthi MK, Binod P, Aneesh EM, Sindhu R. Microbial production of nutraceuticals: Metabolic engineering interventions in phenolic compounds, poly unsaturated fatty acids and carotenoids synthesis. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2092-2104. [PMID: 37273565 PMCID: PMC10232702 DOI: 10.1007/s13197-022-05482-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/20/2022] [Accepted: 05/07/2022] [Indexed: 06/06/2023]
Abstract
Nutraceuticals have attained substantial attention due to their health-boosting or disease-prevention characteristics. Growing awareness about the potential of nutraceuticals for the prevention and management of diseases affecting human has led to an increase in the market value of nutraceuticals in several billion dollars. Nevertheless, limitations in supply and isolation complications from plants, animals or fungi, limit the large-scale production of nutraceuticals. Microbial engineering at metabolic level has been proved as an environment friendly substitute for the chemical synthesis of nutraceuticals. Extensively used microbial systems such as E. coli and S. cerevisiae have been modified as versatile cell factories for the synthesis of diverse nutraceuticals. This review describes current interventions in metabolic engineering for synthesising some of the therapeutically important nutraceuticals (phenolic compounds, polyunsaturated fatty acids and carotenoids). We focus on the interventions in enhancing product yield through engineering at gene level or pathway level.
Collapse
Affiliation(s)
- Aravind Madhavan
- Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014 India
| | - K. B. Arun
- Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014 India
| | - Deepthy Alex
- Department of Biotechnology, Mar Ivanios College, Trivandrum, Kerala 695015 India
| | - A. N. Anoopkumar
- Department of Zoology, Centre for Research in Emerging Tropical Diseases (CRET‑D), University of Calicut, Malappuram, Kerala India
| | - Shibitha Emmanual
- Department of Zoology, St. Joseph’s College, Thrissur, Kerala 680121 India
| | - Preeti Chaturvedi
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR- Indian Institute for Toxicology Research (CSIR-IITR), 31 MG Marg, Lucknow, 226001 India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Paryavaran Bhavan, CHH Road, Sector 10 A, Gandhinagar, Gujarat 382010 India
| | - Archana Tiwari
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Uttar Pradesh, Noida, 201301 India
| | - Vinod Kumar
- Fermentation Technology Division, CSIR- Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, J & K 180001 India
| | - R. Reshmy
- Department of Science and Humanities, Providence College of Engineering, Chengannur, Kerala 689122 India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, Kerala 695019 India
| | - Embalil Mathachan Aneesh
- Department of Zoology, Centre for Research in Emerging Tropical Diseases (CRET‑D), University of Calicut, Malappuram, Kerala India
| | - Raveendran Sindhu
- Department of Food Technology, T K M Institute of Technology, Kollam, Kerala 691505 India
| |
Collapse
|
27
|
Yan B, Haiyang Zhang, Li H, Gao Y, Wei Y, Chang C, Zhang L, Li Z, Zhu L, Xu J. Molecular regulation of lipid metabolism in Suaeda salsa. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107894. [PMID: 37482030 DOI: 10.1016/j.plaphy.2023.107894] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/27/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
Suaeda salsa is remarkable for its high oil content and abundant unsaturated fatty acids. In this study, the regulatory networks on fatty acid and lipid metabolism were constructed by combining the de novo transcriptome and lipidome data. Differentially expressed genes (DEGs) associated with lipids biosynthesis pathways were identified in the S. salsa transcriptome. DEGs involved in fatty acid and glycerolipids were generally up-regulated in leaf tissues. DEGs for TAG assembly were enriched in developing seeds, while DEGs in phospholipid metabolic pathways were enriched in root tissues. Polar lipids were extracted from S. salsa tissues and analyzed by lipidomics. The proportion of galactolipid MGDG was the highest in S. salsa leaves. The molar percentage of PG was high in the developing seeds, and the other main phospholipids had higher molar percentage in roots of S. salsa. The predominant C36:6 molecular species indicates that S. salsa is a typical 18:3 plant. The combined transcriptomic and lipidomic data revealed that different tissues of S. salsa were featured with DEGs associated with specific lipid metabolic pathways, therefore, represented unique lipid profiles. This study will be helpful on understanding lipid metabolism pathway and exploring the key genes involved in lipid synthesis in S. salsa.
Collapse
Affiliation(s)
- Bowei Yan
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, China; Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme, Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Haiyang Zhang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Huixin Li
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yuqiao Gao
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yulei Wei
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Chuanyi Chang
- Harbin Academy of Agricultural Science, Harbin, 150028, China
| | - Liguo Zhang
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme, Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Zuotong Li
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Lei Zhu
- College of Food Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Jingyu Xu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| |
Collapse
|
28
|
Ou Y, Li Y, Feng S, Wang Q, Yang H. Transcriptome Analysis Reveals an Eicosapentaenoic Acid Accumulation Mechanism in a Schizochytrium sp. Mutant. Microbiol Spectr 2023; 11:e0013023. [PMID: 37093006 PMCID: PMC10269799 DOI: 10.1128/spectrum.00130-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/01/2023] [Indexed: 04/25/2023] Open
Abstract
Eicosapentaenoic acid (EPA) is an omega-3 long-chain polyunsaturated fatty acid (PUFA) essential for human health. Schizochytrium is a marine eukaryote that has been widely utilized for the synthesis of PUFAs. The current low potency and performance of EPA production by fermentation of Schizochytrium spp. limits its prospect in commercial production of EPA. Since the synthesis pathway of EPA in Schizochytrium spp. is still unclear, mutagenesis combined with efficient screening methods are still desirable. In this study, a novel screening strategy was developed based on a two-step progressive mutagenesis method based on atmospheric and room temperature plasma (ARTP) and diethyl sulfate (DES) after multiple stresses (sethoxydim, triclosan and 2,2'-bipyridine) compound screening. Finally, the mutant strain DBT-64 with increased lipid (1.57-fold, 31.71 g/L) and EPA (5.64-fold, 1.86 g/L) production was screened from wild-type (W) strains; the docosahexaenoic acid (DHA) content of mutant DBT-64 (M) was 11.41% lower than that of wild-type strains. Comparative transcriptomic analysis showed that the expression of genes related to the polyketide synthase, fatty acid prolongation, and triglyceride synthesis pathways was significantly upregulated in the mutant strain, while the expression of genes involved in the β-oxidation pathway and fatty acid degradation pathway was downregulated in favor of EPA biosynthesis in Schizochytrium. This study provides an effective strain improvement method to enhance EPA accumulation in Schizochytrium spp. IMPORTANCE Schizochytrium, a marine eukaryotic microorganism, has emerged as a candidate for the commercial production of PUFAs. EPA is an omega-3 PUFA with preventive and therapeutic effects against cardiovascular diseases, schizophrenia, and other disorders. Currently, the low potency and performance of EPA production by Schizochytrium spp. limits its commercialization. In this study, we performed two-step progressive mutagenesis based on ARTP and DES and screened multiple stresses (sethoxydim, triclosan, and 2,2'-bipyridine) to obtain the EPA-high-yielding Schizochytrium mutant. In addition, high expression of the polyketide synthase pathway, fatty acid elongation pathway, and triglyceride synthesis pathway in the mutants was confirmed by transcriptomic analysis. Therefore, the multistress screening platform established in this study is important for breeding EPA-producing Schizochytrium spp. and provides valuable information for regulating the proportion of EPA in microalgal lipids by means of genetic engineering.
