1
|
Luo H, Marron Fernandez de Velasco E, Wickman K. Neuronal G protein-gated K + channels. Am J Physiol Cell Physiol 2022; 323:C439-C460. [PMID: 35704701 PMCID: PMC9362898 DOI: 10.1152/ajpcell.00102.2022] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
G protein-gated inwardly rectifying K+ (GIRK/Kir3) channels exert a critical inhibitory influence on neurons. Neuronal GIRK channels mediate the G protein-dependent, direct/postsynaptic inhibitory effect of many neurotransmitters including γ-aminobutyric acid (GABA), serotonin, dopamine, adenosine, somatostatin, and enkephalin. In addition to their complex regulation by G proteins, neuronal GIRK channel activity is sensitive to PIP2, phosphorylation, regulator of G protein signaling (RGS) proteins, intracellular Na+ and Ca2+, and cholesterol. The application of genetic and viral manipulations in rodent models, together with recent progress in the development of GIRK channel modulators, has increased our understanding of the physiological and behavioral impact of neuronal GIRK channels. Work in rodent models has also revealed that neuronal GIRK channel activity is modified, transiently or persistently, by various stimuli including exposure drugs of abuse, changes in neuronal activity patterns, and aversive experience. A growing body of preclinical and clinical evidence suggests that dysregulation of GIRK channel activity contributes to neurological diseases and disorders. The primary goals of this review are to highlight fundamental principles of neuronal GIRK channel biology, mechanisms of GIRK channel regulation and plasticity, the nascent landscape of GIRK channel pharmacology, and the potential relevance of GIRK channels to the pathophysiology and treatment of neurological diseases and disorders.
Collapse
Affiliation(s)
- Haichang Luo
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| | | | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
2
|
Chan KYY, Chung PY, Zhang C, Poon ENY, Leung AWK, Leung KT. R4 RGS proteins as fine tuners of immature and mature hematopoietic cell trafficking. J Leukoc Biol 2022; 112:785-797. [PMID: 35694792 DOI: 10.1002/jlb.1mr0422-475r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/28/2022] [Indexed: 11/08/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are the largest and most diverse group of membrane receptors. They are involved in almost every physiologic process and consequently have a pivotal role in an extensive number of pathologies, including genetic, neurologic, and immune system disorders. Indeed, the vast array of GPCRs mechanisms have led to the development of a tremendous number of drug therapies and already account for about a third of marketed drugs. These receptors mediate their downstream signals primarily via G proteins. The regulators of G-protein signaling (RGS) proteins are now in the spotlight as the critical modulatory factors of active GTP-bound Gα subunits of heterotrimeric G proteins to fine-tune the biologic responses driven by the GPCRs. Also, they possess noncanonical functions by multiple mechanisms, such as protein-protein interactions. Essential roles and impacts of these RGS proteins have been revealed in physiology, including hematopoiesis and immunity, and pathologies, including asthma, cancers, and neurologic disorders. This review focuses on the largest subfamily of R4 RGS proteins and provides a brief overview of their structures and G-proteins selectivity. With particular interest, we explore and highlight, their expression in the hematopoietic system and the regulation in the engraftment of hematopoietic stem/progenitor cells (HSPCs). Distinct expression patterns of R4 RGS proteins in the hematopoietic system and their pivotal roles in stem cell trafficking pave the way for realizing new strategies for enhancing the clinical performance of hematopoietic stem cell transplantation. Finally, we discuss the exciting future trends in drug development by targeting RGS activity and expression with small molecules inhibitors and miRNA approaches.
Collapse
Affiliation(s)
- Kathy Yuen Yee Chan
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Po Yee Chung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Chi Zhang
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Ellen Ngar Yun Poon
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Alex Wing Kwan Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong, China.,Department of Paediatrics & Adolescent Medicine, Hong Kong Children's Hospital, Hong Kong SAR, China
| | - Kam Tong Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong, China.,Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
3
|
Asli A, Higazy-Mreih S, Avital-Shacham M, Kosloff M. Residue-level determinants of RGS R4 subfamily GAP activity and specificity towards the G i subfamily. Cell Mol Life Sci 2021; 78:6305-6318. [PMID: 34292354 PMCID: PMC11072900 DOI: 10.1007/s00018-021-03898-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/18/2021] [Accepted: 07/09/2021] [Indexed: 01/01/2023]
Abstract
The structural basis for the GTPase-accelerating activity of regulators of G protein signaling (RGS) proteins, as well as the mechanistic basis for their specificity in interacting with the heterotrimeric (αβγ) G proteins they inactivate, is not sufficiently understood at the family level. Here, we used biochemical assays to compare RGS domains across the RGS family and map those individual residues that favorably contribute to GTPase-accelerating activity, and those residues responsible for attenuating RGS domain interactions with Gα subunits. We show that conserved interactions of RGS residues with both the Gα switch I and II regions are crucial for RGS activity, while the reciprocal effects of "modulatory" and "disruptor" residues selectively modulate RGS activity. Our results quantify how specific interactions between RGS domains and Gα subunits are set by a balance between favorable RGS residue interactions with particular Gα switch regions, and unfavorable interactions with the Gα helical domain.
Collapse
Affiliation(s)
- Ali Asli
- The Department of Human Biology, Faculty of Natural Science, University of Haifa, 199 Aba Khoushy Ave., Mt. Carmel, 3498838, Haifa, Israel
| | - Sabreen Higazy-Mreih
- The Department of Human Biology, Faculty of Natural Science, University of Haifa, 199 Aba Khoushy Ave., Mt. Carmel, 3498838, Haifa, Israel
| | - Meirav Avital-Shacham
- The Department of Human Biology, Faculty of Natural Science, University of Haifa, 199 Aba Khoushy Ave., Mt. Carmel, 3498838, Haifa, Israel
| | - Mickey Kosloff
- The Department of Human Biology, Faculty of Natural Science, University of Haifa, 199 Aba Khoushy Ave., Mt. Carmel, 3498838, Haifa, Israel.
| |
Collapse
|
4
|
Diversity of the Gβγ complexes defines spatial and temporal bias of GPCR signaling. Cell Syst 2021; 12:324-337.e5. [PMID: 33667409 DOI: 10.1016/j.cels.2021.02.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 12/09/2020] [Accepted: 02/04/2021] [Indexed: 01/04/2023]
Abstract
The signal transduction by G-protein-coupled receptors (GPCRs) is mediated by heterotrimeric G proteins composed from one of the 16 Gα subunits and the inseparable Gβγ complex assembled from a repertoire of 5 Gβ and 12 Gγ subunits. However, the functional role of compositional diversity in Gβγ complexes has been elusive. Using optical biosensors, we examined the function of all Gβγ combinations in living cells and uncovered two major roles of Gβγ diversity. First, we demonstrate that the identity of Gβγ subunits greatly influences the kinetics and efficacy of GPCR responses at the plasma membrane. Second, we show that different Gβγ combinations are selectively dispatched from the plasma membrane to various cellular organelles on a timescale from milliseconds to minutes. We describe the mechanisms regulating these processes and document their implications for GPCR signaling via various Gα subunits, thereby illustrating a role for the compositional diversity of G protein heterotrimers.
Collapse
|
5
|
Masuho I, Balaji S, Muntean BS, Skamangas NK, Chavali S, Tesmer JJG, Babu MM, Martemyanov KA. A Global Map of G Protein Signaling Regulation by RGS Proteins. Cell 2020; 183:503-521.e19. [PMID: 33007266 PMCID: PMC7572916 DOI: 10.1016/j.cell.2020.08.052] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 07/03/2020] [Accepted: 08/29/2020] [Indexed: 12/24/2022]
Abstract
The control over the extent and timing of G protein signaling is provided by the regulator of G protein signaling (RGS) proteins that deactivate G protein α subunits (Gα). Mammalian genomes encode 20 canonical RGS and 16 Gα genes with key roles in physiology and disease. To understand the principles governing the selectivity of Gα regulation by RGS, we examine the catalytic activity of all canonical human RGS proteins and their selectivity for a complete set of Gα substrates using real-time kinetic measurements in living cells. The data reveal rules governing RGS-Gα recognition, the structural basis of its selectivity, and provide principles for engineering RGS proteins with defined selectivity. The study also explores the evolution of RGS-Gα selectivity through ancestral reconstruction and demonstrates how naturally occurring non-synonymous variants in RGS alter signaling. These results provide a blueprint for decoding signaling selectivity and advance our understanding of molecular recognition principles. Systematic analysis reveals G protein selectivity of all canonical RGS proteins RGS proteins rely on selectivity bar codes for selective G protein recognition Transplantation of bar codes across RGS proteins switches their G protein preferences Natural variants, mutations, and evolution shape RGS selectivity
Collapse
Affiliation(s)
- Ikuo Masuho
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Santhanam Balaji
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; Departments of Structural Biology and Center for Data Driven Discovery, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brian S Muntean
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Nickolas K Skamangas
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Sreenivas Chavali
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Karakambadi Road, Tirupati 517 507, India
| | - John J G Tesmer
- Departments of Biological Sciences and Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907-2054, USA
| | - M Madan Babu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; Departments of Structural Biology and Center for Data Driven Discovery, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kirill A Martemyanov
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA.
| |
Collapse
|
6
|
Senese NB, Kandasamy R, Kochan KE, Traynor JR. Regulator of G-Protein Signaling (RGS) Protein Modulation of Opioid Receptor Signaling as a Potential Target for Pain Management. Front Mol Neurosci 2020; 13:5. [PMID: 32038168 PMCID: PMC6992652 DOI: 10.3389/fnmol.2020.00005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/09/2020] [Indexed: 12/23/2022] Open
Abstract
Opioid drugs are the gold standard for the management of pain, but their use is severely limited by dangerous and unpleasant side effects. All clinically available opioid analgesics bind to and activate the mu-opioid receptor (MOR), a heterotrimeric G-protein-coupled receptor, to produce analgesia. The activity of these receptors is modulated by a family of intracellular RGS proteins or regulators of G-protein signaling proteins, characterized by the presence of a conserved RGS Homology (RH) domain. These proteins act as negative regulators of G-protein signaling by serving as GTPase accelerating proteins or GAPS to switch off signaling by both the Gα and βγ subunits of heterotrimeric G-proteins. Consequently, knockdown or knockout of RGS protein activity enhances signaling downstream of MOR. In this review we discuss current knowledge of how this activity, across the different families of RGS proteins, modulates MOR activity, as well as activity of other members of the opioid receptor family, and so pain and analgesia in animal models, with particular emphasis on RGS4 and RGS9 families. We discuss inhibition of RGS proteins with small molecule inhibitors that bind to sensitive cysteine moieties in the RH domain and the potential for targeting this family of intracellular proteins as adjuncts to provide an opioid sparing effect or as standalone analgesics by promoting the activity of endogenous opioid peptides. Overall, we conclude that RGS proteins may be a novel drug target to provide analgesia with reduced opioid-like side effects, but that much basic work is needed to define the roles for specific RGS proteins, particularly in chronic pain, as well as a need to develop newer inhibitors.
