1
|
Gonzalez M, Clayton S, Wauson E, Christian D, Tran QK. Promotion of nitric oxide production: mechanisms, strategies, and possibilities. Front Physiol 2025; 16:1545044. [PMID: 39917079 PMCID: PMC11799299 DOI: 10.3389/fphys.2025.1545044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 01/07/2025] [Indexed: 02/09/2025] Open
Abstract
The discovery of nitric oxide (NO) and the role of endothelial cells (ECs) in its production has revolutionized medicine. NO can be produced by isoforms of NO synthases (NOS), including the neuronal (nNOS), inducible (iNOS), and endothelial isoforms (eNOS), and via the non-classical nitrate-nitrite-NO pathway. In particular, endothelium-derived NO, produced by eNOS, is essential for cardiovascular health. Endothelium-derived NO activates soluble guanylate cyclase (sGC) in vascular smooth muscle cells (VSMCs), elevating cyclic GMP (cGMP), causing vasodilation. Over the past four decades, the importance of this pathway in cardiovascular health has fueled the search for strategies to enhance NO bioavailability and/or preserve the outcomes of NO's actions. Currently approved approaches operate in three directions: 1) providing exogenous NO, 2) promoting sGC activity, and 3) preventing degradation of cGMP by inhibiting phosphodiesterase 5 activity. Despite clear benefits, these approaches face challenges such as the development of nitrate tolerance and endothelial dysfunction. This highlights the need for sustainable options that promote endogenous NO production. This review will focus on strategies to promote endogenous NO production. A detailed review of the mechanisms regulating eNOS activity will be first provided, followed by a review of strategies to promote endogenous NO production based on the levels of available preclinical and clinical evidence, and perspectives on future possibilities.
Collapse
Affiliation(s)
| | | | | | | | - Quang-Kim Tran
- Department of Physiology and Pharmacology, Des Moines University Medicine and Health Sciences, West Des Moines, IA, United States
| |
Collapse
|
2
|
Villadangos L, Serrador JM. Subcellular Localization Guides eNOS Function. Int J Mol Sci 2024; 25:13402. [PMID: 39769167 PMCID: PMC11678294 DOI: 10.3390/ijms252413402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Nitric oxide synthases (NOS) are enzymes responsible for the cellular production of nitric oxide (NO), a highly reactive signaling molecule involved in important physiological and pathological processes. Given its remarkable capacity to diffuse across membranes, NO cannot be stored inside cells and thus requires multiple controlling mechanisms to regulate its biological functions. In particular, the regulation of endothelial nitric oxide synthase (eNOS) activity has been shown to be crucial in vascular homeostasis, primarily affecting cardiovascular disease and other pathophysiological processes of importance for human health. Among other factors, the subcellular localization of eNOS plays an important role in regulating its enzymatic activity and the bioavailability of NO. The aim of this review is to summarize pioneering studies and more recent publications, unveiling some of the factors that influence the subcellular compartmentalization of eNOS and discussing their functional implications in health and disease.
Collapse
Affiliation(s)
| | - Juan M. Serrador
- Interactions with the Environment Program, Immune System Development and Function Unit, Centro de Biología Molecular Severo Ochoa (CBM), Consejo Superior de Investigaciones Científicas (CSIC)—Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|
3
|
Seth D, Stomberski CT, McLaughlin PJ, Premont RT, Lundberg K, Stamler JS. Comparison of the Nitric Oxide Synthase Interactomes and S-Nitroso-Proteomes: Furthering the Case for Enzymatic S-Nitrosylation. Antioxid Redox Signal 2023; 39:621-634. [PMID: 37053107 PMCID: PMC10619892 DOI: 10.1089/ars.2022.0199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/13/2023] [Accepted: 04/08/2023] [Indexed: 04/14/2023]
Abstract
Aims: S-nitrosylation of proteins is the main mechanism through which nitric oxide (NO) regulates cellular function and likely represents the archetype redox-based signaling system across aerobic and anaerobic organisms. How NO generated by different nitric oxide synthase (NOS) isoforms leads to specificity of S-nitrosylation remains incompletely understood. This study aimed to identify proteins interacting with, and whose S-nitrosylation is mediated by, human NOS isoforms in the same cellular system, thereby illuminating the contribution of individual NOSs to specificity. Results: Of the hundreds of proteins interacting with each NOS, many were also S-nitrosylated. However, a large proportion of S-nitrosylated proteins (SNO-proteins) did not associate with NOS. Moreover, most NOS interactors and SNO-proteins were unique to each isoform. The amount of NO produced by each NOS isoform was unrelated to the numbers of SNO-proteins. Thus, NOSs promoted S-nitrosylation of largely distinct sets of target proteins. Different signaling pathways were enriched downstream of each NOS. Innovation and Conclusion: The interactomes and SNOomes of individual NOS isoforms were largely distinct. Only a small fraction of SNO-proteins interacted with their respective NOS. Amounts of S-nitrosylation were unrelated to the amount of NO generated by NOSs. These data argue against free diffusion of NO or NOS interactions as being necessary or sufficient for S-nitrosylation and favor roles for additional enzymes and/or regulatory elements in imparting SNO-protein specificity. Antioxid. Redox Signal. 39, 621-634.
Collapse
Affiliation(s)
- Divya Seth
- Department of Medicine, Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Colin T. Stomberski
- Department of Medicine, Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Precious J. McLaughlin
- Department of Medicine, Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Richard T. Premont
- Department of Medicine, Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Kathleen Lundberg
- Center for Proteomics and Bioinformatics, Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Jonathan S. Stamler
- Department of Medicine, Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| |
Collapse
|
4
|
Hsu SC, Wu NP, Lu YC, Ma YH. Laminin Receptor-Mediated Nanoparticle Uptake by Tumor Cells: Interplay of Epigallocatechin Gallate and Magnetic Force at Nano–Bio Interface. Pharmaceutics 2022; 14:pharmaceutics14081523. [PMID: 35893779 PMCID: PMC9330565 DOI: 10.3390/pharmaceutics14081523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
Epigallocatechin gallate (EGCG), a major tea catechin, enhances cellular uptake of magnetic nanoparticles (MNPs), but the mechanism remains unclear. Since EGCG may interact with the 67-kDa laminin receptor (67LR) and epidermal growth factor receptor (EGFR), we investigate whether a receptor and its downstream signaling may mediate EGCG’s enhancement effects on nanoparticle uptake. As measured using a colorimetric iron assay, EGCG induced a concentration-dependent enhancement effect of MNP internalization by LN-229 glioma cells, which was synergistically enhanced by the application of a magnetic field. Transmission electron microscopy demonstrated that EGCG increased the number, but not the size, of internalized vesicles, whereas EGCG and the magnet synergistically increased the size of vesicles. EGCG appears to enhance particle–particle interaction and thus aggregation following a 5-min magnet application. An antibody against 67LR, knockdown of 67LR, and a 67LR peptide (amino acid 161–170 of 67LR) attenuated EGCG-induced MNP uptake by 35%, 100%, and 45%, respectively, suggesting a crucial role of 67LR in the effects of EGCG. Heparin, the 67LR-binding glycosaminoglycan, attenuated EGCG-induced MNP uptake in the absence, but not presence, of the magnet. Such enhancement effects of EGCG were attenuated by LY294002 (a phosphoinositide 3-kinase inhibitor) and Akt inhibitor, but not by agents affecting cGMP levels, suggesting potential involvement of signaling downstream of 67LR. In contrast, the antibody against EGFR exerted no effect on EGCG-enhanced internalization. These results suggest that 67LR may be potentially amenable to tumor-targeted therapeutics.
Collapse
Affiliation(s)
- Sheng-Chieh Hsu
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Guishan, Taoyuan 33302, Taiwan;
- Master Program in Biotechnology Industry, College of Medicine, Chang Gung University, Guishan, Taoyuan 33302, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Guishan, Taoyuan 33302, Taiwan;
| | - Nian-Ping Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Guishan, Taoyuan 33302, Taiwan;
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Guishan, Taoyuan 33302, Taiwan;
| | - Yi-Ching Lu
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Guishan, Taoyuan 33302, Taiwan;
| | - Yunn-Hwa Ma
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Guishan, Taoyuan 33302, Taiwan;
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Guishan, Taoyuan 33302, Taiwan;
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Guishan, Taoyuan 33305, Taiwan
- Correspondence:
| |
Collapse
|
5
|
Yakovleva O, Albova P, Sitdikova G. The Role of Nitric Oxide in Regulation of Exocytosis and Endocytosis of Synaptic Vesicles in Motor Nerve Endings of Mice in Alloxan Model of Diabetes Mellitus. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-00976-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Chen Z, Haus JM, Chen L, Wu SC, Urao N, Koh TJ, Minshall RD. CCL28-induced CCR10/eNOS interaction in angiogenesis and skin wound healing. FASEB J 2020; 34:5838-5850. [PMID: 32124475 DOI: 10.1096/fj.201902060r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 02/06/2020] [Accepted: 02/20/2020] [Indexed: 12/25/2022]
Abstract
Chemokines and their receptors play important roles in vascular homeostasis, development, and angiogenesis. Little is known regarding the molecular signaling mechanisms activated by CCL28 chemokine via its primary receptor CCR10 in endothelial cells (ECs). Here, we test the hypothesis that CCL28/CCR10 signaling plays an important role in regulating skin wound angiogenesis through endothelial nitric oxide synthase (eNOS)-dependent Src, PI3K, and MAPK signaling. We observed nitric oxide (NO) production in human primary ECs stimulated with exogenous CCL28, which also induced direct binding of CCR10 and eNOS resulting in inhibition of eNOS activity. Knockdown of CCR10 with siRNA lead to reduced eNOS expression and tube formation suggesting the involvement of CCR10 in EC angiogenesis. Based on this interaction, we engineered a myristoylated 7 amino acid CCR10-binding domain (Myr-CBD7) peptide and showed that this can block eNOS interaction with CCR10, but not with calmodulin, resulting in upregulation of eNOS activity. Importantly, topical administration of Myr-CBD7 peptide on mouse dermal wounds not only blocked CCR10-eNOS interaction, but also enhanced expression of eNOS, CD31, and IL-4 with reduction of CCL28 and IL-6 levels associated with improved wound healing. These results point to a potential therapeutic strategy to upregulate NO bioavailability, enhance angiogenesis, and improve wound healing by disrupting CCL28-activated CCR10-eNOS interaction.
