1
|
Debruin D, McRae NL, Addinsall AB, McCulloch DR, Barker RG, Debrincat D, Hayes A, Murphy RM, Stupka N. In dystrophic mdx hindlimb muscles where fibrosis is limited, versican haploinsufficiency transiently improves contractile function without reducing inflammation. Am J Physiol Cell Physiol 2024; 327:C1035-C1050. [PMID: 39159389 DOI: 10.1152/ajpcell.00320.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024]
Abstract
Versican is increased with inflammation and fibrosis, and is upregulated in Duchenne muscular dystrophy. In fibrotic diaphragm muscles from dystrophic mdx mice, genetic reduction of versican attenuated macrophage infiltration and improved contractile function. Versican is also implicated in myogenesis. Here, we investigated whether versican modulated mdx hindlimb muscle pathology, where inflammation and regeneration are increased but fibrosis is minimal. Immunohistochemistry and qRT-PCR were used to assess how fiber type and glucocorticoids (α-methylprednisolone) modify versican expression. To genetically reduce versican, female mdx and male versican haploinsufficient (hdf) mice were bred resulting in male mdx-hdf and mdx (control) pups. Versican expression, contractile function, and pathology were evaluated in hindlimb muscles. Versican immunoreactivity was greater in slow versus fast hindlimb muscles. Versican mRNA transcripts were reduced by α-methylprednisolone in soleus, but not in fast extensor digitorum longus, muscles. In juvenile (6-wk-old) mdx-hdf mice, versican expression was most robustly decreased in soleus muscles leading to improved force output and a modest reduction in fatiguability. These functional benefits were not accompanied by decreased inflammation. Muscle architecture, regeneration markers, and fiber type also did not differ between mdx-hdf mice and mdx littermates. Improvements in soleus contractile function were not retained in adult (20-wk-old) mdx-hdf mice. In conclusion, soleus muscles from juvenile mdx mice were most responsive to pharmacological or genetic approaches targeting versican; however, the benefits of versican reduction were limited due to low fibrosis. Preclinical matrix research in dystrophy should account for muscle phenotype (including age) and the interdependence between inflammation and fibrosis. NEW & NOTEWORTHY The proteoglycan versican is upregulated in muscular dystrophy. In fibrotic diaphragm muscles from mdx mice, versican reduction attenuated macrophage infiltration and improved performance. Here, in hindlimb muscles from 6- and 20-wk-old mdx mice, where pathology is mild, versican reduction did not decrease inflammation and contractile function improvements were limited to juvenile mice. In dystrophic mdx muscles, the association between versican and inflammation is mediated by fibrosis, demonstrating interdependence between the immune system and extracellular matrix.
Collapse
MESH Headings
- Animals
- Female
- Male
- Mice
- Fibrosis
- Haploinsufficiency
- Hindlimb
- Inflammation/metabolism
- Inflammation/genetics
- Inflammation/pathology
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Muscle Contraction
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/physiopathology
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/physiopathology
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Versicans/genetics
- Versicans/metabolism
Collapse
Affiliation(s)
- Danielle Debruin
- Department of Medicine - Western Health, The University of Melbourne, Melbourne, Victoria, Australia
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria, Australia
| | - Natasha L McRae
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Alex B Addinsall
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Victoria, Australia
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Daniel R McCulloch
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Robert G Barker
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
| | - Didier Debrincat
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria, Australia
| | - Alan Hayes
- Department of Medicine - Western Health, The University of Melbourne, Melbourne, Victoria, Australia
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria, Australia
- Australian Institute for Musculoskeletal Sciences (AIMSS), Victoria University & Western Health, Melbourne, Victoria, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
| | - Nicole Stupka
- Department of Medicine - Western Health, The University of Melbourne, Melbourne, Victoria, Australia
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Liaqat I, Hilska I, Saario M, Jakobsson E, Crivaro M, Peränen J, Vaahtomeri K. Spatially targeted chemokine exocytosis guides transmigration at lymphatic endothelial multicellular junctions. EMBO J 2024; 43:3141-3174. [PMID: 38877304 PMCID: PMC11294460 DOI: 10.1038/s44318-024-00129-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 06/16/2024] Open
Abstract
Migrating cells preferentially breach and integrate epithelial and endothelial monolayers at multicellular vertices. These sites are amenable to forces produced by the migrating cell and subsequent opening of the junctions. However, the cues that guide migrating cells to these entry portals, and eventually drive the transmigration process, are poorly understood. Here, we show that lymphatic endothelium multicellular junctions are the preferred sites of dendritic cell transmigration in both primary cell co-cultures and in mouse dermal explants. Dendritic cell guidance to multicellular junctions was dependent on the dendritic cell receptor CCR7, whose ligand, lymphatic endothelial chemokine CCL21, was exocytosed at multicellular junctions. Characterization of lymphatic endothelial secretory routes indicated Golgi-derived RAB6+ vesicles and RAB3+/27+ dense core secretory granules as intracellular CCL21 storage vesicles. Of these, RAB6+ vesicles trafficked CCL21 to the multicellular junctions, which were enriched with RAB6 docking factor ELKS (ERC1). Importantly, inhibition of RAB6 vesicle exocytosis attenuated dendritic cell transmigration. These data exemplify how spatially-restricted exocytosis of guidance cues helps to determine where dendritic cells transmigrate.
Collapse
Affiliation(s)
- Inam Liaqat
- Translational Cancer Medicine Research Program, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
| | - Ida Hilska
- Translational Cancer Medicine Research Program, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
| | - Maria Saario
- Translational Cancer Medicine Research Program, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
| | - Emma Jakobsson
- Translational Cancer Medicine Research Program, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
| | - Marko Crivaro
- Light Microscopy Unit, Institute of Biotechnology, HiLIFE, University of Helsinki, FI-00014, Helsinki, Finland
| | - Johan Peränen
- Institute of Biotechnology, HiLIFE, University of Helsinki, FI-00014, Helsinki, Finland
| | - Kari Vaahtomeri
- Translational Cancer Medicine Research Program, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland.
- Wihuri Research Institute, Biomedicum Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland.
| |
Collapse
|
3
|
Ma M, Wang C, Wu M, Gu S, Yang J, Zhang Y, Cheng S, Xu S, Zhang M, Wu Y, Zhao Y, Tian X, Voon DCC, Takahashi C, Sheng J, Wang Y. CSGALNACT2 restricts ovarian cancer migration and invasion by modulating MAPK/ERK pathway through DUSP1. Cell Oncol (Dordr) 2024; 47:897-915. [PMID: 38082211 PMCID: PMC11219422 DOI: 10.1007/s13402-023-00903-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2023] [Indexed: 07/04/2024] Open
Abstract
PURPOSE Ovarian cancer is one of the leading causes of cancer-related death among women. CSGALNACT2 is a vital Golgi transferase and is related to a variety of human diseases. However, its expression pattern and function in ovarian cancer remain uncertain. METHODS The Cancer Genome Atlas and GEPIA databases were used to assess the expression of CSGALNACT2 in ovarian cancer patients. RNA-seq, qRT-PCR, and IHC were used to verify the expression of CSGALNACT2 in ovarian cancer tissues. Then, in vivo and in vitro experiments were conducted to evaluate the role of CSGALNACT2 in the progression of ovarian cancer. RNA-seq and GSEA were used to reveal the potential biological function and oncogenic pathways of CSGALNACT2. RESULTS We demonstrated that the mRNA expression and protein level of CSGALNACT2 were significantly downregulated in ovarian cancer and ovarian cancer metastatic tissues. CSGALNACT2 can significantly inhibit the migration, invasion, and clonogenic growth of ovarian cancer in vitro and is progressively lost during ovarian cancer progression in vivo. CSGALNACT2 suppresses ovarian cancer migration and invasion via DUSP1 modulation of the MAPK/ERK pathway through RNA-seq, KEGG analysis, and Western blotting. Moreover, CSGALNACT2 expression was correlated with immune cell infiltration and had prognostic value in different immune cell-enriched or decreased ovarian cancer. In addition, patients with CSGALNACT2 downregulation are less likely to benefit from immunotherapy. CONCLUSION As an ovarian cancer suppressor gene, CSGALNACT2 inhibits the development of ovarian cancer, and it might be used as a prognostic biomarker in patients with ovarian cancer.
Collapse
Affiliation(s)
- Mingjun Ma
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, No.2699, Gaoke West Rd, Shanghai, 200092, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Chao Wang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, No.2699, Gaoke West Rd, Shanghai, 200092, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Meixuan Wu
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Sijia Gu
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jiani Yang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, No.2699, Gaoke West Rd, Shanghai, 200092, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yue Zhang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, No.2699, Gaoke West Rd, Shanghai, 200092, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Shanshan Cheng
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, No.2699, Gaoke West Rd, Shanghai, 200092, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Shilin Xu
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Minghai Zhang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yongsong Wu
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yaqian Zhao
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, No.2699, Gaoke West Rd, Shanghai, 200092, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xiu Tian
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, No.2699, Gaoke West Rd, Shanghai, 200092, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | | | - Chiaki Takahashi
- Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| | - Jindan Sheng
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, No.2699, Gaoke West Rd, Shanghai, 200092, China.
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Yu Wang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, No.2699, Gaoke West Rd, Shanghai, 200092, China.
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
4
|
Hirani P, McDermott J, Rajeeve V, Cutillas PR, Jones JL, Pennington DJ, Wight TN, Santamaria S, Alonge KM, Pearce OM. Versican Associates with Tumor Immune Phenotype and Limits T-cell Trafficking via Chondroitin Sulfate. CANCER RESEARCH COMMUNICATIONS 2024; 4:970-985. [PMID: 38517140 PMCID: PMC10989462 DOI: 10.1158/2767-9764.crc-23-0548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/02/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
Immunotherapies for cancers of epithelial origin have limited efficacy, and a growing body of evidence links the composition of extracellular matrix (ECM) with the likelihood of a favorable response to treatment. The ECM may be considered an immunologic barrier, restricting the localization of cytotoxic immune cells to stromal areas and inhibiting their contact with tumor cells. Identifying ECM components of this immunologic barrier could provide targets that whether degraded in situ may support antitumor immunity and improve immunotherapy response. Using a library of primary triple-negative breast cancer tissues, we correlated CD8+ T-cell tumor contact with ECM composition and identified a proteoglycan, versican (VCAN), as a putative member of the immunologic barrier. Our analysis reveals that CD8+ T-cell contact with tumor associates with the location of VCAN expression, the specific glycovariant of VCAN [defined through the pattern of posttranslational attachments of glycosaminoglycans (GAG)], and the cell types that produce the variant. In functional studies, the isomers of chondroitin sulfate presented on VCAN have opposing roles being either supportive or inhibiting of T-cell trafficking, and removal of the GAGs ameliorates these effects on T-cell trafficking. Overall, we conclude that VCAN can either support or inhibit T-cell trafficking within the tumor microenvironment depending on the pattern of GAGs present, and that VCAN is a major component of the ECM immunologic barrier that defines the type of response to immunotherapy. SIGNIFICANCE The response to immunotherapy has been poor toward solid tumors despite immune cells infiltrating into the tumor. The ECM has been associated with impacting T-cell infiltration toward the tumor and in this article we have identified VCAN and its structural modification, chondroitin sulfate as having a key role in T-cell invasion.