Collapse
Affiliation(s)
- Nicolas B Senese
- Department of Pharmacology, Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Psychiatry, Chicago, IL, United States
| | - Ram Kandasamy
- Department of Pharmacology, Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Psychology, California State University, East Bay, Hayward, CA, United States
| | - Kelsey E Kochan
- Department of Pharmacology, Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - John R Traynor
- Department of Pharmacology, Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
7
|
Calixto AR, Moreira C, Pabis A, Kötting C, Gerwert K, Rudack T, Kamerlin SCL. GTP Hydrolysis Without an Active Site Base: A Unifying Mechanism for Ras and Related GTPases. J Am Chem Soc 2019; 141:10684-10701. [PMID: 31199130 DOI: 10.1021/jacs.9b03193] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
GTP hydrolysis is a biologically crucial reaction, being involved in regulating almost all cellular processes. As a result, the enzymes that catalyze this reaction are among the most important drug targets. Despite their vital importance and decades of substantial research effort, the fundamental mechanism of enzyme-catalyzed GTP hydrolysis by GTPases remains highly controversial. Specifically, how do these regulatory proteins hydrolyze GTP without an obvious general base in the active site to activate the water molecule for nucleophilic attack? To answer this question, we perform empirical valence bond simulations of GTPase-catalyzed GTP hydrolysis, comparing solvent- and substrate-assisted pathways in three distinct GTPases, Ras, Rab, and the Gαi subunit of a heterotrimeric G-protein, both in the presence and in the absence of the corresponding GTPase activating proteins. Our results demonstrate that a general base is not needed in the active site, as the preferred mechanism for GTP hydrolysis is a conserved solvent-assisted pathway. This pathway involves the rate-limiting nucleophilic attack of a water molecule, leading to a short-lived intermediate that tautomerizes to form H2PO4- and GDP as the final products. Our fundamental biochemical insight into the enzymatic regulation of GTP hydrolysis not only resolves a decades-old mechanistic controversy but also has high relevance for drug discovery efforts. That is, revisiting the role of oncogenic mutants with respect to our mechanistic findings would pave the way for a new starting point to discover drugs for (so far) "undruggable" GTPases like Ras.
Collapse
Affiliation(s)
- Ana R Calixto
- Department of Chemistry-BMC , Uppsala University , Box 576, S-751 23 Uppsala , Sweden
| | - Cátia Moreira
- Department of Chemistry-BMC , Uppsala University , Box 576, S-751 23 Uppsala , Sweden
| | - Anna Pabis
- Department of Cell and Molecular Biology , Uppsala University , BMC Box 596, S-751 24 , Uppsala , Sweden
| | - Carsten Kötting
- Department of Biophysics , Ruhr University Bochum , 44801 Bochum , Germany
| | - Klaus Gerwert
- Department of Biophysics , Ruhr University Bochum , 44801 Bochum , Germany
| | - Till Rudack
- Department of Biophysics , Ruhr University Bochum , 44801 Bochum , Germany
| | - Shina C L Kamerlin
- Department of Chemistry-BMC , Uppsala University , Box 576, S-751 23 Uppsala , Sweden
| |
Collapse
|
8
|
Israeli R, Asli A, Avital-Shacham M, Kosloff M. RGS6 and RGS7 Discriminate between the Highly Similar Gα i and Gα o Proteins Using a Two-Tiered Specificity Strategy. J Mol Biol 2019; 431:3302-3311. [PMID: 31153905 DOI: 10.1016/j.jmb.2019.05.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/12/2019] [Accepted: 05/23/2019] [Indexed: 11/15/2022]
Abstract
RGS6 and RGS7 are regulators of G protein signaling (RGS) proteins that inactivate heterotrimeric (αβγ) G proteins and mediate diverse biological functions, such as cardiac and neuronal signaling. Uniquely, both RGS6 and RGS7 can discriminate between Gαo and Gαi1-two similar Gα subunits that belong to the same Gi sub-family. Here, we show that the isolated RGS domains of RGS6 and RGS7 are sufficient to achieve this specificity. We identified three specific RGS6/7 "disruptor residues" that can attenuate RGS interactions toward Gα subunits and demonstrated that their insertion into a representative high-activity RGS causes a significant, yet non-specific, reduction in activity. We further identified a unique "modulatory" residue that bypasses this negative effect, specifically toward Gαo. Hence, the exquisite specificity of RGS6 and RGS7 toward closely related Gα subunits is achieved via a two-tier specificity system, whereby a Gα-specific modulatory motif overrides the inhibitory effect of non-specific disruptor residues. Our findings expand the understanding of the molecular toolkit used by the RGS family to achieve specific interactions with selected Gα subunits-emphasizing the functional importance of the RGS domain in determining the activity and selectivity of RGS R7 sub-family members toward particular Gα subunits.
Collapse
Affiliation(s)
- Ran Israeli
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Ali Asli
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Meirav Avital-Shacham
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Mickey Kosloff
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel.
| |
Collapse
|
9
|
Docking optimization, variance and promiscuity for large-scale drug-like chemical space using high performance computing architectures. Drug Discov Today 2016; 21:1672-1680. [DOI: 10.1016/j.drudis.2016.06.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/12/2016] [Accepted: 06/21/2016] [Indexed: 12/27/2022]
|
10
|
Systematic analysis of factors influencing observations of biased agonism at the mu-opioid receptor. Biochem Pharmacol 2016; 113:70-87. [PMID: 27286929 DOI: 10.1016/j.bcp.2016.05.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 05/31/2016] [Indexed: 11/24/2022]
Abstract
Biased agonism describes the ability of distinct G protein-coupled receptor (GPCR) ligands to stabilise distinct receptor conformations leading to the activation of different cell signalling pathways that can deliver different physiologic outcomes. This phenomenon is having a major impact on modern drug discovery as it offers the potential to design ligands that selectively activate or inhibit the signalling pathways linked to therapeutic effects with minimal activation or blockade of signalling pathways that are linked to the development of adverse on-target effects. However, the explosion in studies of biased agonism at multiple GPCR families in recombinant cell lines has revealed a high degree of variability on descriptions of biased ligands at the same GPCR and raised the question of whether biased agonism is a fixed attribute of a ligand in all cell types. The current study addresses this question at the mu-opioid receptor (MOP). Here, we have systematically assessed the impact of differential cellular protein complement (and cellular background), signalling kinetics and receptor species on our previous descriptions of biased agonism at MOP by several opioid peptides and synthetic opioids. Our results show that all these factors need to be carefully determined and reported when considering biased agonism. Nevertheless, our studies also show that, despite changes in overall signalling profiles, ligands that previously showed distinct bias profiles at MOP retained their uniqueness across different cell backgrounds.
Collapse
|
11
|
Tayou J, Wang Q, Jang GF, Pronin AN, Orlandi C, Martemyanov KA, Crabb JW, Slepak VZ. Regulator of G Protein Signaling 7 (RGS7) Can Exist in a Homo-oligomeric Form That Is Regulated by Gαo and R7-binding Protein. J Biol Chem 2016; 291:9133-47. [PMID: 26895961 DOI: 10.1074/jbc.m115.694075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Indexed: 11/06/2022] Open
Abstract
RGS (regulator of G protein signaling) proteins of the R7 subfamily (RGS6, -7, -9, and -11) are highly expressed in neurons where they regulate many physiological processes. R7 RGS proteins contain several distinct domains and form obligatory dimers with the atypical Gβ subunit, Gβ5 They also interact with other proteins such as R7-binding protein, R9-anchoring protein, and the orphan receptors GPR158 and GPR179. These interactions facilitate plasma membrane targeting and stability of R7 proteins and modulate their activity. Here, we investigated RGS7 complexes using in situ chemical cross-linking. We found that in mouse brain and transfected cells cross-linking causes formation of distinct RGS7 complexes. One of the products had the apparent molecular mass of ∼150 kDa on SDS-PAGE and did not contain Gβ5 Mass spectrometry analysis showed no other proteins to be present within the 150-kDa complex in the amount close to stoichiometric with RGS7. This finding suggested that RGS7 could form a homo-oligomer. Indeed, co-immunoprecipitation of differentially tagged RGS7 constructs, with or without chemical cross-linking, demonstrated RGS7 self-association. RGS7-RGS7 interaction required the DEP domain but not the RGS and DHEX domains or the Gβ5 subunit. Using transfected cells and knock-out mice, we demonstrated that R7-binding protein had a strong inhibitory effect on homo-oligomerization of RGS7. In contrast, our data indicated that GPR158 could bind to the RGS7 homo-oligomer without causing its dissociation. Co-expression of constitutively active Gαo prevented the RGS7-RGS7 interaction. These results reveal the existence of RGS protein homo-oligomers and show regulation of their assembly by R7 RGS-binding partners.
Collapse
Affiliation(s)
- Junior Tayou
- From the Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Qiang Wang
- From the Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Geeng-Fu Jang
- the Cole Eye Institute Cleveland Clinic, Cleveland, Ohio 44195, and
| | - Alexey N Pronin
- From the Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Cesare Orlandi
- the Department of Neuroscience, Scripps Research Institute, Jupiter, Florida 33458
| | - Kirill A Martemyanov
- the Department of Neuroscience, Scripps Research Institute, Jupiter, Florida 33458
| | - John W Crabb
- the Cole Eye Institute Cleveland Clinic, Cleveland, Ohio 44195, and
| | - Vladlen Z Slepak
- From the Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida 33136,
| |
Collapse
|
12
|
Eusemann TN, Willmroth F, Fiebich B, Biber K, van Calker D. Adenosine Receptors Differentially Regulate the Expression of Regulators of G-Protein Signalling (RGS) 2, 3 and 4 in Astrocyte-Like Cells. PLoS One 2015; 10:e0134934. [PMID: 26263491 PMCID: PMC4532427 DOI: 10.1371/journal.pone.0134934] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 07/15/2015] [Indexed: 11/30/2022] Open
Abstract
The “regulators of g-protein signalling” (RGS) comprise a large family of proteins that limit by virtue of their GTPase accelerating protein domain the signal transduction of G-protein coupled receptors. RGS proteins have been implicated in various neuropsychiatric diseases such as schizophrenia, drug abuse, depression and anxiety and aggressive behaviour. Since conditions associated with a large increase of adenosine in the brain such as seizures or ischemia were reported to modify the expression of some RGS proteins we hypothesized that adenosine might regulate RGS expression in neural cells. We measured the expression of RGS-2,-3, and -4 in both transformed glia cells (human U373 MG astrocytoma cells) and in primary rat astrocyte cultures stimulated with adenosine agonists. Expression of RGS-2 mRNA as well as RGS2 protein was increased up to 30-fold by adenosine agonists in astrocytes. The order of potency of agonists and the blockade by the adenosine A2B-antagonist MRS1706 indicated that this effect was largely mediated by adenosine A2B receptors. However, a smaller effect was observed due to activation of adenosine A2A receptors. In astrocytoma cells adenosine agonists elicited an increase in RGS-2 expression solely mediated by A2B receptors. Expression of RGS-3 was inhibited by adenosine agonists in both astrocytoma cells and astrocytes. However while this effect was mediated by A2B receptors in astrocytoma cells it was mediated by A2A receptors in astrocytes as assessed by the order of potency of agonists and selective blockade by the specific antagonists MRS1706 and ZM241385 respectively. RGS-4 expression was inhibited in astrocytoma cells but enhanced in astrocytes by adenosine agonists.