Collapse
Affiliation(s)
- Zhenlong Chen
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Jacob M Haus
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA
| | - Lin Chen
- Department of Periodontics, University of Illinois at Chicago, Chicago, IL, USA.,Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, IL, USA
| | - Stephanie C Wu
- Center for Lower Extremity Ambulatory Research (CLEAR), Dr. William M. Scholl College of Podiatric Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Norifumi Urao
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA.,Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, IL, USA
| | - Timothy J Koh
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA.,Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, IL, USA
| | - Richard D Minshall
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA.,Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
7
|
Luo Y, Wang Y, Luo W. C allele of -786 T>C polymorphism in the promoter region of endothelial nitric oxide synthase is responsible for endothelial dysfunction in the patients with rheumatoid arthritis. J Cell Biochem 2019; 121:363-370. [PMID: 31209933 DOI: 10.1002/jcb.29184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 11/10/2022]
Abstract
BACKGROUND This study aimed to explore the roles of endothelial nitric oxide synthase (eNOS) in the control of metastasis of infection with endothelial dysfunction, as well as the roles of -786T>C polymorphism in eNOS promoter in the control of metastasis of endothelial function. METHOD In-silicon analysis and luciferase assay were used to identify the location of -786>C on the promoter of eNOS. Subsequently, real-time PCR and Western-blot were used to determine the expression level of eNOS. Ultrasound examination was used to detect baseline brachial artery diameter and flow-mediated dilation of patients in different treat groups. RESULTS -786T>C was located on the promoter of eNOS, and the luciferase activity of cells transfected with -786-C allele was much higher than empty vector, while even higher subsequent to transfection of -786-T allele. In addition, the result of ultrasound examination showed that the baseline brachial artery diameter was comparable between patients genotyped as TT, TC and CC, while the flow-mediated dilation of patients genotyped as TC was much higher compared with CC group, and the flow-mediated dilation of patients genotyped as TT even higher than TC group. We found eNOS messenger RNA and protein with TT genotype was significantly higher compared with other genotypes. And the production of NO was remarkably higher in TT groups compared with TC and CC, while the production of NO in TC and CC groups were similar. CONCLUSION These findings indicated that down-expression of -786T>C located on the promoter of eNOS is associated with an increased risk of endothelial dysfunction.
Collapse
Affiliation(s)
- Yanli Luo
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yang Wang
- Department of Internal Medicine, Yixing People's Hospital, Jiangsu, China
| | - Wanjun Luo
- Department of Cardiovascualr Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
8
|
Kar UP, Dey H, Rahaman A. Regulation of dynamin family proteins by post-translational modifications. J Biosci 2018; 42:333-344. [PMID: 28569256 DOI: 10.1007/s12038-017-9680-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Dynamin superfamily proteins comprising classical dynamins and related proteins are membrane remodelling agents involved in several biological processes such as endocytosis, maintenance of organelle morphology and viral resistance. These large GTPases couple GTP hydrolysis with membrane alterations such as fission, fusion or tubulation by undergoing repeated cycles of self-assembly/disassembly. The functions of these proteins are regulated by various post-translational modifications that affect their GTPase activity, multimerization or membrane association. Recently, several reports have demonstrated variety of such modifications providing a better understanding of the mechanisms by which dynamin proteins influence cellular responses to physiological and environmental cues. In this review, we discuss major post-translational modifications along with their roles in the mechanism of dynamin functions and implications in various cellular processes.
Collapse
Affiliation(s)
- Usha P Kar
- School of Biological Sciences, National Institute of Science Education and Research- Bhubaneswar, HBNI, 752050, Odisha, India
| | | | | |
Collapse
|
9
|
Caviedes A, Varas-Godoy M, Lafourcade C, Sandoval S, Bravo-Alegria J, Kaehne T, Massmann A, Figueroa JP, Nualart F, Wyneken U. Endothelial Nitric Oxide Synthase Is Present in Dendritic Spines of Neurons in Primary Cultures. Front Cell Neurosci 2017; 11:180. [PMID: 28725180 PMCID: PMC5495831 DOI: 10.3389/fncel.2017.00180] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 06/13/2017] [Indexed: 12/16/2022] Open
Abstract
Nitric oxide exerts important regulatory functions in various brain processes. Its synthesis in neurons has been most commonly ascribed to the neuronal nitric oxide synthase (nNOS) isoform. However, the endothelial isoform (eNOS), which is significantly associated with caveolae in different cell types, has been implicated in synaptic plasticity and is enriched in the dendrites of CA1 hippocampal neurons. Using high resolution microscopy and co-distribution analysis of eNOS with synaptic and raft proteins, we now show for the first time in primary cortical and hippocampal neuronal cultures, virtually devoid of endothelial cells, that eNOS is present in neurons and is localized in dendritic spines. Moreover, eNOS is present in a postsynaptic density-enriched biochemical fraction isolated from these neuronal cultures. In addition, qPCR analysis reveals that both the nNOS as well as the eNOS transcripts are present in neuronal cultures. Moreover, eNOS inhibition in cortical cells has a negative impact on cell survival after excitotoxic stimulation with N-methyl-D-aspartate (NMDA). Consistent with previous results that indicated nitric oxide production in response to the neurotrophin BDNF, we could detect eNOS in immunoprecipitates of the BDNF receptor TrkB while nNOS could not be detected. Taken together, our results show that eNOS is located at excitatory synapses where it could represent a source for NO production and thus, the contribution of eNOS-derived nitric oxide to the regulation of neuronal survival and function deserves further investigations.
Collapse
Affiliation(s)
- Ariel Caviedes
- Laboratorio de Neurociencias, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los AndesSantiago, Chile
| | - Manuel Varas-Godoy
- Laboratorio Biología de la Reproducción, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los AndesSantiago, Chile
| | - Carlos Lafourcade
- Laboratorio de Neurociencias, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los AndesSantiago, Chile
| | - Soledad Sandoval
- Laboratorio de Neurociencias, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los AndesSantiago, Chile
| | - Javiera Bravo-Alegria
- Laboratorio de Neurociencias, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los AndesSantiago, Chile
| | - Thilo Kaehne
- Institute of Experimental Internal Medicine, Otto-von-Guericke UniversityMagdeburg, Germany
| | - Angela Massmann
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-SalemNC, United States
| | - Jorge P Figueroa
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-SalemNC, United States
| | - Francisco Nualart
- Centro de Microscopía Avanzada, CMA BIO BIO, Laboratorio de Neurobiología y Células Madres, Facultad de Ciencias Biológicas, Universidad de ConcepciónConcepción, Chile
| | - Ursula Wyneken
- Laboratorio de Neurociencias, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los AndesSantiago, Chile
| |
Collapse
|
10
|
Abstract
SIGNIFICANCE The family of gasotransmitter molecules, nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), has emerged as an important mediator of numerous cellular signal transduction and pathophysiological responses. As such, these molecules have been reported to influence a diverse array of biochemical, molecular, and cell biology events often impacting one another. Recent Advances: Discrete regulation of gasotransmitter molecule formation, movement, and reaction is critical to their biological function. Due to the chemical nature of these molecules, they can move rapidly throughout cells and tissues acting on targets through reactions with metal groups, reactive chemical species, and protein amino acids. CRITICAL ISSUES Given the breadth and complexity of gasotransmitter reactions, this field of research is expanding into exciting, yet sometimes confusing, areas of study with significant promise for understanding health and disease. The precise amounts of tissue and cellular gasotransmitter levels and where they are formed, as well as how they react with molecular targets or themselves, all remain poorly understood. FUTURE DIRECTIONS Elucidation of specific molecular targets, characteristics of gasotransmitter molecule heterotypic interactions, and spatiotemporal formation and metabolism are all important to better understand their true pathophysiological importance in various organ systems. Antioxid. Redox Signal. 26, 936-960.
Collapse
Affiliation(s)
- Gopi K Kolluru
- 1 Department of Pathology, LSU Health Sciences Center-Shreveport , Shreveport, Louisiana
| | - Xinggui Shen
- 1 Department of Pathology, LSU Health Sciences Center-Shreveport , Shreveport, Louisiana
| | - Shuai Yuan
- 2 Department of Cellular Biology and Anatomy, LSU Health Sciences Center-Shreveport , Shreveport, Louisiana
| | - Christopher G Kevil
- 1 Department of Pathology, LSU Health Sciences Center-Shreveport , Shreveport, Louisiana.,2 Department of Cellular Biology and Anatomy, LSU Health Sciences Center-Shreveport , Shreveport, Louisiana.,3 Department of Molecular and Cellular Physiology, LSU Health Sciences Center-Shreveport , Shreveport, Louisiana
| |
Collapse
|
11
|
Shentu TP, He M, Sun X, Zhang J, Zhang F, Gongol B, Marin TL, Zhang J, Wen L, Wang Y, Geary GG, Zhu Y, Johnson DA, Shyy JYJ. AMP-Activated Protein Kinase and Sirtuin 1 Coregulation of Cortactin Contributes to Endothelial Function. Arterioscler Thromb Vasc Biol 2016; 36:2358-2368. [PMID: 27758765 DOI: 10.1161/atvbaha.116.307871] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/12/2016] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Cortactin translocates to the cell periphery in vascular endothelial cells (ECs) on cortical-actin assembly in response to pulsatile shear stress. Because cortactin has putative sites for AMP-activated protein kinase (AMPK) phosphorylation and sirtuin 1 (SIRT1) deacetylation, we examined the hypothesis that AMPK and SIRT1 coregulate cortactin dynamics in response to shear stress. APPROACH AND RESULTS Analysis of the ability of AMPK to phosphorylate recombinant cortactin and oligopeptides whose sequences matched AMPK consensus sequences in cortactin pointed to Thr-401 as the site of AMPK phosphorylation. Mass spectrometry confirmed Thr-401 as the site of AMPK phosphorylation. Immunoblot analysis with AMPK siRNA and SIRT1 siRNA in human umbilical vein ECs and EC-specific AMPKα2 knockout mice showed that AMPK phosphorylation of cortactin primes SIRT1 deacetylation in response to shear stress. Immunoblot analyses with cortactin siRNA in human umbilical vein ECs, phospho-deficient T401A and phospho-mimetic T401D mutant, or aceto-deficient (9K/R) and aceto-mimetic (9K/Q) showed that cortactin regulates endothelial nitric oxide synthase activity. Confocal imaging and sucrose-density gradient analyses revealed that the phosphorylated/deacetylated cortactin translocates to the EC periphery facilitating endothelial nitric oxide synthase translocation from lipid to nonlipid raft domains. Knockdown of cortactin in vitro or genetic reduction of cortactin expression in vivo in mice substantially decreased the endothelial nitric oxide synthase-derived NO bioavailability. In vivo, atherosclerotic lesions increase in ApoE-/-/cortactin+/- mice, when compared with ApoE-/-/cortactin+/+ littermates. CONCLUSIONS AMPK phosphorylation of cortactin followed by SIRT1 deacetylation modulates the interaction of cortactin and cortical-actin in response to shear stress. Functionally, this AMPK/SIRT1 coregulated cortactin-F-actin dynamics is required for endothelial nitric oxide synthase subcellular translocation/activation and is atheroprotective.