Collapse
Affiliation(s)
- Priyanka Hirani
- Barts Cancer Institute, John Vane Science Centre, Queen Mary University of London, London, United Kingdom
| | - Jacqueline McDermott
- Department of Histopathology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Vinothini Rajeeve
- Barts Cancer Institute, John Vane Science Centre, Queen Mary University of London, London, United Kingdom
| | - Pedro R. Cutillas
- Barts Cancer Institute, John Vane Science Centre, Queen Mary University of London, London, United Kingdom
| | - J. Louise Jones
- Barts Cancer Institute, John Vane Science Centre, Queen Mary University of London, London, United Kingdom
| | - Daniel J. Pennington
- Centre for Immunobiology, Blizard Institute, Barts and the London Medical School, Queen Mary University of London, London, United Kingdom
| | - Thomas N. Wight
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Salvatore Santamaria
- Department of Biochemical Sciences, School of Biosciences, Faculty of Health and Medical Sciences, Edward Jenner Building, University of Surrey, Surrey, United Kingdom
| | - Kimberly M. Alonge
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington
| | - Oliver M.T. Pearce
- Barts Cancer Institute, John Vane Science Centre, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
5
|
Hao DJ, Qin Y, Zhou SJ, Dong BH, Yang JS, Zou P, Wang LP, Zhao YT. Hapln1 promotes dedifferentiation and proliferation of iPSC-derived cardiomyocytes by promoting versican-based GDF11 trapping. J Pharm Anal 2024; 14:335-347. [PMID: 38618242 PMCID: PMC11010450 DOI: 10.1016/j.jpha.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/08/2023] [Accepted: 09/18/2023] [Indexed: 04/16/2024] Open
Abstract
Hyaluronan and proteoglycan link protein 1 (Hapln1) supports active cardiomyogenesis in zebrafish hearts, but its regulation in mammal cardiomyocytes is unclear. This study aimed to explore the potential regulation of Hapln1 in the dedifferentiation and proliferation of cardiomyocytes and its therapeutic value in myocardial infarction with human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CMs) and an adult mouse model of myocardial infarction. HiPSC-CMs and adult mice with myocardial infarction were used as in vitro and in vivo models, respectively. Previous single-cell RNA sequencing data were retrieved for bioinformatic exploration. The results showed that recombinant human Hapln1 (rhHapln1) promotes the proliferation of hiPSC-CMs in a dose-dependent manner. As a physical binding protein of Hapln1, versican interacted with Nodal growth differentiation factor (NODAL) and growth differentiation factor 11 (GDF11). GDF11, but not NODAL, was expressed by hiPSC-CMs. GDF11 expression was unaffected by rhHapln1 treatment. However, this molecule was required for rhHapln1-mediated activation of the transforming growth factor (TGF)-β/Drosophila mothers against decapentaplegic protein (SMAD)2/3 signaling in hiPSC-CMs, which stimulates cell dedifferentiation and proliferation. Recombinant mouse Hapln1 (rmHapln1) could induce cardiac regeneration in the adult mouse model of myocardial infarction. In addition, rmHapln1 induced hiPSC-CM proliferation. In conclusion, Hapln1 can stimulate the dedifferentiation and proliferation of iPSC-derived cardiomyocytes by promoting versican-based GDF11 trapping and subsequent activation of the TGF-β/SMAD2/3 signaling pathway. Hapln1 might be an effective hiPSC-CM dedifferentiation and proliferation agent and a potential reagent for repairing damaged hearts.
Collapse
Affiliation(s)
- Ding-Jun Hao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Yue Qin
- Department of Anesthesiology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Shi-Jie Zhou
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bu-Huai Dong
- Department of Anesthesiology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Jun-Song Yang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Peng Zou
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Li-Ping Wang
- Department of Cardiovascular Medicine, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Yuan-Ting Zhao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| |
Collapse
|
6
|
Yan W, Qiu L, Yang M, Xu A, Ma M, Yuan Q, Ma X, Liang W, Li X, Lu Y. CXCL10 mediates CD8 + T cells to facilitate vessel normalization and improve the efficacy of cetuximab combined with PD-1 checkpoint inhibitors in colorectal cancer. Cancer Lett 2023:216263. [PMID: 37354983 DOI: 10.1016/j.canlet.2023.216263] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/26/2023]
Abstract
The immunotherapy and anti-EGFR targeted treatment occupying a pivotal position in colorectal cancer (CRC), is still limited to a group of patients who display specific molecular alterations and inevitably escape from resistance, further studies are still needed in colorectal cancer. We found that chemokine ligand 10 (CXCL10) expression correlates with intratumoral CD8+ T cell infiltration and reprograms tumor vasculatures in colorectal cancer. CXCL10 overexpression not only suppressed tumor growth but also increased CD8+ T cell infiltration and induced tumor vascular normalization in vivo. Additionally, the growth inhibition and tumor vascular normalization induced by CXCL10 can be reversed by the depletion of CD8+ T cells in vivo. Mechanically, CXCL10 interacts with VCAN to mediate tumor vascular normalization. The VCAN expression correlated inversely with the expression of CXCL10 and the infiltration of CD8+ T cells in CRC. Elevated CXCL10 expression sensitized colorectal cancer cells to cetuximab/anti-PD1 combination therapy compared with cetuximab or anti-PD1 alone. We propose that CXCL10 could be used to increase the anti-EGFR therapy and immunotherapy effect, targeting both tumor vessels and immune cells in colorectal cancer.
Collapse
Affiliation(s)
- Wei Yan
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, PR China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, 1023 South Shatai Road, Guangzhou, Guangdong, PR China.
| | - Lin Qiu
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, PR China.
| | - Meiling Yang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, PR China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, 1023 South Shatai Road, Guangzhou, Guangdong, PR China.
| | - Anran Xu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, PR China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, 1023 South Shatai Road, Guangzhou, Guangdong, PR China.
| | - Manqi Ma
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, PR China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, 1023 South Shatai Road, Guangzhou, Guangdong, PR China.
| | - Qinzi Yuan
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, PR China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, 1023 South Shatai Road, Guangzhou, Guangdong, PR China.
| | - Xiaochen Ma
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, PR China.
| | - Wenjuan Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, PR China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, 1023 South Shatai Road, Guangzhou, Guangdong, PR China.
| | - Xuenong Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, PR China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, 1023 South Shatai Road, Guangzhou, Guangdong, PR China.
| | - Yanxia Lu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, PR China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, 1023 South Shatai Road, Guangzhou, Guangdong, PR China.
| |
Collapse
|
7
|
Amontree M, Deasy S, Turner RS, Conant K. Matrix disequilibrium in Alzheimer's disease and conditions that increase Alzheimer's disease risk. Front Neurosci 2023; 17:1188065. [PMID: 37304012 PMCID: PMC10250680 DOI: 10.3389/fnins.2023.1188065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/20/2023] [Indexed: 06/13/2023] Open
Abstract
Alzheimer's Disease (AD) and related dementias are a leading cause of death globally and are predicted to increase in prevalence. Despite this expected increase in the prevalence of AD, we have yet to elucidate the causality of the neurodegeneration observed in AD and we lack effective therapeutics to combat the progressive neuronal loss. Throughout the past 30 years, several non-mutually exclusive hypotheses have arisen to explain the causative pathologies in AD: amyloid cascade, hyper-phosphorylated tau accumulation, cholinergic loss, chronic neuroinflammation, oxidative stress, and mitochondrial and cerebrovascular dysfunction. Published studies in this field have also focused on changes in neuronal extracellular matrix (ECM), which is critical to synaptic formation, function, and stability. Two of the greatest non-modifiable risk factors for development of AD (aside from autosomal dominant familial AD gene mutations) are aging and APOE status, and two of the greatest modifiable risk factors for AD and related dementias are untreated major depressive disorder (MDD) and obesity. Indeed, the risk of developing AD doubles for every 5 years after ≥ 65, and the APOE4 allele increases AD risk with the greatest risk in homozygous APOE4 carriers. In this review, we will describe mechanisms by which excess ECM accumulation may contribute to AD pathology and discuss pathological ECM alterations that occur in AD as well as conditions that increase the AD risk. We will discuss the relationship of AD risk factors to chronic central nervous system and peripheral inflammation and detail ECM changes that may follow. In addition, we will discuss recent data our lab has obtained on ECM components and effectors in APOE4/4 and APOE3/3 expressing murine brain lysates, as well as human cerebrospinal fluid (CSF) samples from APOE3 and APOE4 expressing AD individuals. We will describe the principal molecules that function in ECM turnover as well as abnormalities in these molecular systems that have been observed in AD. Finally, we will communicate therapeutic interventions that have the potential to modulate ECM deposition and turnover in vivo.
Collapse
Affiliation(s)
- Matthew Amontree
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| | - Samantha Deasy
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| | - R. Scott Turner
- Department of Neurology, Georgetown University Medical Center, Washington, DC, United States
| | - Katherine Conant
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
8
|
Artinger M, Gerken OJ, Legler DF. Heparin Specifically Interacts with Basic BBXB Motifs of the Chemokine CCL21 to Define CCR7 Signaling. Int J Mol Sci 2023; 24:ijms24021670. [PMID: 36675182 PMCID: PMC9866948 DOI: 10.3390/ijms24021670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Chemokines are critically involved in controlling directed leukocyte migration. Spatiotemporal secretion together with local retention processes establish and maintain local chemokine gradients that guide directional cell migration. Extracellular matrix proteins, particularly glycosaminoglycans (GAGs), locally retain chemokines through electrochemical interactions. The two chemokines CCL19 and CCL21 guide CCR7-expressing leukocytes, such as antigen-bearing dendritic cells and T lymphocytes, to draining lymph nodes to initiate adaptive immune responses. CCL21-in contrast to CCL19-is characterized by a unique extended C-terminus composed of highly charged residues to facilitate interactions with GAGs. Notably, both chemokines can trigger common, but also ligand-biased signaling through the same receptor. The underlying molecular mechanism of ligand-biased CCR7 signaling is poorly understood. Using a series of naturally occurring chemokine variants in combination with newly designed site-specific chemokine mutants, we herein assessed CCR7 signaling, as well as GAG interactions. We demonstrate that the charged chemokine C-terminus does not fully confer CCL21-biased CCR7 signaling. Besides the positively charged C-terminus, CCL21 also possesses specific BBXB motifs comprising basic amino acids. We show that CCL21 variants where individual BBXB motifs are mutated retain their capability to trigger G-protein-dependent CCR7 signaling, but lose their ability to interact with heparin. Moreover, we show that heparin specifically interacts with CCL21, but not with CCL19, and thereby competes with ligand-binding to CCR7 and prevents signaling. Hence, we provide evidence that soluble heparin, but not the other GAGs, complexes with CCL21 to define CCR7 signaling in a ligand-dependent manner.
Collapse
Affiliation(s)
- Marc Artinger
- Biotechnology Institute Thurgau (BITg), University of Konstanz, Unterseestrasse 47, 8280 Kreuzlingen, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Oliver J. Gerken
- Biotechnology Institute Thurgau (BITg), University of Konstanz, Unterseestrasse 47, 8280 Kreuzlingen, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Daniel F. Legler
- Biotechnology Institute Thurgau (BITg), University of Konstanz, Unterseestrasse 47, 8280 Kreuzlingen, Switzerland
- Faculty of Biology, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, 3012 Bern, Switzerland
- Correspondence:
| |
Collapse
|
9
|
Maciej-Hulme ML, Melrose J, Farrugia BL. Arthritis and Duchenne muscular dystrophy: the role of chondroitin sulfate and its associated proteoglycans in disease pathology and as a diagnostic marker. Am J Physiol Cell Physiol 2023; 324:C142-C152. [PMID: 36409173 PMCID: PMC9829464 DOI: 10.1152/ajpcell.00103.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/23/2022]
Abstract
Chondroitin sulfate (CS) is a ubiquitous glycosaminoglycan covalently attached to the core proteins of cell surface, extracellular, and intracellular proteoglycans. The multistep and highly regulated biosynthesis of chondroitin sulfate and its degradation products give rise to a diverse species of molecules with functional regulatory properties in biological systems. This review will elucidate and expand on the most recent advances in understanding the role of chondroitin sulfate and its associate proteoglycans, in arthritis and Duchenne muscular dystrophy (DMD), two different and discrete pathologies. Highlighting not only the biodiverse nature of this family of molecules but also the utilization of CS proteoglycans, CS, and its catabolic fragments as biomarkers and potential therapeutic targets for disease pathologies.
