1
|
Hasunuma I. Central regulation of reproduction in amphibians. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:219-229. [PMID: 38084833 DOI: 10.1002/jez.2769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 02/27/2024]
Abstract
This review article includes a literature review of synteny analysis of the amphibian gonadotropin-releasing hormone (GnRH) genes, the distribution of GnRH 1 and GnRH2 neurons in the central nervous system of amphibians, the function and regulation of hypophysiotropic GnRH1, and the function of GnRH1 in amphibian reproductive behaviors. It is generally accepted that GnRH is the key regulator of the hypothalamic-pituitary-gonadal axis. Three independent GnRH genes, GnRH1, GnRH2, and GnRH3, have been identified in vertebrates. Previous genome synteny analyses suggest that there are likely just two genes, gnrh1 and gnrh2, in amphibians. In three groups of amphibians: Anura, Urodela, and Gymnophiona, the distributions of GnRH1 and GnRH2 neurons in the central nervous system have also been previously reported. Moreover, these neuronal networks were determined to be structurally independent in all species examined. The somata of GnRH1 neurons are located in the terminal nerve, medial septum (MS), and preoptic area (POA), and some GnRH1 neurons in the MS and POA project into the median eminence. In contrast, the somata of GnRH2 neurons are located in the midbrain tegmentum. In amphibians, GnRH1 neurons originate from the embryonic olfactory placode, while GnRH2 neurons originate from the midbrain. The characterization and feedback regulation mechanisms of hypophysiotropic GnRH1 neurons in amphibians, the involvement of GnRH1 in amphibian reproductive behavior, and its possible mechanism of action should be elucidated in future.
Collapse
Affiliation(s)
- Itaru Hasunuma
- Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| |
Collapse
|
2
|
Drastichova Z, Trubacova R, Novotny J. Regulation of phosphosignaling pathways involved in transcription of cell cycle target genes by TRH receptor activation in GH1 cells. Biomed Pharmacother 2023; 168:115830. [PMID: 37931515 DOI: 10.1016/j.biopha.2023.115830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023] Open
Abstract
Thyrotropin-releasing hormone (TRH) is known to activate several cellular signaling pathway, but the activation of the TRH receptor (TRH-R) has not been reported to regulate gene transcription. The aim of this study was to identify phosphosignaling pathways and phosphoprotein complexes associated with gene transcription in GH1 pituitary cells treated with TRH or its analog, taltirelin (TAL), using label-free bottom-up mass spectrometry-based proteomics. Our detailed analysis provided insight into the mechanism through which TRH-R activation may regulate the transcription of genes related to the cell cycle and proliferation. It involves control of the signaling pathways for β-catenin/Tcf, Notch/RBPJ, p53/p21/Rbl2/E2F, Myc, and YY1/Rb1/E2F through phosphorylation and dephosphorylation of their key components. In many instances, the phosphorylation patterns of differentially phosphorylated phosphoproteins in TRH- or TAL-treated cells were identical or displayed a similar trend in phosphorylation. However, some phosphoproteins, especially components of the Wnt/β-catenin/Tcf and YY1/Rb1/E2F pathways, exhibited different phosphorylation patterns in TRH- and TAL-treated cells. This supports the notion that TRH and TAL may act, at least in part, as biased agonists. Additionally, the deficiency of β-arrestin2 resulted in a reduced number of alterations in phosphorylation, highlighting the critical role of β-arrestin2 in the signal transduction from TRH-R in the plasma membrane to transcription factors in the nucleus.
Collapse
Affiliation(s)
- Zdenka Drastichova
- Department of Physiology, Faculty of Science, Charles University, 128 00 Prague, Czechia
| | - Radka Trubacova
- Department of Physiology, Faculty of Science, Charles University, 128 00 Prague, Czechia; Institute of Physiology, Czech Academy of Sciences, 142 20 Prague, Czechia
| | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University, 128 00 Prague, Czechia.
| |
Collapse
|
3
|
Tatsumi R, Aihara S, Matsune S, Aoki J, Inoue A, Shimizu T, Nakamura M. Stepwise phosphorylation of BLT1 defines complex assemblies with β-arrestin serving distinct functions. FASEB J 2023; 37:e23213. [PMID: 37795742 DOI: 10.1096/fj.202301440r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 10/06/2023]
Abstract
G protein-coupled receptors (GPCRs) utilize complex cellular systems to respond to diverse ligand concentrations. By taking BLT1, a GPCR for leukotriene B4 (LTB4 ), as a model, our previous work elucidated that this system functions through the modulation of phosphorylation status on two specific residues: Thr308 and Ser310 . Ser310 phosphorylation occurs at a lower LTB4 concentration than Thr308 , leading to a shift in ligand affinity from a high-to-low state. However, the implications of BLT1 phosphorylation in signal transduction processes or the underlying mechanisms have remained unclear. Here, we identify the sequential BLT1-engaged conformations of β-arrestin and subsequent alterations in signal transduction. Stimulation of the high-affinity BLT1 with LTB4 induces phosphorylation at Ser310 via the ERK1/2-GRK pathway, resulting in a β-arrestin-bound low-affinity state. This configuration, referred to as the "low-LTB4 -induced complex," necessitates the finger loop region and the phosphoinositide-binding motif of β-arrestins to interact with BLT1 and deactivates the ERK1/2 signaling. Under high LTB4 concentrations, the low-affinity BLT1 again binds to the ligand and triggers the generation of the low-LTB4 -induced complex into a different form termed "high-LTB4 -induced complex." This change is propelled by The308 -phosphorylation-dependent basal phosphorylation by PKCs. Within the high-LTB4 -induced complex, β-arrestin adapts a unique configuration that involves additional N domain interaction to the low-affinity BLT1 and stimulates the PI3K/AKT pathway. We propose that the stepwise phosphorylation of BLT1 defines the formation of complex assemblies, wherein β-arrestins perform distinct functions.
Collapse
Affiliation(s)
- Riko Tatsumi
- Department of Bioscience, Graduate School of Life Science, Okayama University of Science, Okayama, Japan
| | - Saki Aihara
- Department of Bioscience, Graduate School of Life Science, Okayama University of Science, Okayama, Japan
| | - Seiya Matsune
- Department of Bioscience, Graduate School of Life Science, Okayama University of Science, Okayama, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
- Japan Agency for Medical Research and Development (AMED), Core Research for Evolutional Science and Technology (AMED-CREST), Graduate School of Pharmaceutical Science, University of Tokyo, Tokyo, Japan
| | - Asuka Inoue
- Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Takao Shimizu
- Department of Lipid Signaling, National Center for Global Health and Medicine, National Center for Global Health and Medicine, Tokyo, Japan
- Institute of Microbial Chemistry, Tokyo, Japan
| | - Motonao Nakamura
- Department of Bioscience, Graduate School of Life Science, Okayama University of Science, Okayama, Japan
| |
Collapse
|
4
|
Trubacova R, Drastichova Z, Novotny J. Biochemical and physiological insights into TRH receptor-mediated signaling. Front Cell Dev Biol 2022; 10:981452. [PMID: 36147745 PMCID: PMC9485831 DOI: 10.3389/fcell.2022.981452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Thyrotropin-releasing hormone (TRH) is an important endocrine agent that regulates the function of cells in the anterior pituitary and the central and peripheral nervous systems. By controlling the synthesis and release of thyroid hormones, TRH affects many physiological functions, including energy homeostasis. This hormone exerts its effects through G protein-coupled TRH receptors, which signal primarily through Gq/11 but may also utilize other G protein classes under certain conditions. Because of the potential therapeutic benefit, considerable attention has been devoted to the synthesis of new TRH analogs that may have some advantageous properties compared with TRH. In this context, it may be interesting to consider the phenomenon of biased agonism and signaling at the TRH receptor. This possibility is supported by some recent findings. Although knowledge about the mechanisms of TRH receptor-mediated signaling has increased steadily over the past decades, there are still many unanswered questions, particularly about the molecular details of post-receptor signaling. In this review, we summarize what has been learned to date about TRH receptor-mediated signaling, including some previously undiscussed information, and point to future directions in TRH research that may offer new insights into the molecular mechanisms of TRH receptor-triggered actions and possible ways to modulate TRH receptor-mediated signaling.