Collapse
Affiliation(s)
- Ying Ou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, WuXi, Jiangsu Province, People’s Republic of China
| | - Yaqi Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, WuXi, Jiangsu Province, People’s Republic of China
| | - Shoushuai Feng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, WuXi, Jiangsu Province, People’s Republic of China
| | - Qiong Wang
- Department of Clinical Laboratory, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, People’s Republic of China
| | - Hailin Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, WuXi, Jiangsu Province, People’s Republic of China
| |
Collapse
|
29
|
Zhang L, Wang W, Du Y, Deng Y, Bai T, Ji M. Multiple resistance of Echinochloa phyllopogon to synthetic auxin, ALS-, and ACCase-inhibiting herbicides in Northeast China. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 193:105450. [PMID: 37248019 DOI: 10.1016/j.pestbp.2023.105450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/25/2023] [Accepted: 05/01/2023] [Indexed: 05/31/2023]
Abstract
Echinochloa phyllopogon is a self-pollinating allotetraploid weed and a serious threat to global rice production. One sensitive and three multiple-resistant populations collected from two provinces of Northeast China were used to analyze the mechanism of multiple resistance of E. phyllopogon to penoxsulam, metamifop, and quinclorac. Compared with the sensitive population LN12, LN1 showed higher resistance to these three herbicides; LN24 showed medium resistance to penoxsulam and metamifop and higher resistance to quinclorac (274-fold); HLJ4 showed low resistance to penoxsulam and high resistance to metamifop and quinclorac. Target sequence analysis showed no mutations in acetolactate synthase or acetyl-CoA carboxylase genes. In-vitro enzyme activity analysis showed that the activity of the target enzyme of multiple herbicide-resistant populations was similar to that of the sensitive population. The P450 inhibitor, malathion, noticeably increased the sensitivity of LN1, LN24, and HLJ4 to penoxsulam, LN1 to metamifop, and HLJ4 to quinclorac. Under all four treatments, the GSTs activities of resistant and sensitive populations showed an increasing trend from day 1 to day 5, but the sensitivity and activity of GSTs were higher in the multiple-resistant population than that in the sensitive population LN12. This study identified the development of multiple-resistant E. phyllopogon populations that pose a serious threat to rice production in rice fields in Northeast China, preliminarily confirming that multiple-resistance was likely due to non-target-site resistance mechanisms. These populations of E. phyllopogon are likely to be more difficult to control.
Collapse
Affiliation(s)
- Lulu Zhang
- Shenyang Agricultural University, College of Plant Protection, Shenyang, Liaoning 110866, China
| | - Weijing Wang
- Agricultural and Rural Bureau of Caofeidian District, Tangshan, Hebei 063299, China
| | - Ying Du
- Shenyang Agricultural University, College of Plant Protection, Shenyang, Liaoning 110866, China
| | - Yunyan Deng
- Shenyang Agricultural University, College of Plant Protection, Shenyang, Liaoning 110866, China
| | - Tianlang Bai
- Shenyang Agricultural University, College of Plant Protection, Shenyang, Liaoning 110866, China
| | - Mingshan Ji
- Shenyang Agricultural University, College of Plant Protection, Shenyang, Liaoning 110866, China.
| |
Collapse
|
30
|
Strategies to Enhance the Biosynthesis of Monounsaturated Fatty Acids in Escherichia coli. BIOTECHNOL BIOPROC E 2023. [DOI: 10.1007/s12257-022-0295-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
31
|
Gao GR, Hou ZJ, Ding MZ, Bai S, Wei SY, Qiao B, Xu QM, Cheng JS, Yuan YJ. Improved Production of Fengycin in Bacillus subtilis by Integrated Strain Engineering Strategy. ACS Synth Biol 2022; 11:4065-4076. [PMID: 36379006 DOI: 10.1021/acssynbio.2c00380] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fengycin is a lipopeptide with broad-spectrum antifungal activity. However, its low yield limits its commercial application. Therefore, we iteratively edited multiple target genes associated with fengycin synthesis by combinatorial metabolic engineering. The ability of Bacillus subtilis 168 to manufacture lipopeptides was restored, and the fengycin titer was 1.81 mg/L. Fengycin production was further increased to 174.63 mg/L after knocking out pathways associated with surfactin and bacillaene synthesis and replacing the native promoter (PppsA) with the Pveg promoter. Subsequently, fengycin levels were elevated to 258.52 mg/L by upregulating the expression of relevant genes involved in the fatty acid pathway. After blocking spore and biofilm formation, fengycin production reached 302.51 mg/L. Finally, fengycin production was increased to approximately 885.37 mg/L after adding threonine in the optimized culture medium, which was 488-fold higher compared with that of the initial strain. Integrated strain engineering provides a strategy to construct a system for improving fengycin production.