Collapse
Affiliation(s)
- Till Nicolas Eusemann
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical Center, Freiburg, Germany
| | - Frank Willmroth
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical Center, Freiburg, Germany
| | - Bernd Fiebich
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical Center, Freiburg, Germany
| | - Knut Biber
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical Center, Freiburg, Germany
| | - Dietrich van Calker
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical Center, Freiburg, Germany
- * E-mail:
| |
Collapse
|
13
|
Doupnik CA. RGS Redundancy and Implications in GPCR-GIRK Signaling. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 123:87-116. [PMID: 26422983 DOI: 10.1016/bs.irn.2015.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Regulators of G protein signaling (RGS proteins) are key components of GPCR complexes, interacting directly with G protein α-subunits to enhance their intrinsic GTPase activity. The functional consequence is an accelerated termination of G protein effectors including certain ion channels. RGS proteins have a profound impact on the membrane-delimited gating behavior of G-protein-activated inwardly rectifying K(+) (GIRK) channels as demonstrated in reconstitution assays and recent RGS knockout mice studies. Akin to GPCRs and G protein αβγ subunits, multiple RGS isoforms are expressed within single GIRK-expressing neurons, suggesting functional redundancy and/or specificity in GPCR-GIRK channel signaling. The extent and impact of RGS redundancy in neuronal GPCR-GIRK channel signaling is currently not fully appreciated; however, recent studies from RGS knockout mice are providing important new clues on the impact of individual endogenous RGS proteins and the extent of RGS functional redundancy. Incorporating "tools" such as engineered RGS-resistant Gαi/o subunits provide an important assessment method for determining the impact of all endogenous RGS proteins on a given GPCR response and an accounting benchmark to assess the impact of individual RGS knockouts on overall RGS redundancy within a given neuron. Elucidating the degree of regulation attributable to specific RGS proteins in GIRK channel function will aid in the assessment of individual RGS proteins as viable therapeutic targets in epilepsy, ataxia's, memory disorders, and a growing list of neurological disorders.
Collapse
Affiliation(s)
- Craig A Doupnik
- Department of Molecular Pharmacology & Physiology, University of South Florida College of Medicine, Tampa, Florida, USA.
| |
Collapse
|
14
|
Lamberts JT, Traynor JR. Opioid receptor interacting proteins and the control of opioid signaling. Curr Pharm Des 2014; 19:7333-47. [PMID: 23448476 DOI: 10.2174/138161281942140105160625] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 02/18/2013] [Indexed: 12/31/2022]
Abstract
Opioid receptors are seven-transmembrane domain receptors that couple to intracellular signaling molecules by activating heterotrimeric G proteins. However, the receptor and G protein do not function in isolation but their activities are modulated by several accessory and scaffolding proteins. Examples include arrestins, kinases, and regulators of G protein signaling proteins. Accessory proteins contribute to the observed potency and efficacy of agonists, but also to the direction of signaling and the phenomenon of biased agonism. This review will present current knowledge of such proteins and how they may provide targets for future drug design.
Collapse
Affiliation(s)
| | - John R Traynor
- Department of Pharmacology, University of Michigan Medical School, 1301 MSRB III, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5632, USA.
| |
Collapse
|
15
|
Wang Q, Terauchi A, Yee CH, Umemori H, Traynor JR. 5-HT1A receptor-mediated phosphorylation of extracellular signal-regulated kinases (ERK1/2) is modulated by regulator of G protein signaling protein 19. Cell Signal 2014; 26:1846-52. [PMID: 24793302 PMCID: PMC8019269 DOI: 10.1016/j.cellsig.2014.04.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 04/27/2014] [Indexed: 12/31/2022]
Abstract
The 5-HT1A receptor is a G protein coupled receptor (GPCR) that activates G proteins of the Gαi/o family. 5-HT1A receptors expressed in the raphe, hippocampus and prefrontal cortex are implicated in the control of mood and are targets for anti-depressant drugs. Regulators of G protein signaling (RGS) proteins are members of a large family that play important roles in signal transduction downstream of G protein coupled receptors (GPCRs). The main role of RGS proteins is to act as GTPase accelerating proteins (GAPs) to dampen or negatively regulate GPCR-mediated signaling. We have shown that a mouse expressing Gαi2 that is insensitive to all RGS protein GAP activity has an anti-depressant-like phenotype due to increased signaling of postsynaptic 5-HT1A receptors, thus implicating the 5-HT1A receptor-Gαi2 complex as an important target. Here we confirm that RGS proteins act as GAPs to regulate signaling to adenylate cyclase and the mitogen-activated protein kinase (MAPK) pathway downstream of the 5-HT1A receptor, using RGS-insensitive Gαi2 protein expressed in C6 cells. We go on to use short hairpin RNA (shRNA) to show that RGS19 is responsible for the GAP activity in C6 cells and also that RGS19 acts as a GAP for 5-HT1A receptor signaling in human neuroblastoma SH-SY5Y cells and primary hippocampal neurons. In addition, in both cell types the synergy between 5-HT1A receptor and the fibroblast growth factor receptor 1 in stimulating the MAPK pathway is enhanced following shRNA reduction of RGS19 expression. Thus RGS19 may be a viable new target for anti-depressant medications.
Collapse
Affiliation(s)
- Qin Wang
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Akiko Terauchi
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Christopher H Yee
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Hisashi Umemori
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - John R Traynor
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
16
|
Modulation of the cAMP response by Gαi and Gβγ: a computational study of G protein signaling in immune cells. Bull Math Biol 2014; 76:1352-75. [PMID: 24809944 DOI: 10.1007/s11538-014-9964-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 04/14/2014] [Indexed: 12/15/2022]
Abstract
Cyclic AMP is important for the resolution of inflammation, as it promotes anti-inflammatory signaling in several immune cell lines. In this paper, we present an immune cell specific model of the cAMP signaling cascade, paying close attention to the specific isoforms of adenylyl cyclase (AC) and phosphodiesterase that control cAMP production and degradation, respectively, in these cells. The model describes the role that G protein subunits, including Gαs, Gαi, and Gβγ, have in regulating cAMP production. Previously, Gαi activation has been shown to increase the level of cAMP in certain immune cell types. This increase in cAMP is thought to be mediated by βγ subunits which are released upon Gα activation and can directly stimulate specific isoforms of AC. We conduct numerical experiments in order to explore the mechanisms through which Gαi activation can increase cAMP production. An important conclusion of our analysis is that the relative abundance of different G protein subunits is an essential determinant of the cAMP profile in immune cells. In particular, our model predicts that limited availability of βγ subunits may both (i) enable immune cells to link inflammatory Gαi signaling to anti-inflammatory cAMP production thereby creating a balanced immune response to stimulation with low concentrations of PGE2, and (ii) prohibit robust anti-inflammatory cAMP signaling in response to stimulation with high concentrations of PGE2.
Collapse
|
17
|
Double suppression of the Gα protein activity by RGS proteins. Mol Cell 2014; 53:663-71. [PMID: 24560274 DOI: 10.1016/j.molcel.2014.01.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/20/2013] [Accepted: 01/16/2014] [Indexed: 11/23/2022]
Abstract
Regulator of G protein signaling (RGS) proteins accelerate GTP hydrolysis on G protein α subunits, restricting their activity downstream from G protein-coupled receptors. Here we identify Drosophila Double hit (Dhit) as a dual RGS regulator of Gαo. In addition to the conventional GTPase-activating action, Dhit possesses the guanine nucleotide dissociation inhibitor (GDI) activity, slowing the rate of GTP uptake by Gαo; both activities are mediated by the same RGS domain. These findings are recapitulated using homologous mammalian Gαo/i proteins and RGS19. Crystal structure and mutagenesis studies provide clues into the molecular mechanism for this unprecedented GDI activity. Physiologically, we confirm this activity in Drosophila asymmetric cell divisions and HEK293T cells. We show that the oncogenic Gαo mutant found in breast cancer escapes this GDI regulation. Our studies identify Dhit and its homologs as double-action regulators, inhibiting Gαo/i proteins both through suppression of their activation and acceleration of their inactivation through the single RGS domain.
Collapse
|
18
|
Membrane channels as integrators of G-protein-mediated signaling. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:521-31. [PMID: 24028827 DOI: 10.1016/j.bbamem.2013.08.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 08/14/2013] [Accepted: 08/21/2013] [Indexed: 01/03/2023]
Abstract
A variety of extracellular stimuli regulate cellular responses via membrane receptors. A well-known group of seven-transmembrane domain-containing proteins referred to as G protein-coupled receptors, directly couple with the intracellular GTP-binding proteins (G proteins) across cell membranes and trigger various cellular responses by regulating the activity of several enzymes as well as ion channels. Many specific populations of ion channels are directly controlled by G proteins; however, indirect modulation of some channels by G protein-dependent phosphorylation events and lipid metabolism is also observed. G protein-mediated diverse modifications affect the ion channel activities and spatio-temporally regulate membrane potentials as well as of intracellular Ca(2+) concentrations in both excitatory and non-excitatory cells. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.
Collapse
|
19
|
Shammas S, Rogers J, Hill S, Clarke J. Slow, reversible, coupled folding and binding of the spectrin tetramerization domain. Biophys J 2012; 103:2203-14. [PMID: 23200054 PMCID: PMC3512043 DOI: 10.1016/j.bpj.2012.10.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/02/2012] [Accepted: 10/10/2012] [Indexed: 11/16/2022] Open
Abstract
Many intrinsically disordered proteins (IDPs) are significantly unstructured under physiological conditions. A number of these IDPs have been shown to undergo coupled folding and binding reactions whereby they can gain structure upon association with an appropriate partner protein. In general, these systems display weaker binding affinities than do systems with association between completely structured domains, with micromolar K(d) values appearing typical. One such system is the association between α- and β-spectrin, where two partially structured, incomplete domains associate to form a fully structured, three-helix bundle, the spectrin tetramerization domain. Here, we use this model system to demonstrate a method for fitting association and dissociation kinetic traces where, using typical biophysical concentrations, the association reactions are expected to be highly reversible. We elucidate the unusually slow, two-state kinetics of spectrin assembly in solution. The advantages of studying kinetics in this regime include the potential for gaining equilibrium constants as well as rate constants, and for performing experiments with low protein concentrations. We suggest that this approach would be particularly appropriate for high-throughput mutational analysis of two-state reversible binding processes.