Collapse
|
5
|
Tang X, Bian J, Li Z. Post-Translational Modifications in GPCR Internalization. Am J Physiol Cell Physiol 2022; 323:C84-C94. [PMID: 35613355 DOI: 10.1152/ajpcell.00015.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of membrane receptors that serve as the most important drug targets. Classically, GPCR internalization has been considered to lead to receptor desensitization. However, many studies over the past decade have reported that internalized membrane receptors can trigger distinct signal activation. The "internalized activation" provides a completely new understanding for the receptor internalization, the mechanism of physiology/pathology and novel drug targets for precision medicine. GPCR internalization undergoes a series of strict regulations, especially by post-translational modifications (PTMs). Here, this review summarizes different PTMs in GPCR internalization and analyzes their significance in GPCR internalization dynamics, internalization routes, post-internalization fates and related diseases, which will offer new insights into the regulatory mechanism of GPCR signaling and novel drug targets for precision medicine.
Collapse
Affiliation(s)
- Xueqing Tang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing Key Laboratory of Cardiovascular Receptors Research, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Jingwei Bian
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing Key Laboratory of Cardiovascular Receptors Research, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Zijian Li
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing Key Laboratory of Cardiovascular Receptors Research, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China.,Department of Pharmacy, Peking University Third Hospital, Beijing, China
| |
Collapse
|
6
|
Receptor-Arrestin Interactions: The GPCR Perspective. Biomolecules 2021; 11:biom11020218. [PMID: 33557162 PMCID: PMC7913897 DOI: 10.3390/biom11020218] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023] Open
Abstract
Arrestins are a small family of four proteins in most vertebrates that bind hundreds of different G protein-coupled receptors (GPCRs). Arrestin binding to a GPCR has at least three functions: precluding further receptor coupling to G proteins, facilitating receptor internalization, and initiating distinct arrestin-mediated signaling. The molecular mechanism of arrestin–GPCR interactions has been extensively studied and discussed from the “arrestin perspective”, focusing on the roles of arrestin elements in receptor binding. Here, we discuss this phenomenon from the “receptor perspective”, focusing on the receptor elements involved in arrestin binding and emphasizing existing gaps in our knowledge that need to be filled. It is vitally important to understand the role of receptor elements in arrestin activation and how the interaction of each of these elements with arrestin contributes to the latter’s transition to the high-affinity binding state. A more precise knowledge of the molecular mechanisms of arrestin activation is needed to enable the construction of arrestin mutants with desired functional characteristics.
Collapse
|
7
|
GnRH Antagonists Produce Differential Modulation of the Signaling Pathways Mediated by GnRH Receptors. Int J Mol Sci 2019; 20:ijms20225548. [PMID: 31703269 PMCID: PMC6888270 DOI: 10.3390/ijms20225548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022] Open
Abstract
Commercial gonadotropin-releasing hormone (GnRH) antagonists differ by 1-2 amino acids and are used to inhibit gonadotropin production during assisted reproduction technologies (ART). In this study, potencies of three GnRH antagonists, Cetrorelix, Ganirelix and Teverelix, in inhibiting GnRH-mediated intracellular signaling, were compared in vitro. GnRH receptor (GnRHR)-transfected HEK293 and neuroblastoma-derived SH-SY5Y cell lines, as well as mouse pituitary LβT2 cells endogenously expressing the murine GnRHR, were treated with GnRH in the presence or absence of the antagonist. We evaluated intracellular calcium (Ca2+) and cAMP increases, cAMP-responsive element binding-protein (CREB) and extracellular-regulated kinase 1 and 2 (ERK1/2) phosphorylation, β-catenin activation and mouse luteinizing-hormone β-encoding gene (Lhb) transcription by bioluminescence resonance energy transfer (BRET), Western blotting, immunostaining and real-time PCR as appropriate. The kinetics of GnRH-induced Ca2+ rapid increase revealed dose-response accumulation with potency (EC50) of 23 nM in transfected HEK293 cells, transfected SH-SY5Y and LβT2 cells. Cetrorelix inhibited the 3 × EC50 GnRH-activated calcium signaling at concentrations of 1 nM-1 µM, demonstrating higher potency than Ganirelix and Teverelix, whose inhibitory doses fell within the 100 nM-1 µM range in both transfected HEK293 and SH-SY5Y cells in vitro. In transfected SH-SY5Y, Cetrorelix was also significantly more potent than other antagonists in reducing GnRH-mediated cAMP accumulation. All antagonists inhibited pERK1/2 and pCREB activation at similar doses, in LβT2 and transfected HEK293 cells treated with 100 nM GnRH. Although immunostainings suggested that Teverelix could be less effective than Cetrorelix and Ganirelix in inhibiting 1 µM GnRH-induced β-catenin activation, Lhb gene expression increase occurring upon LβT2 cell treatment by 1 µM GnRH was similarly inhibited by all antagonists. To conclude, this study has demonstrated Cetrorelix-, Ganirelix- and Teverelix-specific biased effects at the intracellular level, not affecting the efficacy of antagonists in inhibiting Lhb gene transcription.
Collapse
|
8
|
Stamatiades GA, Kaiser UB. Gonadotropin regulation by pulsatile GnRH: Signaling and gene expression. Mol Cell Endocrinol 2018; 463:131-141. [PMID: 29102564 PMCID: PMC5812824 DOI: 10.1016/j.mce.2017.10.015] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/27/2017] [Accepted: 10/27/2017] [Indexed: 12/12/2022]
Abstract
The precise orchestration of hormonal regulation at all levels of the hypothalamic-pituitary-gonadal axis is essential for normal reproductive function and fertility. The pulsatile secretion of hypothalamic gonadotropin-releasing hormone (GnRH) stimulates the synthesis and release of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) by pituitary gonadotropes. GnRH acts by binding to its high affinity seven-transmembrane receptor (GnRHR) on the cell surface of anterior pituitary gonadotropes. Different signaling cascades and transcriptional mechanisms are activated, depending on the variation in GnRH pulse frequency, to stimulate the synthesis and release of FSH and LH. While changes in GnRH pulse frequency may explain some of the differential regulation of FSH and LH, other factors, such as activin, inhibin and sex steroids, also contribute to gonadotropin production. In this review, we focus on the transcriptional regulation of the gonadotropin subunit genes and the signaling pathways activated by pulsatile GnRH.
Collapse
Affiliation(s)
- George A Stamatiades
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
9
|
Pratap A, Garner KL, Voliotis M, Tsaneva-Atanasova K, McArdle CA. Mathematical modeling of gonadotropin-releasing hormone signaling. Mol Cell Endocrinol 2017; 449:42-55. [PMID: 27544781 PMCID: PMC5446263 DOI: 10.1016/j.mce.2016.08.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/09/2016] [Accepted: 08/11/2016] [Indexed: 12/12/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) acts via G-protein coupled receptors on pituitary gonadotropes to control reproduction. These are Gq-coupled receptors that mediate acute effects of GnRH on the exocytotic secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH), as well as the chronic regulation of their synthesis. GnRH is secreted in short pulses and GnRH effects on its target cells are dependent upon the dynamics of these pulses. Here we overview GnRH receptors and their signaling network, placing emphasis on pulsatile signaling, and how mechanistic mathematical models and an information theoretic approach have helped further this field.