Collapse
Affiliation(s)
- Tzu-Pin Shentu
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - Ming He
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - Xiaoli Sun
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - Jianlin Zhang
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - Fan Zhang
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - Brendan Gongol
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - Traci L Marin
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - Jiao Zhang
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - Liang Wen
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - Yinsheng Wang
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - Gregory G Geary
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - Yi Zhu
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - David A Johnson
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - John Y-J Shyy
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.).
| |
Collapse
|
12
|
Galkina SI, Fedorova NV, Serebryakova MV, Arifulin EA, Stadnichuk VI, Gaponova TV, Baratova LA, Sud'ina GF. Inhibition of the GTPase dynamin or actin depolymerisation initiates outward plasma membrane tubulation/vesiculation (cytoneme formation) in neutrophils. Biol Cell 2015; 107:144-58. [DOI: 10.1111/boc.201400063] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 01/29/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Svetlana I. Galkina
- A. N. Belozersky Institute of Physico-Chemical Biology; Lomonosov Moscow State University; Moscow 119991 Russia
| | - Natalia V. Fedorova
- A. N. Belozersky Institute of Physico-Chemical Biology; Lomonosov Moscow State University; Moscow 119991 Russia
| | - Marina V. Serebryakova
- A. N. Belozersky Institute of Physico-Chemical Biology; Lomonosov Moscow State University; Moscow 119991 Russia
| | - Evgenii A. Arifulin
- A. N. Belozersky Institute of Physico-Chemical Biology; Lomonosov Moscow State University; Moscow 119991 Russia
| | | | - Tatjana V. Gaponova
- FGBU Hematology Research Center; Russian Federation Ministry of Public Health; Moscow 125167 Russia
| | - Ludmila A. Baratova
- A. N. Belozersky Institute of Physico-Chemical Biology; Lomonosov Moscow State University; Moscow 119991 Russia
| | - Galina F. Sud'ina
- A. N. Belozersky Institute of Physico-Chemical Biology; Lomonosov Moscow State University; Moscow 119991 Russia
| |
Collapse
|
13
|
|
14
|
Lin LH, Jin J, Nashelsky MB, Talman WT. Acid-sensing ion channel 1 and nitric oxide synthase are in adjacent layers in the wall of rat and human cerebral arteries. J Chem Neuroanat 2014; 61-62:161-8. [PMID: 25462386 DOI: 10.1016/j.jchemneu.2014.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/13/2014] [Accepted: 10/14/2014] [Indexed: 01/23/2023]
Abstract
Extracellular acidification activates a family of proteins known as acid-sensing ion channels (ASICs). One ASIC subtype, ASIC type 1 (ASIC1), may play an important role in synaptic plasticity, memory, fear conditioning and ischemic brain injury. ASIC1 is found primarily in neurons, but one report showed its expression in isolated mouse cerebrovascular cells. In this study, we sought to determine if ASIC1 is present in intact rat and human major cerebral arteries. A potential physiological significance of such a finding is suggested by studies showing that nitric oxide (NO), which acts as a powerful vasodilator, may modulate proton-gated currents in cultured cells expressing ASIC1s. Because both constitutive NO synthesizing enzymes, neuronal nitric oxide synthase (nNOS) and endothelial NOS (eNOS), are expressed in cerebral arteries we also studied the anatomical relationship between ASIC1 and nNOS or eNOS in both rat and human cerebral arteries. Western blot analysis demonstrated ASIC1 in cerebral arteries from both species. Immunofluorescent histochemistry and confocal microscopy also showed that ASIC1-immunoreactivity (IR), colocalized with the smooth muscle marker alpha-smooth muscle actin (SMA), was present in the anterior cerebral artery (ACA), middle cerebral artery (MCA), posterior cerebral artery (PCA) and basilar artery (BA) of rat and human. Expression of ASIC1 in cerebral arteries is consistent with a role for ASIC1 in modulating cerebrovascular tone both in rat and human. Potential interactions between smooth muscle ASIC1 and nNOS or eNOS were supported by the presence of nNOS-IR in the neighboring adventitial layer and the presence of nNOS-IR and eNOS-IR in the adjacent endothelial layer of the cerebral arteries.
Collapse
Affiliation(s)
- Li-Hsien Lin
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA.
| | - Jingwen Jin
- Department of Psychology, Stony Brook University, Stony Brook, NY 11794, USA
| | | | - William T Talman
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA; Neurology Service, Veterans Affairs Medical Center, Iowa City, IA 52246, USA
| |
Collapse
|
15
|
Hovater MB, Ying WZ, Agarwal A, Sanders PW. Nitric oxide and carbon monoxide antagonize TGF-β through ligand-independent internalization of TβR1/ALK5. Am J Physiol Renal Physiol 2014; 307:F727-35. [PMID: 25100282 DOI: 10.1152/ajprenal.00353.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Transforming growth factor (TGF)-β plays a central role in vascular homeostasis and in the pathology of vascular disease. There is a growing appreciation for the role of nitric oxide (NO) and carbon monoxide (CO) as highly diffusible, bioactive signaling molecules in the vasculature. We hypothesized that both NO and CO increase endocytosis of TGF-β receptor type 1 (TβR1) in vascular smooth muscle cells (VSMCs) through activation of dynamin-2, shielding cells from the effects of circulating TGF-β. In this study, primary cultures of VSMCs from Sprague-Dawley rats were treated with NO-releasing molecule 3 (a NO chemical donor), CO-releasing molecule 2 (a CO chemical donor), or control. NO and CO stimulated dynamin-2 activation in VSMCs. NO and CO promoted time- and dose-dependent endocytosis of TβR1. By decreasing TβR1 surface expression through this dynamin-2-dependent process, NO and CO diminished the effects of TGF-β on VSMCs. These findings help explain an important mechanism by which NO and CO signal in the vasculature by decreasing surface expression of TβR1 and the cellular response to TGF-β.
Collapse
Affiliation(s)
- Michael B Hovater
- Department of Medicine University of Alabama at Birmingham, Birmingham, Alabama
| | - Wei-Zhong Ying
- Department of Medicine University of Alabama at Birmingham, Birmingham, Alabama
| | - Anupam Agarwal
- Division of Nephrology, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama; Department of Medicine University of Alabama at Birmingham, Birmingham, Alabama; Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama; Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama; and Department of Veterans Affairs Medical Center, Birmingham, Alabama
| | - Paul W Sanders
- Division of Nephrology, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama; Department of Medicine University of Alabama at Birmingham, Birmingham, Alabama; Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama; Department of Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
16
|
Su Y. Regulation of endothelial nitric oxide synthase activity by protein-protein interaction. Curr Pharm Des 2014; 20:3514-20. [PMID: 24180383 PMCID: PMC7039309 DOI: 10.2174/13816128113196660752] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/21/2013] [Indexed: 02/07/2023]
Abstract
Endothelial nitric oxide synthase (eNOS) is expressed in vascular endothelial cells and plays an important role in the regulation of vascular tone, platelet aggregation and angiogenesis. Protein-protein interactions represent an important posttranslational mechanism for eNOS regulation. eNOS has been shown to interact with a variety of regulatory and structural proteins which provide fine tuneup of eNOS activity and eNOS protein trafficking between plasma membrane and intracellular membranes in a number of physiological and pathophysiological processes. eNOS interacts with calmodulin, heat shock protein 90 (Hsp90), dynamin-2, β-actin, tubulin, porin, high-density lipoprotein (HDL) and apolipoprotein AI (ApoAI), resulting in increases in eNOS activity. The negative eNOS interacting proteins include caveolin, G protein-coupled receptors (GPCR), nitric oxide synthase-interacting protein (NOSIP), and nitric oxide synthase trafficking inducer (NOSTRIN). Dynamin-2, NOSIP, NOSTRIN, and cytoskeleton are also involved in eNOS trafficking in endothelial cells. In addition, eNOS associations with cationic amino acid transporter-1 (CAT-1), argininosuccinate synthase (ASS), argininosuccinate lyase (ASL), and soluble guanylate cyclase (sGC) facilitate directed delivery of substrate (L-arginine) to eNOS and optimizing NO production and NO action on its target. Regulation of eNOS by protein-protein interactions would provide potential targets for pharmacological interventions in NO-compromised cardiovascular diseases.
Collapse
Affiliation(s)
- Yunchao Su
- Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, 1120 15th Street, Augusta, GA 30912.
| |
Collapse
|
17
|
Qian J, Fulton D. Post-translational regulation of endothelial nitric oxide synthase in vascular endothelium. Front Physiol 2013; 4:347. [PMID: 24379783 PMCID: PMC3861784 DOI: 10.3389/fphys.2013.00347] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 11/11/2013] [Indexed: 01/22/2023] Open
Abstract
Nitric oxide (NO) is a short-lived gaseous signaling molecule. In blood vessels, it is synthesized in a dynamic fashion by endothelial nitric oxide synthase (eNOS) and influences vascular function via two distinct mechanisms, the activation of soluble guanylyl cyclase (sGC)/cyclic guanosine monophosphate (cGMP)-dependent signaling and the S-nitrosylation of proteins with reactive thiols (S-nitrosylation). The regulation of eNOS activity and NO bioavailability is critical to maintain blood vessel function. The activity of eNOS and ability to generate NO is regulated at the transcriptional, posttranscriptional, and posttranslational levels. Post-translational modifications acutely impact eNOS activity and dysregulation of these mechanisms compromise eNOS activity and foster the development of cardiovascular diseases (CVDs). This review will intergrate past and current literature on the post-translational modifications of eNOS in both health and disease.
Collapse
Affiliation(s)
- Jin Qian
- Pulmonary and Critical Care, School of Medicine, Stanford University/VA Palo Alto Health Care System Palo Alto, CA, USA
| | - David Fulton
- Vascular Biology Center, Georgia Regents University Augusta, GA, USA
| |
Collapse
|
18
|
Martínez-Ruiz A, Araújo IM, Izquierdo-Álvarez A, Hernansanz-Agustín P, Lamas S, Serrador JM. Specificity in S-nitrosylation: a short-range mechanism for NO signaling? Antioxid Redox Signal 2013; 19:1220-35. [PMID: 23157283 PMCID: PMC3785806 DOI: 10.1089/ars.2012.5066] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Nitric oxide (NO) classical and less classical signaling mechanisms (through interaction with soluble guanylate cyclase and cytochrome c oxidase, respectively) operate through direct binding of NO to protein metal centers, and rely on diffusibility of the NO molecule. S-Nitrosylation, a covalent post-translational modification of protein cysteines, has emerged as a paradigm of nonclassical NO signaling. RECENT ADVANCES Several nonenzymatic mechanisms for S-nitrosylation formation and destruction have been described. Enzymatic mechanisms for transnitrosylation and denitrosylation have been also studied as regulators of the modification of specific subsets of proteins. The advancement of modification-specific proteomic methodologies has allowed progress in the study of diverse S-nitrosoproteomes, raising clues and questions about the parameters for determining the protein specificity of the modification. CRITICAL ISSUES We propose that S-nitrosylation is mainly a short-range mechanism of NO signaling, exerted in a relatively limited range of action around the NO sources, and tightly related to the very controlled regulation of subcellular localization of nitric oxide synthases. We review the nonenzymatic and enzymatic mechanisms that support this concept, as well as physiological examples of mammalian systems that illustrate well the precise compartmentalization of S-nitrosylation. FUTURE DIRECTIONS Individual and proteomic studies of protein S-nitrosylation-based signaling should take into account the subcellular localization in order to gain further insight into the functional role of this modification in (patho)physiological settings.