Collapse
Affiliation(s)
| | | | | | - J. Clarke
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
20
|
Liapis E, Sandiford S, Wang Q, Gaidosh G, Motti D, Levay K, Slepak VZ. Subcellular localization of regulator of G protein signaling RGS7 complex in neurons and transfected cells. J Neurochem 2012; 122:568-81. [PMID: 22640015 DOI: 10.1111/j.1471-4159.2012.07811.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The R7 family of regulators of G protein signaling (RGS) is involved in many functions of the nervous system. This family includes RGS6, RGS7, RGS9, and RGS11 gene products and is defined by the presence of the characteristic first found in Disheveled, Egl-10, Pleckstrin (DEP), DEP helical extension (DHEX), Gγ-like, and RGS domains. Herein, we examined the subcellular localization of RGS7, the most broadly expressed R7 member. Our immunofluorescence studies of retinal and dorsal root ganglion neurons showed that RGS7 concentrated at the plasma membrane of cell bodies, in structures resembling lamellipodia or filopodia along the processes, and at the dendritic tips. At the plasma membrane of dorsal root ganglia neurons, RGS7 co-localized with its known binding partners R7 RGS binding protein (R7BP), Gαo, and Gαq. More than 50% of total RGS7-specific immunofluorescence was present in the cytoplasm, primarily within numerous small puncta that did not co-localize with R7BP. No specific RGS7 or R7BP immunoreactivity was detected in the nuclei. In transfected cell lines, ectopic RGS7 had both diffuse cytosolic and punctate localization patterns. RGS7 also localized in centrosomes. Structure-function analysis showed that the punctate localization was mediated by the DEP/DHEX domains, and centrosomal localization was dependent on the DHEX domain.
Collapse
Affiliation(s)
- Evangelos Liapis
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Qin S, Pang X, Zhou HX. Automated prediction of protein association rate constants. Structure 2012; 19:1744-51. [PMID: 22153497 DOI: 10.1016/j.str.2011.10.015] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 10/12/2011] [Accepted: 10/26/2011] [Indexed: 02/06/2023]
Abstract
The association rate constants (k(a)) of proteins with other proteins or other macromolecular targets are a fundamental biophysical property. Observed rate constants span over ten orders of magnitude, from 1 to 10(10) M(-1)s(-1). Protein association can be rate limited either by the diffusional approach of the subunits to form a transient complex, with near-native separation and orientation but without short-range native interactions, or by the subsequent conformational rearrangement to form the native complex. Our transient-complex theory showed promise in predicting k(a) in the diffusion-limited regime. Here, we develop it into a web server called TransComp (http://pipe.sc.fsu.edu/transcomp/) and report on the server's accuracy and robustness based on applications to over 100 protein complexes. We expect this server to be a valuable tool for systems biology applications and for kinetic characterization of protein-protein and protein-nucleic acid association in general.
Collapse
Affiliation(s)
- Sanbo Qin
- Department of Physics and Institute of Molecular Biophysics, Tallahassee, FL 32306, USA
| | | | | |
Collapse
|
22
|
Gαi2 signaling: friend or foe in cardiac injury and heart failure? Naunyn Schmiedebergs Arch Pharmacol 2012; 385:443-53. [PMID: 22411356 DOI: 10.1007/s00210-011-0705-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 10/13/2011] [Indexed: 12/20/2022]
Abstract
Receptors coupled to G proteins have many effects on the heart. Enhanced signaling by Gα(s) and Gα(q) leads to cardiac injury and heart failure, while Gα(i2) signaling in cardiac myocytes can protect against ischemic injury and β-adrenergic-induced heart failure. We asked whether enhanced Gα(i2) signaling in mice could protect against heart failure using a point mutation in Gα(i2) (G184S), which prevents negative regulation by regulators of G protein signaling. Contrary to our expectation, it worsened effects of a genetic dilated cardiomyopathy (DCM) and catecholamine-induced cardiac injury. Gα (i2) (G184S/+) /DCM double heterozygote mice (TG9(+)Gα (i2) (G184S/+)) had substantially decreased survival compared to DCM animals. Furthermore, heart weight/body weight ratios (HW/BW) were significantly greater in TG9(+)Gα (i2) (G184S/+) mice as was expression of natriuretic peptide genes. Catecholamine injury in Gα (i2) (G184S/G184S) mutant mice produced markedly increased isoproterenol-induced fibrosis and collagen III gene expression vs WT mice. Cardiac fibroblasts from Gα (i2) (G184S/G184S) mice also showed a serum-dependent increase in proliferation and ERK phosphorylation, which were blocked by pertussis toxin and a mitogen-activated protein/extracellular signal-regulated kinase kinase inhibitor. Gα(i2) signaling in cardiac myocytes protects against ischemic injury but enhancing Gα(i2) signaling overall may have detrimental effects in heart failure, perhaps through actions on cardiac fibroblasts.
Collapse
|
23
|
Traynor J. μ-Opioid receptors and regulators of G protein signaling (RGS) proteins: from a symposium on new concepts in mu-opioid pharmacology. Drug Alcohol Depend 2012; 121:173-80. [PMID: 22129844 PMCID: PMC3288798 DOI: 10.1016/j.drugalcdep.2011.10.027] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 08/19/2011] [Accepted: 10/22/2011] [Indexed: 02/07/2023]
Abstract
Mu-opioid receptors (MOR) are the therapeutic target for opiate analgesic drugs and also mediate many of the side-effects and addiction liability of these compounds. MOR is a seven-transmembrane domain receptor that couples to intracellular signaling molecules by activating heterotrimeric G proteins. However, the receptor and G protein do not function in isolation but their activities are moderated by several accessory and scaffolding proteins. One important group of accessory proteins is the regulator of G protein signaling (RGS) protein family, a large family of more than thirty members which bind to the activated Gα subunit of the heterotrimeric G protein and serve to accelerate signal termination. This action negatively modulates receptor signaling and subsequent behavior. Several members of this family, in particular RGS4 and RGS9-2 have been demonstrated to influence MOR signaling and morphine-induced behaviors, including reward. Moreover, this interaction is not unidirectional since morphine has been demonstrated to modulate expression levels of RGS proteins, especially RGS4 and RGS9-2, in a tissue and time dependent manner. In this article, I will discuss our work on the regulation of MOR signaling by RGS protein activity in cultured cell systems in the context of other in vitro and behavioral studies. In addition I will consider implications of the bi-directional interaction between MOR receptor activation and RGS protein activity and whether RGS proteins might provide a suitable and novel target for medications to manage addictive behaviors.
Collapse
Affiliation(s)
- John Traynor
- Department of Pharmacology and Substance Abuse Research Center, University of Michigan, Ann Arbor, MI 48109-5632, United States.
| |
Collapse
|
24
|
Abstract
The involvement of reactive oxygen species (ROS) in morphine-induced analgesia and tolerance has been suggested, yet how and where ROS take part in these processes remains largely unknown. Here, we report a novel role for the superoxide-generating enzyme NOX1/NADPH oxidase in the regulation of analgesia and acute analgesic tolerance. In mice lacking Nox1 (Nox1(-/Y)), the magnitude of the analgesia induced by morphine was significantly augmented. More importantly, analgesic tolerance induced by repeated administration of morphine was significantly suppressed compared with that in the littermates, wild-type Nox1(+/Y). In a membrane fraction obtained from the dorsal spinal cord, no difference was observed in morphine-induced [(35)S]GTPγS-binding between the genotypes, whereas morphine-stimulated GTPase activity was significantly attenuated in Nox1(-/Y). At 2 h after morphine administration, a significant decline in [(35)S]GTPγS-binding was observed in Nox1(+/Y) but not in Nox1(-/Y). No difference in the maximal binding and affinity of [(3)H]DAMGO was observed between the genotypes, but the translocation of protein kinase C isoforms to the membrane fraction following morphine administration was almost completely abolished in Nox1(-/Y). Finally, the phosphorylation of RGS9-2 and formation of a complex by Gαi2/RGS9-2 with 14-3-3 found in morphine-treated Nox1(+/Y) were significantly suppressed in Nox1(-/Y). Together, these results suggest that NOX1/NADPH oxidase attenuates the pharmacological effects of opioids by regulating GTPase activity and the phosphorylation of RGS9-2 by protein kinase C. NOX1/NADPH oxidase may thus be a novel target for the development of adjuvant therapy to retain the beneficial effects of morphine.
Collapse
|
25
|
Segers I, Adriaenssens T, Smitz J. Expression Patterns of Poliovirus Receptor, Erythrocyte Protein Band 4.1-Like 3, Regulator of G-Protein Signaling 11, and Oxytocin Receptor in Mouse Ovarian Cells During Follicle Growth and Early Luteinization In Vitro and In Vivo1. Biol Reprod 2012; 86:1-11. [DOI: 10.1095/biolreprod.111.092510] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
26
|
Jovic A, Wade SM, Miyawaki A, Neubig RR, Linderman JJ, Takayama S. Hi-Fi transmission of periodic signals amid cell-to-cell variability. MOLECULAR BIOSYSTEMS 2011; 7:2238-44. [PMID: 21559542 PMCID: PMC4449260 DOI: 10.1039/c1mb05031a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since information in intracellular calcium signaling is often frequency encoded, it is physiologically critical and experimentally useful to have reliable, convenient, and non-invasive methods to entrain it. Because of cell-to-cell variability, synchronization of intracellular signaling across a population of genetically identical cells can still be difficult to achieve. For intrinsically oscillatory signaling pathways, such as calcium, upon continuous stimulation, cell-to-cell variability is manifested as differences in intracellular response frequencies. Even with entrainment using periodic stimulation, cell-to-cell variability is manifested as differences in the fidelity with which extracellular inputs are converted into intracellular signals. Here we present a combined theoretical and experimental analysis that shows how to appropriately balance stimulation strength, duration, and rest intervals to achieve entrainment with high fidelity stimulation-to-response ratios for G-protein-coupled receptor-triggered intracellular calcium oscillations. We further demonstrate that stimulation parameters that give high fidelity entrainment are significantly altered upon changes in intracellular enzyme levels and cell surface receptor levels. Theoretical analysis suggests that, at key threshold values, even small changes in these protein concentrations or activities can result in precipitous changes in entrainment fidelity, with implications for pathophysiology.