Collapse
Affiliation(s)
- Amitesh Pratap
- Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Whitson Street, Bristol, BS1 3NY, UK
| | - Kathryn L Garner
- Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Whitson Street, Bristol, BS1 3NY, UK
| | - Margaritis Voliotis
- EPSRC Centre for Predictive Modeling in Healthcare, University of Exeter, Exeter, EX4 4QF, UK
| | - Krasimira Tsaneva-Atanasova
- Department of Mathematics, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK; EPSRC Centre for Predictive Modeling in Healthcare, University of Exeter, Exeter, EX4 4QF, UK
| | - Craig A McArdle
- Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Whitson Street, Bristol, BS1 3NY, UK.
| |
Collapse
|
10
|
Yang Z, Yang F, Zhang D, Liu Z, Lin A, Liu C, Xiao P, Yu X, Sun JP. Phosphorylation of G Protein-Coupled Receptors: From the Barcode Hypothesis to the Flute Model. Mol Pharmacol 2017; 92:201-210. [DOI: 10.1124/mol.116.107839] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 02/23/2017] [Indexed: 12/21/2022] Open
|
11
|
Farinha CM, Swiatecka-Urban A, Brautigan DL, Jordan P. Regulatory Crosstalk by Protein Kinases on CFTR Trafficking and Activity. Front Chem 2016; 4:1. [PMID: 26835446 PMCID: PMC4718993 DOI: 10.3389/fchem.2016.00001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/04/2016] [Indexed: 12/12/2022] Open
Abstract
Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a member of the ATP binding cassette (ABC) transporter superfamily that functions as a cAMP-activated chloride ion channel in fluid-transporting epithelia. There is abundant evidence that CFTR activity (i.e., channel opening and closing) is regulated by protein kinases and phosphatases via phosphorylation and dephosphorylation. Here, we review recent evidence for the role of protein kinases in regulation of CFTR delivery to and retention in the plasma membrane. We review this information in a broader context of regulation of other transporters by protein kinases because the overall functional output of transporters involves the integrated control of both their number at the plasma membrane and their specific activity. While many details of the regulation of intracellular distribution of CFTR and other transporters remain to be elucidated, we hope that this review will motivate research providing new insights into how protein kinases control membrane transport to impact health and disease.
Collapse
Affiliation(s)
- Carlos M Farinha
- Faculty of Sciences, Biosystems and Integrative Sciences Institute, University of Lisboa Lisbon, Portugal
| | - Agnieszka Swiatecka-Urban
- Department of Cell Biology, University of Pittsburgh School of MedicinePittsburgh, PA, USA; Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of MedicinePittsburgh, PA, USA
| | - David L Brautigan
- Center for Cell Signaling and Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine Charlottesville, VA, USA
| | - Peter Jordan
- Faculty of Sciences, Biosystems and Integrative Sciences Institute, University of LisboaLisbon, Portugal; Department of Human Genetics, National Health Institute Dr Ricardo JorgeLisbon, Portugal
| |
Collapse
|
12
|
de Munnik SM, Smit MJ, Leurs R, Vischer HF. Modulation of cellular signaling by herpesvirus-encoded G protein-coupled receptors. Front Pharmacol 2015; 6:40. [PMID: 25805993 PMCID: PMC4353375 DOI: 10.3389/fphar.2015.00040] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/12/2015] [Indexed: 12/22/2022] Open
Abstract
Human herpesviruses (HHVs) are widespread infectious pathogens that have been associated with proliferative and inflammatory diseases. During viral evolution, HHVs have pirated genes encoding viral G protein-coupled receptors (vGPCRs), which are expressed on infected host cells. These vGPCRs show highest homology to human chemokine receptors, which play a key role in the immune system. Importantly, vGPCRs have acquired unique properties such as constitutive activity and the ability to bind a broad range of human chemokines. This allows vGPCRs to hijack human proteins and modulate cellular signaling for the benefit of the virus, ultimately resulting in immune evasion and viral dissemination to establish a widespread and lifelong infection. Knowledge on the mechanisms by which herpesviruses reprogram cellular signaling might provide insight in the contribution of vGPCRs to viral survival and herpesvirus-associated pathologies.
Collapse
Affiliation(s)
- Sabrina M de Munnik
- Amsterdam Institute for Molecules Medicines and Systems - Division of Medicinal Chemistry, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam Netherlands
| | - Martine J Smit
- Amsterdam Institute for Molecules Medicines and Systems - Division of Medicinal Chemistry, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam Netherlands
| | - Rob Leurs
- Amsterdam Institute for Molecules Medicines and Systems - Division of Medicinal Chemistry, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam Netherlands
| | - Henry F Vischer
- Amsterdam Institute for Molecules Medicines and Systems - Division of Medicinal Chemistry, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam Netherlands
| |
Collapse
|
13
|
Schang A. Inside and outside the pituitary: comparative analysis of Gnrhr expression provides insight into the mechanisms underlying the evolution of gene expression. J Neuroendocrinol 2015; 27:177-86. [PMID: 25556311 DOI: 10.1111/jne.12253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/18/2014] [Accepted: 12/27/2014] [Indexed: 02/06/2023]
Abstract
DNA cis-acting elements involved in gene regulation may actively contribute to adaptation processes because they are submitted to lower evolutionary constraints than coding DNA. In this regard, comparisons of the mechanisms underlying basal and regulated Gnrhr expression have revealed some features that promote stable and consistent Gnrhr expression in pituitary gonadotroph cells in different species. The presence of two divergent SF1 (NR5A1) response elements in all analysed mammalian Gnrhr promoters probably comprises one of the features that ensures reliable expression in the pituitary. By contrast, in other tissues, such as the hippocampus and testis, our analyses revealed dissimilar levels of Gnrhr expression among species. Indeed, Gnrhr was consistently expressed after birth in the rat but not the mouse hippocampus. Similar discrepancies were observed in foetal and adult testes. The ability of the rat promoter to drive reporter gene expression in the hippocampus and testis of transgenic mice just as it naturally directs the expression of the endogenous Gnrhr in rats strongly suggests that regulatory DNA sequences contained species-specific instructions prevailing over other controls. The major conclusion emerging from these studies is that Gnrhr promoter sequences are mainly responsible for directing transcriptional programmes and play a predominant role over the species-specific cell environment.
Collapse
Affiliation(s)
- Al Schang
- Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative, Université Paris Diderot, Paris 7, CNRS 8251, Paris, France; Sorbonne Paris Cité, Epigénétique et Destin Cellulaire, Universite Paris Diderot, Paris 7, CNRS 7216, Paris, France
| |
Collapse
|
14
|
Perrett RM, McArdle CA. Molecular mechanisms of gonadotropin-releasing hormone signaling: integrating cyclic nucleotides into the network. Front Endocrinol (Lausanne) 2013; 4:180. [PMID: 24312080 PMCID: PMC3834291 DOI: 10.3389/fendo.2013.00180] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/06/2013] [Indexed: 01/21/2023] Open
Abstract
Gonadotropin-releasing hormone (GnRH) is the primary regulator of mammalian reproductive function in both males and females. It acts via G-protein coupled receptors on gonadotropes to stimulate synthesis and secretion of the gonadotropin hormones luteinizing hormone and follicle-stimulating hormone. These receptors couple primarily via G-proteins of the Gq/ll family, driving activation of phospholipases C and mediating GnRH effects on gonadotropin synthesis and secretion. There is also good evidence that GnRH causes activation of other heterotrimeric G-proteins (Gs and Gi) with consequent effects on cyclic AMP production, as well as for effects on the soluble and particulate guanylyl cyclases that generate cGMP. Here we provide an overview of these pathways. We emphasize mechanisms underpinning pulsatile hormone signaling and the possible interplay of GnRH and autocrine or paracrine regulatory mechanisms in control of cyclic nucleotide signaling.