Collapse
Affiliation(s)
- Geng-Rong Gao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China.,Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
| | - Zheng-Jie Hou
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China.,Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
| | - Ming-Zhu Ding
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China.,Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
| | - Song Bai
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China.,Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
| | - Si-Yu Wei
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China.,Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
| | - Bin Qiao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
| | - Qiu-Man Xu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Binshuixi Road 393, Xiqing District, Tianjin 300387, PR China
| | - Jing-Sheng Cheng
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China.,Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China.,Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
| |
Collapse
|
32
|
Park WS, Shin KS, Jung HW, Lee Y, Sathesh-Prabu C, Lee SK. Combinatorial Metabolic Engineering Strategies for the Enhanced Production of Free Fatty Acids in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13913-13921. [PMID: 36200488 DOI: 10.1021/acs.jafc.2c04621] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this study, we evaluated the effects of several metabolic engineering strategies in a systematic and combinatorial manner to enhance the free fatty acid (FFA) production in Escherichia coli. The strategies included (i) overexpression of mutant thioesterase I ('TesAR64C) to efficiently release the FFAs from fatty acyl-ACP; (ii) coexpression of global regulatory protein FadR; (iii) heterologous expression of methylmalonyl-CoA carboxyltransferase and phosphoenolpyruvate carboxylase to synthesize fatty acid precursor molecule malonyl-CoA; and (iv) disruption of genes associated with membrane proteins (GusC, MdlA, and EnvR) to improve the cellular state and export the FFAs outside the cell. The synergistic effects of these genetic modifications in strain SBF50 yielded 7.2 ± 0.11 g/L FFAs at the shake flask level. In fed-batch cultivation under nitrogen-limiting conditions, strain SBF50 produced 33.6 ± 0.02 g/L FFAs with a productivity of 0.7 g/L/h from glucose, which is the maximum titer reported in E. coli to date. Combinatorial metabolic engineering approaches can prove to be highly useful for the large-scale production of FA-derived chemicals and fuels.
Collapse
Affiliation(s)
- Woo Sang Park
- School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kwang Soo Shin
- School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyun Wook Jung
- School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yongjoo Lee
- School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Chandran Sathesh-Prabu
- School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sung Kuk Lee
- School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
33
|
Song S, Zhang L, Zhao Y, Sheng C, Zhou W, Dossou SSK, Wang L, You J, Zhou R, Wei X, Zhang X. Metabolome genome-wide association study provides biochemical and genetic insights into natural variation of primary metabolites in sesame. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1051-1069. [PMID: 36176211 DOI: 10.1111/tpj.15995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Plants' primary metabolites are of great importance from the survival and nutritional perspectives. However, the genetic bases underlying the profiles of primary metabolites in oilseed crops remain largely unclear. As one of the main oilseed crops, sesame (Sesamum indicum L.) is a potential model plant for investigating oil metabolism in plants. Therefore, the objective of this study is to disclose the genetic variants associated with variation in the content of primary metabolites in sesame. We performed a comprehensive metabolomics analysis of primary metabolites in 412 diverse sesame accessions using gas chromatography-mass spectrometry and identified a total of 45 metabolites, including fatty acids, monoacylglycerols (MAGs), and amino acids. Genome-wide association study unveiled 433 significant single-nucleotide polymorphism loci associated with variation in primary metabolite contents in sesame. By integrating diverse genomic analyses, we identified 10 key candidate causative genes of variation in MAG, fatty acid, asparagine, and sucrose contents. Among them, SiDSEL was significantly associated with multiple traits. SiCAC3 and SiKASI were strongly associated with variation in oleic acid and linoleic acid contents. Overexpression of SiCAC3, SiKASI, SiLTPI.25, and SiLTPI.26 in transgenic Arabidopsis and Saccharomyces cerevisiae revealed that SiCAC3 is a potential target gene for improvement of unsaturated fatty acid levels in crops. Furthermore, we found that it may be possible to breed several quality traits in sesame simultaneously. Our results provide valuable genetic resources for improving sesame seed quality and our understanding of oilseed crops' primary metabolism.
Collapse
Affiliation(s)
- Shengnan Song
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Liangxiao Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Yan Zhao
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Chen Sheng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Wangyi Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Senouwa Segla Koffi Dossou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Jun You
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Rong Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Xin Wei
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xiurong Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| |
Collapse
|
34
|
Rathore D, Sevda S, Prasad S, Venkatramanan V, Chandel AK, Kataki R, Bhadra S, Channashettar V, Bora N, Singh A. Bioengineering to Accelerate Biodiesel Production for a Sustainable Biorefinery. Bioengineering (Basel) 2022; 9:618. [PMID: 36354528 PMCID: PMC9687738 DOI: 10.3390/bioengineering9110618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 09/08/2024] Open
Abstract
Biodiesel is an alternative, carbon-neutral fuel compared to fossil-based diesel, which can reduce greenhouse gas (GHGs) emissions. Biodiesel is a product of microorganisms, crop plants, and animal-based oil and has the potential to prosper as a sustainable and renewable energy source and tackle growing energy problems. Biodiesel has a similar composition and combustion properties to fossil diesel and thus can be directly used in internal combustion engines as an energy source at the commercial level. Since biodiesel produced using edible/non-edible crops raises concerns about food vs. fuel, high production cost, monocropping crisis, and unintended environmental effects, such as land utilization patterns, it is essential to explore new approaches, feedstock and technologies to advance the production of biodiesel and maintain its sustainability. Adopting bioengineering methods to produce biodiesel from various sources such as crop plants, yeast, algae, and plant-based waste is one of the recent technologies, which could act as a promising alternative for creating genuinely sustainable, technically feasible, and cost-competitive biodiesel. Advancements in genetic engineering have enhanced lipid production in cellulosic crops and it can be used for biodiesel generation. Bioengineering intervention to produce lipids/fat/oil (TGA) and further their chemical or enzymatic transesterification to accelerate biodiesel production has a great future. Additionally, the valorization of waste and adoption of the biorefinery concept for biodiesel production would make it eco-friendly, cost-effective, energy positive, sustainable and fit for commercialization. A life cycle assessment will not only provide a better understanding of the various approaches for biodiesel production and waste valorization in the biorefinery model to identify the best technique for the production of sustainable biodiesel, but also show a path to draw a new policy for the adoption and commercialization of biodiesel.