Collapse
Affiliation(s)
- Andreja Jovic
- Biomedical Engineering Department, University of Michigan, Gerstacker Building, 2200 Bonisteel Blvd, Ann Arbor, MI 48109
| | - Susan M. Wade
- Pharmacology Department, University of Michigan, MSRB III, 1150 W. Medical Center Drive, Ann Arbor, MI 48109
| | - Atsushi Miyawaki
- Laboratory for Cell Function and Dynamics, Advanced Technology Development Center, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | - Richard R. Neubig
- Pharmacology Department, University of Michigan, MSRB III, 1150 W. Medical Center Drive, Ann Arbor, MI 48109
| | - Jennifer J. Linderman
- Department of Chemical Engineering, University of Michigan, H.H. Dow Building, 2300 Hayward St., Ann Arbor, MI 48109 USA
| | - Shuichi Takayama
- Biomedical Engineering Department, University of Michigan, Gerstacker Building, 2200 Bonisteel Blvd, Ann Arbor, MI 48109
- Macromolecular Science and Engineering Department, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
27
|
Wang Q, Traynor JR. Opioid-induced down-regulation of RGS4: role of ubiquitination and implications for receptor cross-talk. J Biol Chem 2011; 286:7854-7864. [PMID: 21209077 PMCID: PMC3048672 DOI: 10.1074/jbc.m110.160911] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 11/29/2010] [Indexed: 01/05/2023] Open
Abstract
Regulator of G protein signaling protein 4 (RGS4) acts as a GTPase accelerating protein to modulate μ- and δ- opioid receptor (MOR and DOR, respectively) signaling. In turn, exposure to MOR agonists leads to changes in RGS4 at the mRNA and/or protein level. Here we have used human neuroblastoma SH-SY5Y cells that endogenously express MOR, DOR, and RGS4 to study opioid-mediated down-regulation of RGS4. Overnight treatment of SH-SY5Y cells with the MOR agonist DAMGO or the DOR agonist DPDPE decreased RGS4 protein by ∼60% accompanied by a profound loss of opioid receptors but with no change in RGS4 mRNA. The decrease in RGS4 protein was prevented by the pretreatment with pertussis toxin or the opioid antagonist naloxone. The agonist-induced down-regulation of RGS4 proteins was completely blocked by treatment with the proteasome inhibitors MG132 or lactacystin or high concentrations of leupeptin, indicating involvement of ubiquitin-proteasome and lysosomal degradation. Polyubiquitinated RGS4 protein was observed in the presence of MG132 or the specific proteasome inhibitor lactacystin and promoted by opioid agonist. The loss of opioid receptors was not prevented by MG132, demonstrating a different degradation pathway. RGS4 is a GTPase accelerating protein for both Gα(i/o) and Gα(q) proteins. After overnight treatment with DAMGO to reduce RGS4 protein, signaling at the Gα(i/o)-coupled DOR and the Gα(q)-coupled M(3) muscarinic receptor (M(3)R) was increased but not signaling of the α(2) adrenergic receptor or bradykinin BK(2) receptor, suggesting the development of cross-talk between the DOR and M(3)R involving RGS4.
Collapse
MESH Headings
- Acetylcysteine/analogs & derivatives
- Acetylcysteine/pharmacology
- Analgesics, Opioid/pharmacology
- Cell Line, Tumor
- Cysteine Proteinase Inhibitors/pharmacology
- Down-Regulation/drug effects
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Enkephalin, D-Penicillamine (2,5)-/pharmacology
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- HEK293 Cells
- Humans
- Leupeptins/pharmacology
- Naloxone/pharmacology
- Narcotic Antagonists/pharmacology
- Pertussis Toxin/pharmacology
- Proteasome Endopeptidase Complex/metabolism
- Proteasome Inhibitors
- RGS Proteins/biosynthesis
- Receptor, Muscarinic M3/metabolism
- Receptors, Adrenergic, alpha-2/metabolism
- Receptors, Bradykinin/metabolism
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/metabolism
- Signal Transduction/drug effects
- Time Factors
- Ubiquitination/drug effects
Collapse
Affiliation(s)
- Qin Wang
- From the Department of Pharmacology and
| | - John R Traynor
- From the Department of Pharmacology and; Substance Abuse Research Center, University of Michigan, Ann Arbor, Michigan 48109.
| |
Collapse
|
28
|
Sjögren B. Regulator of G protein signaling proteins as drug targets: current state and future possibilities. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2011; 62:315-47. [PMID: 21907914 DOI: 10.1016/b978-0-12-385952-5.00002-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Regulators of G protein signaling (RGS) proteins have emerged in the past two decades as novel drug targets in many areas of research. Their importance in regulating signaling via G protein-coupled receptors has become evident as numerous studies have been published on the structure and function of RGS proteins. A number of genetic models have also been developed, demonstrating the potential clinical importance of RGS proteins in various disease states, including central nervous system disorders, cardiovascular disease, diabetes, and several types of cancer. Apart from their classical mechanism of action as GTPase-activating proteins (GAPs), RGS proteins can also serve other noncanonical functions. This opens up a new approach to targeting RGS proteins in drug discovery as the view on the function of these proteins is constantly evolving. This chapter summarizes the latest development in RGS protein drug discovery with special emphasis on noncanonical functions and regulatory mechanisms of RGS protein expression. As more reports are being published on this group of proteins, it is becoming clear that modulation of GAP activity might not be the only way to therapeutically target RGS proteins.
Collapse
Affiliation(s)
- Benita Sjögren
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
29
|
Blazer LL, Roman DL, Chung A, Larsen MJ, Greedy BM, Husbands SM, Neubig RR. Reversible, allosteric small-molecule inhibitors of regulator of G protein signaling proteins. Mol Pharmacol 2010; 78:524-33. [PMID: 20571077 PMCID: PMC2939488 DOI: 10.1124/mol.110.065128] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 06/15/2010] [Indexed: 12/20/2022] Open
Abstract
Regulators of G protein signaling (RGS) proteins are potent negative modulators of G protein signaling and have been proposed as potential targets for small-molecule inhibitor development. We report a high-throughput time-resolved fluorescence resonance energy transfer screen to identify inhibitors of RGS4 and describe the first reversible small-molecule inhibitors of an RGS protein. Two closely related compounds, typified by CCG-63802 [((2E)-2-(1,3-benzothiazol-2-yl)-3-[9-methyl-2-(3-methylphenoxy)-4-oxo-4H-pyrido[1,2-a]pyrimidin-3-yl]prop-2-enenitrile)], inhibit the interaction between RGS4 and Galpha(o) with an IC(50) value in the low micromolar range. They show selectivity among RGS proteins with a potency order of RGS 4 > 19 = 16 > 8 >> 7. The compounds inhibit the GTPase accelerating protein activity of RGS4, and thermal stability studies demonstrate binding to the RGS but not to Galpha(o). On RGS4, they depend on an interaction with one or more cysteines in a pocket that has previously been identified as an allosteric site for RGS regulation by acidic phospholipids. Unlike previous small-molecule RGS inhibitors identified to date, these compounds retain substantial activity under reducing conditions and are fully reversible on the 10-min time scale. CCG-63802 and related analogs represent a useful step toward the development of chemical tools for the study of RGS physiology.
Collapse
Affiliation(s)
- Levi L Blazer
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Roman DL, Blazer LL, Monroy CA, Neubig RR. Allosteric inhibition of the regulator of G protein signaling-Galpha protein-protein interaction by CCG-4986. Mol Pharmacol 2010; 78:360-5. [PMID: 20530129 DOI: 10.1124/mol.109.063388] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Regulator of G protein signaling (RGS) proteins act to temporally modulate the activity of G protein subunits after G protein-coupled receptor activation. RGS proteins exert their effect by directly binding to the activated Galpha subunit of the G protein, catalyzing the accelerated hydrolysis of GTP and returning the G protein to its inactive, heterotrimeric form. In previous studies, we have sought to inhibit this GTPase-accelerating protein activity of the RGS protein by using small molecules. In this study, we investigated the mechanism of CCG-4986 [methyl-N-[(4-chlorophenyl)sulfonyl]-4-nitro-benzenesulfinimidoate], a previously reported small-molecule RGS inhibitor. Here, we find that CCG-4986 inhibits RGS4 function through the covalent modification of two spatially distinct cysteine residues on RGS4. We confirm that modification of Cys132, located near the RGS/Galpha interaction surface, modestly inhibits Galpha binding and GTPase acceleration. In addition, we report that modification of Cys148, a residue located on the opposite face of RGS4, can disrupt RGS/Galpha interaction through an allosteric mechanism that almost completely inhibits the Galpha-RGS protein-protein interaction. These findings demonstrate three important points: 1) the modification of the Cys148 allosteric site results in significant changes to the RGS interaction surface with Galpha; 2) this identifies a "hot spot" on RGS4 for binding of small molecules and triggering an allosteric change that may be significantly more effective than targeting the actual protein-protein interaction surface; and 3) because of the modification of a positional equivalent of Cys148 in RGS8 by CCG-4986, lack of inhibition indicates that RGS proteins exhibit fundamental differences in their responses to small-molecule ligands.
Collapse
Affiliation(s)
- David L Roman
- Division of Medicinal and Natural Products Chemistry, University of Iowa College of Pharmacy, Iowa City, Iowa 52242, USA.
| | | | | | | |
Collapse
|
31
|
Abstract
Regulator of G protein-signaling (RGS) proteins are a family of more than 30 intracellular proteins that negatively modulate intracellular signaling of receptors in the G protein-coupled receptor family. This family includes receptors for opioids, cannabinoids, and dopamine that mediate the acute effects of addictive drugs or behaviors and chronic effects leading to the development of addictive disease. Members of the RGS protein family, by negatively modulating receptor signaling, influence the intracellular processes that lead to addiction. In turn, addictive drugs control the expression levels of several RGS proteins. This review will consider the distribution and mechanisms of action of RGS proteins, particularly the R4 and R7 families that have been implicated in the actions of addictive drugs, how knowledge of these proteins is contributing to an understanding of addictive processes, and whether specific RGS proteins could provide targets for the development of medications to manage and/or treat addiction.