Collapse
Affiliation(s)
- Rebecca M. Perrett
- Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Craig A. McArdle
- Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Bristol, UK
- *Correspondence: Craig A. McArdle, Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, 1 Whitson Street, Bristol BS1 3NY, UK e-mail:
| |
Collapse
|
15
|
Kyle BD, Hurst S, Swayze RD, Sheng J, Braun AP. Specific phosphorylation sites underlie the stimulation of a large conductance, Ca(2+)-activated K(+) channel by cGMP-dependent protein kinase. FASEB J 2013; 27:2027-38. [PMID: 23407708 DOI: 10.1096/fj.12-223669] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Smooth muscle contractility and neuronal excitability are regulated by large conductance, Ca(2+)-activated K(+) (BKCa) channels, the activity of which can be increased after modulation by type I cGMP-dependent protein kinase (cGKI) via nitric oxide (NO)/cGMP signaling. Our study focused on identifying key phosphorylation sites within the BKCa channel underlying functional enhancement of channel activity by cGKI. BKCa channel phosphorylation by cGKIα was characterized biochemically using radiolabeled ATP, and regulation of channel activity by NO/cGMP signaling was quantified in rat aortic A7r5 smooth muscle cells by cell-attached patch-clamp recording. Serine to alanine substitutions at 3 of 6 putative cGKI phosphorylation sites (Ser691, Ser873, and Ser1112) in the BKCa α subunit individually reduced direct channel phosphorylation by 25-60% and blocked BKCa activation by either an NO donor or a membrane-permeable cGMP by 80-100%. Acute inhibition of cGKI prevented stimulus-evoked enhancement of BKCa channel activity. Our data further suggest that augmentation of BKCa activity by NO/cGMP/cGKI signaling requires phosphorylation at all 3 sites and is independent of elevations in [Ca(2+)]i. Phosphorylation of 3 specific Ser residues within the murine BKCa α subunit by cGKIα accounts for the enhanced BKCa channel activity induced by elevated [cGMP]i in situ.
Collapse
Affiliation(s)
- Barry D Kyle
- Department of Physiology and Pharmacology and the Libin Cardiovascular Research Institute, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
16
|
Hinkle PM, Gehret AU, Jones BW. Desensitization, trafficking, and resensitization of the pituitary thyrotropin-releasing hormone receptor. Front Neurosci 2012; 6:180. [PMID: 23248581 PMCID: PMC3521152 DOI: 10.3389/fnins.2012.00180] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/26/2012] [Indexed: 01/08/2023] Open
Abstract
The pituitary receptor for thyrotropin-releasing hormone (TRH) is a calcium-mobilizing G protein-coupled receptor (GPCR) that signals through Gq/11, elevating calcium, and activating protein kinase C. TRH receptor signaling is quickly desensitized as a consequence of receptor phosphorylation, arrestin binding, and internalization. Following activation, TRH receptors are phosphorylated at multiple Ser/Thr residues in the cytoplasmic tail. Phosphorylation catalyzed by GPCR kinase 2 (GRK2) takes place rapidly, reaching a maximum within seconds. Arrestins bind to two phosphorylated regions, but only arrestin bound to the proximal region causes desensitization and internalization. Phosphorylation at Thr365 is critical for these responses. TRH receptors internalize in clathrin-coated vesicles with bound arrestin. Following endocytosis, vesicles containing phosphorylated TRH receptors soon merge with rab5-positive vesicles. Over approximately 20 min these form larger endosomes rich in rab4 and rab5, early sorting endosomes. After TRH is removed from the medium, dephosphorylated receptors start to accumulate in rab4-positive, rab5-negative recycling endosomes. The mechanisms responsible for sorting dephosphorylated receptors to recycling endosomes are unknown. TRH receptors from internal pools help repopulate the plasma membrane. Dephosphorylation of TRH receptors begins when TRH is removed from the medium regardless of receptor localization, although dephosphorylation is fastest when the receptor is on the plasma membrane. Protein phosphatase 1 is involved in dephosphorylation but the details of how the enzyme is targeted to the receptor remain obscure. It is likely that future studies will identify biased ligands for the TRH receptor, novel arrestin-dependent signaling pathways, mechanisms responsible for targeting kinases and phosphatases to the receptor, and principles governing receptor trafficking.
Collapse
Affiliation(s)
- Patricia M Hinkle
- Department of Pharmacology and Physiology, University of Rochester Medical Center Rochester, NY, USA
| | | | | |
Collapse
|
17
|
Stavropoulos I, Khaldi N, Davey NE, O’Brien K, Martin F, Shields DC. Protein disorder and short conserved motifs in disordered regions are enriched near the cytoplasmic side of single-pass transmembrane proteins. PLoS One 2012; 7:e44389. [PMID: 22962613 PMCID: PMC3433447 DOI: 10.1371/journal.pone.0044389] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 08/06/2012] [Indexed: 01/07/2023] Open
Abstract
Intracellular juxtamembrane regions of transmembrane proteins play pivotal roles in cell signalling, mediated by protein-protein interactions. Disordered protein regions, and short conserved motifs within them, are emerging as key determinants of many such interactions. Here, we investigated whether disorder and conserved motifs are enriched in the juxtamembrane area of human single-pass transmembrane proteins. Conserved motifs were defined as short disordered regions that were much more conserved than the adjacent disordered residues. Human single-pass proteins had higher mean disorder in their cytoplasmic segments than their extracellular parts. Some, but not all, of this effect reflected the shorter length of the cytoplasmic tail. A peak of cytoplasmic disorder was seen at around 30 residues from the membrane. We noted a significant increase in the incidence of conserved motifs within the disordered regions at the same location, even after correcting for the extent of disorder. We conclude that elevated disorder within the cytoplasmic tail of many transmembrane proteins is likely to be associated with enrichment for signalling interactions mediated by conserved short motifs.
Collapse
Affiliation(s)
- Ilias Stavropoulos
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
- Complex and Adaptive Systems Laboratory, University College Dublin, Dublin, Ireland
- Conway Institute, University College Dublin, Dublin, Ireland
| | - Nora Khaldi
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
- Complex and Adaptive Systems Laboratory, University College Dublin, Dublin, Ireland
- Conway Institute, University College Dublin, Dublin, Ireland
- Department of Food Science and Technology, University of California Davis, Davis, California, United States of America
| | - Norman E. Davey
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Kevin O’Brien
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
- Complex and Adaptive Systems Laboratory, University College Dublin, Dublin, Ireland
- Conway Institute, University College Dublin, Dublin, Ireland
| | - Finian Martin
- Conway Institute, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Denis C. Shields
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
- Complex and Adaptive Systems Laboratory, University College Dublin, Dublin, Ireland
- Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
18
|
Verrier F, An S, Ferrie AM, Sun H, Kyoung M, Deng H, Fang Y, Benkovic SJ. GPCRs regulate the assembly of a multienzyme complex for purine biosynthesis. Nat Chem Biol 2011; 7:909-15. [PMID: 22020552 PMCID: PMC3218230 DOI: 10.1038/nchembio.690] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 08/18/2011] [Indexed: 12/26/2022]
Abstract
G protein-coupled receptors (GPCRs) transmit exogenous signals to the nucleus, promoting a myriad of biological responses via multiple signaling pathways in both healthy and cancerous cells. However, little is known about the response of cytosolic metabolic pathways to GPCR-mediated signaling. Here we applied fluorescent live-cell imaging and label-free dynamic mass redistribution assays to study whether purine metabolism is associated with GPCR signaling. Through a library screen of GPCR ligands in conjunction with live-cell imaging of a metabolic multienzyme complex for de novo purine biosynthesis, the purinosome, we demonstrated that the activation of endogenous Gα(i)-coupled receptors correlates with purinosome assembly and disassembly in native HeLa cells. Given the implications of GPCRs in mitogenic signaling and of the purinosome in controlling metabolic flux via de novo purine biosynthesis, we hypothesize that regulation of purinosome assembly and disassembly may be one of the downstream events of mitogenic GPCR signaling in human cancer cells.