Collapse
Affiliation(s)
- Dheeraj Rathore
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar 382030, Gujarat, India
| | - Surajbhan Sevda
- Environmental Bioprocess Laboratory, Department of Biotechnology, National Institute of Technology, Warangal 506004, Telangana, India
| | - Shiv Prasad
- Division of Environment Science, ICAR—Indian Agricultural Research Institute, New Delhi 110012, Delhi, India
| | - Veluswamy Venkatramanan
- School of Interdisciplinary and Transdisciplinary Studies, Indira Gandhi National Open University, New Delhi 110068, Delhi, India
| | - Anuj Kumar Chandel
- Department of Biotechnology, Engineering School of Lorena (EEL), University of São Paulo (USP), Estrada Municipal do Campinho, Lorena 12602-810, SP, Brazil
| | - Rupam Kataki
- Department of Energy, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Sudipa Bhadra
- Environmental Bioprocess Laboratory, Department of Biotechnology, National Institute of Technology, Warangal 506004, Telangana, India
| | - Veeranna Channashettar
- Environmental and Industrial Biotechnology Division, The Energy and Resources Institute, Lodhi Road, New Delhi 110003, Delhi, India
| | - Neelam Bora
- Department of Energy, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Anoop Singh
- Department of Scientific and Industrial Research (DSIR), Ministry of Science and Technology, Government of India, Technology Bhawan, New Mehrauli Road, New Delhi 110016, Delhi, India
| |
Collapse
|
35
|
Balbuena E, Cheng J, Eroglu A. Carotenoids in orange carrots mitigate non-alcoholic fatty liver disease progression. Front Nutr 2022; 9:987103. [PMID: 36225879 PMCID: PMC9549209 DOI: 10.3389/fnut.2022.987103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/02/2022] [Indexed: 11/23/2022] Open
Abstract
Background Carotenoids are abundant in colored fruits and vegetables. Non-alcoholic fatty liver disease (NAFLD) is a global burden and risk factor for end-stage hepatic diseases. This study aims to compare the anti-NAFLD efficacy between carotenoid-rich and carotenoid-deficient vegetables. Materials and methods Male C57BL/6J mice were randomized to one of four experimental diets for 15 weeks (n = 12 animals/group): Low-fat diet (LFD, 10% calories from fat), high-fat diet (HFD, 60% calories from fat), HFD with 20% white carrot powders (HFD + WC), or with 20% orange carrot powders (HFD + OC). Results We observed that carotenoids in the orange carrots reduced HFD-induced weight gain, better than white carrots. Histological and triglyceride (TG) analyses revealed significantly decreased HFD-induced hepatic lipid deposition and TG content in the HFD + WC group, which was further reduced in the HFD + OC group. Western blot analysis demonstrated inconsistent changes of fatty acid synthesis-related proteins but significantly improved ACOX-1 and CPT-II, indicating that orange carrot carotenoids had the potential to inhibit NAFLD by improving β-oxidation. Further investigation showed significantly higher mRNA and protein levels of PPARα and its transcription factor activity. Conclusion Carotenoid-rich foods may display more potent efficacy in mitigating NAFLD than those with low carotenoid levels.
Collapse
Affiliation(s)
- Emilio Balbuena
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
- Department of Molecular and Structural Biochemistry, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States
| | - Junrui Cheng
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Abdulkerim Eroglu
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
- Department of Molecular and Structural Biochemistry, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States
- *Correspondence: Abdulkerim Eroglu,
| |
Collapse
|
36
|
Li S, Yang J, Mohamed H, Wang X, Pang S, Wu C, López-García S, Song Y. Identification and Functional Characterization of Adenosine Deaminase in Mucor circinelloides: A Novel Potential Regulator of Nitrogen Utilization and Lipid Biosynthesis. J Fungi (Basel) 2022; 8:jof8080774. [PMID: 35893142 PMCID: PMC9332508 DOI: 10.3390/jof8080774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 02/05/2023] Open
Abstract
Adenosine deaminase (ADA) is an enzyme distributed in a wide variety of organisms that cleaves adenosine into inosine. Since inosine plays an important role in nitrogen metabolism, ADA may have a critical function in the regulation of fatty acid synthesis. However, the role of ADA in oleaginous fungi has not been reported so far. Therefore, in this study, we identified one ada gene encoding ADA (with ID scaffold0027.9) in the high lipid-producing fungus, Mucor circinelloides WJ11, and investigated its role in cell growth, lipid production, and nitrogen metabolism by overexpressing and knockout of this gene. The results showed that knockout of the ada altered the efficiency of nitrogen consumption, which led to a 20% increment in the lipid content (25% of cell dry weight) of the engineered strain, while overexpression of the ada showed no significant differences compared with the control strain at the final growth stage; however, interestingly, it increased lipid accumulation at the early growth stage. Additionally, transcriptional analysis was conducted by RT-qPCR and our findings indicated that the deletion of ada activated the committed steps of lipid biosynthesis involved in acetyl-CoA carboxylase (acc1 gene), cytosolic malic acid enzyme (cme1 gene), and fatty acid synthases (fas1 gene), while it suppressed the expression of AMP-activated protein kinase (ampk α1 and ampk β genes), which plays a role in lipolysis, whereas the ada-overexpressed strain displayed reverse trends. Conclusively, this work unraveled a novel role of ADA in governing lipid biosynthesis and nitrogen metabolism in the oleaginous fungus, M. circinelloides.