Collapse
Affiliation(s)
- John Traynor
- Department of Pharmacology and Substance Abuse Research Center, University of Michigan, Ann Arbor, Michigan 48109-5632, USA.
| |
Collapse
|
32
|
Regulators of G Protein Signaling Proteins as Targets for Drug Discovery. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 91:81-119. [DOI: 10.1016/s1877-1173(10)91004-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
33
|
Talbot JN, Roman DL, Clark MJ, Roof RA, Tesmer JJG, Neubig RR, Traynor JR. Differential modulation of mu-opioid receptor signaling to adenylyl cyclase by regulators of G protein signaling proteins 4 or 8 and 7 in permeabilised C6 cells is Galpha subtype dependent. J Neurochem 2009; 112:1026-34. [PMID: 20002516 DOI: 10.1111/j.1471-4159.2009.06519.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Regulators of G protein signaling (RGS) proteins act as GTPase-accelerating protein to negatively modulate G protein signaling and are defined by a conserved RGS domain with considerable amino acid diversity. To determine the effects of specific, purified RGS proteins on mu-opioid signaling, C6 cells stably expressing a mu-opioid receptor were rendered permeable to proteins by treatment with digitonin. Mu-opioid inhibition of forskolin-stimulated adenylyl cyclase by [D-Ala(2),N-Me-Phe(4),Gly-ol]-enkephalin (DAMGO), a mu-specific opioid peptide, remained fully intact in permeabilized cells. Purified RGS domain of RGS4 added to permeabilized cells resulted in a twofold loss in DAMGO potency but had no effect in cells expressing RGS-insensitive G proteins. The inhibitory effect of DAMGO was reduced to the same extent by purified RGS4 and RGS8. In contrast, the RGS domain of RGS7 had no effect and inhibited the action of RGS8 as a result of weak physical association with Galphai2 and minimal GTPase-accelerating protein activity in C6 cell membranes. These data suggest that differences in conserved RGS domains of specific RGS proteins contribute to differential regulation of opioid signaling to adenylyl cyclase and that a permeabilized cell model is useful for studying the effects of specific RGS proteins on aspects of G protein-coupled receptor signaling.
Collapse
Affiliation(s)
- Jeffery N Talbot
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Tesmer JJG. Structure and function of regulator of G protein signaling homology domains. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 86:75-113. [PMID: 20374714 DOI: 10.1016/s1877-1173(09)86004-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
All regulator of G protein signaling (RGS) proteins contain a conserved domain of approximately 130 amino acids that binds to activated heterotrimeric G protein α subunits (Gα) and accelerates their rate of GTP hydrolysis. Homologous domains are found in at least six other protein families, including a family of Rho guanine nucleotide exchange factors (RhoGEFs) and the G protein-coupled receptor kinases (GRKs). Although some of the RhoGEF and GRK RGS-like domains can also bind to activated Gα subunits, they do so in distinct ways and with much lower levels of GTPase activation. In other protein families, the domains have as of yet no obvious relationship to heterotrimeric G protein signaling. These RGS homology (RH) domains are now recognized as mediators of extraordinarily diverse protein-protein interactions. Through these interactions, they play roles that range from enzyme to molecular scaffold to signal transducing module. In this review, the atomic structures of RH domains from RGS proteins, Axins, RhoGEFs, and GRKs are compared in light of what is currently known about their functional roles.
Collapse
Affiliation(s)
- John J G Tesmer
- Department of Pharmacology, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109‐2216, USA
| |
Collapse
|
35
|
Slepak VZ. Structure, function, and localization of Gβ5-RGS complexes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 86:157-203. [PMID: 20374716 DOI: 10.1016/s1877-1173(09)86006-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Members of the R7 subfamily of regulator of G protein signaling (RGS) proteins (RGS6, 7, 9, and 11) exist as heterodimers with the G protein beta subunit Gβ5. These protein complexes are only found in neurons and are defined by the presence of three domains: DEP/DHEX, Gβ5/GGL, and RGS. This article summarizes published work in the following areas: (1) the functional significance of structural organization of Gβ5-R7 complexes, (2) regional distribution of Gβ5-R7 in the nervous system and regulation of R7 family expression, (3) subcellular localization of Gβ5-R7 complexes, and (4) novel binding partners of Gβ5-R7 proteins. The review points out some contradictions between observations made by different research groups and highlights the importance of using alternative experimental approaches to obtain conclusive information about Gβ5-R7 function in vivo.
Collapse
Affiliation(s)
- Vladlen Z Slepak
- Department of Molecular and Cellular Pharmacology and the Neuroscience Program, University of Miami School of Medicine, Miami, Florida 33136, USA
| |
Collapse
|
36
|
Roman DL, Ota S, Neubig RR. Polyplexed flow cytometry protein interaction assay: a novel high-throughput screening paradigm for RGS protein inhibitors. JOURNAL OF BIOMOLECULAR SCREENING 2009; 14:610-9. [PMID: 19531661 PMCID: PMC2908316 DOI: 10.1177/1087057109336590] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Intracellular signaling cascades are a series of regulated protein-protein interactions that may provide a number of targets for potential drug discovery. Here, the authors examine the interaction of regulators of G-protein signaling (RGS) proteins with the G-protein Galphao, using a flow cytometry protein interaction assay (FCPIA). FCPIA accurately measures nanomolar binding constants of this protein-protein interaction and has been used in high-throughput screening. This report focuses on 5 RGS proteins (4, 6, 7, 8, and 16). To increase the content of screens, the authors assessed high-throughput screening of these RGS proteins in multiplex, by establishing binding constants of each RGS with Galphao in isolation, and then in a multiplex format with 5 RGS proteins present. To use this methodology as a higher-content multiplex protein-protein interaction screen, they established Z-factor values for RGS proteins in multiplex of 0.73 to 0.92, indicating this method is suitable for screening using FCPIA. To increase throughput, they also compressed a set of 8000 compounds by combining 4 compounds in a single assay well. Subsequent deconvolution of the compounds mixtures verified the identification of active compounds at specific RGS targets in their mixtures using the polyplexed FCPIA method.
Collapse
Affiliation(s)
- David L Roman
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
37
|
Goldenstein BL, Nelson BW, Xu K, Luger EJ, Pribula JA, Wald JM, O'Shea LA, Weinshenker D, Charbeneau RA, Huang X, Neubig RR, Doze VA. Regulator of G protein signaling protein suppression of Galphao protein-mediated alpha2A adrenergic receptor inhibition of mouse hippocampal CA3 epileptiform activity. Mol Pharmacol 2009; 75:1222-30. [PMID: 19225179 DOI: 10.1124/mol.108.054296] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Activation of G protein-coupled alpha(2) adrenergic receptors (ARs) inhibits epileptiform activity in the hippocampal CA3 region. The specific mechanism underlying this action is unclear. This study investigated which subtype(s) of alpha(2)ARs and G proteins (Galpha(o) or Galpha(i)) are involved in this response using recordings of mouse hippocampal CA3 epileptiform bursts. Application of epinephrine (EPI) or norepinephrine (NE) reduced the frequency of bursts in a concentration-dependent manner: (-)EPI > (-)NE >>> (+)NE. To identify the alpha(2)AR subtype involved, equilibrium dissociation constants (pK(b)) were determined for the selective alphaAR antagonists atipamezole (8.79), rauwolscine (7.75), 2-(2,6-dimethoxyphenoxyethyl)aminomethyl-1,4-benzodioxane hydrochloride (WB-4101; 6.87), and prazosin (5.71). Calculated pK(b) values correlated best with affinities determined previously for the mouse alpha(2A)AR subtype (r = 0.98, slope = 1.07). Furthermore, the inhibitory effects of EPI were lost in hippocampal slices from alpha(2A)AR-but not alpha(2C)AR-knockout mice. Pretreatment with pertussis toxin also reduced the EPI-mediated inhibition of epileptiform bursts. Finally, using knock-in mice with point mutations that disrupt regulator of G protein signaling (RGS) binding to Galpha subunits to enhance signaling by that G protein, the EPI-mediated inhibition of bursts was significantly more potent in slices from RGS-insensitive Galpha(o)(G184S) heterozygous (Galpha(o)+/GS) mice compared with either Galpha(i2)(G184S) heterozygous (Galpha(i2)+/GS) or control mice (EC(50) = 2.5 versus 19 and 23 nM, respectively). Together, these findings indicate that the inhibitory effect of EPI on hippocampal CA3 epileptiform activity uses an alpha(2A)AR/Galpha(o) protein-mediated pathway under strong inhibitory control by RGS proteins. This suggests a possible role for RGS inhibitors or selective alpha(2A)AR agonists as a novel antiepileptic drug therapy.
Collapse
Affiliation(s)
- Brianna L Goldenstein
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Roof RA, Sobczyk-Kojiro K, Turbiak AJ, Roman DL, Pogozheva ID, Blazer LL, Neubig RR, Mosberg HI. Novel peptide ligands of RGS4 from a focused one-bead, one-compound library. Chem Biol Drug Des 2008; 72:111-9. [PMID: 18637987 DOI: 10.1111/j.1747-0285.2008.00687.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Regulators of G protein signaling accelerate GTP hydrolysis by G alpha subunits and profoundly inhibit signaling by G protein-coupled receptors. The distinct expression patterns and pathophysiologic regulation of regulators of G protein signaling proteins suggest that inhibitors may have therapeutic potential. We previously reported the design, mechanistic evaluation, and structure-activity relationships of a disulfide-containing cyclic peptide inhibitor of RGS4, YJ34 (Ac-Val-Lys-c[Cys-Thr-Gly-Ile-Cys]-Glu-NH(2), S-S) (Roof et al., Chem Biol Drug Des, 67, 2006, 266). Using a focused one-bead, one-compound peptide library that contains features known to be necessary for the activity of YJ34, we now identify peptides that bind to RGS4. Six peptides showed confirmed binding to RGS4 by flow cytometry. Two analogs of peptide 2 (Gly-Thr-c[Cys-Phe-Gly-Thr-Cys]-Trp-NH(2), S-S with a free or acetylated N-terminus) inhibited RGS4-stimulated G alpha(o) GTPase activity at 25-50 microM. They selectively inhibit RGS4 but not RGS7, RGS16, and RGS19. Their inhibition of RGS4 does not depend on cysteine-modification of RGS4, as they do not lose activity when all cysteines are removed from RGS4. Peptide 2 has been modeled to fit in the same binding pocket predicted for YJ34 but in the reverse orientation.
Collapse
Affiliation(s)
- Rebecca A Roof
- Department of Pharmacology, University of Michigan, 1301 MSRB III/SPC5632, Ann Arbor, MI 48103, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Pei J, Dishinger JF, Roman DL, Rungwanitcha C, Neubig RR, Kennedy RT. Microfabricated channel array electrophoresis for characterization and screening of enzymes using RGS-G protein interactions as a model system. Anal Chem 2008; 80:5225-31. [PMID: 18465881 DOI: 10.1021/ac800553g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A microfluidic chip consisting of parallel channels designed for rapid electrophoretic enzyme assays was developed. Radial arrangement of channels and a common waste channel allowed chips with 16 and 36 electrophoresis units to be fabricated on a 7.62 x 7.62 cm(2) glass substrate. Fluorescence detection was achieved using a Xe arc lamp source and commercial charge-coupled device (CCD) camera to image migrating analyte zones in individual channels. Chip performance was evaluated by performing electrophoretic assays for G protein GTPase activity on chip using BODIPY-GTP as enzyme substrate. A 16-channel design proved to be useful in extracting kinetic information by allowing serial electrophoretic assays from 16 different enzyme reaction mixtures at 20 s intervals in parallel. This system was used to rapidly determine enzyme concentrations, optimal enzymatic reaction conditions, and Michaelis-Menten constants. A chip with 36 channels was used for screening for modulators of the G protein-RGS protein interaction by assaying the amount of product formed in enzyme reaction mixtures that contained test compounds. Thirty-six electrophoretic assays were performed in 30 s suggesting the potential throughput up to 4320 assays/h with appropriate sample handling procedures. Both designs showed excellent reproducibility of peak migration time and peak area. Relative standard deviations of normalized peak area of enzymatic product BODIPY-GDP were 5% and 11%, respectively, in the 16- and 36-channel designs.