Collapse
Affiliation(s)
- Florence Verrier
- Biochemical Technologies, Science and Technology Division, Corning Inc., Corning, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Delom F, Fessart D. Role of Phosphorylation in the Control of Clathrin-Mediated Internalization of GPCR. Int J Cell Biol 2011; 2011:246954. [PMID: 21765832 PMCID: PMC3132527 DOI: 10.1155/2011/246954] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 04/01/2011] [Indexed: 12/17/2022] Open
Abstract
The process by which G protein-coupled receptors (GPCRs) are internalized through the clathrin-coated vesicles involves interactions of multifunctional adaptor proteins. These interactions are tightly controlled by phosphorylation and dephosphorylation mechanisms resulting in the regulation of receptor endocytosis. However, the identities of the kinases involved in this process remained largely unknown until recently. This paper discusses advances in our knowledge of the important role played by protein phosphorylation in the regulation of the endocytic machinery and how phosphorylation controls the coated vesicle cycle.
Collapse
Affiliation(s)
- Frederic Delom
- Bordeaux Cardiothoracic Research Center, Bordeaux University, 146, Léo-Saignat, 33076 Bordeaux, France
- Inserm U1045, 146, Léo-Saignat, 33076 Bordeaux, France
| | - Delphine Fessart
- Bordeaux Cardiothoracic Research Center, Bordeaux University, 146, Léo-Saignat, 33076 Bordeaux, France
- Inserm U1045, 146, Léo-Saignat, 33076 Bordeaux, France
| |
Collapse
|
20
|
Dalrymple MB, Jaeger WC, Eidne KA, Pfleger KDG. Temporal profiling of orexin receptor-arrestin-ubiquitin complexes reveals differences between receptor subtypes. J Biol Chem 2011; 286:16726-33. [PMID: 21378163 PMCID: PMC3089514 DOI: 10.1074/jbc.m111.223537] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Orexin G protein-coupled receptors (OxRs) and their cognate agonists have been implicated in a number of disorders since their recent discovery, ranging from narcolepsy to formation of addictive behavior. Bioluminescence resonance energy transfer assays of agonist-occupied OxRs provided evidence for a strong dose-dependent interaction with both trafficking proteins β-arrestin 1 and 2 that required unusually high agonist concentrations compared with inositol phosphate signaling. This appears to be reflected in functional differences in potency with respect to orexin A (OxA) and OxR2-dependent ERK1/2 phosphorylation after 90 min compared with 2 min, potentially consistent with β-arrestin-mediated versus G protein-mediated signaling, respectively. Furthermore, extended bioluminescence resonance energy transfer kinetic data monitoring OxA-dependent receptor-β-arrestin and β-arrestin-ubiquitin proximity suggested subtype-specific differences in receptor trafficking, with OxR2 activation resulting in more sustained receptor-β-arrestin-ubiquitin complex formation than elicited by OxR1 activation. Enzyme-linked immunosorbent assay (ELISA) data also revealed that OxR1 underwent significantly more rapid recycling compared with OxR2. Finally, we have observed sustained OxA-dependent ERK1/2 phosphorylation in the presence of OxR2 compared with OxR1. Although both OxR subtypes could be classified as class B receptors for β-arrestin usage based on the initial strength of interaction with both β-arrestins, our temporal profiling revealed tangible differences between OxR subtypes. Consequently, OxR1 appears to fit uneasily into the commonly used β-arrestin classification scheme. More importantly, it is hoped that this improved profiling capability, enabling the subtleties of protein complex formation, stability, and duration to be assessed in live cells, will help unlock the therapeutic potential of targeting these receptors.
Collapse
Affiliation(s)
- Matthew B Dalrymple
- Laboratory for Molecular Endocrinology-G Protein-Coupled Receptors, Western Australian Institute for Medical Research and Centre for Medical Research, University of Western Australia, Nedlands, Perth, Western Australia 6009, Australia
| | | | | | | |
Collapse
|
21
|
Lukashova V, Szabó EZ, Jinadasa T, Mokhov A, Litchfield DW, Orlowski J. CK2 phosphorylation of an acidic Ser/Thr di-isoleucine motif in the Na+/H+ exchanger NHE5 isoform promotes association with beta-arrestin2 and endocytosis. J Biol Chem 2011; 286:11456-68. [PMID: 21296876 DOI: 10.1074/jbc.m110.182881] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Internalization of the Na(+)/H(+) exchanger NHE5 into recycling endosomes is enhanced by the endocytic adaptor proteins β-arrestin1 and -2, best known for their preferential recognition of ligand-activated G protein-coupled receptors (GPCRs). However, the mechanism underlying their atypical association with non-GPCRs, such as NHE5, is unknown. In this study, we identified a highly acidic, serine/threonine-rich, di-isoleucine motif (amino acids 697-723) in the cytoplasmic C terminus of NHE5 that is recognized by β-arrestin2. Gross deletions of this site decreased the state of phosphorylation of NHE5 as well as its binding and responsiveness to β-arrestin2 in intact cells. More refined in vitro analyses showed that this site was robustly phosphorylated by the acidotropic protein kinase CK2, whereas other kinases, such as CK1 or the GPCR kinase GRK2, were considerably less potent. Simultaneous mutation of five Ser/Thr residues within 702-714 to Ala ((702)ST/AA(714)) abolished phosphorylation and binding of β-arrestin2. In transfected cells, the CK2 catalytic α subunit formed a complex with NHE5 and decreased wild-type but not (702)ST/AA(714) NHE5 activity, further supporting a regulatory role for this kinase. The rate of internalization of (702)ST/AA(714) was also diminished and relatively insensitive to overexpression of β-arrestin2. However, unlike in vitro, this mutant retained its ability to form a complex with β-arrestin2 despite its lack of responsiveness. Additional mutations of two di-isoleucine-based motifs (I697A/L698A and I722A/I723A) that immediately flank the acidic cluster, either separately or together, were required to disrupt their association. These data demonstrate that discrete elements of an elaborate sorting signal in NHE5 contribute to β-arrestin2 binding and trafficking along the recycling endosomal pathway.
Collapse
|
22
|
Hislop JN, von Zastrow M. Role of ubiquitination in endocytic trafficking of G-protein-coupled receptors. Traffic 2010; 12:137-48. [PMID: 20854416 DOI: 10.1111/j.1600-0854.2010.01121.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Lysyl ubiquitination has long been known to target cytoplasmic proteins for proteasomal degradation, and there is now extensive evidence that ubiquitination functions in vacuolar/lysosomal targeting of membrane proteins from both the biosynthetic and endocytic pathways. G-protein-coupled receptors (GPCRs) represent the largest and most diverse family of membrane proteins, whose function is of fundamental importance both physiologically and therapeutically. In this review, we discuss the role of ubiquitination in the vacuolar/lysosomal downregulation of GPCRs through the endocytic pathway, with a primary focus on lysosomal trafficking in mammalian cells. We will summarize evidence indicating that mammalian GPCRs are regulated by ubiquitin-dependent mechanisms conserved in budding yeast, and then consider evidence for additional ubiquitin-dependent and -independent regulation that may be specific to animal cells.