Collapse
Affiliation(s)
- Antonio Martínez-Ruiz
- 1 Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IP) , Madrid, Spain
| | | | | | | | | | | |
Collapse
|
19
|
Li J, Zhang DS, Ye JC, Li CM, Qi M, Liang DD, Xu XR, Xu L, Liu Y, Zhang H, Zhang YY, Deng FF, Feng J, Shi D, Chen JJ, Li L, Chen G, Sun YF, Peng LY, Chen YH. Dynamin-2 mediates heart failure by modulating Ca2+-dependent cardiomyocyte apoptosis. Int J Cardiol 2013; 168:2109-19. [DOI: 10.1016/j.ijcard.2013.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/26/2012] [Accepted: 01/13/2013] [Indexed: 12/26/2022]
|
20
|
Liu S, Rockey DC. Cicletanine stimulates eNOS phosphorylation and NO production via Akt and MAP kinase/Erk signaling in sinusoidal endothelial cells. Am J Physiol Gastrointest Liver Physiol 2013; 305:G163-71. [PMID: 23639812 PMCID: PMC3725686 DOI: 10.1152/ajpgi.00003.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The function of the endothelial isoform of nitric oxide synthase (eNOS) and production of nitric oxide (NO) is altered in a number of disease states. Pharmacological approaches to enhancing NO synthesis and thus perhaps endothelial function could have substantial benefits in patients. We analyzed the effect of cicletanine, a synthetic pyridine with potent vasodilatory characteristics, on eNOS function and NO production in normal (liver) and injured rat sinusoidal endothelial cells, and we studied the effect of cicletanine-induced NO on stellate cell contraction and portal pressure in an in vivo model of liver injury. Sinusoidal endothelial cells were isolated from normal and injured rat livers. After exposure to cicletanine, eNOS phosphorylation, NO synthesis, and the signaling pathway regulating eNOS activation were measured. Cicletanine led to an increase in eNOS (Ser¹¹⁷⁷) phosphorylation, cytochrome c reductase activity, L-arginine conversion to L-citrulline, as well as NO production. The mechanism of the effect of cicletanine appeared to be via the protein kinase B (Akt) and MAP kinase/Erk signaling pathways. Additionally, cicletanine improved NO synthesis in injured sinusoidal endothelial cells. NO production induced by cicletanine in sinusoidal endothelial cells increased protein kinase G (PKG) activity as well as relaxation of stellate cells. Finally, administration of cicletanine to mice with portal hypertension induced by bile duct ligation led to reduction of portal pressure. The data indicate that cicletanine might improve eNOS activity in injured sinusoidal endothelial cells and likely activates hepatic stellate cell NO/PKG signaling. It raises the possibility that cicletanine could improve intrahepatic vascular function in portal hypertensive patients.
Collapse
Affiliation(s)
- Songling Liu
- Department of Internal Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Don C. Rockey
- Department of Internal Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
21
|
Liu C, Billadeau DD, Abdelhakim H, Leof E, Kaibuchi K, Bernabeu C, Bloom GS, Yang L, Boardman L, Shah VH, Kang N. IQGAP1 suppresses TβRII-mediated myofibroblastic activation and metastatic growth in liver. J Clin Invest 2013; 123:1138-56. [PMID: 23454766 PMCID: PMC3582119 DOI: 10.1172/jci63836] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 12/06/2012] [Indexed: 01/11/2023] Open
Abstract
In the tumor microenvironment, TGF-β induces transdifferentiation of quiescent pericytes and related stromal cells into myofibroblasts that promote tumor growth and metastasis. The mechanisms governing myofibroblastic activation remain poorly understood, and its role in the tumor microenvironment has not been explored. Here, we demonstrate that IQ motif containing GTPase activating protein 1 (IQGAP1) binds to TGF-β receptor II (TβRII) and suppresses TβRII-mediated signaling in pericytes to prevent myofibroblastic differentiation in the tumor microenvironment. We found that TGF-β1 recruited IQGAP1 to TβRII in hepatic stellate cells (HSCs), the resident liver pericytes. Iqgap1 knockdown inhibited the targeting of the E3 ubiquitin ligase SMAD ubiquitination regulatory factor 1 (SMURF1) to the plasma membrane and TβRII ubiquitination and degradation. Thus, Iqgap1 knockdown stabilized TβRII and potentiated TGF-β1 transdifferentiation of pericytes into myofibroblasts in vitro. Iqgap1 deficiency in HSCs promoted myofibroblast activation, tumor implantation, and metastatic growth in mice via upregulation of paracrine signaling molecules. Additionally, we found that IQGAP1 expression was downregulated in myofibroblasts associated with human colorectal liver metastases. Taken together, our studies demonstrate that IQGAP1 in the tumor microenvironment suppresses TβRII and TGF-β dependent myofibroblastic differentiation to constrain tumor growth.
Collapse
Affiliation(s)
- Chunsheng Liu
- GI Research Unit and Cancer Cell Biology Program,
Department of Immunology, and
Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA.
Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas (CSIC), and Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
Department of Biology and Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Daniel D. Billadeau
- GI Research Unit and Cancer Cell Biology Program,
Department of Immunology, and
Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA.
Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas (CSIC), and Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
Department of Biology and Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Haitham Abdelhakim
- GI Research Unit and Cancer Cell Biology Program,
Department of Immunology, and
Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA.
Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas (CSIC), and Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
Department of Biology and Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Edward Leof
- GI Research Unit and Cancer Cell Biology Program,
Department of Immunology, and
Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA.
Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas (CSIC), and Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
Department of Biology and Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Kozo Kaibuchi
- GI Research Unit and Cancer Cell Biology Program,
Department of Immunology, and
Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA.
Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas (CSIC), and Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
Department of Biology and Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Carmelo Bernabeu
- GI Research Unit and Cancer Cell Biology Program,
Department of Immunology, and
Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA.
Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas (CSIC), and Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
Department of Biology and Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - George S. Bloom
- GI Research Unit and Cancer Cell Biology Program,
Department of Immunology, and
Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA.
Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas (CSIC), and Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
Department of Biology and Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Liu Yang
- GI Research Unit and Cancer Cell Biology Program,
Department of Immunology, and
Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA.
Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas (CSIC), and Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
Department of Biology and Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Lisa Boardman
- GI Research Unit and Cancer Cell Biology Program,
Department of Immunology, and
Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA.
Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas (CSIC), and Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
Department of Biology and Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Vijay H. Shah
- GI Research Unit and Cancer Cell Biology Program,
Department of Immunology, and
Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA.
Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas (CSIC), and Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
Department of Biology and Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Ningling Kang
- GI Research Unit and Cancer Cell Biology Program,
Department of Immunology, and
Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA.
Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas (CSIC), and Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
Department of Biology and Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
22
|
Das-Gupta V, Williamson RA, Pitsillides AA. Expression of endothelial nitric oxide synthase protein is not necessary for mechanical strain-induced nitric oxide production by cultured osteoblasts. Osteoporos Int 2012; 23:2635-47. [PMID: 22402674 DOI: 10.1007/s00198-012-1957-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 12/13/2011] [Indexed: 02/07/2023]
Abstract
UNLABELLED Regulation of nitric oxide (NO) production is considered essential in mechanical load-related osteogenesis. We examined whether osteoblast endothelial NO synthase (eNOS)-derived NO production was regulated by HSP90. We found that HSP90 is essential for strain-related NO release but appears to be independent of eNOS in cultured osteoblasts. INTRODUCTION NO is a key regulator of bone mass, and its production by bone cells is regarded as essential in mechanical strain-related osteogenesis. We sought to identify whether bone cell NO production relied upon eNOS, considered to be the predominant NOS isoform in bone, and whether this was regulated by an HSP90-dependent mechanism. METHODS Using primary rat long bone-derived osteoblasts, the ROS 17/2.8 cell line and primary mouse osteoblasts, derived from wild-type and eNOS-deficient (eNOS(-/-)) mice, we examined by immunoblotting the expression of eNOS using a range of well-characterised antibodies and extraction methods, measured NOS activity by monitoring the conversion of radiolabelled L-arginine to citrulline and examined the production of NO by bone cells subjected to mechanical strain application under various conditions. RESULTS Our studies have revealed that eNOS protein and activity were both undetectable in osteoblast-like cells, that mechanical strain-induced NO production was retained in bone cells from eNOS-deficient mice, but that this strain-related induction of NO production was, however, dependent upon HSP90. CONCLUSIONS Together, our studies indicate that HSP90 activity is essential for strain-related NO release by cultured osteoblasts and that this is highly likely to be achieved by an eNOS-independent mechanism.
Collapse
Affiliation(s)
- V Das-Gupta
- Department of Veterinary Basic Science, Royal Veterinary College, London, NW1 0TU, UK
| | | | | |
Collapse
|
23
|
Wang Z, Kim JI, Frilot N, Daaka Y. Dynamin2 S-nitrosylation regulates adenovirus type 5 infection of epithelial cells. J Gen Virol 2012; 93:2109-2117. [PMID: 22791607 DOI: 10.1099/vir.0.042713-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dynamin2 is a large GTPase that regulates vesicle trafficking, and the GTPase activity of dynamin2 is required for the multistep process of adenovirus infection. Activity of dynamin2 may be regulated by post-translational phosphorylation and S-nitrosylation modifications. In this study, we demonstrate a role for dynamin2 S-nitrosylation in adenovirus infection of epithelial cells. We show that adenovirus serotype 5 (Ad5) infection augments production of nitric oxide (NO) in epithelial cells and causes the S-nitrosylation of dynamin2, mainly on cysteine 86 (C86) and 607 (C607) residues. Forced overexpression of dynamin2 bearing C86A and/or C607A mutations decreases Ad5 infection. Diminishing NO synthesis by RNAi-induced knockdown of endogenous endothelial NO synthase (eNOS) expression attenuates virus infection of target cells. Ad5 infection promotes the kinetically dynamic S-nitrosylation of dynamin2 and eNOS: there is a rapid decrease in eNOS S-nitrosylation and a concomitant increase in the dynamin2 S-nitrosylation. These results support the hypothesis that dynamin2 S-nitrosylation following eNOS activation facilitates adenovirus infection of host epithelial cells.