Collapse
Affiliation(s)
- Jian Pei
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | | | | | | | | | | |
Collapse
|
40
|
Morgans CW, Wensel TG, Brown RL, Perez-Leon JA, Bearnot B, Duvoisin RM. Gbeta5-RGS complexes co-localize with mGluR6 in retinal ON-bipolar cells. Eur J Neurosci 2007; 26:2899-905. [PMID: 18001285 PMCID: PMC2435197 DOI: 10.1111/j.1460-9568.2007.05867.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The time course of G-protein-coupled responses is largely determined by the kinetics of GTP hydrolysis by the G protein alpha subunit, which is accelerated by interaction with regulator of G-protein signaling (RGS) proteins. Light responses of ON-bipolar cells of the vertebrate retina require rapid inactivation of the G protein Galphao, which is activated in the dark by metabotropic glutamate receptor, mGluR6, in their dendritic tips. It is not yet known, however, which RGS protein(s) might be responsible for rapid inactivation kinetics. By immunofluorescence and co-immunoprecipitation, we have identified complexes of the Galphao-selective RGS proteins RGS7 and RGS11, with their obligate binding partner, Gbeta5, that are localized to the dendritic tips of murine rod and cone ON-bipolar cells, along with mGluR6. Experiments using pre- and post-synaptic markers, and a dissociated bipolar cell preparation, clearly identified the location of these complexes as the ON-bipolar cell dendritic tips and not the adjacent photoreceptor terminals or horizontal cell dendrites. In mice lacking mGluR6, the distribution of RGS11, RGS7 and Gbeta5 shifts away from the dendritic tips, implying a functional relationship with mGluR6. The precise co-localization of Gbeta5-RGS7 and Gbeta5-RGS11 with mGluR6, and the dependence of localization on the presence of mGluR6, suggests that Gbeta5-RGS7 and Gbeta5-RGS11 function specifically in the mGluR6 signal transduction pathway, where they may stimulate the GTPase activity of Galphao, thus accelerating the ON-bipolar cell light response, in a manner analogous to the acceleration of photoreceptor light responses by the Gbeta5-RGS9-1 complex.
Collapse
Affiliation(s)
- Catherine W Morgans
- Neurological Sciences Institute, Oregon Health and Science University, Beaverton, OR 97006, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Li L, Shen G, Zhang ZG, Wang YL, Thompson JK, Wang P. Canonical heterotrimeric G proteins regulating mating and virulence of Cryptococcus neoformans. Mol Biol Cell 2007; 18:4201-9. [PMID: 17699592 PMCID: PMC2043552 DOI: 10.1091/mbc.e07-02-0136] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Perturbation of pheromone signaling modulates not only mating but also virulence in Cryptococcus neoformans, an opportunistic human pathogen known to encode three Galpha, one Gbeta, and two Ggamma subunit proteins. We have found that Galphas Gpa2 and Gpa3 exhibit shared and distinct roles in regulating pheromone responses and mating. Gpa2 interacted with the pheromone receptor homolog Ste3alpha, Gbeta subunit Gpb1, and RGS protein Crg1. Crg1 also exhibited in vitro GAP activity toward Gpa2. These findings suggest that Gpa2 regulates mating through a conserved signaling mechanism. Moreover, we found that Ggammas Gpg1 and Gpg2 both regulate pheromone responses and mating. gpg1 mutants were attenuated in mating, and gpg2 mutants were sterile. Finally, although gpa2, gpa3, gpg1, gpg2, and gpg1 gpg2 mutants were fully virulent, gpa2 gpa3 mutants were attenuated for virulence in a murine model. Our study reveals a conserved but distinct signaling mechanism by two Galpha, one Gbeta, and two Ggamma proteins for pheromone responses, mating, and virulence in Cryptococcus neoformans, and it also reiterates that the link between mating and virulence is not due to mating per se but rather to certain mating-pathway components that encode additional functions promoting virulence.
Collapse
Affiliation(s)
- Lie Li
- Departments of *Pediatrics and
- The Research Institute for Children, Louisiana State University Health Sciences Center, New Orleans, LA 70118
| | - Gui Shen
- Departments of *Pediatrics and
- The Research Institute for Children, Louisiana State University Health Sciences Center, New Orleans, LA 70118
| | - Zheng-Guang Zhang
- The Research Institute for Children, Louisiana State University Health Sciences Center, New Orleans, LA 70118
| | - Yan-Li Wang
- The Research Institute for Children, Louisiana State University Health Sciences Center, New Orleans, LA 70118
| | - Jill K. Thompson
- The Research Institute for Children, Louisiana State University Health Sciences Center, New Orleans, LA 70118
| | - Ping Wang
- Departments of *Pediatrics and
- Microbiology, Immunology, and Parasitology, and
- The Research Institute for Children, Louisiana State University Health Sciences Center, New Orleans, LA 70118
| |
Collapse
|
42
|
Kinzer-Ursem TL, Linderman JJ. Both ligand- and cell-specific parameters control ligand agonism in a kinetic model of g protein-coupled receptor signaling. PLoS Comput Biol 2007; 3:e6. [PMID: 17222056 PMCID: PMC1769407 DOI: 10.1371/journal.pcbi.0030006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Accepted: 11/30/2006] [Indexed: 12/17/2022] Open
Abstract
G protein–coupled receptors (GPCRs) exist in multiple dynamic states (e.g., ligand-bound, inactive, G protein–coupled) that influence G protein activation and ultimately response generation. In quantitative models of GPCR signaling that incorporate these varied states, parameter values are often uncharacterized or varied over large ranges, making identification of important parameters and signaling outcomes difficult to intuit. Here we identify the ligand- and cell-specific parameters that are important determinants of cell-response behavior in a dynamic model of GPCR signaling using parameter variation and sensitivity analysis. The character of response (i.e., positive/neutral/inverse agonism) is, not surprisingly, significantly influenced by a ligand's ability to bias the receptor into an active conformation. We also find that several cell-specific parameters, including the ratio of active to inactive receptor species, the rate constant for G protein activation, and expression levels of receptors and G proteins also dramatically influence agonism. Expressing either receptor or G protein in numbers several fold above or below endogenous levels may result in system behavior inconsistent with that measured in endogenous systems. Finally, small variations in cell-specific parameters identified by sensitivity analysis as significant determinants of response behavior are found to change ligand-induced responses from positive to negative, a phenomenon termed protean agonism. Our findings offer an explanation for protean agonism reported in β2--adrenergic and α2A-adrenergic receptor systems. G protein–coupled receptors (GPCRs) are transmembrane proteins involved in physiological functions ranging from vasodilation and immune response to memory. The binding of both endogenous ligands (e.g., hormones, neurotransmitters) and exogenous ligands (e.g., pharmaceuticals) to these receptors initiates intracellular events that ultimately lead to cell responses. We describe a dynamic model for G protein activation, an immediate outcome of GPCR signaling, and use it together with efficient parameter variation and sensitivity analysis techniques to identify the key cell- and ligand-specific parameters that influence G protein activation. Our results show that although ligand-specific parameters do strongly influence cell response (either causing increases or decreases in G protein activation), cellular parameters may also dictate the magnitude and direction of G protein activation. We apply our findings to describe how protean agonism, a phenomenon in which the same ligand may induce both positive and negative responses, may result from changes in cell-specific parameters. These findings may be used to understand the molecular basis of different responses of cell types and tissues to pharmacological treatment. In addition, these methods may be applied generally to models of cellular signaling and will help guide experimental resources toward further characterization of the key parameters in these networks.
Collapse
Affiliation(s)
- Tamara L Kinzer-Ursem
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jennifer J Linderman
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
43
|
Sprang SR, Chen Z, Du X. Structural basis of effector regulation and signal termination in heterotrimeric Galpha proteins. ADVANCES IN PROTEIN CHEMISTRY 2007; 74:1-65. [PMID: 17854654 DOI: 10.1016/s0065-3233(07)74001-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This chapter addresses, from a molecular structural perspective gained from examination of x-ray crystallographic and biochemical data, the mechanisms by which GTP-bound Galpha subunits of heterotrimeric G proteins recognize and regulate effectors. The mechanism of GTP hydrolysis by Galpha and rate acceleration by GAPs are also considered. The effector recognition site in all Galpha homologues is formed almost entirely of the residues extending from the C-terminal half of alpha2 (Switch II) together with the alpha3 helix and its junction with the beta5 strand. Effector binding does not induce substantial changes in the structure of Galpha*GTP. Effectors are structurally diverse. Different effectors may recognize distinct subsets of effector-binding residues of the same Galpha protein. Specificity may also be conferred by differences in the main chain conformation of effector-binding regions of Galpha subunits. Several Galpha regulatory mechanisms are operative. In the regulation of GMP phospodiesterase, Galphat sequesters an inhibitory subunit. Galphas is an allosteric activator and inhibitor of adenylyl cyclase, and Galphai is an allosteric inhibitor. Galphaq does not appear to regulate GRK, but is rather sequestered by it. GTP hydrolysis terminates the signaling state of Galpha. The binding energy of GTP that is used to stabilize the Galpha:effector complex is dissipated in this reaction. Chemical steps of GTP hydrolysis, specifically, formation of a dissociative transition state, is rate limiting in Ras, a model G protein GTPase, even in the presence of a GAP; however, the energy of enzyme reorganization to produce a catalytically active conformation appears to be substantial. It is possible that the collapse of the switch regions, associated with Galpha deactivation, also encounters a kinetic barrier, and is coupled to product (Pi) release or an event preceding formation of the GDP*Pi complex. Evidence for a catalytic intermediate, possibly metaphosphate, is discussed. Galpha GAPs, whether exogenous proteins or effector-linked domains, bind to a discrete locus of Galpha that is composed of Switch I and the N-terminus of Switch II. This site is immediately adjacent to, but does not substantially overlap, the Galpha effector binding site. Interactions of effectors and exogenous GAPs with Galpha proteins can be synergistic or antagonistic, mediated by allosteric interactions among the three molecules. Unlike GAPs for small GTPases, Galpha GAPs supply no catalytic residues, but rather appear to reduce the activation energy for catalytic activation of the Galpha catalytic site.