Collapse
Affiliation(s)
- James N Hislop
- Department of Psychiatry, Department of Cellular and Molecular Pharmacology, UCSF School of Medicine, San Francisco, CA 94158-2140, USA
| | | |
Collapse
|
23
|
Bliss SP, Navratil AM, Xie J, Roberson MS. GnRH signaling, the gonadotrope and endocrine control of fertility. Front Neuroendocrinol 2010; 31:322-40. [PMID: 20451543 PMCID: PMC2923852 DOI: 10.1016/j.yfrne.2010.04.002] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2010] [Revised: 04/26/2010] [Accepted: 04/30/2010] [Indexed: 11/28/2022]
Abstract
Mammalian reproductive cycles are controlled by an intricate interplay between the hypothalamus, pituitary and gonads. Central to the function of this axis is the ability of the pituitary gonadotrope to appropriately respond to stimulation by gonadotropin-releasing hormone (GnRH). This review focuses on the role of cell signaling and in particular, mitogen-activated protein kinase (MAPK) activities regulated by GnRH that are necessary for normal fertility. Recently, new mouse models making use of conditional gene deletion have shed new light on the relationships between GnRH signaling and fertility in both male and female mice. Within the reproductive axis, GnRH signaling is initiated through discrete membrane compartments in which the receptor resides leading to the activation of the extracellular signal-regulated kinases (ERKs 1/2). As defined by gonadotrope-derived cellular models, the ERKs appear to play a central role in the regulation of a cohort of immediate early genes that regulate the expression of late genes that, in part, define the differentiated character of the gonadotrope. Recent data would suggest that in vivo, conditional, pituitary-specific disruption of ERK signaling by GnRH leads to a gender-specific perturbation of fertility. Double ERK knockout in the anterior pituitary leads to female infertility due to LH biosynthesis deficiency and a failure in ovulation. In contrast, male mice are modestly LH deficient; however, this does not have an appreciable impact on fertility.
Collapse
Affiliation(s)
- Stuart P Bliss
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States
| | | | | | | |
Collapse
|
24
|
Abstract
We present evidence, using biochemical and cellular approaches, that the kinase, CK2, negatively controls signaling via Galpha(s) (or Galpha(olf)) coupled to dopamine D1 and adenosine A2A receptors. Pharmacological inhibition of CK2 or CK2 knockdown by RNAi lead to elevated cAMP levels in dopamine D1 receptor-activated neuroblastoma cells. Phosphorylation levels of protein kinase A substrates were increased in the presence of CK2 inhibitors in mouse striatal slices. The effect of D1 receptor and A2A receptor agonists on the phosphorylation of protein kinase A sites was potentiated upon CK2 inhibition. Furthermore, in cell lines, we observed that reduction in CK2 activity, pharmacologically or genetically, reduced the amount of D1 receptor that was internalized in response to dopamine. Finally, the beta subunit of CK2 was found to interact specifically with the Galpha(s) subunit through protein interaction analyses. Thus CK2 can inhibit G protein-coupled receptor action by enabling faster receptor internalization, possibly through a direct association with Galpha(s).
Collapse
|
25
|
Vrecl M, Nørregaard PK, Almholt DLC, Elster L, Pogacnik A, Heding A. Beta-arrestin-based Bret2 screening assay for the "non"-beta-arrestin binding CB1 receptor. ACTA ACUST UNITED AC 2009; 14:371-80. [PMID: 19403920 DOI: 10.1177/1087057109333101] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
CB1 receptor (CB1R) antagonists have been demonstrated to be effective in treating obesity and related disorders. This study has been focused on establishing a beta-arrestin 2-based screening assay for the CB1R using BRET2 technology. When the existing BRET2 screening platform was applied to the CB1R, the authors discovered that the receptor interacted weakly with beta-arrestin 2, resulting in unsatisfactory assay performance. To enhance the beta-arrestin binding capacity, they replaced the C-terminal tail of the CB1R with tails from either the V2 or BRS3 receptors, both of which interact strongly with beta-arrestin 2. Using this chimeric approach, the authors screened a small compound library and identified 21 antagonist and inverse agonist hits with IC50 and EC50 values ranging from 0.3 nM to 7.5 microM. Both primary and secondary screening were performed with Z'>0.5, suggesting that the assay is a robust and cost-effective alternative to existing cell-based assays.
Collapse
Affiliation(s)
- Milka Vrecl
- Institute of Anatomy, Histology & Embryology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia.
| | | | | | | | | | | |
Collapse
|
26
|
Tobin AB, Butcher AJ, Kong KC. Location, location, location...site-specific GPCR phosphorylation offers a mechanism for cell-type-specific signalling. Trends Pharmacol Sci 2008; 29:413-20. [PMID: 18606460 PMCID: PMC2880250 DOI: 10.1016/j.tips.2008.05.006] [Citation(s) in RCA: 246] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 05/14/2008] [Accepted: 05/14/2008] [Indexed: 12/21/2022]
Abstract
It is now established that most of the approximately 800 G-protein-coupled receptors (GPCRs) are regulated by phosphorylation in a process that results in the recruitment of arrestins, leading to receptor desensitization and the activation of arrestin-dependent processes. This generalized view of GPCR regulation, however, does not provide an adequate mechanism for the control of tissue-specific GPCR signalling. Here, we review the evidence that GPCR phosphorylation is, in fact, a flexible and dynamic regulatory process in which GPCRs are phosphorylated in a unique manner that is associated with the cell type in which the receptor is expressed. In this scenario, phosphorylation offers a mechanism of regulating the signalling outcome of GPCRs that can be tailored to meet a specific physiological role.
Collapse
Affiliation(s)
- Andrew B Tobin
- Department of Cell Physiology and Pharmacology, University of Leicester, LE1 9HN, UK.
| | | | | |
Collapse
|
27
|
Maurice P, Daulat AM, Broussard C, Mozo J, Clary G, Hotellier F, Chafey P, Guillaume JL, Ferry G, Boutin JA, Delagrange P, Camoin L, Jockers R. A generic approach for the purification of signaling complexes that specifically interact with the carboxyl-terminal domain of G protein-coupled receptors. Mol Cell Proteomics 2008; 7:1556-69. [PMID: 18448421 DOI: 10.1074/mcp.m700435-mcp200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
G protein-coupled receptors (GPCRs) constitute the largest family of membrane receptors and are major drug targets. Recent progress has shown that GPCRs are part of large protein complexes that regulate their activity. We present here a generic approach for identification of these complexes that is based on the use of receptor subdomains and that overcomes the limitations of currently used genetics and proteomics approaches. Our approach consists of a carefully balanced combination of chemically synthesized His6-tagged baits, immobilized metal affinity chromatography, one- and two-dimensional gel electrophoresis separation and mass spectrometric identification. The carboxyl-terminal tails (C-tails) of the human MT1 and MT2 melatonin receptors, two class A GPCRs, were used as models to purify protein complexes from mouse brain lysates. We identified 32 proteins that interacted with the C-tail of MT1, 14 proteins that interacted with the C-tail of MT2, and eight proteins that interacted with both C-tails. Several randomly selected proteins were validated by Western blotting, and the functional relevance of our data was further confirmed by showing the interaction between the full-length MT1 and the regulator of G protein signaling Z1 in transfected HEK 293 cells and native tissue. Taken together, we have established an integrated and generic purification strategy for the identification of high quality and functionally relevant GPCR-associated protein complexes that significantly widens the repertoire of available techniques.