Collapse
Affiliation(s)
- Zhimin Wang
- Department of Urology and Prostate Disease Center, University of Florida, Gainesville, FL 32610, USA
| | - Jae Il Kim
- Department of Urology and Prostate Disease Center, University of Florida, Gainesville, FL 32610, USA
| | - Nicole Frilot
- Department of Pathology, Georgia Health Sciences University, Augusta, GA 30912, USA
| | - Yehia Daaka
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32610, USA.,Department of Urology and Prostate Disease Center, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
24
|
Liu S, Premont RT, Rockey DC. G-protein-coupled receptor kinase interactor-1 (GIT1) is a new endothelial nitric-oxide synthase (eNOS) interactor with functional effects on vascular homeostasis. J Biol Chem 2012; 287:12309-20. [PMID: 22294688 DOI: 10.1074/jbc.m111.320465] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Endothelial cell nitric-oxide (NO) synthase (eNOS), the enzyme responsible for synthesis of NO in the vasculature, undergoes extensive post-translational modifications that modulate its activity. Here we have identified a novel eNOS interactor, G-protein-coupled receptor (GPCR) kinase interactor-1 (GIT1), which plays an unexpected role in GPCR stimulated NO signaling. GIT1 interacted with eNOS in the endothelial cell cytoplasm, and this robust association was associated with stimulatory eNOS phosphorylation (Ser(1177)), enzyme activation, and NO synthesis. GIT1 knockdown had the opposite effect. Additionally, GIT1 expression was reduced in sinusoidal endothelial cells after liver injury, consistent with previously described endothelial dysfunction in this disease. Re-expression of GIT1 after liver injury rescued the endothelial phenotype. These data emphasize the role of GPCR signaling partners in eNOS function and have fundamental implications for vascular disorders involving dysregulated eNOS.
Collapse
Affiliation(s)
- Songling Liu
- University of Texas Southwestern Medical Center, Division of Digestive and Liver Diseases, Dallas, Texas 75390, USA
| | | | | |
Collapse
|
25
|
Iwakiri Y. S-nitrosylation of proteins: a new insight into endothelial cell function regulated by eNOS-derived NO. Nitric Oxide 2011; 25:95-101. [PMID: 21554971 DOI: 10.1016/j.niox.2011.04.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 04/25/2011] [Accepted: 04/27/2011] [Indexed: 12/30/2022]
Abstract
Nitric oxide (NO) is a messenger molecule that is highly diffusible and short-lived. Despite these two characteristics, seemingly unsuitable for intracellular reactions, NO modulates a variety of cellular processes via the mechanism of S-nitrosylation. An important factor that determines the specificity of S-nitrosylation as a signaling mechanism is the compartmentalization of nitric oxide synthase (NOS) with its target proteins. Endothelial NOS (eNOS) is unique among the NOS family members by being localized mainly near specific intracellular membrane domains including the cytoplasmic face of the Golgi apparatus and plasma membrane caveolae. Nitric oxide produced by eNOS localized on the Golgi apparatus can react with thiol groups on nearby Golgi proteins via a redox mechanism resulting in S-nitrosylation of these proteins. This modification influences their function as regulators of cellular processes such as protein trafficking (e.g., exocytosis and endocytosis), redox state, and cell cycle. Thus, eNOS-derived NO regulates a wide range of endothelial cell functions, such as inflammation, apoptosis, permeability, migration, and cell growth.
Collapse
Affiliation(s)
- Yasuko Iwakiri
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
26
|
Hyndman KA, Musall JB, Xue J, Pollock JS. Dynamin activates NO production in rat renal inner medullary collecting ducts via protein-protein interaction with NOS1. Am J Physiol Renal Physiol 2011; 301:F118-24. [PMID: 21490139 DOI: 10.1152/ajprenal.00534.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We hypothesized that nitric oxide synthase (NOS) isoforms may be regulated by dynamin (DNM) in the inner medullary collecting duct (IMCD). The aims of this study were to determine which DNM isoforms (DNM1, DNM2, DNM3) are expressed in renal IMCDs, whether DNM interacts with NOS, whether a high-salt diet alters the interaction of DNM and NOS, and whether DNM activates NO production. DNM2 and DNM3 are highly expressed in the rat IMCD, while DNM1 is localized outside of the IMCD. We found that DNM1 interacts with NOS1α, NOS1β, and NOS3 in the inner medulla of male Sprague-Dawley rats on a 0.4% salt diet. DNM2 interacts with NOS1α, while DNM3 interacts with both NOS1α and NOS1β. DNM2 and DNM3 do not interact with NOS3 in the rat inner medulla. We did not observe any change in the DNM/NOS interactions with rats on a 4% salt diet after 7 days. Furthermore, NOS1α interacts with DNM2 in mIMCD3 and COS7 cells transfected with NOS1α and DNM2-GFP constructs and the NOS1 reductase domain is necessary for the interaction. Finally, COS7 cells expressing NOS1α or NOS1α/DNM2-GFP had significantly higher nitrite production compared with DNM2-GFP only. Nitrite production was blocked by the DNM inhibitor dynasore or the dominant negative DNM2K44A. Ionomycin stimulation further increased nitrite production in the NOS1α/DNM2-GFP cells compared with NOS1α only. In conclusion, DNM and NOS1 interact in the rat renal IMCD and this interaction leads to increased NO production, which may influence NO production in the renal medulla.
Collapse
Affiliation(s)
- Kelly A Hyndman
- Vascular Biology Center, CB-3213, Medical College of Georgia, Georgia Health Sciences University, Augusta, GA 30912, USA
| | | | | | | |
Collapse
|
27
|
Routray C, Liu C, Yaqoob U, Billadeau DD, Bloch KD, Kaibuchi K, Shah VH, Kang N. Protein kinase G signaling disrupts Rac1-dependent focal adhesion assembly in liver specific pericytes. Am J Physiol Cell Physiol 2011; 301:C66-74. [PMID: 21451103 DOI: 10.1152/ajpcell.00038.2011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Nitric oxide (NO) regulates the function of perivascular cells (pericytes), including hepatic stellate cells (HSC), mainly by activating cGMP and cGMP-dependent kinase (PKG) via NO/cGMP paracrine signaling. Although PKG is implicated in integrin-mediated cell adhesion to extracellular matrix, whether or how PKG signaling regulates the assembly of focal adhesion complexes (FA) and migration of HSC is not known. With the help of complementary molecular and cell biological approaches, we demonstrate here that activation of PKG signaling in HSC inhibits vascular tubulogenesis, migration/chemotaxis, and assembly of mature FA plaques, as assessed by vascular tubulogenesis assays and immunofluorescence localization of FA markers such as vinculin and vasodilator-stimulated phosphoprotein (VASP). To determine whether PKG inhibits FA assembly by phosphorylation of VASP at Ser-157, Ser-239, and Thr-278, we mutated these putative phosphorylation sites to alanine (VASP3A, phosphoresistant mutant) or aspartic acid (VASP3D, phosphomimetic), respectively. Data generated from these two mutants suggest that the effect of PKG on FA is independent of these three phosphorylation sites. In contrast, activation of PKG inhibits the activity of small GTPase Rac1 and its association with the effector protein IQGAP1. Moreover, PKG activation inhibits the formation of a trimeric protein complex containing Rac1, IQGAP1, and VASP. Finally, we found that expression of a constitutively active Rac1 mutant abolishes the inhibitory effects of PKG on FA formation. In summary, our data suggest that activation of PKG signaling in pericytes inhibits FA formation by inhibiting Rac1.
Collapse
Affiliation(s)
- Chittaranjan Routray
- GI Research Unit and Cancer Cell Biology Program, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Daaka Y. S-nitrosylation-regulated GPCR signaling. Biochim Biophys Acta Gen Subj 2011; 1820:743-51. [PMID: 21397660 DOI: 10.1016/j.bbagen.2011.03.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 02/26/2011] [Accepted: 03/04/2011] [Indexed: 01/14/2023]
Abstract
G protein-coupled receptors (GPCRs) are the most numerous and diverse type of cell surface receptors, accounting for about 1% of the entire human genome and relaying signals from a variety of extracellular stimuli that range from lipid and peptide growth factors to ions and sensory inputs. Activated GPCRs regulate a multitude of target cell functions, including intermediary metabolism, growth and differentiation, and migration and invasion. The GPCRs contain a characteristic 7-transmembrane domain topology and their activation promotes complex formation with a variety of intracellular partner proteins, which form basis for initiation of distinct signaling networks as well as dictate fate of the receptor itself. Both termination of active GPCR signaling and removal from the plasma membrane are controlled by protein post-translational modifications of the receptor itself and its interacting partners. Phosphorylation, acylation and ubiquitination are the most studied post-translational modifications involved in GPCR signal transduction, subcellular trafficking and overall expression. Emerging evidence demonstrates that protein S-nitrosylation, the covalent attachment of a nitric oxide moiety to specified cysteine thiol groups, of GPCRs and/or their associated effectors also participates in the fine-tuning of receptor signaling and expression. This newly appreciated mode of GPCR system modification adds another set of controls to more precisely regulate the many cellular functions elicited by this large group of receptors. This article is part of a Special Issue entitled: Regulation of cellular processes by S-nitrosylation.
Collapse
Affiliation(s)
- Yehia Daaka
- The Department of Microbiology and Immunology, University of California, San Francisco, CA, United States.
| |
Collapse
|
29
|
Wei P, Milbauer LC, Enenstein J, Nguyen J, Pan W, Hebbel RP. Differential endothelial cell gene expression by African Americans versus Caucasian Americans: a possible contribution to health disparity in vascular disease and cancer. BMC Med 2011; 9:2. [PMID: 21223544 PMCID: PMC3029215 DOI: 10.1186/1741-7015-9-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 01/11/2011] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Health disparities and the high prevalence of cardiovascular disease continue to be perplexing worldwide health challenges. This study addresses the possibility that genetic differences affecting the biology of the vascular endothelium could be a factor contributing to the increased burden of cardiovascular disease and cancer among African Americans (AA) compared to Caucasian Americans (CA). METHODS From self-identified, healthy, 20 to 29-year-old AA (n = 21) and CA (n = 17), we established cultures of blood outgrowth endothelial cells (BOEC) and applied microarray profiling. BOEC have never been exposed to in vivo influences, and their gene expression reflects culture conditions (meticulously controlled) and donor genetics. Significance Analysis of Microarray identified differential expression of single genes. Gene Set Enrichment Analysis examined expression of pre-determined gene sets that survey nine biological systems relevant to endothelial biology. RESULTS At the highly stringent threshold of False Discovery Rate (FDR) = 0, 31 single genes were differentially expressed in AA. PSPH exhibited the greatest fold-change (AA > CA), but this was entirely accounted for by a homolog (PSPHL) hidden within the PSPH probe set. Among other significantly different genes were: for AA > CA, SOS1, AMFR, FGFR3; and for AA < CA, ARVCF, BIN3, EIF4B. Many more (221 transcripts for 204 genes) were differentially expressed at the less stringent threshold of FDR <.05. Using the biological systems approach, we identified shear response biology as being significantly different for AA versus CA, showing an apparent tonic increase of expression (AA > CA) for 46/157 genes within that system. CONCLUSIONS Many of the genes implicated here have substantial roles in endothelial biology. Shear stress response, a critical regulator of endothelial function and vascular homeostasis, may be different between AA and CA. These results potentially have direct implications for the role of endothelial cells in vascular disease (hypertension, stroke) and cancer (via angiogenesis). Also, they are consistent with our over-arching hypothesis that genetic influences stemming from ancestral continent-of-origin could impact upon endothelial cell biology and thereby contribute to disparity of vascular-related disease burden among AA. The method used here could be productively employed to bridge the gap between information from structural genomics (for example, disease association) and cell function and pathophysiology.