Collapse
Affiliation(s)
- Shaoqi Li
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; (S.L.); (H.M.); (X.W.); (S.P.); (C.W.)
| | - Junhuan Yang
- Department of Food Sciences, College of Food Science and Engineering, Lingnan Normal University, Zhanjiang 524048, China;
| | - Hassan Mohamed
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; (S.L.); (H.M.); (X.W.); (S.P.); (C.W.)
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Xiuwen Wang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; (S.L.); (H.M.); (X.W.); (S.P.); (C.W.)
| | - Shuxian Pang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; (S.L.); (H.M.); (X.W.); (S.P.); (C.W.)
| | - Chen Wu
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; (S.L.); (H.M.); (X.W.); (S.P.); (C.W.)
| | - Sergio López-García
- Department of Genetics and Microbiology (Associated Unit to IQFR-CSIC), Faculty of Biology, University of Murcia, 3100 Murcia, Spain;
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; (S.L.); (H.M.); (X.W.); (S.P.); (C.W.)
- Correspondence: ; Tel.: +86-13964463099
| |
Collapse
|
37
|
Kaku M, Ishidaira M, Satoh S, Ozaki M, Kohari D, Chohnan S. Fatty Acid Production by Enhanced Malonyl-CoA Supply in Escherichia coli. Curr Microbiol 2022; 79:269. [PMID: 35881256 DOI: 10.1007/s00284-022-02969-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 07/07/2022] [Indexed: 11/24/2022]
Abstract
The expression of exogenous genes encoding acetyl-CoA carboxylase (Acc) and pantothenate kinase (CoaA) in Escherichia coli enable highly effective fatty acid production. Acc-only strains grown at 37 °C or 23 °C produced an approximately twofold increase in fatty acid content, and additional expression of CoaA achieved a further twofold accumulation. In the presence of pantothenate, which is the starting material for the CoA biosynthetic pathway, the size of the intracellular CoA pool at 23 °C was comparable to that at 30 °C during cultivation, and more than 500 mg/L of culture containing cellular fatty acids was produced, even at 23 °C. However, the highest yield of cellular fatty acids (1100 mg/L of culture) was produced in cells possessing the gene encoding type I bacterial fatty acid synthase (FasA) along with the acc and coaA, when the transformant was cultivated at 30 °C in M9 minimal salt medium without pantothenate or IPTG. This E. coli transformant contained 141 mg/L of oleic acid attributed to FasA under noninducible conditions. The increased fatty acid content was brought about by a greatly improved specific productivity of 289 mg/g of dry cell weight. Thus, the effectiveness of the foreign acc and coaA in fatty acid production was unambiguously confirmed at culture temperatures of 23 °C to 37 °C. Cofactor engineering in E. coli using the exogenous coaA and acc genes resulted in fatty acid production over 1 g/L of culture and could effectively function at 23 °C.
Collapse
Affiliation(s)
- Moena Kaku
- Department of Food and Life Sciences, Ibaraki University College of Agriculture, 3-21-1 Chuo, Ami, Ibaraki, 300-0393, Japan
| | - Mei Ishidaira
- Department of Food and Life Sciences, Ibaraki University College of Agriculture, 3-21-1 Chuo, Ami, Ibaraki, 300-0393, Japan
| | - Shusaku Satoh
- Department of Food and Life Sciences, Ibaraki University College of Agriculture, 3-21-1 Chuo, Ami, Ibaraki, 300-0393, Japan
| | - Miho Ozaki
- Department of Food and Life Sciences, Ibaraki University College of Agriculture, 3-21-1 Chuo, Ami, Ibaraki, 300-0393, Japan
| | - Daisuke Kohari
- Department of Food and Life Sciences, Ibaraki University College of Agriculture, 3-21-1 Chuo, Ami, Ibaraki, 300-0393, Japan
| | - Shigeru Chohnan
- Department of Food and Life Sciences, Ibaraki University College of Agriculture, 3-21-1 Chuo, Ami, Ibaraki, 300-0393, Japan.
| |
Collapse
|
38
|
Liang B, Sun G, Zhang X, Nie Q, Zhao Y, Yang J. Recent Advances, Challenges and Metabolic Engineering Strategies in the Biosynthesis of 3-Hydroxypropionic Acid. Biotechnol Bioeng 2022; 119:2639-2668. [PMID: 35781640 DOI: 10.1002/bit.28170] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2022] [Accepted: 06/29/2022] [Indexed: 11/07/2022]
Abstract
As an attractive and valuable platform chemical, 3-hydroxypropionic acid (3-HP) can be used to produce a variety of industrially important commodity chemicals and biodegradable polymers. Moreover, the biosynthesis of 3-HP has drawn much attention in recent years due to its sustainability and environmental friendliness. Here, we focus on recent advances, challenges and metabolic engineering strategies in the biosynthesis of 3-HP. While glucose and glycerol are major carbon sources for its production of 3-HP via microbial fermentation, other carbon sources have also been explored. To increase yield and titer, synthetic biology and metabolic engineering strategies have been explored, including modifying pathway enzymes, eliminating flux blockages due to byproduct synthesis, eliminating toxic byproducts, and optimizing via genome-scale models. This review also provides insights on future directions for 3-HP biosynthesis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Bo Liang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China.,Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Guannan Sun
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China.,Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Xinping Zhang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China.,Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Qingjuan Nie
- Foreign Languages School, Qingdao Agricultural University, Qingdao, China
| | - Yukun Zhao
- Pony Testing International Group, Qingdao, China
| | - Jianming Yang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China.,Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
39
|
Wang S, Jin X, Jiang W, Wang Q, Qi Q, Liang Q. The Expression Modulation of the Key Enzyme Acc for Highly Efficient 3-Hydroxypropionic Acid Production. Front Microbiol 2022; 13:902848. [PMID: 35633674 PMCID: PMC9130761 DOI: 10.3389/fmicb.2022.902848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
3-Hydroxypropionic acid (3-HP) is a promising high value-added chemical. Acetyl-CoA carboxylase (Acc) is a vital rate-limiting step in 3-HP biosynthesis through the malonyl-CoA pathway. However, Acc toxicity in cells during growth blocks its ability to catalyze acetyl-CoA to malonyl-CoA. The balancing of Acc and malonyl-CoA reductase (MCR) expression is another an unexplored but key process in 3-HP production. To solve these problems, in the present study, we developed a method to mitigate Acc toxicity cell growth through Acc subunits (AccBC and DtsR1) expression adjustment. The results revealed that cell growth and 3-HP production can be accelerated through the adjustment of DtsR1 and AccBC expression. Subsequently, the balancing Acc and MCR expression was also employed for 3-HP production, the engineered strain achieved the highest titer of 6.8 g/L, with a high yield of 0.566 g/g glucose and productivity of 0.13 g/L/h, in shake-flask fermentation through the malonyl-CoA pathway. Likewise, the engineered strain also had the highest productivity (1.03 g/L/h) as well as a high yield (0.246 g/g glucose) and titer (up to 38.13 g/L) in fed-batch fermentation, constituting the most efficient strain for 3-HP production through the malonyl-CoA pathway using a cheap carbon source. This strategy might facilitate the production of other malonyl-CoA-derived chemical compounds in the future.