Collapse
Affiliation(s)
- Pascal Maurice
- Department of Cell Biology, Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris F-75014, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Tello JA, Wu S, Rivier JE, Sherwood NM. Four functional GnRH receptors in zebrafish: analysis of structure, signaling, synteny and phylogeny. Integr Comp Biol 2008; 48:570-87. [DOI: 10.1093/icb/icn070] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
29
|
Pawson AJ, Faccenda E, Maudsley S, Lu ZL, Naor Z, Millar RP. Mammalian type I gonadotropin-releasing hormone receptors undergo slow, constitutive, agonist-independent internalization. Endocrinology 2008; 149:1415-22. [PMID: 18039780 DOI: 10.1210/en.2007-1159] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Regulatory elements present in the cytoplasmic carboxyl-terminal tails of G protein-coupled receptors contribute to agonist-dependent receptor desensitization, internalization, and association with accessory proteins such as beta-arrestin. The mammalian type I GnRH receptors are unique among the rhodopsin-like G protein-coupled receptors because they lack a cytoplasmic carboxyl-terminal tail. In addition, they do not recruit beta-arrestin, nor do they undergo rapid desensitization. By measuring the internalization of labeled GnRH agonists, previous studies have reported that mammalian type I GnRH receptors undergo slow agonist-dependent internalization. In the present study, we have measured the internalization of epitope-tagged GnRH receptors, both in the absence and presence of GnRH stimulation. We demonstrate that mammalian type I GnRH receptors exhibit a low level of constitutive agonist-independent internalization. Stimulation with GnRH agonist did not significantly enhance the level of receptor internalization above the constitutive level. In contrast, the catfish GnRH and rat TRH receptors, which have cytoplasmic carboxyl-terminal tails, displayed similar levels of constitutive agonist-independent internalization but underwent robust agonist-dependent internalization, as did chimeras of the mammalian type I GnRH receptor with the cytoplasmic carboxyl-terminal tails of the catfish GnRH receptor or the rat TRH receptor. When the carboxyl-terminal Tyr325 and Leu328 residues of the mammalian type I GnRH receptor were replaced with alanines, these two mutant receptors underwent significantly impaired internalization, suggesting a function for the Tyr-X-X-Leu sequence in mediating the constitutive agonist-independent internalization of mammalian type I GnRH receptors. These findings provide further support for the underlying notion that the absence of the cytoplasmic carboxyl-terminal tail of the mammalian type I GnRH receptors has been selected for during evolution to prevent rapid receptor desensitization and internalization to allow protracted GnRH signaling in mammals.
Collapse
Affiliation(s)
- Adam J Pawson
- Medical Research Council Human Reproductive Sciences Unit, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom.
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
Almost all G-protein coupled receptors (GPCRs) are regulated by phosphorylation and this process is a key event in determining the signalling properties of this receptor super-family. Receptors are multiply phosphorylated at sites that can occur throughout the intracellular regions of the receptor. This diversity of phospho-acceptor sites together with a lack of consensus phosphorylation sequences has led to the suggestion that the precise site of phosphorylation is not important in the phosphorylation-dependent regulation of GPCR function but rather it is the increase in bulk negative charge of the intracellular face of the receptor which is the significant factor. This review investigates the possibility that the multi-site nature of GPCR phosphorylation reflects the importance of specific phosphorylation events which mediate distinct signalling outcomes. In this way receptor phosphorylation may provide for a flexible regulatory mechanism that can be tailored in a tissue specific manner to regulate physiological processes. By understanding the flexible nature of GPCR phosphorylation if may be possible to develop agonists or allosteric modulators that promote a subset of phosphorylation events on the target GPCR and thereby restrict the action of the drug to a particular receptor mediated signalling response.
Collapse
|
31
|
Song JA, Oh DY, Moon JS, Geum D, Kwon HB, Seong JY. Involvement of the ser-glu-pro motif in ligand species-dependent desensitisation of the rat gonadotrophin-releasing hormone receptor. J Neuroendocrinol 2006; 18:757-66. [PMID: 16965294 DOI: 10.1111/j.1365-2826.2006.01469.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There are two forms of gonadotrophin-releasing hormone (GnRH), GnRH-I and GnRH-II, in the vertebrate brain. Both GnRH-I and GnRH-II are thought to interact with the type-I GnRH receptor (GnRHR). The present study attempted to demonstrate whether GnRH-I and GnRH-II induce differential desensitisation of GnRHR and to identify the motif involved. Time course inositol phosphate (IP) accumulation assay reveals that, in cells expressing the wild-type rat GnRHR, GnRH-I induced continuous increase in IP production, whereas GnRH-II-induced IP production rate at later time points (30-120 min after ligand treatment) became attenuated. However, in cells expressing the mutant receptor in which the Ser-Glu-Pro (SEP) motif in extracellular loop 3 was replaced by Pro-Glu-Val (PEV), IP accumulation rates at later time points were more decreased by GnRH-I than GnRH-II. Ca2+ responses to repetitive GnRH applications reveal that GnRH-II desensitised the wild-type receptor faster than GnRH-I, whereas the opposite situation was observed in the PEV mutant. In addition, cell surface loss of GFP-tagged wild-type receptor was more facilitated by GnRH-II than GnRH-I, whereas that of the GFP-tagged PEV mutant receptor was more enhanced by GnRH-I than GnRH-II. The present study indicates that the SEP motif is potentially responsible for ligand species-dependent receptor desensitisation. Together, these results suggest that GnRH-I and GnRH-II may have different effects on mammalian type-I GnRHR via modulation of desensitisation rates.
Collapse
Affiliation(s)
- J A Song
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea
| | | | | | | | | | | |
Collapse
|
32
|
Hubert A, Paris S, Piret JP, Ninane N, Raes M, Michiels C. Casein kinase 2 inhibition decreases hypoxia-inducible factor-1 activity under hypoxia through elevated p53 protein level. J Cell Sci 2006; 119:3351-62. [PMID: 16882692 DOI: 10.1242/jcs.03069] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
HIF-1 (hypoxia-inducible factor-1) is the main transcription factor involved in the adaptation of cells to hypoxia. In addition to regulation of HIF-1alpha protein level, HIF-1 activity is also enhanced by several pathways involving asparagine hydroxylation and phosphorylation. Here, we investigated the relationship between casein kinase 2 (CK2), p53 and HIF-1. An increase in p53 protein level and transcriptional activity was observed when CK2 was inhibited by different inhibitors under normoxia and hypoxia. This increase was in parallel with a decrease in HIF-1 activity without changes in HIF-1alpha protein level, indicating a regulation of its transcriptional activity. Similar results were obtained using CK2alpha siRNA. Ectopic overexpression of p53 also led to an inhibition of HIF-1 activity. Conversely, CK2 inhibition had no effect in p53-null cells indicating that the inhibitory effect of CK2 inhibitors requires the presence of p53. p53 activity was not required because overexpression of a p53 mutated in its DNA-binding domain exerted the same effect as wild-type p53 and because the effect of CK2 inhibitors was still observed when p53 activity was inhibited by pifithrin-alpha. Since CK2 activity is increased in hypoxic conditions, this process provides one more mechanism to ensure enhanced HIF-1 activity under such conditions.
Collapse
Affiliation(s)
- Antoine Hubert
- Laboratory of Biochemistry and Cellular Biology, University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium
| | | | | | | | | | | |
Collapse
|
33
|
Milasta S, Evans N, Ormiston L, Wilson S, Lefkowitz R, Milligan G. The sustainability of interactions between the orexin-1 receptor and beta-arrestin-2 is defined by a single C-terminal cluster of hydroxy amino acids and modulates the kinetics of ERK MAPK regulation. Biochem J 2006; 387:573-84. [PMID: 15683363 PMCID: PMC1134986 DOI: 10.1042/bj20041745] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The orexin-1 receptor interacts with beta-arrestin-2 in an agonist-dependent manner. In HEK-293T cells, these two proteins became co-internalized into acidic endosomes. Truncations from the C-terminal tail did not prevent agonist-induced internalization of the orexin-1 receptor or alter the pathway of internalization, although such mutants failed to interact with beta-arrestin-2 in a sustained manner or produce its co-internalization. Mutation of a cluster of three threonine and one serine residue at the extreme C-terminus of the receptor greatly reduced interaction and abolished co-internalization of beta-arrestin-2-GFP (green fluorescent protein). Despite the weak interactions of this C-terminally mutated form of the receptor with beta-arrestin-2, studies in wild-type and beta-arrestin-deficient mouse embryo fibroblasts confirmed that agonist-induced internalization of this mutant required expression of a beta-arrestin. Although without effect on agonist-mediated elevation of intracellular Ca2+ levels, the C-terminally mutated form of the orexin-1 receptor was unable to sustain phosphorylation of the MAPKs (mitogen-activated protein kinases) ERK1 and ERK2 (extracellular-signal-regulated kinases 1 and 2) to the same extent as the wild-type receptor. These studies indicate that a single cluster of hydroxy amino acids within the C-terminal seven amino acids of the orexin-1 receptor determine the sustainability of interaction with beta-arrestin-2, and indicate an important role of beta-arrestin scaffolding in defining the kinetics of orexin-1 receptor-mediated ERK MAPK activation.