Collapse
Affiliation(s)
- Marissa L Maciej-Hulme
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Royal North Shore Hospital and The Faculty of Medicine and Health, The University of Sydney, St. Leonard's, New South Wales, Australia
| | - Brooke L Farrugia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Chemistry and Function of Glycosaminoglycans in the Nervous System. ADVANCES IN NEUROBIOLOGY 2023; 29:117-162. [DOI: 10.1007/978-3-031-12390-0_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
11
|
Deb G, Cicala A, Papadas A, Asimakopoulos F. Matrix proteoglycans in tumor inflammation and immunity. Am J Physiol Cell Physiol 2022; 323:C678-C693. [PMID: 35876288 PMCID: PMC9448345 DOI: 10.1152/ajpcell.00023.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 11/22/2022]
Abstract
Cancer immunoediting progresses through elimination, equilibrium, and escape. Each of these phases is characterized by breaching, remodeling, and rebuilding tissue planes and structural barriers that engage extracellular matrix (ECM) components, in particular matrix proteoglycans. Some of the signals emanating from matrix proteoglycan remodeling are readily co-opted by the growing tumor to sustain an environment of tumor-promoting and immune-suppressive inflammation. Yet other matrix-derived cues can be viewed as part of a homeostatic response by the host, aiming to eliminate the tumor and restore tissue integrity. These latter signals may be harnessed for therapeutic purposes to tip the polarity of the tumor immune milieu toward anticancer immunity. In this review, we attempt to showcase the importance and complexity of matrix proteoglycan signaling in both cancer-restraining and cancer-promoting inflammation. We propose that the era of matrix diagnostics and therapeutics for cancer is fast approaching the clinic.
Collapse
Affiliation(s)
- Gauri Deb
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, California
- Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, California
| | - Alexander Cicala
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, California
- Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, California
| | - Athanasios Papadas
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, California
- Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, California
| | - Fotis Asimakopoulos
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, California
- Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, California
| |
Collapse
|
12
|
Tang F, Brune JE, Chang MY, Reeves SR, Altemeier WA, Frevert CW. Defining the versican interactome in lung health and disease. Am J Physiol Cell Physiol 2022; 323:C249-C276. [PMID: 35649251 PMCID: PMC9291419 DOI: 10.1152/ajpcell.00162.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/17/2022] [Indexed: 11/22/2022]
Abstract
The extracellular matrix (ECM) imparts critical mechanical and biochemical information to cells in the lungs. Proteoglycans are essential constituents of the ECM and play a crucial role in controlling numerous biological processes, including regulating cellular phenotype and function. Versican, a chondroitin sulfate proteoglycan required for embryonic development, is almost absent from mature, healthy lungs and is reexpressed and accumulates in acute and chronic lung disease. Studies using genetically engineered mice show that the versican-enriched matrix can be pro- or anti-inflammatory depending on the cellular source or disease process studied. The mechanisms whereby versican develops a contextual ECM remain largely unknown. The primary goal of this review is to provide an overview of the interaction of versican with its many binding partners, the "versican interactome," and how through these interactions, versican is an integrator of complex extracellular information. Hopefully, the information provided in this review will be used to develop future studies to determine how versican and its binding partners can develop contextual ECMs that control select biological processes. Although this review focuses on versican and the lungs, what is described can be extended to other proteoglycans, tissues, and organs.
Collapse
Affiliation(s)
- Fengying Tang
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Jourdan E Brune
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Mary Y Chang
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Stephen R Reeves
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Washington, Seattle, Washington
| | - William A Altemeier
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Charles W Frevert
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
13
|
Abstract
Neuroprosthetic devices that record and modulate neural activities have demonstrated immense potential for bypassing or restoring lost neurological functions due to neural injuries and disorders. However, implantable electrical devices interfacing with brain tissue are susceptible to a series of inflammatory tissue responses along with mechanical or electrical failures which can affect the device performance over time. Several biomaterial strategies have been implemented to improve device-tissue integration for high quality and stable performance. Ranging from developing smaller, softer, and more flexible electrode designs to introducing bioactive coatings and drug-eluting layers on the electrode surface, such strategies have shown different degrees of success but with limitations. With their hydrophilic properties and specific bioactivities, carbohydrates offer a potential solution for addressing some of the limitations of the existing biomolecular approaches. In this review, we summarize the role of polysaccharides in the central nervous system, with a primary focus on glycoproteins and proteoglycans, to shed light on their untapped potential as biomaterials for neural implants. Utilization of glycosaminoglycans for neural interface and tissue regeneration applications is comprehensively reviewed to provide the current state of carbohydrate-based biomaterials for neural implants. Finally, we will discuss the challenges and opportunities of applying carbohydrate-based biomaterials for neural tissue interfaces.
Collapse
Affiliation(s)
- Vaishnavi Dhawan
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Neural Basis of Cognition, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
| |
Collapse
|
14
|
Brune JE, Chang MY, Altemeier WA, Frevert CW. Type I Interferon Signaling Increases Versican Expression and Synthesis in Lung Stromal Cells During Influenza Infection. J Histochem Cytochem 2021; 69:691-709. [PMID: 34666527 PMCID: PMC8554580 DOI: 10.1369/00221554211054447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 09/09/2021] [Indexed: 12/20/2022] Open
Abstract
Versican, a chondroitin sulfate proteoglycan, is an essential component of the extracellular matrix (ECM) in inflammatory lung disease. Versican's potential as an immunomodulatory molecule makes it a promising therapeutic target for controlling host immune responses in the lungs. To establish changes to versican expression and accumulation during influenza A viral pneumonia, we document the temporal and spatial changes to versican mRNA and protein in concert with pulmonary inflammatory cell infiltration. These studies were performed in the lungs of wild-type C57BL6/J mice on days 3, 6, 9, and 12 post-infection with influenza A virus using immunohistochemistry, in situ hybridization, and quantitative digital pathology. Using duplex in situ hybridization, we demonstrate that type I interferon signaling contributes significantly to versican expression in lung stromal cells. Our findings show that versican is a type I interferon-stimulated gene in pulmonary fibroblasts and pericytes in the context of viral pneumonia. These data also provide a guide for future studies to determine the role of versican in the pulmonary immune response to influenza infection.
Collapse
Affiliation(s)
- Jourdan E. Brune
- Center for Lung Biology, University of Washington, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Mary Y. Chang
- Center for Lung Biology, University of Washington, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - William A. Altemeier
- Center for Lung Biology, University of Washington, Seattle, Washington
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Charles W. Frevert
- Center for Lung Biology, University of Washington, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
15
|
Collado-Diaz V, Medina-Sanchez JD, Gkountidi AO, Halin C. Imaging leukocyte migration through afferent lymphatics. Immunol Rev 2021; 306:43-57. [PMID: 34708414 PMCID: PMC9298274 DOI: 10.1111/imr.13030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022]
Abstract
Afferent lymphatics mediate the transport of antigen and leukocytes, especially of dendritic cells (DCs) and T cells, from peripheral tissues to draining lymph nodes (dLNs). As such they play important roles in the induction and regulation of adaptive immunity. Over the past 15 years, great advances in our understanding of leukocyte trafficking through afferent lymphatics have been made through time‐lapse imaging studies performed in tissue explants and in vivo, allowing to visualize this process with cellular resolution. Intravital imaging has revealed that intralymphatic leukocytes continue to actively migrate once they have entered into lymphatic capillaries, as a consequence of the low flow conditions present in this compartment. In fact, leukocytes spend considerable time migrating, patrolling and interacting with the lymphatic endothelium or with other intralymphatic leukocytes within lymphatic capillaries. Cells typically only start to detach once they arrive in downstream‐located collecting vessels, where vessel contractions contribute to enhanced lymph flow. In this review, we will introduce the biology of afferent lymphatic vessels and report on the presumed significance of DC and T cell migration via this route. We will specifically highlight how time‐lapse imaging has contributed to the current model of lymphatic trafficking and the emerging notion that ‐ besides transport – lymphatic capillaries exert additional roles in immune modulation.
Collapse
Affiliation(s)
| | | | | | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
McMahon M, Ye S, Pedrina J, Dlugolenski D, Stambas J. Extracellular Matrix Enzymes and Immune Cell Biology. Front Mol Biosci 2021; 8:703868. [PMID: 34527702 PMCID: PMC8436118 DOI: 10.3389/fmolb.2021.703868] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/02/2021] [Indexed: 12/24/2022] Open
Abstract
Remodelling of the extracellular matrix (ECM) by ECM metalloproteinases is increasingly being associated with regulation of immune cell function. ECM metalloproteinases, including Matrix Metalloproteinases (MMPs), A Disintegrin and Metalloproteinases (ADAMs) and ADAMs with Thombospondin-1 motifs (ADAMTS) play a vital role in pathogen defence and have been shown to influence migration of immune cells. This review provides a current summary of the role of ECM enzymes in immune cell migration and function and discusses opportunities and limitations for development of diagnostic and therapeutic strategies targeting metalloproteinase expression and activity in the context of infectious disease.
Collapse
Affiliation(s)
- Meagan McMahon
- Faculty of Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Siying Ye
- Faculty of Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Jess Pedrina
- Faculty of Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Daniel Dlugolenski
- Faculty of Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - John Stambas
- Faculty of Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
17
|
Hirani P, Gauthier V, Allen CE, Wight TN, Pearce OMT. Targeting Versican as a Potential Immunotherapeutic Strategy in the Treatment of Cancer. Front Oncol 2021; 11:712807. [PMID: 34527586 PMCID: PMC8435723 DOI: 10.3389/fonc.2021.712807] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/11/2021] [Indexed: 12/25/2022] Open
Abstract
A growing body of literature links events associated with the progression and severity of immunity and inflammatory disease with the composition of the tissue extracellular matrix as defined by the matrisome. One protein in the matrisome that is common to many inflammatory diseases is the large proteoglycan versican, whose varied function is achieved through multiple isoforms and post-translational modifications of glycosaminoglycan structures. In cancer, increased levels of versican are associated with immune cell phenotype, disease prognosis and failure to respond to treatment. Whether these associations between versican expression and tumour immunity are the result of a direct role in the pathogenesis of tumours is not clear. In this review, we have focused on the role of versican in the immune response as it relates to tumour progression, with the aim of determining whether our current understanding of the immunobiology of versican warrants further study as a cancer immunotherapy target.
Collapse
Affiliation(s)
- Priyanka Hirani
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Valentine Gauthier
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Carys E Allen
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Oliver M T Pearce
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
18
|
Timms KP, Maurice SB. Context-dependent bioactivity of versican fragments. Glycobiology 2021; 30:365-373. [PMID: 31651027 DOI: 10.1093/glycob/cwz090] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 01/05/2023] Open
Abstract
Versican (VCAN) proteolysis and the accumulation of VCAN fragments occur in many developmental and disease processes, affecting extracellular matrix (ECM) structure and cell phenotype. Little is known about the significance of proteolysis and the roles of fragments, or how this ECM remodeling affects the microenvironment and phenotype of diseased cells. G1-DPEAAE fragments promote aspects of epithelial-mesenchymal transitioning in developing and diseased cells, resulting in cell migration. Enhanced proliferation and invasion of tumor and endothelial cells is directly associated with G1 domain deposition and G1-DPEAAE localization respectively. These tumorigenic and angiogenic roles could explain the disease exacerbating effect often associated with G1-containing fragments, however, the pathogenicity of G1 fragments depends entirely upon the context. Overall, VCAN fragments promote tumorigenesis and inflammation; however, the specific cleavage site, the extent of cleavage activity and the microenvironment in which cleavage occurs collectively determine how this pleiotropic molecule and its fragments influence cells.