Collapse
Affiliation(s)
- P Wei
- Vascular Biology Center, Department of Medicine, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
30
|
Wang Z, Humphrey C, Frilot N, Wang G, Nie Z, Moniri NH, Daaka Y. Dynamin2- and endothelial nitric oxide synthase-regulated invasion of bladder epithelial cells by uropathogenic Escherichia coli. J Cell Biol 2011; 192:101-10. [PMID: 21220511 PMCID: PMC3019553 DOI: 10.1083/jcb.201003027] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 12/07/2010] [Indexed: 11/22/2022] Open
Abstract
Invasion of bladder epithelial cells by uropathogenic Escherichia coli (UPEC) contributes to antibiotic-resistant and recurrent urinary tract infections (UTIs), but this process is incompletely understood. In this paper, we provide evidence that the large guanosine triphosphatase dynamin2 and its partner, endothelial nitric oxide (NO) synthase (NOS [eNOS]), mediate bacterial entry. Overexpression of dynamin2 or treatment with the NO donor S-nitrosothiols increases, whereas targeted reduction of endogenous dynamin2 or eNOS expression with ribonucleic acid interference impairs, bacterial invasion. Exposure of mouse bladder to small molecule NOS inhibitors abrogates infection of the uroepithelium by E. coli, and, concordantly, bacteria more efficiently invade uroepithelia isolated from wild-type compared with eNOS(-/-) mice. E. coli internalization promotes rapid phosphorylation of host cell eNOS and NO generation, and dynamin2 S-nitrosylation, a posttranslational modification required for the bacterial entry, also increases during E. coli invasion. These findings suggest that UPEC escape urinary flushing and immune cell surveillance by means of eNOS-dependent dynamin2 S-nitrosylation and invasion of host cells to cause recurrent UTIs.
Collapse
Affiliation(s)
- Zhimin Wang
- Department of Pathology, Medical College of Georgia, Augusta, GA 30912
- Department of Urology and Prostate Disease Center, University of Florida, Gainesville, FL 32610
| | - Ceba Humphrey
- Department of Pathology, Medical College of Georgia, Augusta, GA 30912
| | - Nicole Frilot
- Department of Pathology, Medical College of Georgia, Augusta, GA 30912
| | - Gaofeng Wang
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Zhongzhen Nie
- Department of Pathology, Medical College of Georgia, Augusta, GA 30912
- Department of Urology and Prostate Disease Center, University of Florida, Gainesville, FL 32610
| | - Nader H. Moniri
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Mercer University, Atlanta, GA 30341
| | - Yehia Daaka
- Department of Pathology, Medical College of Georgia, Augusta, GA 30912
- Department of Urology and Prostate Disease Center, University of Florida, Gainesville, FL 32610
| |
Collapse
|
31
|
|
32
|
Inhibition of dynamin-2 confers endothelial barrier dysfunctions by attenuating nitric oxide production. Cell Biol Int 2010; 34:755-61. [PMID: 20397975 DOI: 10.1042/cbi20090357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hypoxia induces barrier dysfunctions in endothelial cells. Nitric oxide is an autacoid signalling molecule that confers protection against hypoxia-mediated barrier dysfunctions. Dyn-2 (dynamin-2), a large GTPase and a positive modulator of eNOS (endothelial nitric oxide synthase), plays an important role in maintaining vascular homeostasis. The present study aims to elucidate the role of dyn-2 in hypoxia-mediated leakiness of the endothelial monolayer in relation to redox milieu. Inhibition of dyn-2 by transfecting the cells with K44A, a dominant negative construct of dyn-2, elevated leakiness of the endothelial monolayer under hypoxia. Sodium nitroprusside (nitric oxide donor) and uric acid (peroxynitrite quencher) were used to evaluate the role of nitric oxide and peroxynitrite in maintaining endothelial barrier functions under hypoxia. Administration of nitric oxide and uric acid recovered hypoxia-mediated leakiness of K44A-overexpressed endothelial monolayer. Our study confirms that inhibition of dyn-2 induces leakiness in the endothelial monolayer by increasing the load of peroxynitrite under hypoxia.
Collapse
|
33
|
Kang N, Yaqoob U, Geng Z, Bloch K, Liu C, Gomez T, Billadeau D, Shah V. Focal adhesion assembly in myofibroblasts fosters a microenvironment that promotes tumor growth. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1888-900. [PMID: 20802179 DOI: 10.2353/ajpath.2010.100187] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cells within the tumor microenvironment influence tumor growth through multiple mechanisms. Pericytes such as hepatic stellate cells are an important cell within the tumor microenvironment; their transformation into highly motile myofibroblasts leads to angiogenesis, stromal cell recruitment, matrix deposition, and ensuing tumor growth. Thus, a better understanding of mechanisms that regulate motility of pericytes is required. Focal adhesions (FAs) form a physical link between the extracellular environment and the actin cytoskeleton, a requisite step for cell motility. FAs contain a collection of proteins including the Ena/VASP family member, vasodilator-stimulated phosphoprotein (VASP); however, a role for VASP in FA development has been elusive. Using a comprehensive siRNA knockdown approach and a variety of VASP mutants coupled with complementary cell imaging methodologies, we demonstrate a requirement of VASP for optimal development of FAs and cell spreading in LX2 liver myofibroblasts, which express high levels of endogenous VASP. Rac1, a binding partner of VASP, acts in tandem with VASP to regulate FAs. In vivo, perturbation of Ena/VASP function in tumor myofibroblast precursor cells significantly reduces pericyte recruitment to tumor vasculature, myofibroblastic transformation, tumor angiogenesis, and tumor growth, providing in vivo pathobiologic relevance to these findings. Taken together, our results identify Ena/VASP as a significant modifier of tumor growth through regulation of FA dynamics and ensuing pericyte/myofibroblast function within the tumor microenvironment.
Collapse
|
34
|
Fleming I. Molecular mechanisms underlying the activation of eNOS. Pflugers Arch 2010; 459:793-806. [PMID: 20012875 DOI: 10.1007/s00424-009-0767-7] [Citation(s) in RCA: 307] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 11/25/2009] [Accepted: 11/26/2009] [Indexed: 01/08/2023]
Abstract
Endothelial cells situated at the interface between blood and the vessel wall play a crucial role in controlling vascular tone and homeostasis, particularly in determining the expression of pro- and anti-atherosclerotic genes. Many of these effects are mediated by changes in the generation and release of the vasodilator nitric oxide (NO) in response to hemodynamic stimuli exerted on the luminal surface of endothelial cells by the streaming blood (shear stress) and the cyclic strain of the vascular wall. The endothelial NO synthase (eNOS) is activated in response to fluid shear stress and numerous agonists via cellular events such as; increased intracellular Ca(2+), interaction with substrate and co-factors, as well as adaptor and regulatory proteins, protein phosphorylation, and through shuttling between distinct sub-cellular domains. Dysregulation of these processes leads to attenuated eNOS activity and reduced NO output which is a characteristic feature of numerous patho-physiological disorders such as diabetes and atherosclerosis. This review summarizes some of the recent findings relating to the molecular events regulating eNOS activity.
Collapse
Affiliation(s)
- Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Johann Wolfgang Goethe University, Theodor Stern Kai 7, 60596, Frankfurt am Main, Germany.
| |
Collapse
|
35
|
Kuhr FK, Zhang Y, Brovkovych V, Skidgel RA. Beta-arrestin 2 is required for B1 receptor-dependent post-translational activation of inducible nitric oxide synthase. FASEB J 2010; 24:2475-83. [PMID: 20228252 DOI: 10.1096/fj.09-148783] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A major source of "high-output" NO in inflammation is inducible nitric oxide synthase (iNOS). iNOS is primarily transcriptionally regulated and is thought to function as an uncontrolled generator of high NO. We found that iNOS in cytokine-stimulated human lung microvascular endothelial cells (HLMVECs) is highly regulated post-translationally via activation of the B1 kinin G protein-coupled receptor (B1R). We report here that B1R-mediated iNOS activation was significantly inhibited by knockdown of beta-arrestin 2 with siRNA in cytokine-treated HLMVECs or HEK293 cells transfected with iNOS and B1R. In contrast, beta-arrestin 1 siRNA had no effect. The prolonged phase of B1R-dependent ERK activation was also inhibited by beta-arrestin 2 knockdown. Furthermore, robust ERK activation by the epidermal growth factor receptor (a beta-arrestin 2 independent pathway) had no effect on iNOS-derived NO production. beta-arrestin 2 and iNOS coimmunoprecipitated, and there was significant fluorescence resonance energy transfer between CFP-iNOS and beta-arrestin 2-YFP (but not beta-arrestin 1-YFP) that increased 3-fold after B1R stimulation. These data show that beta-arrestin 2 mediates B1R-dependent high-output NO by scaffolding iNOS and ERK to allow post-translational activation of iNOS. This could play a critical role in mediating endothelial function in inflammation.
Collapse
Affiliation(s)
- Frank K Kuhr
- Department of Pharmacology, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
36
|
Dynamin 2 and human diseases. J Mol Med (Berl) 2010; 88:339-50. [PMID: 20127478 DOI: 10.1007/s00109-009-0587-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 12/21/2009] [Accepted: 12/25/2009] [Indexed: 10/25/2022]
Abstract
Dynamin 2 (DNM2) mutations cause autosomal dominant centronuclear myopathy, a rare form of congenital myopathy, and intermediate and axonal forms of Charcot-Marie-Tooth disease, a peripheral neuropathy. DNM2 is a large GTPase mainly involved in membrane trafficking through its function in the formation and release of nascent vesicles from biological membranes. DNM2 participates in clathrin-dependent and clathrin-independent endocytosis and intracellular membrane trafficking (from endosomes and Golgi apparatus). Recent studies have also implicated DNM2 in exocytosis. DNM2 belongs to the machinery responsible for the formation of vesicles and regulates the cytoskeleton providing intracellular vesicle transport. In addition, DNM2 tightly interacts with and is involved in the regulation of actin and microtubule networks, independent from membrane trafficking processes. We summarize here the molecular, biochemical, and functional data on DNM2 and discuss the possible pathophysiological mechanisms via which DNM2 mutations can lead to two distinct neuromuscular disorders.