Collapse
Affiliation(s)
- Sumeng Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Xin Jin
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Wei Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Qian Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Quanfeng Liang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| |
Collapse
|
40
|
Winkelman DC, Nikolau BJ. The Effects of Carbon Source and Growth Temperature on the Fatty Acid Profiles of Thermobifida fusca. Front Mol Biosci 2022; 9:896226. [PMID: 35720111 PMCID: PMC9198275 DOI: 10.3389/fmolb.2022.896226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
The aerobic, thermophilic Actinobacterium, Thermobifida fusca has been proposed as an organism to be used for the efficient conversion of plant biomass to fatty acid-derived precursors of biofuels or biorenewable chemicals. Despite the potential of T. fusca to catabolize plant biomass, there is remarkably little data available concerning the natural ability of this organism to produce fatty acids. Therefore, we determined the fatty acids that T. fusca produces when it is grown on different carbon sources (i.e., glucose, cellobiose, cellulose and avicel) and at two different growth temperatures, namely at the optimal growth temperature of 50°C and at a suboptimal temperature of 37°C. These analyses establish that T. fusca produces a combination of linear and branched chain fatty acids (BCFAs), including iso-, anteiso-, and 10-methyl BCFAs that range between 14- and 18-carbons in length. Although different carbon sources and growth temperatures both quantitatively and qualitatively affect the fatty acid profiles produced by T. fusca, growth temperature is the greater modifier of these traits. Additionally, genome scanning enabled the identification of many of the fatty acid biosynthetic genes encoded by T. fusca.
Collapse
Affiliation(s)
| | - Basil J. Nikolau
- Department of Biochemistry, Biophysics and Molecular Biology and the Center of Metabolic Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
41
|
Zhang H, Zhao X, Zhao C, Zhang J, Liu Y, Yao M, Liu J. Effects of glycerol and glucose on docosahexaenoic acid synthesis in Aurantiochyrium limacinum SFD-1502 by transcriptome analysis. Prep Biochem Biotechnol 2022; 53:81-92. [PMID: 35289738 DOI: 10.1080/10826068.2022.2042820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Docosahexaenoic acid (DHA) has numerous functions in adjusting the organic health and pragmatic value in medicine and food field. In this study, we compared glycerol and glucose as the only carbon source for DHA production by Aurantiochytrium. When the glycerol concentration was 120 g/L, the maximum DHA yield was 11.08 g/L, and the DHA yield increased significantly, reaching 47.67% of the total lipid content. When the cells grew in glucose, the DHA proportion was 37.39%. Transcriptome data showed that the glycolysis pathway and tricarboxylic acid cycle in Aurantiochytrium were significantly inhibited during glycerol culture, which promoted the tricarboxylic acid transport system and was conducive to the synthesis of fatty acids by acetyl coenzyme A; glucose as substrate activated fatty acid synthesis (FAS)pathway and produced more saturated fatty acids, while glycerol as substrate activated polyketide synthase (PKS)pathway and produced more long-chain polyunsaturated fatty acids. This laid a foundation for fermentation metabolism regulation and molecular transformation.
Collapse
Affiliation(s)
- Huaqiu Zhang
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| | - Xiangying Zhao
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China.,Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China.,School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| | - Chen Zhao
- Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| | - Jiaxiang Zhang
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China.,Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China.,School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| | - Yang Liu
- Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| | - Mingjing Yao
- Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| | - Jianjun Liu
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China.,Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China.,School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| |
Collapse
|
42
|
Zhao Y, Castro LFC, Monroig Ó, Cao X, Sun Y, Gao J. A zebrafish pparγ gene deletion reveals a protein kinase network associated with defective lipid metabolism. Funct Integr Genomics 2022; 22:435-450. [PMID: 35290539 DOI: 10.1007/s10142-022-00839-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 11/25/2022]
Abstract
Peroxisome proliferator-activated receptor γ (Pparγ) is a master regulator of adipogenesis. Chronic pathologies such as obesity, cardiovascular diseases, and diabetes involve the dysfunction of this transcription factor. Here, we generated a zebrafish mutant in pparγ (KO) with CRISPR/Cas9 technology and revealed its regulatory network. We uncovered the hepatic phenotypes of these male and female KO, and then the male wild-type zebrafish (WT) and KO were fed with a high-fat (HF) or standard diet (SD). We next conducted an integrated analyze of the proteomics and phosphoproteomics profiles. Compared with WT, the KO showed remarkable hyalinization and congestion lesions in the liver of males. Strikingly, pparγ deletion protected against the influence of high-fat diet feeding on lipid deposition in zebrafish. Some protein kinases critical for lipid metabolism, including serine/threonine-protein kinase TOR (mTOR), ribosomal protein S6 kinase (Rps6kb1b), and mitogen-activated protein kinase 14A (Mapk14a), were identified to be highly phosphorylated in KO based on differential proteome and phosphoproteome analysis. Our study supplies a pparγ deletion animal model and provides a comprehensive description of pparγ-induced expression level alterations of proteins and their phosphorylation, which are vital to understand the defective lipid metabolism risks posed to human health.