Collapse
Affiliation(s)
- Katherine Payne Timms
- University of Northern British Columbia, 3333 University Way, Prince George, BC, V2N 4Z9, Canada
| | - Sean Bertram Maurice
- Northern Medical Program, University of Northern British Columbia, Dr. Donald Rix Northern Health Sciences Centre, 3333 University Way, Prince George, BC, V2N 4Z9, Canada.,Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, 2350 Health Sciences Mall Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
19
|
Wang W, Zhang H, Hou C, Liu Q, Yang S, Zhang Z, Yang W, Yang X. Internal modulation of proteolysis in vascular extracellular matrix remodeling: role of ADAM metallopeptidase with thrombospondin type 1 motif 5 in the development of intracranial aneurysm rupture. Aging (Albany NY) 2021; 13:12800-12816. [PMID: 33934089 PMCID: PMC8148490 DOI: 10.18632/aging.202948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/16/2021] [Indexed: 12/17/2022]
Abstract
Intracranial aneurysms (IAs) are common cerebrovascular diseases that carry a high mortality rate, and the mechanisms that contribute to IA formation and rupture have not been elucidated. ADAMTS-5 (ADAM Metallopeptidase with Thrombospondin Type 1 Motif 5) is a secreted proteinase involved in matrix degradation and ECM (extracellular matrix) remodeling processes, and we hypothesized that the dysregulation of ADAMTS-5 could play a role in the pathophysiology of IA. Immunofluorescence revealed that the ADAMTS-5 levels were decreased in human and murine IA samples. The administration of recombinant protein ADAMTS-5 significantly reduced the incidence of aneurysm rupture in the experimental model of IA. IA artery tissue was collected and utilized for histology, immunostaining, and specific gene expression analysis. Additionally, the IA arteries in ADAMTS-5-administered mice showed reduced elastic fiber destruction, proteoglycan accumulation, macrophage infiltration, inflammatory response, and apoptosis. To further verify the role of ADAMTS-5 in cerebral vessels, a specific ADAMTS-5 inhibitor was used on another model animal, zebrafish, and intracranial hemorrhage was observed in zebrafish embryos. In conclusion, our findings indicate that ADAMTS-5 is downregulated in human IA, and compensatory ADAMTS-5 administration inhibits IA development and rupture with potentially important implications for treating this cerebrovascular disease.
Collapse
Affiliation(s)
- Weihan Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| | - Hao Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| | - Changkai Hou
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| | - Quanlei Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| | - Shuyuan Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhen Zhang
- Department of Neuro-Oncology and Neurosurgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Weidong Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| | - Xinyu Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
20
|
Han CY, Kang I, Harten IA, Gebe JA, Chan CK, Omer M, Alonge KM, den Hartigh LJ, Gomes Kjerulf D, Goodspeed L, Subramanian S, Wang S, Kim F, Birk DE, Wight TN, Chait A. Adipocyte-Derived Versican and Macrophage-Derived Biglycan Control Adipose Tissue Inflammation in Obesity. Cell Rep 2021; 31:107818. [PMID: 32610121 DOI: 10.1016/j.celrep.2020.107818] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/20/2020] [Accepted: 06/04/2020] [Indexed: 12/18/2022] Open
Abstract
Obesity is characterized by adipose tissue inflammation. Because proteoglycans regulate inflammation, here we investigate their role in adipose tissue inflammation in obesity. We find that adipose tissue versican and biglycan increase in obesity. Versican is produced mainly by adipocytes and biglycan by adipose tissue macrophages. Both proteoglycans are also present in adipose tissue from obese human subjects undergoing gastric bypass surgery. Deletion of adipocyte-specific versican or macrophage-specific biglycan in mice reduces macrophage accumulation and chemokine and cytokine expression, although only adipocyte-specific versican deletion leads to sustained improvement in glucose tolerance. Macrophage-derived biglycan activates inflammatory genes in adipocytes. Versican expression increases in cultured adipocytes exposed to excess glucose, and adipocyte-conditioned medium stimulates inflammation in resident peritoneal macrophages, in part because of a versican breakdown product, versikine. These findings provide insights into the role of adipocyte- and macrophage-derived proteoglycans in adipose tissue inflammation in obesity.
Collapse
Affiliation(s)
- Chang Yeop Han
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, USA
| | - Inkyung Kang
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Ingrid A Harten
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - John A Gebe
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Christina K Chan
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Mohamed Omer
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, USA
| | - Kimberly M Alonge
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, USA
| | - Laura J den Hartigh
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, USA
| | - Diego Gomes Kjerulf
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, USA
| | - Leela Goodspeed
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, USA
| | - Savitha Subramanian
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, USA
| | - Shari Wang
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, USA
| | - Francis Kim
- Division of Cardiology, University of Washington, Seattle, WA, USA
| | - David E Birk
- Department of Molecular Pharmacology & Physiology, University of South Florida, Tampa, FL, USA
| | - Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Alan Chait
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, USA.
| |
Collapse
|
21
|
Vaahtomeri K, Moussion C, Hauschild R, Sixt M. Shape and Function of Interstitial Chemokine CCL21 Gradients Are Independent of Heparan Sulfates Produced by Lymphatic Endothelium. Front Immunol 2021; 12:630002. [PMID: 33717158 PMCID: PMC7946817 DOI: 10.3389/fimmu.2021.630002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/20/2021] [Indexed: 12/30/2022] Open
Abstract
Gradients of chemokines and growth factors guide migrating cells and morphogenetic processes. Migration of antigen-presenting dendritic cells from the interstitium into the lymphatic system is dependent on chemokine CCL21, which is secreted by endothelial cells of the lymphatic capillary, binds heparan sulfates and forms gradients decaying into the interstitium. Despite the importance of CCL21 gradients, and chemokine gradients in general, the mechanisms of gradient formation are unclear. Studies on fibroblast growth factors have shown that limited diffusion is crucial for gradient formation. Here, we used the mouse dermis as a model tissue to address the necessity of CCL21 anchoring to lymphatic capillary heparan sulfates in the formation of interstitial CCL21 gradients. Surprisingly, the absence of lymphatic endothelial heparan sulfates resulted only in a modest decrease of CCL21 levels at the lymphatic capillaries and did neither affect interstitial CCL21 gradient shape nor dendritic cell migration toward lymphatic capillaries. Thus, heparan sulfates at the level of the lymphatic endothelium are dispensable for the formation of a functional CCL21 gradient.
Collapse
Affiliation(s)
- Kari Vaahtomeri
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria.,Wihuri Research Institute and Translational Cancer Medicine Research Program, University of Helsinki, Biomedicum Helsinki, Helsinki, Finland
| | - Christine Moussion
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Robert Hauschild
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Michael Sixt
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| |
Collapse
|
22
|
Salem A, Alotaibi M, Mroueh R, Basheer HA, Afarinkia K. CCR7 as a therapeutic target in Cancer. Biochim Biophys Acta Rev Cancer 2020; 1875:188499. [PMID: 33385485 DOI: 10.1016/j.bbcan.2020.188499] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/24/2020] [Accepted: 12/24/2020] [Indexed: 02/06/2023]
Abstract
The CCR7 chemokine axis is comprised of chemokine ligand 21 (CCL21) and chemokine ligand 19 (CCL19) acting on chemokine receptor 7 (CCR7). This axis plays two important but apparently opposing roles in cancer. On the one hand, this axis is significantly engaged in the trafficking of a number of effecter cells involved in mounting an immune response to a growing tumour. This suggests therapeutic strategies which involve potentiation of this axis can be used to combat the spread of cancer. On the other hand, the CCR7 axis plays a significant role in controlling the migration of tumour cells towards the lymphatic system and metastasis and can thus contribute to the expansion of cancer. This implies that therapeutic strategies which involve decreasing signaling through the CCR7 axis would have a beneficial effect in preventing dissemination of cancer. This dichotomy has partly been the reason why this axis has not yet been exploited, as other chemokine axes have, as a therapeutic target in cancer. Recent report of a crystal structure for CCR7 provides opportunities to exploit this axis in developing new cancer therapies. However, it remains unclear which of these two strategies, potentiation or antagonism of the CCR7 axis, is more appropriate for cancer therapy. This review brings together the evidence supporting both roles of the CCR7 axis in cancer and examines the future potential of each of the two different therapeutic approaches involving the CCR7 axis in cancer.
Collapse
Affiliation(s)
- Anwar Salem
- Institute of Cancer Therapeutics, University of Bradford; Bradford BD7 1DP, United Kingdom
| | - Mashael Alotaibi
- Institute of Cancer Therapeutics, University of Bradford; Bradford BD7 1DP, United Kingdom
| | - Rima Mroueh
- Institute of Cancer Therapeutics, University of Bradford; Bradford BD7 1DP, United Kingdom
| | - Haneen A Basheer
- Faculty of Pharmacy, Zarqa University, PO Box 132222, Zarqa 13132, Jordan
| | - Kamyar Afarinkia
- Institute of Cancer Therapeutics, University of Bradford; Bradford BD7 1DP, United Kingdom.
| |
Collapse
|
23
|
Roles of Proteoglycans and Glycosaminoglycans in Cancer Development and Progression. Int J Mol Sci 2020; 21:ijms21175983. [PMID: 32825245 PMCID: PMC7504257 DOI: 10.3390/ijms21175983] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022] Open
Abstract
The extracellular matrix (ECM) spatiotemporally controls cell fate; however, dysregulation of ECM remodeling can lead to tumorigenesis and cancer development by providing favorable conditions for tumor cells. Proteoglycans (PGs) and glycosaminoglycans (GAGs) are the major macromolecules composing ECM. They influence both cell behavior and matrix properties through direct and indirect interactions with various cytokines, growth factors, cell surface receptors, adhesion molecules, enzymes, and glycoproteins within the ECM. The classical features of PGs/GAGs play well-known roles in cancer angiogenesis, proliferation, invasion, and metastasis. Several lines of evidence suggest that PGs/GAGs critically affect broader aspects in cancer initiation and the progression process, including regulation of cell metabolism, serving as a sensor of ECM's mechanical properties, affecting immune supervision, and participating in therapeutic resistance to various forms of treatment. These functions may be implemented through the characteristics of PGs/GAGs as molecular bridges linking ECM and cells in cell-specific and context-specific manners within the tumor microenvironment (TME). In this review, we intend to present a comprehensive illustration of the ways in which PGs/GAGs participate in and regulate several aspects of tumorigenesis; we put forward a perspective regarding their effects as biomarkers or targets for diagnoses and therapeutic interventions.
Collapse
|
24
|
Genetic reduction of the extracellular matrix protein versican attenuates inflammatory cell infiltration and improves contractile function in dystrophic mdx diaphragm muscles. Sci Rep 2020; 10:11080. [PMID: 32632164 PMCID: PMC7338466 DOI: 10.1038/s41598-020-67464-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 05/12/2020] [Indexed: 11/09/2022] Open
Abstract
There is a persistent, aberrant accumulation of V0/V1 versican in skeletal muscles from patients with Duchenne muscular dystrophy and in diaphragm muscles from mdx mice. Versican is a provisional matrix protein implicated in fibrosis and inflammation in various disease states, yet its role in the pathogenesis of muscular dystrophy is not known. Here, female mdx and male hdf mice (haploinsufficient for the versican allele) were bred. In the resulting F1 mdx-hdf male pups, V0/V1 versican expression in diaphragm muscles was decreased by 50% compared to mdx littermates at 20-26 weeks of age. In mdx-hdf mice, spontaneous physical activity increased by 17% and there was a concomitant decrease in total energy expenditure and whole-body glucose oxidation. Versican reduction improved the ex vivo strength and endurance of diaphragm muscle strips. These changes in diaphragm contractile properties in mdx-hdf mice were associated with decreased monocyte and macrophage infiltration and a reduction in the proportion of fibres expressing the slow type I myosin heavy chain isoform. Given the high metabolic cost of inflammation in dystrophy, an attenuated inflammatory response may contribute to the effects of versican reduction on whole-body metabolism. Altogether, versican reduction ameliorates the dystrophic pathology of mdx-hdf mice as evidenced by improved diaphragm contractile function and increased physical activity.