Collapse
|
37
|
Kotlo KU, Rasenick MM, Danziger RS. Evidence for cross-talk between atrial natriuretic peptide and nitric oxide receptors. Mol Cell Biochem 2009; 338:183-9. [PMID: 20024606 DOI: 10.1007/s11010-009-0352-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 12/03/2009] [Indexed: 01/11/2023]
Abstract
Guanylyl cyclases (GCs), a ubiquitous family of enzymes that metabolize GTP to cyclic GMP (cGMP), are traditionally divided into membrane-bound forms (GC-A-G) that are activated by peptides and cytosolic forms that are activated by nitric oxide (NO) and carbon monoxide. However, recent data has shown that NO activated GC's (NOGC) also may be associated with membranes. In the present study, interactions of guanylyl cyclase A (GC-A), a caveolae-associated, membrane-bound, homodimer activated by atrial natriuretic peptide (ANP), with NOGC, a heme-containing heterodimer (alpha/beta) beta1 isoform of the beta subunit of NOGC (NOGCbeta1) was specifically focused. NOGCbeta1 co-localized with GC-A and caveolin on the membrane in human kidney (HK-2) cells. Interaction of GC-A with NOGCbeta1 was found using immunoprecipitations. In a second set of experiments, the possibility that NOGCbeta1 regulates signaling by GC-A in HK-2 cells was explored. ANP-stimulated membrane guanylyl cyclase activity (0.05 +/- 0.006 pmol/mg protein/5 min; P < 0.01) and intra cellular GMP (18.1 +/- 3.4 vs. 1.2 +/- 0.5 pmol/mg protein; P < 0.01) were reduced in cells in which NOGCbeta1 abundance was reduced using specific siRNA to NOGCbeta1. On the other hand, ANP-stimulated cGMP formation was increased in cells transiently transfected with NOGCbeta1 (530.2 +/- 141.4 vs. 26.1 +/- 13.6 pmol/mg protein; P < 0.01). siRNA to NOGCbeta1 attenuated inhibition of basolateral Na/K ATPase activity by ANP (192 +/- 22 vs. 92 +/- 9 nmol phosphate/mg protein/min; P < 0.05). In summary, the results show that NOGCbeta1 and GC-A interact and that NOGCbeta1 regulates ANP signaling in HK-2 cells. The results raise the novel possibility of cross-talk between NOGC and GC-A signaling pathways in membrane caveolae.
Collapse
Affiliation(s)
- Kumar U Kotlo
- Department of Medicine, University of Illinois at Chicago, Jesse Brown VA Medical Center, Chicago, IL 60612, USA.
| | | | | |
Collapse
|
38
|
Stuehr DJ, Tejero J, Haque MM. Structural and mechanistic aspects of flavoproteins: electron transfer through the nitric oxide synthase flavoprotein domain. FEBS J 2009; 276:3959-74. [PMID: 19583767 DOI: 10.1111/j.1742-4658.2009.07120.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nitric oxide synthases belong to a family of dual-flavin enzymes that transfer electrons from NAD(P)H to a variety of heme protein acceptors. During catalysis, their FMN subdomain plays a central role by acting as both an electron acceptor (receiving electrons from FAD) and an electron donor, and is thought to undergo large conformational movements and engage in two distinct protein-protein interactions in the process. This minireview summarizes what we know about the many factors regulating nitric oxide synthase flavoprotein domain function, primarily from the viewpoint of how they impact electron input/output and conformational behaviors of the FMN subdomain.
Collapse
Affiliation(s)
- Dennis J Stuehr
- Department of Pathobiology, Lerner Research Institute, Cleveland, OH 44195, USA.
| | | | | |
Collapse
|
39
|
Nitric Oxide as an Initiator of Brain Lesions During the Development of Alzheimer Disease. Neurotox Res 2009; 16:293-305. [DOI: 10.1007/s12640-009-9066-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 05/16/2009] [Accepted: 05/16/2009] [Indexed: 01/11/2023]
|
40
|
Balligand JL, Feron O, Dessy C. eNOS activation by physical forces: from short-term regulation of contraction to chronic remodeling of cardiovascular tissues. Physiol Rev 2009; 89:481-534. [PMID: 19342613 DOI: 10.1152/physrev.00042.2007] [Citation(s) in RCA: 324] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide production in response to flow-dependent shear forces applied on the surface of endothelial cells is a fundamental mechanism of regulation of vascular tone, peripheral resistance, and tissue perfusion. This implicates the concerted action of multiple upstream "mechanosensing" molecules reversibly assembled in signalosomes recruiting endothelial nitric oxide synthase (eNOS) in specific subcellular locales, e.g., plasmalemmal caveolae. Subsequent short- and long-term increases in activity and expression of eNOS translate this mechanical stimulus into enhanced NO production and bioactivity through a complex transcriptional and posttranslational regulation of the enzyme, including by shear-stress responsive transcription factors, oxidant stress-dependent regulation of transcript stability, eNOS regulatory phosphorylations, and protein-protein interactions. Notably, eNOS expressed in cardiac myocytes is amenable to a similar regulation in response to stretching of cardiac muscle cells and in part mediates the length-dependent increase in cardiac contraction force. In addition to short-term regulation of contractile tone, eNOS mediates key aspects of cardiac and vascular remodeling, e.g., by orchestrating the mobilization, recruitment, migration, and differentiation of cardiac and vascular progenitor cells, in part by regulating the stabilization and transcriptional activity of hypoxia inducible factor in normoxia and hypoxia. The continuum of the influence of eNOS in cardiovascular biology explains its growing implication in mechanosensitive aspects of integrated physiology, such as the control of blood pressure variability or the modulation of cardiac remodeling in situations of hemodynamic overload.
Collapse
Affiliation(s)
- J-L Balligand
- Unit of Pharmacology and Therapeutics, Université catholique de Louvain, Brussels, Belgium.
| | | | | |
Collapse
|
41
|
Internalization of eNOS and NO delivery to subcellular targets determine agonist-induced hyperpermeability. Proc Natl Acad Sci U S A 2009; 106:6849-53. [PMID: 19342481 DOI: 10.1073/pnas.0812694106] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The molecular mechanisms of endothelial nitric oxide synthase (eNOS) regulation of microvascular permeability remain unresolved. Agonist-induced internalization may have a role in this process. We demonstrate here that internalization of eNOS is required to deliver NO to subcellular locations to increase endothelial monolayer permeability to macromolecules. Using dominant-negative mutants of dynamin-2 (dyn2K44A) and caveolin-1 (cav1Y14F), we show that anchoring eNOS-containing caveolae to plasma membrane inhibits hyperpermeability induced by platelet-activating factor (PAF), VEGF in ECV-CD8eNOSGFP (ECV-304 transfected cells) and postcapillary venular endothelial cells (CVEC). We also observed that anchoring caveolar eNOS to the plasma membrane uncouples eNOS phosphorylation at Ser-1177 from NO production. This dissociation occurred in a mutant- and cell-dependent way. PAF induced Ser-1177-eNOS phosphorylation in ECV-CD8eNOSGFP and CVEC transfected with dyn2K44A, but it dephosphorylated eNOS at Ser-1177 in CVEC transfected with cav1Y14F. Interestingly, dyn2K44A eliminated NO production, whereas cav1Y14F caused reduction in NO production in CVEC. NO production by cav1Y14F-transfected CVEC occurred in caveolae bound to the plasma membrane, and was ineffective in causing an increase in permeability. Our study demonstrates that eNOS internalization is required for agonist-induced hyperpermeability, and suggests that a mechanism by which eNOS is activated by phosphorylation at the plasma membrane and its endocytosis is required to deliver NO to subcellular targets to cause hyperpermeability.
Collapse
|
42
|
Ozawa K, Whalen EJ, Nelson CD, Mu Y, Hess DT, Lefkowitz RJ, Stamler JS. S-nitrosylation of beta-arrestin regulates beta-adrenergic receptor trafficking. Mol Cell 2008; 31:395-405. [PMID: 18691971 DOI: 10.1016/j.molcel.2008.05.024] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 03/26/2008] [Accepted: 05/29/2008] [Indexed: 02/03/2023]
Abstract
Signal transduction through G protein-coupled receptors (GPCRs) is regulated by receptor desensitization and internalization that follow agonist stimulation. Nitric oxide (NO) can influence these processes, but the cellular source of NO bioactivity and the effects of NO on GPCR-mediated signal transduction are incompletely understood. Here, we show in cells and mice that beta-arrestin 2, a central element in GPCR trafficking, interacts with and is S-nitrosylated at a single cysteine by endothelial NO synthase (eNOS), and that S-nitrosylation of beta-arrestin 2 is promoted by endogenous S-nitrosogluthathione. S-nitrosylation after agonist stimulation of the beta-adrenergic receptor, a prototypical GPCR, dissociates eNOS from beta-arrestin 2 and promotes binding of beta-arrestin 2 to clathrin heavy chain/beta-adaptin, thereby accelerating receptor internalization. The agonist- and NO-dependent shift in the affiliations of beta-arrestin 2 is followed by denitrosylation. Thus, beta-arrestin subserves the functional coupling of eNOS and GPCRs, and dynamic S-nitrosylation/denitrosylation of beta-arrestin 2 regulates stimulus-induced GPCR trafficking.
Collapse
Affiliation(s)
- Kentaro Ozawa
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Sánchez FA, Kim DD, Durán RG, Meininger CJ, Durán WN. Internalization of eNOS via caveolae regulates PAF-induced inflammatory hyperpermeability to macromolecules. Am J Physiol Heart Circ Physiol 2008; 295:H1642-8. [PMID: 18708444 DOI: 10.1152/ajpheart.00629.2008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelial nitric oxide (NO) synthase (eNOS) is thought to regulate microvascular permeability via NO production. We tested the hypotheses that the expression of eNOS and eNOS endocytosis by caveolae are fundamental for appropriate signaling mechanisms in inflammatory endothelial permeability to macromolecules. We used bovine coronary postcapillary venular endothelial cells (CVECs) because these cells are derived from the microvascular segment responsible for the transport of macromolecules in inflammation. We stimulated CVECs with platelet-activating factor (PAF) at 100 nM and measured eNOS phosphorylation, NO production, and CVEC monolayer permeability to FITC-dextran 70 KDa (Dx-70). PAF translocated eNOS from plasma membrane to cytosol, induced changes in the phosphorylation state of the enzyme, and increased NO production from 4.3+/-3.8 to 467+/-22.6 nM. PAF elevated CVEC monolayer permeability to FITC-Dx-70 from 3.4+/-0.3 x 10(-6) to 8.5+/-0.4 x 10(-6) cm/s. The depletion of endogenous eNOS with small interfering RNA abolished PAF-induced hyperpermeability, demonstrating that the expression of eNOS is required for inflammatory hyperpermeability responses. The inhibition of the caveolar internalization by blocking caveolar scission using transfection of dynamin dominant-negative mutant, dyn2K44A, inhibited PAF-induced hyperpermeability to FITC-Dx-70. We interpret these data as evidence that 1) eNOS is required for hyperpermeability to macromolecules and 2) the internalization of eNOS via caveolae is an important mechanism in the regulation of endothelial permeability. We advance the novel concept that eNOS internalization to cytosol is a signaling mechanism for the onset of microvascular hyperpermeability in inflammation.