Collapse
Affiliation(s)
- Yan Zhao
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430070, China
| | - L Filipe C Castro
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- FCUP - Faculty of Sciences, Department of Biology, University of Porto, Porto, Portugal
| | - Óscar Monroig
- Instituto de Acuicultura Torre de La Sal (IATS-CSIC), Ribera de Cabanes, 12595, Castellón, Spain
| | - Xiaojuan Cao
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, China Zebrafish Resource Center, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430070, China
| | - Jian Gao
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China.
| |
Collapse
|
43
|
Jha AK, Gairola S, Kundu S, Doye P, Syed AM, Ram C, Kulhari U, Kumar N, Murty US, Sahu BD. Biological Activities, Pharmacokinetics and Toxicity of Nootkatone: A Review. Mini Rev Med Chem 2022; 22:2244-2259. [PMID: 35156582 DOI: 10.2174/1389557522666220214092005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/25/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
Plant-based drugs have a significant impact on modern therapeutics due to their vast array of pharmacological activities. The integration of herbal plants in the current healthcare system has emerged as a new field of research. It can be used for the identification of novel lead compound candidates for future drug development. Nootkatone is a sesquiterpene derivative and an isolate of grapefruit. Shreds of evidence illustrate that nootkatone targets few molecular mechanisms to exhibit its pharmacological activity and yet needs more exploration to be established. The current review is related to nootkatone, drafted through a literature search using research articles and books from different sources, including Science Direct, Google Scholar, Elsevier, PubMed, and Scopus. It has been reported to possess a wide range of pharmacological activities such as anti-inflammatory, anticancer, antibacterial, hepatoprotective, neuroprotective, and cardioprotective. Although preclinical studies in experimental animal models suggest that nootkatone has therapeutic potential, it is further warranted to evaluate its toxicity and pharmacokinetic parameters before being applied to humans. Hence in the present review, we have summarized the scientific knowledge on nootkatone with a particular emphasis on its pharmacological properties to encourage researchers for further exploration in preclinical and clinical settings.
Collapse
Affiliation(s)
- Ankush Kumar Jha
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| | - Shobhit Gairola
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| | - Sourav Kundu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| | - Pakpi Doye
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| | - Abu Mohammad Syed
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| | - Chetan Ram
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| | - Uttam Kulhari
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| | - Naresh Kumar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| | - Upadhyayula Suryanarayana Murty
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| | - Bidya Dhar Sahu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| |
Collapse
|
44
|
Masuo S, Saga C, Usui K, Sasakura Y, Kawasaki Y, Takaya N. Glucose-Derived Raspberry Ketone Produced via Engineered Escherichia coli Metabolism. Front Bioeng Biotechnol 2022; 10:843843. [PMID: 35237585 PMCID: PMC8883332 DOI: 10.3389/fbioe.2022.843843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
The demand for raspberry ketone (RK) as a plant-based natural flavoring agent is high, but natural RK is one of the most expensive flavor compounds due to its limited content in plants. Here, we produced RK de novo from simple carbon sources in Escherichia coli. We genetically engineered E. coli metabolism to overproduce the metabolic precursors tyrosine and p-coumaric acid and increase RK production. The engineered E. coli produced 19.3- and 1.9 g/L of tyrosine and p-coumaric acid from glucose, respectively. The p-coumaric acid CoA ligase from Agrobacterium tumefaciens and amino acid substituted benzalacetone synthase of Rhemu palmatum (Chinese rhubarb) were overexpressed in E. coli overproducing p-coumaric acid. The overexpression of fabF, encoding β-ketoacyl-acyl carrier protein synthetase II increased intracellular malonyl-CoA, the precursor of benzalacetone synthase for RK biosynthesis, and improved RK production. Fed-batch cultures given glucose as a carbon source produced 62 mg/L of RK under optimized conditions. Our production system is inexpensive and does not rely on plant extraction; thus, it should significantly contribute to the flavor and fragrance industries.
Collapse
|
45
|
Jin H, Wang Y, Zhao P, Wang L, Zhang S, Meng D, Yang Q, Cheong LZ, Bi Y, Fu Y. Potential of Producing Flavonoids Using Cyanobacteria As a Sustainable Chassis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12385-12401. [PMID: 34649432 DOI: 10.1021/acs.jafc.1c04632] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Numerous plant secondary metabolites have remarkable impacts on both food supplements and pharmaceuticals for human health improvement. However, higher plants can only generate small amounts of these chemicals with specific temporal and spatial arrangements, which are unable to satisfy the expanding market demands. Cyanobacteria can directly utilize CO2, light energy, and inorganic nutrients to synthesize versatile plant-specific photosynthetic intermediates and organic compounds in large-scale photobioreactors with outstanding economic merit. Thus, they have been rapidly developed as a "green" chassis for the synthesis of bioproducts. Flavonoids, chemical compounds based on aromatic amino acids, are considered to be indispensable components in a variety of nutraceutical, pharmaceutical, and cosmetic applications. In contrast to heterotrophic metabolic engineering pioneers, such as yeast and Escherichia coli, information about the biosynthesis flavonoids and their derivatives is less comprehensive than that of their photosynthetic counterparts. Here, we review both benefits and challenges to promote cyanobacterial cell factories for flavonoid biosynthesis. With increasing concerns about global environmental issues and food security, we are confident that energy self-supporting cyanobacteria will attract increasing attention for the generation of different kinds of bioproducts. We hope that the work presented here will serve as an index and encourage more scientists to join in the relevant research area.