Collapse
|
25
|
Harten IA, Kaber G, Agarwal KJ, Kang I, Ibarrientos SR, Workman G, Chan CK, Nivison MP, Nagy N, Braun KR, Kinsella MG, Merrilees MJ, Wight TN. The synthesis and secretion of versican isoform V3 by mammalian cells: A role for N-linked glycosylation. Matrix Biol 2020; 89:27-42. [PMID: 32001344 PMCID: PMC7282976 DOI: 10.1016/j.matbio.2020.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 02/02/2023]
Abstract
Versican is a large extracellular matrix (ECM) chondroitin sulfate (CS) proteoglycan found in most soft tissues, which is encoded by the VCAN gene. At least four major isoforms (V0, V1, V2, and V3) are generated via alternative splicing. The isoforms of versican are expressed and accumulate in various tissues during development and disease, where they contribute to ECM structure, cell growth and migration, and immune regulation, among their many functions. While several studies have identified the mRNA transcript for the V3 isoform in a number of tissues, little is known about the synthesis, secretion, and targeting of the V3 protein. In this study, we used lentiviral generation of doxycycline-inducible rat V3 with a C-terminal tag in stable NIH 3T3 cell lines and demonstrated that V3 is processed through the classical secretory pathway. We further show that N-linked glycosylation is required for efficient secretion and solubility of the protein. By site-directed mutagenesis, we identified amino acids 57 and 330 as the active N-linked glycosylation sites on V3 when expressed in this cell type. Furthermore, exon deletion constructs of V3 revealed that exons 11-13, which code for portions of the carboxy region of the protein (G3 domain), are essential for V3 processing and secretion. Once secreted, the V3 protein associates with hyaluronan along the cell surface and within the surrounding ECM. These results establish critical parameters for the processing, solubility, and targeting of the V3 isoform by mammalian cells and establishes a role for V3 in the organization of hyaluronan.
Collapse
Affiliation(s)
- Ingrid A. Harten
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Gernot Kaber
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Kiran J. Agarwal
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Inkyung Kang
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | | | - Gail Workman
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Christina K. Chan
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Mary P. Nivison
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Nadine Nagy
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Kathleen R. Braun
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | | | - Mervyn J. Merrilees
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Thomas N. Wight
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| |
Collapse
|
26
|
Leonard CE, Taneyhill LA. The road best traveled: Neural crest migration upon the extracellular matrix. Semin Cell Dev Biol 2020; 100:177-185. [PMID: 31727473 PMCID: PMC7071992 DOI: 10.1016/j.semcdb.2019.10.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/29/2019] [Accepted: 10/30/2019] [Indexed: 12/22/2022]
Abstract
Neural crest cells have the extraordinary task of building much of the vertebrate body plan, including the craniofacial cartilage and skeleton, melanocytes, portions of the heart, and the peripheral nervous system. To execute these developmental programs, stationary premigratory neural crest cells first acquire the capacity to migrate through an extensive process known as the epithelial-to-mesenchymal transition. Once motile, neural crest cells must traverse a complex environment consisting of other cells and the protein-rich extracellular matrix in order to get to their final destinations. Herein, we will highlight some of the main molecular machinery that allow neural crest cells to first exit the neuroepithelium and then later successfully navigate this intricate in vivo milieu. Collectively, these extracellular and intracellular factors mediate the appropriate migration of neural crest cells and allow for the proper development of the vertebrate embryo.
Collapse
Affiliation(s)
- Carrie E Leonard
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742 USA.
| | - Lisa A Taneyhill
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742 USA.
| |
Collapse
|
27
|
Crijns H, Vanheule V, Proost P. Targeting Chemokine-Glycosaminoglycan Interactions to Inhibit Inflammation. Front Immunol 2020; 11:483. [PMID: 32296423 PMCID: PMC7138053 DOI: 10.3389/fimmu.2020.00483] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/02/2020] [Indexed: 12/12/2022] Open
Abstract
Leukocyte migration into tissues depends on the activity of chemokines that form concentration gradients to guide leukocytes to a specific site. Interaction of chemokines with their specific G protein-coupled receptors (GPCRs) on leukocytes induces leukocyte adhesion to the endothelial cells, followed by extravasation of the leukocytes and subsequent directed migration along the chemotactic gradient. Interaction of chemokines with glycosaminoglycans (GAGs) is crucial for extravasation in vivo. Chemokines need to interact with GAGs on endothelial cells and in the extracellular matrix in tissues in order to be presented on the endothelium of blood vessels and to create a concentration gradient. Local chemokine retention establishes a chemokine gradient and prevents diffusion and degradation. During the last two decades, research aiming at reducing chemokine activity mainly focused on the identification of inhibitors of the interaction between chemokines and their cognate GPCRs. This approach only resulted in limited success. However, an alternative strategy, targeting chemokine-GAG interactions, may be a promising approach to inhibit chemokine activity and inflammation. On this line, proteins derived from viruses and parasites that bind chemokines or GAGs may have the potential to interfere with chemokine-GAG interactions. Alternatively, chemokine mimetics, including truncated chemokines and mutant chemokines, can compete with chemokines for binding to GAGs. Such truncated or mutated chemokines are characterized by a strong binding affinity for GAGs and abrogated binding to their chemokine receptors. Finally, Spiegelmers that mask the GAG-binding site on chemokines, thereby preventing chemokine-GAG interactions, were developed. In this review, the importance of GAGs for chemokine activity in vivo and strategies that could be employed to target chemokine-GAG interactions will be discussed in the context of inflammation.
Collapse
Affiliation(s)
- Helena Crijns
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Vincent Vanheule
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
28
|
Wight TN, Kang I, Evanko SP, Harten IA, Chang MY, Pearce OMT, Allen CE, Frevert CW. Versican-A Critical Extracellular Matrix Regulator of Immunity and Inflammation. Front Immunol 2020; 11:512. [PMID: 32265939 PMCID: PMC7105702 DOI: 10.3389/fimmu.2020.00512] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/06/2020] [Indexed: 12/13/2022] Open
Abstract
The extracellular matrix (ECM) proteoglycan, versican increases along with other ECM versican binding molecules such as hyaluronan, tumor necrosis factor stimulated gene-6 (TSG-6), and inter alpha trypsin inhibitor (IαI) during inflammation in a number of different diseases such as cardiovascular and lung disease, autoimmune diseases, and several different cancers. These interactions form stable scaffolds which can act as "landing strips" for inflammatory cells as they invade tissue from the circulation. The increase in versican is often coincident with the invasion of leukocytes early in the inflammatory process. Versican interacts with inflammatory cells either indirectly via hyaluronan or directly via receptors such as CD44, P-selectin glycoprotein ligand-1 (PSGL-1), and toll-like receptors (TLRs) present on the surface of immune and non-immune cells. These interactions activate signaling pathways that promote the synthesis and secretion of inflammatory cytokines such as TNFα, IL-6, and NFκB. Versican also influences inflammation by interacting with a variety of growth factors and cytokines involved in regulating inflammation thereby influencing their bioavailability and bioactivity. Versican is produced by multiple cell types involved in the inflammatory process. Conditional total knockout of versican in a mouse model of lung inflammation demonstrated significant reduction in leukocyte invasion into the lung and reduced inflammatory cytokine expression. While versican produced by stromal cells tends to be pro-inflammatory, versican expressed by myeloid cells can create anti-inflammatory and immunosuppressive microenvironments. Inflammation in the tumor microenvironment often contains elevated levels of versican. Perturbing the accumulation of versican in tumors can inhibit inflammation and tumor progression in some cancers. Thus versican, as a component of the ECM impacts immunity and inflammation through regulating immune cell trafficking and activation. Versican is emerging as a potential target in the control of inflammation in a number of different diseases.
Collapse
Affiliation(s)
- Thomas N. Wight
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Inkyung Kang
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Stephen P. Evanko
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Ingrid A. Harten
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Mary Y. Chang
- Division of Pulmonary/Critical Care Medicine, Center for Lung Biology, University of Washington School of Medicine, Seattle, WA, United States
| | - Oliver M. T. Pearce
- Centre for the Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Carys E. Allen
- Centre for the Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Charles W. Frevert
- Division of Pulmonary/Critical Care Medicine, Center for Lung Biology, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
29
|
Hatano S, Watanabe H. Regulation of Macrophage and Dendritic Cell Function by Chondroitin Sulfate in Innate to Antigen-Specific Adaptive Immunity. Front Immunol 2020; 11:232. [PMID: 32194548 PMCID: PMC7063991 DOI: 10.3389/fimmu.2020.00232] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/28/2020] [Indexed: 12/11/2022] Open
Abstract
Chondroitin sulfate (CS), a type of glycosaminoglycan (GAG), is a linear acidic polysaccharide comprised of repeating disaccharides, modified with sulfate groups at various positions. Except for hyaluronan (HA), GAGs are covalently bound to core proteins, forming proteoglycans (PGs). With highly negative charges, GAGs interact with a variety of physiologically active molecules, including cytokines, chemokines, and growth factors, and control cell behavior during development and in the progression of diseases, including cancer, infections, and inflammation. Heparan sulfate (HS), another type of GAG, and HA are well reported as regulators for leukocyte migration at sites of inflammation. There have been many reports on the regulation of immune cell function by HS and HA; however, regulation of immune cells by CS has not yet been fully understood. This article focuses on the regulatory function of CS in antigen-presenting cells, including macrophages and dendritic cells, and refers to CSPGs, such as versican and biglycan, and the cell surface proteoglycan, syndecan.
Collapse
Affiliation(s)
- Sonoko Hatano
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Japan
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Japan
| |
Collapse
|
30
|
Papadas A, Asimakopoulos F. Versican in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1272:55-72. [PMID: 32845502 DOI: 10.1007/978-3-030-48457-6_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Versican is an extracellular matrix proteoglycan with nonredundant roles in diverse biological and cellular processes, ranging from embryonic development to adult inflammation and cancer. Versican is essential for cardiovascular morphogenesis, neural crest migration, and skeletal development during embryogenesis. In the adult, versican acts as an inflammation "amplifier" and regulator of immune cell activation and cytokine production. Increased versican expression has been observed in a wide range of malignant tumors and has been associated with poor patient outcomes. The main sources of versican production in the tumor microenvironment include accessory cells (myeloid cells and stromal components) and, in some contexts, the tumor cells themselves. Versican has been implicated in several classical hallmarks of cancer such as proliferative signaling, evasion of growth suppressor signaling, resistance to cell death, angiogenesis, and tissue invasion and metastasis. More recently, versican has been implicated in escape from tumor immune surveillance, e.g., through dendritic cell dysfunction. Versican's multiple contributions to benign and malignant biological processes are further diversified through the generation of versican-derived bioactive proteolytic fragments (matrikines), with versikine being the most studied to date. Versican and versican-derived matrikines hold promise as targets in the management of inflammatory and malignant conditions as well as in the development of novel predictive and prognostic biomarkers.
Collapse
Affiliation(s)
- Athanasios Papadas
- Department of Medicine, Division of Blood and Marrow Transplantation, University of California San Diego (UCSD), Moores Cancer Center, La Jolla, CA, USA. .,University of Wisconsin-Madison, Cellular and Molecular Pathology Program, Madison, WI, USA.
| | - Fotis Asimakopoulos
- Department of Medicine, Division of Blood and Marrow Transplantation, University of California San Diego (UCSD), Moores Cancer Center, La Jolla, CA, USA
| |
Collapse
|
31
|
Wight TN. A role for proteoglycans in vascular disease. Matrix Biol 2018; 71-72:396-420. [PMID: 29499356 PMCID: PMC6110991 DOI: 10.1016/j.matbio.2018.02.019] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 12/15/2022]
Abstract
The content of proteoglycans (PGs) is low in the extracellular matrix (ECM) of vascular tissue, but increases dramatically in all phases of vascular disease. Early studies demonstrated that glycosaminoglycans (GAGs) including chondroitin sulfate (CS), dermatan sulfate (DS), keratan sulfate (KS) and heparan sulfate (HS) accumulate in vascular lesions in both humans and in animal models in areas of the vasculature that are susceptible to disease initiation (such as at branch points) and are frequently coincident with lipid deposits. Later studies showed the GAGs were covalently attached to specific types of core proteins that accumulate in vascular lesions. These molecules include versican (CSPG), biglycan and decorin (DS/CSPGs), lumican and fibromodulin (KSPGs) and perlecan (HSPG), although other types of PGs are present, but in lesser quantities. While the overall molecular design of these macromolecules is similar, there is tremendous structural diversity among the different PG families creating multiple forms that have selective roles in critical events that form the basis of vascular disease. PGs interact with a variety of different molecules involved in disease pathogenesis. For example, PGs bind and trap serum components that accumulate in vascular lesions such as lipoproteins, amyloid, calcium, and clotting factors. PGs interact with other ECM components and regulate, in part, ECM assembly and turnover. PGs interact with cells within the lesion and alter the phenotypes of both resident cells and cells that invade the lesion from the circulation. A number of therapeutic strategies have been developed to target specific PGs involved in key pathways that promote vascular disease. This review will provide a historical perspective of this field of research and then highlight some of the evidence that defines the involvement of PGs and their roles in the pathogenesis of vascular disease.