Collapse
Affiliation(s)
- Fabiola A Sánchez
- Program in Vascular Biology, Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, New Jersey, USA.
| | | | | | | | | |
Collapse
|
44
|
Rappoport JZ, Heyman KP, Kemal S, Simon SM. Dynamics of dynamin during clathrin mediated endocytosis in PC12 cells. PLoS One 2008; 3:e2416. [PMID: 18545672 PMCID: PMC2409078 DOI: 10.1371/journal.pone.0002416] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2007] [Accepted: 04/28/2008] [Indexed: 11/18/2022] Open
Abstract
Background Members of the dynamin super-family of GTPases are involved in disparate cellular pathways. Dynamin1 and dynamin2 have been implicated in clathrin-mediated endocytosis. While some models suggest that dynamin functions specifically at the point of vesicle fission, evidence also exists for a role prior to fission during vesicle formation and it is unknown if there is a role for dynamin after vesicle fission. Although dynamin2 is ubiquitously expressed, dynamin1 is restricted to the nervous system. These two structurally similar endocytic accessory proteins have not been studied in cells that endogenously express both. Methodology/Principal Findings The present study quantitatively assesses the dynamics of dynamin1 and dynamin2 during clathrin-mediated endocytosis in PC12 cells, which endogenously express both proteins. Both dynamin isoforms co-localized with clathrin and showed sharp increases in fluorescence intensity immediately prior to internalization of the nascent clathrin-coated vesicle. The fluorescence intensity of both proteins then decreased with two time constants. The slower time constant closely matched the time constant for the decrease of clathrin intensity and likely represents vesicle movement away from the membrane. The faster rate may reflect release of dynamin at the neck of nascent vesicle following GTP hydrolysis. Conclusions/Significance This study analyses the role of dynamin in clathrin-mediated endocytosis in a model for cellular neuroscience and these results may provide direct evidence for the existence of two populations of dynamin associated with nascent clathrin-coated vesicles.
Collapse
Affiliation(s)
- Joshua Z. Rappoport
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York, United States of America
| | - Katherine P. Heyman
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York, United States of America
| | - Shahrnaz Kemal
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York, United States of America
| | - Sanford M. Simon
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
45
|
Fleming I. Biology of Nitric Oxide Synthases. Microcirculation 2008. [DOI: 10.1016/b978-0-12-374530-9.00003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
46
|
Huang D, Cai DT, Chua RYR, Kemeny DM, Wong SH. Nitric-oxide synthase 2 interacts with CD74 and inhibits its cleavage by caspase during dendritic cell development. J Biol Chem 2007; 283:1713-1722. [PMID: 18003616 DOI: 10.1074/jbc.m705998200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Dendritic cells (DC) are professional antigen-presenting cells that possess specific and efficient mechanisms to initiate immune responses. Upon encounter with pathogens, immature DC will go through a maturation process that converts them to highly immunogenic mature DC. Despite the fact that nitric oxide (NO) was produced in large amounts in maturing DC, it is still unclear whether NO is the key molecule that initiates and enhances DC maturation and T cell proliferation, respectively. Here, we report that NO donor and overexpression of either nitric-oxide synthase 2 (NOS2) or nitric-oxide synthase 3 (NOS3) alone can induce surface expression of major histocompatibility complex class II (MHC II) and both the essential co-stimulatory molecules CD80 and CD86 in immature DC. Consistently, NO donor-treated immature DC were capable of enhancing T cell proliferation in vitro in the absence of lipolysaccharide. Interestingly, NOS2 interacts with CD74 (the MHC II-associated invariant chain), and the degradation of CD74 by caspases in immature DC was inhibited upon treatment with NO donor. Because the trafficking of MHC II is CD74-dependent, the increase in cell surface localization of MHC II in maturing DC is in part due to the increase in CD74 protein expression in the presence of NOS2 and NO.
Collapse
Affiliation(s)
- Dachuan Huang
- Laboratory of Membrane Trafficking and Immunoregulation, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Republic of Singapore
| | - Deyu Tarika Cai
- Laboratory of Membrane Trafficking and Immunoregulation, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Republic of Singapore
| | - Rong Yuan Ray Chua
- Laboratory of Membrane Trafficking and Immunoregulation, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Republic of Singapore
| | - David Michael Kemeny
- Immunology Programme, National University of Singapore, Singapore 117597, Republic of Singapore
| | - Siew Heng Wong
- Laboratory of Membrane Trafficking and Immunoregulation, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Republic of Singapore; Immunology Programme, National University of Singapore, Singapore 117597, Republic of Singapore.
| |
Collapse
|
47
|
Abstract
Nitric oxide (NO) exerts important vasodilatory, antiplatelet, antioxidant, antiadhesive, and antiproliferative effects. Although endothelium derived NO has been shown to be of prime importance in cardio- and vasculoprotection, until recently little was known about the role of platelet-derived NO. New evidence suggests that NO synthesized by platelets regulates platelet functions, in particular suppressing platelet activation and intravascular thrombosis. Moreover, platelet NO biosynthesis may be decreased in patients with cardiovascular risk factors or with coronary heart disease, and this may contribute to arterial thrombotic disease in these patients. Here, we review the current state of knowledge as regards the role of platelet-derived NO, both in normal physiology and in cardiovascular disease states, and compare platelet NO signaling and regulation with that in endothelial cells.
Collapse
Affiliation(s)
- Eugenia Gkaliagkousi
- Department of Clinical Pharmacology, Cardiovascular Division, School of Medicine, King's College London, London SE1 9NH, UK
| | | | | |
Collapse
|
48
|
Lin LH, Taktakishvili O, Talman WT. Identification and localization of cell types that express endothelial and neuronal nitric oxide synthase in the rat nucleus tractus solitarii. Brain Res 2007; 1171:42-51. [PMID: 17761150 PMCID: PMC2141649 DOI: 10.1016/j.brainres.2007.07.057] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 07/26/2007] [Accepted: 07/26/2007] [Indexed: 02/07/2023]
Abstract
Numerous studies have suggested that nitric oxide (NO) in the nucleus tractus solitarii (NTS) participates in modulating cardiovascular function. Nitric oxide synthase (NOS), the enzyme responsible for synthesis of NO, exists in 3 isoforms: endothelial NOS (eNOS), neuronal NOS (nNOS), and inducible NOS (iNOS). Although the distribution of nNOS in the NTS has been well documented, the distribution of eNOS in the NTS has not. Because recent studies have shown that eNOS may contribute to regulation of baroreceptor reflexes and arterial pressure, we examined the distribution of eNOS and the types of cells that express it in rat NTS by using multiple labels for immunofluorescent staining and confocal microscopy. Immunoreactivity (IR) for eNOS and nNOS was found in cells and processes in all NTS subnuclei, but eNOS-IR was more uniformly distributed than was nNOS-IR. Although structures containing either eNOS-IR or nNOS-IR were often present in close proximity, they never contained both isoforms. Almost all eNOS-IR positive structures, but no nNOS-IR positive structures, contained IR for the glial marker glial fibrillary acidic protein. Furthermore, while all nNOS-IR positive cells contained IR for the neuronal marker neuronal nuclear antigen (NeuN), none of the eNOS-IR positive cells contained NeuN-IR. We conclude that eNOS in the NTS is present only in astrocytes and endothelial cells, not in neurons. Our data complement previous physiological studies and suggest that although NO from nNOS may modulate neurotransmission directly in the NTS, NO from eNOS in the NTS may modulate cardiovascular function through an interaction between astrocytes and neurons.
Collapse
Affiliation(s)
- L H Lin
- Department of Neurology, University of Iowa, VAMC 1-10W19, MS 151, Iowa City, IA 52242, USA.
| | | | | |
Collapse
|
49
|
Whalen EJ, Foster MW, Matsumoto A, Ozawa K, Violin JD, Que LG, Nelson CD, Benhar M, Keys JR, Rockman HA, Koch WJ, Daaka Y, Lefkowitz RJ, Stamler JS. Regulation of beta-adrenergic receptor signaling by S-nitrosylation of G-protein-coupled receptor kinase 2. Cell 2007; 129:511-22. [PMID: 17482545 DOI: 10.1016/j.cell.2007.02.046] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 01/12/2007] [Accepted: 02/26/2007] [Indexed: 01/08/2023]
Abstract
beta-adrenergic receptors (beta-ARs), prototypic G-protein-coupled receptors (GPCRs), play a critical role in regulating numerous physiological processes. The GPCR kinases (GRKs) curtail G-protein signaling and target receptors for internalization. Nitric oxide (NO) and/or S-nitrosothiols (SNOs) can prevent the loss of beta-AR signaling in vivo, but the molecular details are unknown. Here we show in mice that SNOs increase beta-AR expression and prevent agonist-stimulated receptor downregulation; and in cells, SNOs decrease GRK2-mediated beta-AR phosphorylation and subsequent recruitment of beta-arrestin to the receptor, resulting in the attenuation of receptor desensitization and internalization. In both cells and tissues, GRK2 is S-nitrosylated by SNOs as well as by NO synthases, and GRK2 S-nitrosylation increases following stimulation of multiple GPCRs with agonists. Cys340 of GRK2 is identified as a principal locus of inhibition by S-nitrosylation. Our studies thus reveal a central molecular mechanism through which GPCR signaling is regulated.
Collapse
Affiliation(s)
- Erin J Whalen
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Haque MM, Panda K, Tejero J, Aulak KS, Fadlalla MA, Mustovich AT, Stuehr DJ. A connecting hinge represses the activity of endothelial nitric oxide synthase. Proc Natl Acad Sci U S A 2007; 104:9254-9. [PMID: 17517617 PMCID: PMC1890481 DOI: 10.1073/pnas.0700332104] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In mammals, endothelial nitric oxide synthase (eNOS) has the weakest activity, being one-tenth and one-sixth as active as the inducible NOS (iNOS) and the neuronal NOS (nNOS), respectively. The basis for this weak activity is unclear. We hypothesized that a hinge element that connects the FMN module in the reductase domain but is shorter and of unique composition in eNOS may be involved. To test this hypothesis, we generated an eNOS chimera that contained the nNOS hinge and two mutants that either eliminated (P728IeNOS) or incorporated (I958PnNOS) a proline residue unique to the eNOS hinge. Incorporating the nNOS hinge into eNOS increased NO synthesis activity 4-fold, to an activity two-thirds that of nNOS. It also decreased uncoupled NADPH oxidation, increased the apparent K(m)O(2) for NO synthesis, and caused a faster heme reduction. Eliminating the hinge proline had similar, but lesser, effects. Our findings reveal that the hinge is an important regulator and show that differences in its composition restrict the activity of eNOS relative to other NOS enzymes.
Collapse
Affiliation(s)
- Mohammad Mahfuzul Haque
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195
| | - Koustubh Panda
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195
| | - Jesús Tejero
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195
| | - Kulwant S. Aulak
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195
| | - Mohammed Adam Fadlalla
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195
| | - Anthony T. Mustovich
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195
| | - Dennis J. Stuehr
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|