Collapse
Affiliation(s)
- Haojie Jin
- College of Forestry, Beijing Forestry University, Beijing 100083, P.R. China
| | - Yan Wang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Pengquan Zhao
- College of Forestry, Beijing Forestry University, Beijing 100083, P.R. China
| | - Litao Wang
- College of Forestry, Beijing Forestry University, Beijing 100083, P.R. China
| | - Su Zhang
- College of Forestry, Beijing Forestry University, Beijing 100083, P.R. China
| | - Dong Meng
- College of Forestry, Beijing Forestry University, Beijing 100083, P.R. China
| | - Qing Yang
- College of Forestry, Beijing Forestry University, Beijing 100083, P.R. China
| | - Ling-Zhi Cheong
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Yonghong Bi
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430070, P.R. China
| | - Yujie Fu
- College of Forestry, Beijing Forestry University, Beijing 100083, P.R. China
| |
Collapse
|
46
|
ARTP Mutagenesis of Schizochytrium sp. PKU#Mn4 and Clethodim-Based Mutant Screening for Enhanced Docosahexaenoic Acid Accumulation. Mar Drugs 2021; 19:md19100564. [PMID: 34677463 PMCID: PMC8539320 DOI: 10.3390/md19100564] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022] Open
Abstract
Schizochytrium species are one of the best oleaginous thraustochytrids for high-yield production of docosahexaenoic acid (DHA, 22:6). However, the DHA yields from most wild-type (WT) strains of Schizochytrium are unsatisfactory for large-scale production. In this study, we applied the atmospheric and room-temperature plasma (ARTP) tool to obtain the mutant library of a previously isolated strain of Schizochytrium (i.e., PKU#Mn4). Two rounds of ARTP mutagenesis coupled with the acetyl-CoA carboxylase (ACCase) inhibitor (clethodim)-based screening yielded the mutant A78 that not only displayed better growth, glucose uptake and ACCase activity, but also increased (54.1%) DHA content than that of the WT strain. Subsequent optimization of medium components and supplementation improved the DHA content by 75.5 and 37.2%, respectively, compared with that of mutant A78 cultivated in the unoptimized medium. Interestingly, the ACCase activity of mutant A78 in a medium supplemented with biotin, citric acid or sodium citrate was significantly greater than that in a medium without supplementation. This study provides an effective bioengineering approach for improving the DHA accumulation in oleaginous microbes.
Collapse
|
47
|
Li Z, Meng T, Hang W, Cao X, Ni H, Shi Y, Li Q, Xiong Y, He N. Regulation of glucose and glycerol for production of docosahexaenoic acid in Schizochytrium limacinum SR21 with metabolomics analysis. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
He M, Wen J, Yin Y, Wang P. Metabolic engineering of Bacillus subtilis based on genome-scale metabolic model to promote fengycin production. 3 Biotech 2021; 11:448. [PMID: 34631349 DOI: 10.1007/s13205-021-02990-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 09/09/2021] [Indexed: 12/01/2022] Open
Abstract
Fengycin is an important lipopeptide antibiotic that can be produced by Bacillus subtilis. However, the production capacity of the unmodified wild strain is very low. Therefore, a computationally guided engineering method was proposed to improve the fengycin production capacity. First, based on the annotated genome and biochemical information, a genome-scale metabolic model of Bacillus subtilis 168 was constructed. Subsequently, several potential genetic targets were identified through the flux balance analysis and minimization of metabolic adjustment algorithm that can ensure an increase in the production of fengycin. In addition, according to the results predicted by the model, the target genes accA (encoding acetyl-CoA carboxylase), cypC (encoding fatty acid beta-hydroxylating cytochrome P450) and gapA (encoding glyceraldehyde-3-phosphate dehydrogenase) were overexpressed in the parent strain Bacillus subtilis 168. The yield of fengycin was increased by 56.4, 46.6, and 20.5% by means of the overexpression of accA, cypC, and gapA, respectively, compared with the yield from the parent strain. The relationship between the model prediction and experimental results proves the effectiveness and rationality of this method for target recognition and improving fengycin production. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02990-7.
Collapse
Affiliation(s)
- Mingliang He
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072 People's Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 People's Republic of China
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072 People's Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 People's Republic of China
| | - Ying Yin
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 People's Republic of China
| | - Pan Wang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072 People's Republic of China
| |
Collapse
|
49
|
A critical perspective on the scope of interdisciplinary approaches used in fourth-generation biofuel production. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102436] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
50
|
Exogenous Antioxidants Improve the Accumulation of Saturated and Polyunsaturated Fatty Acids in Schizochytrium sp. PKU#Mn4. Mar Drugs 2021; 19:md19100559. [PMID: 34677458 PMCID: PMC8541261 DOI: 10.3390/md19100559] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 01/28/2023] Open
Abstract
Species of Schizochytrium are well known for their remarkable ability to produce lipids intracellularly. However, during their lipid accumulation, reactive oxygen species (ROS) are generated inevitably as byproducts, which if in excess results in lipid peroxidation. To alleviate such ROS-induced damage, seven different natural antioxidants (ascorbic acid, α-tocopherol, tea extract, melatonin, mannitol, sesamol, and butylated hydroxytoluene) were evaluated for their effects on the lipid accumulation in Schizochytrium sp. PKU#Mn4 using a fractional factorial design. Among the tested antioxidants, mannitol showed the best increment (44.98%) in total fatty acids concentration. However, the interaction effects of mannitol (1 g/L) and ascorbic acid (1 g/L) resulted in 2.26 ± 0.27 g/L and 1.45 ± 0.04 g/L of saturated and polyunsaturated fatty acids (SFA and PUFA), respectively, in batch fermentation. These concentrations were further increased to 7.68 ± 0.37 g/L (SFA) and 5.86 ± 0.03 g/L (PUFA) through fed-batch fermentation. Notably, the interaction effects yielded 103.7% and 49.6% increment in SFA and PUFA concentrations in batch fermentation. The possible mechanisms underlining those increments were an increased maximum growth rate of strain PKU#Mn4, alleviated ROS level, and the differential expression of lipid biosynthetic genes andupregulated catalase gene. This study provides an applicable strategy for improving the accumulation of SFA and PUFA in thraustochytrids by exogenous antioxidants and the underlying mechanisms.
Collapse
|