Collapse
Affiliation(s)
- Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, United States.
| |
Collapse
|
32
|
Jørgensen AS, Adogamhe PE, Laufer JM, Legler DF, Veldkamp CT, Rosenkilde MM, Hjortø GM. CCL19 with CCL21-tail displays enhanced glycosaminoglycan binding with retained chemotactic potency in dendritic cells. J Leukoc Biol 2018; 104:401-411. [PMID: 29768676 DOI: 10.1002/jlb.2vma0118-008r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 12/23/2022] Open
Abstract
CCL19 is more potent than CCL21 in inducing chemotaxis of human dendritic cells (DC). This difference is attributed to 1) a stronger interaction of the basic C-terminal tail of CCL21 with acidic glycosaminoglycans (GAGs) in the environment and 2) an autoinhibitory function of this C-terminal tail. Moreover, different receptor docking modes and tissue expression patterns of CCL19 and CCL21 contribute to fine-tuned control of CCR7 signaling. Here, we investigate the effect of the tail of CCL21 on chemokine binding to GAGs and on CCR7 activation. We show that transfer of CCL21-tail to CCL19 (CCL19CCL21-tail ) markedly increases binding of CCL19 to human dendritic cell surfaces, without impairing CCL19-induced intracellular calcium release or DC chemotaxis, although it causes reduced CCR7 internalization. The more potent chemotaxis induced by CCL19 and CCL19CCL21-tail compared to CCL21 is not transferred to CCL21 by replacing its N-terminus with that of CCL19 (CCL21CCL19-N-term ). Measurements of cAMP production in CHO cells uncover that CCL21-tail transfer (CCL19CCL21-tail ) negatively affects CCL19 potency, whereas removal of CCL21-tail (CCL21tailless ) increases signaling compared to full-length CCL21, indicating that the tail negatively affects signaling via cAMP. Similar to chemokine-driven calcium mobilization and chemotaxis, the potency of CCL21 in cAMP is not improved by transfer of the CCL19 N-terminus to CCL21 (CCL21CCL19-N-term ). Together these results indicate that ligands containing CCL21 core and C-terminal tail (CCL21 and CCL21CCL19-N-term ) are most restricted in their cAMP signaling; a phenotype attributed to a stronger GAG binding of CCL21 and defined structural differences between CCL19 and CCL21.
Collapse
Affiliation(s)
- Astrid S Jørgensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Pontian E Adogamhe
- Department of Chemistry, University of Wisconsin-Whitewater, Whitewater, Wisconsin, USA
| | - Julia M Laufer
- Biotechnology Institute Thurgau (BITg), at the University of Konstanz, Kreuzlingen, Switzerland
| | - Daniel F Legler
- Biotechnology Institute Thurgau (BITg), at the University of Konstanz, Kreuzlingen, Switzerland
| | | | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Gertrud M Hjortø
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
33
|
Stephenson EL, Yong VW. Pro-inflammatory roles of chondroitin sulfate proteoglycans in disorders of the central nervous system. Matrix Biol 2018; 71-72:432-442. [PMID: 29702175 DOI: 10.1016/j.matbio.2018.04.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/21/2018] [Accepted: 04/21/2018] [Indexed: 02/06/2023]
Abstract
The extracellular matrix of the central nervous system is an interconnected network of proteins and sugars. It is crucial for homeostasis, but its remodeling in neurological diseases impacts both injury and repair. Here we introduce an extracellular matrix family member that participates in immune-matrix interactions, the chondroitin sulfate proteoglycans. Chondroitin sulfate proteoglycans integrate signals from the microenvironment to activate immune cells, and they boost inflammatory responses by binding immunological receptors including toll-like receptors, selectins, CD44, and β1 integrin. Chondroitin sulfate proteoglycans also bind signaling molecules for immune cells such as cytokines and chemokines, and they activate matrix-degrading enzymes. Chondroitin sulfate proteoglycans accumulate in the damaged CNS, including during traumatic brain/spinal cord injury and multiple sclerosis, and they help drive pathogenesis. This Review aims to give new insights into the remodeling of chondroitin sulfate proteoglycans during inflammation, and how these matrix glycoproteins are able to drive neuroinflammation.
Collapse
Affiliation(s)
- Erin L Stephenson
- Hotchkiss Brain Institute and the University of Calgary, Calgary, Alberta, Canada
| | - V Wee Yong
- Hotchkiss Brain Institute and the University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
34
|
Kang I, Chang MY, Wight TN, Frevert CW. Proteoglycans as Immunomodulators of the Innate Immune Response to Lung Infection. J Histochem Cytochem 2018; 66:241-259. [PMID: 29328866 DOI: 10.1369/0022155417751880] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Proteoglycans (PGs) are complex, multifaceted molecules that participate in diverse interactions vital for physiological and pathological processes. As structural components, they provide a scaffold for cells and structural organization that helps define tissue architecture. Through interactions with water, PGs enable molecular and cellular movement through tissues. Through selective ionic interactions with growth factors, chemokines, cytokines, and proteases, PGs facilitate the ability of these soluble ligands to regulate intracellular signaling events and to influence the inflammatory response. In addition, recent findings now demonstrate that PGs can activate danger-associated molecular patterns (DAMPs) and other signaling pathways to influence production of many of these soluble ligands, indicating a more direct role for PGs in influencing the immune response and tissue inflammation. This review will focus on PGs that are selectively expressed during lung inflammation and will examine the novel emerging concept of PGs as immunomodulatory regulators of the innate immune responses in lungs.
Collapse
Affiliation(s)
- Inkyung Kang
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Mary Y Chang
- Comparative Pathology Program, Department of Comparative Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Charles W Frevert
- Center for Lung Biology, Division of Pulmonary/Critical Care Medicine, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
35
|
Growth Factor Delivery Systems for Tissue Engineering and Regenerative Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1078:245-269. [PMID: 30357627 DOI: 10.1007/978-981-13-0950-2_13] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Growth factors (GFs) are often a key component in tissue engineering and regenerative medicine approaches. In order to fully exploit the therapeutic potential of GFs, GF delivery vehicles have to meet a number of key design criteria such as providing localized delivery and mimicking the dynamic native GF expression levels and patterns. The use of biomaterials as delivery systems is the most successful strategy for controlled delivery and has been translated into different commercially available systems. However, the risk of side effects remains an issue, which is mainly attributed to insufficient control over the release profile. This book chapter reviews the current strategies, chemistries, materials and delivery vehicles employed to overcome the current limitations associated with GF therapies.
Collapse
|
36
|
Chang MY, Kang I, Gale M, Manicone AM, Kinsella MG, Braun KR, Wigmosta T, Parks WC, Altemeier WA, Wight TN, Frevert CW. Versican is produced by Trif- and type I interferon-dependent signaling in macrophages and contributes to fine control of innate immunity in lungs. Am J Physiol Lung Cell Mol Physiol 2017; 313:L1069-L1086. [PMID: 28912382 PMCID: PMC5814701 DOI: 10.1152/ajplung.00353.2017] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/07/2017] [Accepted: 09/07/2017] [Indexed: 01/08/2023] Open
Abstract
Growing evidence suggests that versican is important in the innate immune response to lung infection. Our goal was to understand the regulation of macrophage-derived versican and the role it plays in innate immunity. We first defined the signaling events that regulate versican expression, using bone marrow-derived macrophages (BMDMs) from mice lacking specific Toll-like receptors (TLRs), TLR adaptor molecules, or the type I interferon receptor (IFNAR1). We show that LPS and polyinosinic-polycytidylic acid [poly(I:C)] trigger a signaling cascade involving TLR3 or TLR4, the Trif adaptor, type I interferons, and IFNAR1, leading to increased expression of versican by macrophages and implicating versican as an interferon-stimulated gene. The signaling events regulating versican are distinct from those for hyaluronan synthase 1 (HAS1) and syndecan-4 in macrophages. HAS1 expression requires TLR2 and MyD88. Syndecan-4 requires TLR2, TLR3, or TLR4 and both MyD88 and Trif. Neither HAS1 nor syndecan-4 is dependent on type I interferons. The importance of macrophage-derived versican in lungs was determined with LysM/Vcan-/- mice. These studies show increased recovery of inflammatory cells in the bronchoalveolar lavage fluid of poly(I:C)-treated LysM/Vcan-/- mice compared with control mice. IFN-β and IL-10, two important anti-inflammatory molecules, are significantly decreased in both poly(I:C)-treated BMDMs from LysM/Vcan-/- mice and bronchoalveolar lavage fluid from poly(I:C)-treated LysM/Vcan-/- mice compared with control mice. In short, type I interferon signaling regulates versican expression, and versican is necessary for type I interferon production. These findings suggest that macrophage-derived versican is an immunomodulatory molecule with anti-inflammatory properties in acute pulmonary inflammation.
Collapse
Affiliation(s)
- Mary Y Chang
- Comparative Pathology Program, Department of Comparative Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Inkyung Kang
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Michael Gale
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington
| | - Anne M Manicone
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington; and
| | - Michael G Kinsella
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Kathleen R Braun
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Tara Wigmosta
- Comparative Pathology Program, Department of Comparative Medicine, University of Washington School of Medicine, Seattle, Washington
| | - William C Parks
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington; and
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - William A Altemeier
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington; and
| | - Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Charles W Frevert
- Comparative Pathology Program, Department of Comparative Medicine, University of Washington School of Medicine, Seattle, Washington;
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington; and
| |
Collapse
|
37
|
Gregory JL, Walter A, Alexandre YO, Hor JL, Liu R, Ma JZ, Devi S, Tokuda N, Owada Y, Mackay LK, Smyth GK, Heath WR, Mueller SN. Infection Programs Sustained Lymphoid Stromal Cell Responses and Shapes Lymph Node Remodeling upon Secondary Challenge. Cell Rep 2017; 18:406-418. [PMID: 28076785 DOI: 10.1016/j.celrep.2016.12.038] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/05/2016] [Accepted: 12/12/2016] [Indexed: 01/05/2023] Open
Abstract
Lymph nodes (LNs) are constructed of intricate networks of endothelial and mesenchymal stromal cells. How these lymphoid stromal cells (LSCs) regulate lymphoid tissue remodeling and contribute to immune responses remains poorly understood. We performed a comprehensive functional and transcriptional analysis of LSC responses to skin viral infection and found that LSC subsets responded robustly, with different kinetics for distinct pathogens. Recruitment of cells to inflamed LNs induced LSC expansion, while B cells sustained stromal responses in an antigen-independent manner. Infection induced rapid transcriptional responses in LSCs. This transcriptional program was transient, returning to homeostasis within 1 month of infection, yet expanded fibroblastic reticular cell networks persisted for more than 3 months after infection, and this altered LN composition reduced the magnitude of LSC responses to subsequent heterologous infection. Our results reveal the complexity of LSC responses during infection and suggest that amplified networks of LN stromal cells support successive immune responses.