Collapse
Affiliation(s)
- Stephen R Sprang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | |
Collapse
|
44
|
Roman DL, Talbot JN, Roof RA, Sunahara RK, Traynor JR, Neubig RR. Identification of small-molecule inhibitors of RGS4 using a high-throughput flow cytometry protein interaction assay. Mol Pharmacol 2006; 71:169-75. [PMID: 17012620 DOI: 10.1124/mol.106.028670] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Regulators of G-protein signaling (RGS) proteins are important components of signal transduction pathways initiated through G-protein-coupled receptors (GPCRs). RGS proteins accelerate the intrinsic GTPase activity of G-protein alpha-subunits (Galpha) and thus shorten the time course and reduce the magnitude of G-protein alpha- and betagamma-subunit signaling. Inhibiting RGS action has been proposed as a means to enhance the activity and specificity of GPCR agonist drugs, but pharmacological targeting of protein-protein interactions has typically been difficult. The aim of this project was to identify inhibitors of RGS4. Using a Luminex 96-well plate bead analyzer and a novel flow-cytometric protein interaction assay to assess Galpha-RGS interactions in a high-throughput screen, we identified the first small-molecule inhibitor of an RGS protein. Of 3028 compounds screened, 1, methyl N-[(4-chlorophenyl)sulfonyl]-4-nitrobenzenesulfinimidoate (CCG-4986), inhibited RGS4/Galpha(o) binding with 3 to 5 muM potency. It binds to RGS4, inhibits RGS4 stimulation of Galpha(o) GTPase activity in vitro, and prevents RGS4 regulation of mu-opioid-inhibited adenylyl cyclase activity in permeabilized cells. Furthermore, CCG-4986 is selective for RGS4 and does not inhibit RGS8. Thus, we demonstrate the feasibility of targeting RGS/Galpha protein-protein interactions with small molecules as a novel means to modulate GPCR-mediated signaling processes.
Collapse
Affiliation(s)
- David L Roman
- Department of Pharmacology, University of Michigan Medical School, 1150 W. Medical Center Drive, 1303 MSRB III, Ann Arbor, MI 41809, USA
| | | | | | | | | | | |
Collapse
|
45
|
Huang X, Fu Y, Charbeneau RA, Saunders TL, Taylor DK, Hankenson KD, Russell MW, D'Alecy LG, Neubig RR. Pleiotropic phenotype of a genomic knock-in of an RGS-insensitive G184S Gnai2 allele. Mol Cell Biol 2006; 26:6870-9. [PMID: 16943428 PMCID: PMC1592866 DOI: 10.1128/mcb.00314-06] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Signal transduction via guanine nucleotide binding proteins (G proteins) is involved in cardiovascular, neural, endocrine, and immune cell function. Regulators of G protein signaling (RGS proteins) speed the turn-off of G protein signals and inhibit signal transduction, but the in vivo roles of RGS proteins remain poorly defined. To overcome the redundancy of RGS functions and reveal the total contribution of RGS regulation at the Galpha(i2) subunit, we prepared a genomic knock-in of the RGS-insensitive G184S Gnai2 allele. The Galpha(i2)(G184S) knock-in mice show a dramatic and complex phenotype affecting multiple organ systems (heart, myeloid, skeletal, and central nervous system). Both homozygotes and heterozygotes demonstrate reduced viability and decreased body weight. Other phenotypes include shortened long bones, a markedly enlarged spleen, elevated neutrophil counts, an enlarged heart, and behavioral hyperactivity. Heterozygous Galpha(i2)(+/G184S) mice show some but not all of these abnormalities. Thus, loss of RGS actions at Galpha(i2) produces a dramatic and pleiotropic phenotype which is more evident than the phenotype seen for individual RGS protein knockouts.
Collapse
Affiliation(s)
- Xinyan Huang
- Department of Pharmacology, University of Michigan, 1301 MSRB III, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Roof RA, Jin Y, Roman DL, Sunahara RK, Ishii M, Mosberg HI, Neubig RR. Mechanism of action and structural requirements of constrained peptide inhibitors of RGS proteins. Chem Biol Drug Des 2006; 67:266-74. [PMID: 16629824 DOI: 10.1111/j.1747-0285.2006.00373.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Regulators of G-protein signaling (RGS) accelerate guanine triphosphate hydrolysis by Galpha-subunits and profoundly inhibit signaling by G protein-coupled receptors. The distinct expression patterns and pathophysiologic regulation of RGS proteins suggest that inhibitors may have therapeutic potential. We previously reported the design of a constrained peptide inhibitor of RGS4 (1: Ac-Val-Lys-[Cys-Thr-Gly-Ile-Cys]-Glu-NH2, S-S) based on the structure of the Galphai switch 1 region but its mechanism of action was not established. In the present study, we show that 1 inhibits RGS4 by mimicking and competing for binding with the switch 1 region of Galphai and that peptide 1 shows selectivity for RGS4 and RGS8 versus RGS7. Structure-activity relationships of analogs related to 1 are described that illustrate key features for RGS inhibition. Finally, we demonstrate activity of the methylene dithioether-bridged peptide inhibitor, 2, to modulate muscarinic receptor-regulated potassium currents in atrial myocytes. These data support the proposed mechanism of action of peptide RGS inhibitors, demonstrate their action in native cells, and provide a starting point for the design of RGS inhibitor drugs.
Collapse
Affiliation(s)
- Rebecca A Roof
- Department of Pharmacology, 1150 W. Medical Center Dr, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Mannoury la Cour C, El Mestikawy S, Hanoun N, Hamon M, Lanfumey L. Regional differences in the coupling of 5-hydroxytryptamine-1A receptors to G proteins in the rat brain. Mol Pharmacol 2006; 70:1013-21. [PMID: 16772521 DOI: 10.1124/mol.106.022756] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Numerous data showed that 5-hydroxytryptamine-1A (5-HT1A) receptors couple to Galpha(o)/alpha(i) proteins for signal transduction. However, the alpha subunit isoforms really involved in 5-HT1A receptor coupling in brain remain to be identified. Moreover, regional differences in the functional characteristics of brain 5-HT1A receptors have been evidenced repeatedly. Because such differences could be due to variations in G proteins interacting with the same receptor, relevant approaches were used for identifying alpha subunits physically coupled to 5-HT1A receptors in different regions of the rat brain. Using immunoaffinity chromatography coupled to Western blot detection, 5-HT1A receptors were found to interact equally with Galpha(o) and Galpha(i3) in the cerebral cortex, mainly with Galpha(o) and weakly with Galpha(i3) in the hippocampus and exclusively with Galpha(i3) in the anterior raphe area. In the hypothalamus, 5-HT(1A) receptors seemed to be coupled to the latter two G proteins plus Galpha(i1) and Galpha(z). Complementary experiments based on an antibody capture technique coupled to both classic radioactivity and scintillation proximity assay detections showed that hippocampal 5-HT1A receptor stimulation induced 5'-O-(3-[35S]thio)triphosphate binding to immunoprecipitates with Galpha(i3) and Galpha(o) antisera. In the anterior raphe, such 5-HT1A receptor-mediated effect was obtained with Galpha(i3) antiserum only. These results demonstrated the existence of regional differences in the coupling of 5-HT1A receptors to G proteins in the rat brain. In the anterior raphe, 5-HT1A receptors seem to interact specifically with Galpha(i3), whereas in the hippocampus, they are mainly coupled to Galpha(o) proteins. Such a disparity in G-protein coupling might explain regional differences in adaptive regulations of brain 5-HT1A receptors.
Collapse
Affiliation(s)
- Clotilde Mannoury la Cour
- Unité Mixte de Recherche 677, Institut National de la Santé et de la Recherche Médicale (INSERM)/Université Pierre et Marie Curie, Institut Fédératif 70 des Neurosciences, Facultéde Médecine Pierre et Marie Curie, Paris, France
| | | | | | | | | |
Collapse
|
48
|
Appleton CTG, James CG, Beier F. Regulator of G-protein signaling (RGS) proteins differentially control chondrocyte differentiation. J Cell Physiol 2006; 207:735-45. [PMID: 16489565 DOI: 10.1002/jcp.20615] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Control of chondrocyte differentiation is attained, in part, through G-protein signaling, but the functions of the RGS family of genes, well known to control G-protein signaling at the Galpha subunit, have not been studied extensively in chondrogenesis. Recently, we have identified the Rgs2 gene as a regulator of chondrocyte differentiation. Here we extend these studies to additional Rgs genes. We demonstrate that the Rgs4, Rgs5, Rgs7, and Rgs10 genes are differentially regulated during chondrogenic differentiation in vitro and in vivo. To investigate the roles of RGS proteins during cartilage development, we overexpressed RGS4, RGS5, RGS7, and RGS10 in the chondrogenic cell line ATDC5. We found unique and overlapping effects of individual Rgs genes on numerous parameters of chondrocyte differentiation. In particular, RGS5, RGS7, and RGS10 promote and RGS4 inhibits chondrogenic differentiation. The identification of Rgs genes as novel regulators of chondrogenesis will contribute to a better understanding of both normal cartilage development and the etiology of chondrodysplasias and osteoarthritis.
Collapse
Affiliation(s)
- C Thomas G Appleton
- CIHR Group in Skeletal Development and Remodeling, Ontario, London, Ontario, Canada
| | | | | |
Collapse
|
49
|
Abstract
There is accumulating evidence that regulators of G-protein signalling (RGS) can have roles in signal transduction that are not related to GAP activity. Furthermore, RGSs have much more selective effects in vivo than might be anticipated from their behaviour in in vitro assays. I discuss the molecular mechanisms by which these phenomena might be explained including specific interactions between the RGS and G-protein coupled receptor, G-protein and effector.
Collapse
Affiliation(s)
- Andrew Tinker
- BHF Laboratories and Department of Medicine, University College London, 5 University Street, London WC1E 6JJ, UK.
| |
Collapse
|
50
|
Abstract
Regulators of G-protein signalling (RGS) proteins are a large and diverse family initially identified as GTPase activating proteins (GAPs) of heterotrimeric G-protein Galpha-subunits. At least some can also influence Galpha activity through either effector antagonism or by acting as guanine nucleotide dissociation inhibitors (GDIs). As our understanding of RGS protein structure and function has developed, so has the realisation that they play roles beyond G-protein regulation. Such diversity of function is enabled by the variety of RGS protein structure and their ability to interact with other cellular molecules including phospholipids, receptors, effectors and scaffolds. The activity, sub-cellular distribution and expression levels of RGS proteins are dynamically regulated, providing a layer of complexity that has yet to be fully elucidated.
Collapse
Affiliation(s)
- Gary B Willars
- Department of Cell Physiology and Pharmacology, University of Leicester, University Road, Leicester LE1 9HN, UK.
| |
Collapse
|