Collapse
Affiliation(s)
- Julia L Gregory
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Anne Walter
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Yannick O Alexandre
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jyh Liang Hor
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; The Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, VIC 3000, Australia
| | - Ruijie Liu
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
| | - Joel Z Ma
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Sapna Devi
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; The Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, VIC 3000, Australia
| | - Nobuko Tokuda
- Faculty of Health Sciences, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan
| | - Yuji Owada
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Sendai 980-8575, Japan
| | - Laura K Mackay
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Gordon K Smyth
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Mathematics and Statistics, The University of Melbourne, Parkville, VIC 3010, Australia
| | - William R Heath
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; The Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, VIC 3000, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; The Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, VIC 3000, Australia.
| |
Collapse
|
38
|
|
39
|
Wight TN, Frevert CW, Debley JS, Reeves SR, Parks WC, Ziegler SF. Interplay of extracellular matrix and leukocytes in lung inflammation. Cell Immunol 2017; 312:1-14. [PMID: 28077237 PMCID: PMC5290208 DOI: 10.1016/j.cellimm.2016.12.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 12/13/2022]
Abstract
During inflammation, leukocytes influx into lung compartments and interact with extracellular matrix (ECM). Two ECM components, versican and hyaluronan, increase in a range of lung diseases. The interaction of leukocytes with these ECM components controls leukocyte retention and accumulation, proliferation, migration, differentiation, and activation as part of the inflammatory phase of lung disease. In addition, bronchial epithelial cells from asthmatic children co-cultured with human lung fibroblasts generate an ECM that is adherent for monocytes/macrophages. Macrophages are present in both early and late lung inflammation. Matrix metalloproteinase 10 (MMP10) is induced in alveolar macrophages with injury and infection and modulates macrophage phenotype and their ability to degrade collagenous ECM components. Collectively, studies outlined in this review highlight the importance of specific ECM components in the regulation of inflammatory events in lung disease. The widespread involvement of these ECM components in the pathogenesis of lung inflammation make them attractive candidates for therapeutic intervention.
Collapse
Affiliation(s)
- Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA.
| | - Charles W Frevert
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Jason S Debley
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, and Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Stephen R Reeves
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, and Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - William C Parks
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Steven F Ziegler
- Immunology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| |
Collapse
|
40
|
Hjortø GM, Larsen O, Steen A, Daugvilaite V, Berg C, Fares S, Hansen M, Ali S, Rosenkilde MM. Differential CCR7 Targeting in Dendritic Cells by Three Naturally Occurring CC-Chemokines. Front Immunol 2016; 7:568. [PMID: 28018341 PMCID: PMC5145889 DOI: 10.3389/fimmu.2016.00568] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/22/2016] [Indexed: 01/07/2023] Open
Abstract
The CCR7 ligands CCL19 and CCL21 are increasingly recognized as functionally different (biased). Using mature human dendritic cells (DCs), we show that CCL19 is more potent than CCL21 in inducing 3D chemotaxis. Intriguingly, CCL21 induces prolonged and more efficient ERK1/2 activation compared with CCL19 and a C-terminal truncated (tailless) CCL21 in DCs. In contrast, tailless-CCL21 displays increased potency in DC chemotaxis compared with native CCL21. Using a CCL21-specific antibody, we show that CCL21, but not tailless-CCL21, accumulates at the cell surface. In addition, removal of sialic acid from the cell surface by neuraminidase treatment impairs ERK1/2 activation by CCL21, but not by CCL19 or tailless-CCL21. Using standard laboratory cell lines, we observe low potency of both CCL21 and tailless-CCL21 in G protein activation and β-arrestin recruitment compared with CCL19, indicating that the tail itself does not improve receptor interaction. Chemokines interact with their receptors in a stepwise manner with ultimate docking of their N-terminus into the main binding pocket. Employing site-directed mutagenesis we identify residues in this pocket of selective CCL21 importance. We also identify a molecular switch in the top of TM7 important for keeping CCR7 in an inactive conformation (Tyr312), as introduction of the chemokine receptor-conserved Glu (or Ala) induces high constitutive activity. Summarized, we show that the interaction of the tail of CCL21 with polysialic acid is needed for strong ERK signaling, whereas it impairs CCL21-mediated chemotaxis and has no impact on receptor docking consistent with the current model of chemokine:receptor interaction. This indicates that future selective pharmacological targeting of CCL19 versus CCL21 should focus on a differential targeting of the main receptor pocket, while selective targeting of tailless-CCL21 versus CCL21 and CCL19 requires targeting of the glycosaminoglycan (GAG) interaction.
Collapse
Affiliation(s)
- Gertrud M Hjortø
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen , Copenhagen , Denmark
| | - Olav Larsen
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen , Copenhagen , Denmark
| | - Anne Steen
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen , Copenhagen , Denmark
| | - Viktorija Daugvilaite
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen , Copenhagen , Denmark
| | - Christian Berg
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen , Copenhagen , Denmark
| | - Suzan Fares
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen , Copenhagen , Denmark
| | - Morten Hansen
- Department of Haematology, Center for Cancer Immune Therapy (CCIT), Copenhagen University Hospital , Herlev , Denmark
| | - Simi Ali
- Medical Faculty, Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne , UK
| | - Mette M Rosenkilde
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
41
|
McMahon M, Ye S, Izzard L, Dlugolenski D, Tripp RA, Bean AGD, McCulloch DR, Stambas J. ADAMTS5 Is a Critical Regulator of Virus-Specific T Cell Immunity. PLoS Biol 2016; 14:e1002580. [PMID: 27855162 PMCID: PMC5113859 DOI: 10.1371/journal.pbio.1002580] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 10/25/2016] [Indexed: 01/09/2023] Open
Abstract
The extracellular matrix (ECM) provides physical scaffolding for cellular constituents and initiates biochemical and biomechanical cues that are required for physiological activity of living tissues. The ECM enzyme ADAMTS5, a member of the ADAMTS (A Disintegrin-like and Metalloproteinase with Thrombospondin-1 motifs) protein family, cleaves large proteoglycans such as aggrecan, leading to the destruction of cartilage and osteoarthritis. However, its contribution to viral pathogenesis and immunity is currently undefined. Here, we use a combination of in vitro and in vivo models to show that ADAMTS5 enzymatic activity plays a key role in the development of influenza-specific immunity. Influenza virus infection of Adamts5-/- mice resulted in delayed virus clearance, compromised T cell migration and immunity and accumulation of versican, an ADAMTS5 proteoglycan substrate. Our research emphasises the importance of ADAMTS5 expression in the control of influenza virus infection and highlights the potential for development of ADAMTS5-based therapeutic strategies to reduce morbidity and mortality. The extracellular matrix enzyme ADAMTS5 enhances the clearance of viruses by facilitating migration of T lymphocytes to the periphery following influenza virus infection. Movement of immune cells is critical for effective clearance of pathogens. The response to influenza virus infection requires immune cell trafficking between the lung, mediastinal lymph node and other peripheral lymphoid organs such as the spleen. We set out to assess the contribution of a specific extracellular matrix enzyme, ADAMTS5, to migration of lymphocytes and overall pathogenesis following infection. In our studies, we demonstrate that mice lacking Adamts5 have fewer influenza-specific lymphocytes in the lung and spleen following infection. These observations correlated with an accumulation of influenza-specific lymphocytes in the mediastinal lymph node and increased virus titres. This work suggests that ADAMTS5 is necessary for immune cell migration to the periphery, where lymphocyte function is required to fight infection.
Collapse
Affiliation(s)
- Meagan McMahon
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Siying Ye
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Leonard Izzard
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | | | - Ralph A. Tripp
- College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Andrew G. D. Bean
- Australian Animal Health Laboratory, CSIRO, East Geelong, Victoria, Australia
| | | | - John Stambas
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
- * E-mail:
| |
Collapse
|
42
|
Affiliation(s)
- Jing Hu
- a Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center , New York , NY , USA
| | - Xiao-Fan Wang
- b Department of Pharmacology and Cancer Biology , Duke University Medical Center , Durham NC , USA
| |
Collapse
|
43
|
Senda M, Fukuyama R, Nagasaka T. Kinetics of versican-expressing macrophages in bone marrow after cord blood stem cell transplantation for treatment of acute myelogenous leukaemia. J Clin Pathol 2016; 69:906-11. [PMID: 26951084 PMCID: PMC5050288 DOI: 10.1136/jclinpath-2015-203496] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/09/2016] [Indexed: 01/08/2023]
Abstract
Aims To determine versican-producing cells in normocellular bone marrow and to evaluate chronological alteration in the number of versican-producing macrophages in bone marrow of patients with acute myelogenous leukaemia (AML) after cord blood stem cell transplantation (CBSCT) to gain insight in the significance of versican in recovery of haematopoiesis. Methods We enrolled seven age-matched unrelated patients with normocellular bone marrow for determining versican-producing cells in bone marrow, CBSCT-treated patients with AML, 18 with fine and other four with poor engraftment, for determining chronological alteration of versican-expressing and CD68-expressing cells in transplanted bone marrow in reference to the total cells. Clot samples of patients with AML were collected from the +16 to +55 day after transplantation and separated into four groups. We included an AML case whose specimen was obtained on the +9 day. Cells positive in immunohistochemistry using antibodies to versican and CD68 were counted to obtain the mean±SD in a unit area of the bone marrow, plotted chronologically and compared with the numbers from the age-matched normocellular group. Results We determined by a double immunohistochemistry that the versican-expressing cells in bone marrow are macrophages. The time-course curve demonstrated an inverse relationship between the versican-positive macrophages and the total cells in the transplanted bone marrow for over 55 days. In bone marrow of poor engraftment cases, versican-positive macrophages appeared to be decreased in comparison with age-matched and sampling day-matched patients. Conclusions These results suggest that versican and/or versican-expressing macrophages positively contribute to bone marrow regeneration of patients with AML after CBSCT.
Collapse
Affiliation(s)
- Miho Senda
- Department of Clinical Laboratory, Konan Kosei Hospital, Aichi, Japan Department of Medical Technology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Ryuichi Fukuyama
- Department of Diagnostic Pathology, Konan Kosei Hospital, Aichi, Japan
| | - Tetsuro Nagasaka
- Department of Medical Technology, Nagoya University Graduate School of Medicine, Aichi, Japan
| |
Collapse
|
44
|
Hu J, Sun T, Wang H, Chen Z, Wang S, Yuan L, Liu T, Li HR, Wang P, Feng Y, Wang Q, McLendon RE, Friedman AH, Keir ST, Bigner DD, Rathmell J, Fu XD, Li QJ, Wang H, Wang XF. MiR-215 Is Induced Post-transcriptionally via HIF-Drosha Complex and Mediates Glioma-Initiating Cell Adaptation to Hypoxia by Targeting KDM1B. Cancer Cell 2016; 29:49-60. [PMID: 26766590 PMCID: PMC4871949 DOI: 10.1016/j.ccell.2015.12.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 09/30/2015] [Accepted: 12/14/2015] [Indexed: 12/21/2022]
Abstract
The hypoxic tumor microenvironment serves as a niche for maintaining the glioma-initiating cells (GICs) that are critical for glioblastoma (GBM) occurrence and recurrence. Here, we report that hypoxia-induced miR-215 is vital for reprograming GICs to fit the hypoxic microenvironment via suppressing the expression of an epigenetic regulator KDM1B and modulating activities of multiple pathways. Interestingly, biogenesis of miR-215 and several miRNAs is accelerated post-transcriptionally by hypoxia-inducible factors (HIFs) through HIF-Drosha interaction. Moreover, miR-215 expression correlates inversely with KDM1B while correlating positively with HIF1α and GBM progression in patients. These findings reveal a direct role of HIF in regulating miRNA biogenesis and consequently activating the miR-215-KDM1B-mediated signaling required for GIC adaptation to hypoxia.
Collapse
Affiliation(s)
- Jing Hu
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Tao Sun
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Hui Wang
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Zhengxin Chen
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Shuai Wang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Lifeng Yuan
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Tingyu Liu
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Hai-Ri Li
- Department of Cellular & Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Pingping Wang
- Department of Cellular & Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yukuan Feng
- Department of Cellular & Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Anatomy, Mudanjiang Medical College, Mudanjiang, Heilongjiang Province 157011, China
| | - Qinhong Wang
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Roger E McLendon
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Allan H Friedman
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Stephen T Keir
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Darell D Bigner
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Jeff Rathmell
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Xiang-Dong Fu
- Department of Cellular & Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Qi-Jing Li
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Huibo Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Xiao-Fan Wang
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
45
|
Monneau Y, Arenzana-Seisdedos F, Lortat-Jacob H. The sweet spot: how GAGs help chemokines guide migrating cells. J Leukoc Biol 2015; 99:935-53. [DOI: 10.1189/jlb.3mr0915-440r] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 11/24/2015] [Indexed: 12/19/2022] Open
|
46
|
Kiermaier E, Moussion C, Veldkamp CT, Gerardy-Schahn R, de Vries I, Williams LG, Chaffee GR, Phillips AJ, Freiberger F, Imre R, Taleski D, Payne RJ, Braun A, Förster R, Mechtler K, Mühlenhoff M, Volkman BF, Sixt M. Polysialylation controls dendritic cell trafficking by regulating chemokine recognition. Science 2015; 351:186-90. [PMID: 26657283 DOI: 10.1126/science.aad0512] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 12/01/2015] [Indexed: 12/13/2022]
Abstract
The addition of polysialic acid to N- and/or O-linked glycans, referred to as polysialylation, is a rare posttranslational modification that is mainly known to control the developmental plasticity of the nervous system. Here we show that CCR7, the central chemokine receptor controlling immune cell trafficking to secondary lymphatic organs, carries polysialic acid. This modification is essential for the recognition of the CCR7 ligand CCL21. As a consequence, dendritic cell trafficking is abrogated in polysialyltransferase-deficient mice, manifesting as disturbed lymph node homeostasis and unresponsiveness to inflammatory stimuli. Structure-function analysis of chemokine-receptor interactions reveals that CCL21 adopts an autoinhibited conformation, which is released upon interaction with polysialic acid. Thus, we describe a glycosylation-mediated immune cell trafficking disorder and its mechanistic basis.
Collapse
Affiliation(s)
- Eva Kiermaier
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Christine Moussion
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Christopher T Veldkamp
- Department of Chemistry, University of Wisconsin-Whitewater, 800 West Main Street, Whitewater, WI 53190, USA. Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Rita Gerardy-Schahn
- Institute for Cellular Chemistry, Hannover Medical School [Medizinische Hochschule Hannover (MHH)], Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Ingrid de Vries
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Larry G Williams
- Department of Chemistry, University of Wisconsin-Whitewater, 800 West Main Street, Whitewater, WI 53190, USA
| | - Gary R Chaffee
- Department of Chemistry, University of Wisconsin-Whitewater, 800 West Main Street, Whitewater, WI 53190, USA
| | - Andrew J Phillips
- Department of Chemistry, University of Wisconsin-Whitewater, 800 West Main Street, Whitewater, WI 53190, USA
| | - Friedrich Freiberger
- Institute for Cellular Chemistry, Hannover Medical School [Medizinische Hochschule Hannover (MHH)], Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Richard Imre
- Research Institute of Molecular Pathology, Vienna Biocenter, Dr. Bohr Gasse 7, 1030 Vienna, Austria
| | - Deni Taleski
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Asolina Braun
- Institute of Immunology, Hannover Medical School (MHH), Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School (MHH), Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Karl Mechtler
- Research Institute of Molecular Pathology, Vienna Biocenter, Dr. Bohr Gasse 7, 1030 Vienna, Austria
| | - Martina Mühlenhoff
- Institute for Cellular Chemistry, Hannover Medical School [Medizinische Hochschule Hannover (MHH)], Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Michael Sixt
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| |
Collapse
|
47
|
Snyder JM, Washington IM, Birkland T, Chang MY, Frevert CW. Correlation of Versican Expression, Accumulation, and Degradation during Embryonic Development by Quantitative Immunohistochemistry. J Histochem Cytochem 2015; 63:952-67. [PMID: 26385570 DOI: 10.1369/0022155415610383] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/31/2015] [Indexed: 01/08/2023] Open
Abstract
Versican, a chondroitin sulfate proteoglycan, is important in embryonic development, and disruption of the versican gene is embryonically lethal in the mouse. Although several studies show that versican is increased in various organs during development, a focused quantitative study on versican expression and distribution during lung and central nervous system development in the mouse has not previously been performed. We tracked changes in versican (Vcan) gene expression and in the accumulation and degradation of versican. Vcan expression and quantitative immunohistochemistry performed from embryonic day (E) 11.5 to E15.5 showed peak Vcan expression at E13.5 in the lungs and brain. Quantitative mRNA analysis and versican immunohistochemistry showed differences in the expression of the versican isoforms in the embryonic lung and head. The expression of Vcan mRNA and accumulation of versican in tissues was complementary. Immunohistochemistry demonstrated co-localization of versican accumulation and degradation, suggesting distinct roles of versican deposition and degradation in embryogenesis. Very little versican mRNA or protein was found in the lungs of 12- to 16-week-old mice but versican accumulation was significantly increased in mice with Pseudomonas aeruginosa lung infection. These data suggest that versican plays an important role in fundamental, overlapping cellular processes in lung development and infection.
Collapse
Affiliation(s)
- Jessica M Snyder
- Department of Comparative Medicine, University of Washington, Seattle, Washington (JMS, IMW, MYC, CWF)
| | - Ida M Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington (JMS, IMW, MYC, CWF)
| | - Timothy Birkland
- Center for Lung Biology, University of Washington, Seattle, Washington (TB, MYC, CWF)
| | - Mary Y Chang
- Department of Comparative Medicine, University of Washington, Seattle, Washington (JMS, IMW, MYC, CWF),Center for Lung Biology, University of Washington, Seattle, Washington (TB, MYC, CWF)
| | - Charles W Frevert
- Department of Comparative Medicine, University of Washington, Seattle, Washington (JMS, IMW, MYC, CWF),Center for Lung Biology, University of Washington, Seattle, Washington (TB, MYC, CWF)
| |
Collapse
|
48
|
Syndecan-1 in Cancer: Implications for Cell Signaling, Differentiation, and Prognostication. DISEASE MARKERS 2015; 2015:796052. [PMID: 26420915 PMCID: PMC4569789 DOI: 10.1155/2015/796052] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/16/2015] [Indexed: 11/17/2022]
Abstract
Syndecan-1, a cell surface heparan sulfate proteoglycan, is critically involved in the differentiation and prognosis of various tumors. In this review, we highlight the synthesis, cellular interactions, and the signalling pathways regulated by syndecan-1. The basal syndecan-1 level is also crucial for understanding the sequential changes involving malignant transformation, tumor progression, and advanced or disseminated cancer stages. Moreover, we focus on the cellular localization of this proteoglycan as cell membrane anchored and/or shed, soluble syndecan-1 with stromal or nuclear accumulation and how this may carry different, highly tissue specific prognostic information for individual tumor types.
Collapse
|
49
|
Carthy JM, Meredith AJ, Boroomand S, Abraham T, Luo Z, Knight D, McManus BM. Versican V1 Overexpression Induces a Myofibroblast-Like Phenotype in Cultured Fibroblasts. PLoS One 2015; 10:e0133056. [PMID: 26176948 PMCID: PMC4503433 DOI: 10.1371/journal.pone.0133056] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/22/2015] [Indexed: 01/08/2023] Open
Abstract
Background Versican, a chondroitin sulphate proteoglycan, is one of the key components of the provisional extracellular matrix expressed after injury. The current study evaluated the hypothesis that a versican-rich matrix alters the phenotype of cultured fibroblasts. Methods and Results The full-length cDNA for the V1 isoform of human versican was cloned and the recombinant proteoglycan was expressed in murine fibroblasts. Versican expression induced a marked change in fibroblast phenotype. Functionally, the versican-expressing fibroblasts proliferated faster and displayed enhanced cell adhesion, but migrated slower than control cells. These changes in cell function were associated with greater N-cadherin and integrin β1 expression, along with increased FAK phosphorylation. The versican-expressing fibroblasts also displayed expression of smooth muscle α-actin, a marker of myofibroblast differentiation. Consistent with this observation, the versican fibroblasts displayed increased synthetic activity, as measured by collagen III mRNA expression, as well as a greater capacity to contract a collagen lattice. These changes appear to be mediated, at least in part, by an increase in active TGF-β signaling in the versican expressing fibroblasts, and this was measured by phosphorylation and nuclear accumulation of SMAD2. Conclusions Collectively, these data indicate versican expression induces a myofibroblast-like phenotype in cultured fibroblasts.
Collapse
Affiliation(s)
- Jon M. Carthy
- UBC James Hogg Research Centre, Institute for Heart + Lung Health, Department of Pathology and Laboratory Medicine, University of British Columbia – Providence Health Care, Vancouver, British Columbia, Canada
| | - Anna J. Meredith
- UBC James Hogg Research Centre, Institute for Heart + Lung Health, Department of Pathology and Laboratory Medicine, University of British Columbia – Providence Health Care, Vancouver, British Columbia, Canada
| | - Seti Boroomand
- UBC James Hogg Research Centre, Institute for Heart + Lung Health, Department of Pathology and Laboratory Medicine, University of British Columbia – Providence Health Care, Vancouver, British Columbia, Canada
| | - Thomas Abraham
- UBC James Hogg Research Centre, Institute for Heart + Lung Health, Department of Pathology and Laboratory Medicine, University of British Columbia – Providence Health Care, Vancouver, British Columbia, Canada
| | - Zongshu Luo
- UBC James Hogg Research Centre, Institute for Heart + Lung Health, Department of Pathology and Laboratory Medicine, University of British Columbia – Providence Health Care, Vancouver, British Columbia, Canada
| | - Darryl Knight
- UBC James Hogg Research Centre, Institute for Heart + Lung Health, Department of Pathology and Laboratory Medicine, University of British Columbia – Providence Health Care, Vancouver, British Columbia, Canada
| | - Bruce M. McManus
- UBC James Hogg Research Centre, Institute for Heart + Lung Health, Department of Pathology and Laboratory Medicine, University of British Columbia – Providence Health Care, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
50
|
Kang I, Barth JL, Sproul EP, Yoon DW, Workman GA, Braun KR, Argraves WS, Wight TN. Expression of V3 Versican by Rat Arterial Smooth Muscle Cells Promotes Differentiated and Anti-inflammatory Phenotypes. J Biol Chem 2015; 290:21629-41. [PMID: 26152723 DOI: 10.1074/jbc.m115.657486] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Indexed: 01/03/2023] Open
Abstract
Arterial smooth muscle cells (ASMCs) undergo phenotypic changes during development and pathological processes in vivo and during cell culture in vitro. Our previous studies demonstrated that retrovirally mediated expression of the versican V3 splice variant (V3) by ASMCs retards cell proliferation and migration in vitro and reduces neointimal thickening and macrophage and lipid accumulation in animal models of vascular injury and atherosclerosis. However, the molecular pathways induced by V3 expression that are responsible for these changes are not yet clear. In this study, we employed a microarray approach to examine how expression of V3 induced changes in gene expression and the molecular pathways in rat ASMCs. We found that forced expression of V3 by ASMCs affected expression of 521 genes by more than 1.5-fold. Gene ontology analysis showed that components of the extracellular matrix were the most significantly affected by V3 expression. In addition, genes regulating the formation of the cytoskeleton, which also serve as markers of contractile smooth muscle cells (SMCs), were significantly up-regulated. In contrast, components of the complement system, chemokines, chemokine receptors, and transcription factors crucial for regulating inflammatory processes were among the genes most down-regulated. Consistently, we found that the level of myocardin, a key transcription factor promoting contractile SMC phenotype, was greatly increased, and the proinflammatory transcription factors NFκB1 and CCAAT/enhancer-binding protein β were significantly attenuated in V3-expressing SMCs. Overall, these findings demonstrate that V3 expression reprograms ASMCs promoting differentiated and anti-inflammatory phenotypes.
Collapse
Affiliation(s)
- Inkyung Kang
- From the Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington 98101 and
| | - Jeremy L Barth
- the Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Erin P Sproul
- the Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Dong Won Yoon
- From the Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington 98101 and
| | - Gail A Workman
- From the Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington 98101 and
| | - Kathleen R Braun
- From the Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington 98101 and
| | - W Scott Argraves
- the Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Thomas N Wight
- From the Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington 98101 and
| |
Collapse
|