Collapse
Affiliation(s)
- Sandra Milasta
- *Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - Nicholas A. Evans
- †GlaxoSmithKline, New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW, U.K
| | - Laura Ormiston
- *Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - Shelagh Wilson
- †GlaxoSmithKline, New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW, U.K
| | - Robert J. Lefkowitz
- ‡Department of Medicine, HHMI/Duke University Medical Center, Durham, NC 27710, U.S.A
| | - Graeme Milligan
- *Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
34
|
Gurevich VV, Gurevich EV. The structural basis of arrestin-mediated regulation of G-protein-coupled receptors. Pharmacol Ther 2006; 110:465-502. [PMID: 16460808 PMCID: PMC2562282 DOI: 10.1016/j.pharmthera.2005.09.008] [Citation(s) in RCA: 361] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Accepted: 09/22/2005] [Indexed: 12/23/2022]
Abstract
The 4 mammalian arrestins serve as almost universal regulators of the largest known family of signaling proteins, G-protein-coupled receptors (GPCRs). Arrestins terminate receptor interactions with G proteins, redirect the signaling to a variety of alternative pathways, and orchestrate receptor internalization and subsequent intracellular trafficking. The elucidation of the structural basis and fine molecular mechanisms of the arrestin-receptor interaction paved the way to the targeted manipulation of this interaction from both sides to produce very stable or extremely transient complexes that helped to understand the regulation of many biologically important processes initiated by active GPCRs. The elucidation of the structural basis of arrestin interactions with numerous non-receptor-binding partners is long overdue. It will allow the construction of fully functional arrestins in which the ability to interact with individual partners is specifically disrupted or enhanced by targeted mutagenesis. These "custom-designed" arrestin mutants will be valuable tools in defining the role of various interactions in the intricate interplay of multiple signaling pathways in the living cell. The identification of arrestin-binding sites for various signaling molecules will also set the stage for designing molecular tools for therapeutic intervention that may prove useful in numerous disorders associated with congenital or acquired disregulation of GPCR signaling.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | | |
Collapse
|
35
|
Mottet D, Ruys SPD, Demazy C, Raes M, Michiels C. Role for casein kinase 2 in the regulation of HIF-1 activity. Int J Cancer 2006; 117:764-74. [PMID: 15957168 DOI: 10.1002/ijc.21268] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a heterodimeric transcription factor that plays a major role in cellular adaptation to hypoxia. The mechanisms regulating HIF-1 activity occurs at multiple levels in vivo. The HIF-1alpha subunit is highly sensible to oxygen and is rapidly degraded by the proteasome 26S in normoxia. Activation in hypoxia occurs through a multistep process including inhibition of HIF-1alpha degradation, but also increase in the transactivation activity of HIF-1. Several data indicate that phosphorylation could play a role in this regulation. In this report, we investigated the role of casein kinase 2 (CK2), an ubiquitous serine/threonine kinase, in the regulation of HIF-1 activity. Hypoxia was capable of increasing the expression of the beta subunit of CK2, of inducing a relocalization of this subunit at the plasma membrane, of inducing nuclear translocation of the alpha subunit and of increasing CK2 activity. Three inhibitors of this kinase, DRB (5,6-dichloro-1-beta-D-ribofuranosyl-benzimidazole), TBB (4,5,6,7-tetrabromotriazole) and apigenin, as well as overexpression of a partial dominant negative mutant of CK2alpha, were shown to inhibit HIF-1 activity as measured by a reporter assay and through hypoxia-induced VEGF and aldolase expression. This does not occur at the stabilization process since they did not affect HIF-1alpha protein level. DNA-binding activity was also not inhibited. We conclude that CK2 is an important regulator of HIF-1 transcriptional activity but the mechanism of this regulation remains to be determined. Since HIF-1 plays a major role in tumor angiogenesis and since CK2 has been described to be overexpressed in tumor cells, this new pathway of regulation can be one more way for tumor cells to survive.
Collapse
Affiliation(s)
- Denis Mottet
- Laboratory of Biochemistry and Cellular Biology, University of Namur, Namur, Belgium
| | | | | | | | | |
Collapse
|
36
|
Oh DY, Kim K, Kwon HB, Seong JY. Cellular and molecular biology of orphan G protein-coupled receptors. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 252:163-218. [PMID: 16984818 DOI: 10.1016/s0074-7696(06)52003-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The superfamily of G protein-coupled receptors (GPCRs) is the largest and most diverse group of membrane-spanning proteins. It plays a variety of roles in pathophysiological processes by transmitting extracellular signals to cells via heterotrimeric G proteins. Completion of the human genome project revealed the presence of approximately 168 genes encoding established nonsensory GPCRs, as well as 207 genes predicted to encode novel GPCRs for which the natural ligands remained to be identified, the so-called orphan GPCRs. Eighty-six of these orphans have now been paired to novel or previously known molecules, and 121 remain to be deorphaned. A better understanding of the GPCR structures and classification; knowledge of the receptor activation mechanism, either dependent on or independent of an agonist; increased understanding of the control of GPCR-mediated signal transduction; and development of appropriate ligand screening systems may improve the probability of discovering novel ligands for the remaining orphan GPCRs.
Collapse
Affiliation(s)
- Da Young Oh
- Laboratory of G Protein-Coupled Receptors, Korea University College of Medicine, Seoul 136-707, Korea
| | | | | | | |
Collapse
|
37
|
Navratil AM, Farmerie TA, Bogerd J, Nett TM, Clay CM. Differential impact of intracellular carboxyl terminal domains on lipid raft localization of the murine gonadotropin-releasing hormone receptor. Biol Reprod 2005; 74:788-97. [PMID: 16371589 DOI: 10.1095/biolreprod.105.048157] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The mammalian type I GNRH receptor (GNRHR) is unique among G protein-coupled receptors (GPCRs) because of the absence of an intracellular C-terminus. Previously, we have found that the murine GNRHR is constitutively localized to low-density membrane microdomains termed lipid rafts. As such, association of the GNRHR with lipid rafts may reflect both a loss (C-terminus) and a gain (raft association address) of structural characteristics. To address this, we fused either the full-length C-terminus from the nonraft-associated LH receptor (LHCGR; GNRHR-LF) or a truncated (t631) LHCGR C-terminus to the GNRHR. These chimeric receptors are trafficked to the plasma membrane, bind ligand, and display increased agonist-induced receptor internalization, but they do not partition into lipid rafts. Thus, a heterologous C-terminus from a nonraft-associated GPCR redirects localization of the GNRHR to nonraft domains. In contrast to the murine GNRHR, the catfish GNRHR (cfGNRHR) possesses an intracellular C-terminus. We found that the cfGNRHR was localized to lipid rafts and that the cfGNRHR C-terminus did not alter raft localization of the mammalian receptor. Consistent with placement in different lipid microenvironments within the plasma membrane, fluorescence recovery after photobleaching revealed different lateral diffusion phenotypes of the raft-associated GNRHR and cfGNRHR versus the nonraft-associated GNRHR-LF fusion protein. We conclude that whereas an intracellular C-terminus is capable of redirecting the GNRHR to nonraft compartments, this is not a generalized feature of GPCR C-terminal tails. Thus, constitutive raft localization of the GNRHR is not simply a result of the loss of an intracellular C-terminus.
Collapse
Affiliation(s)
- Amy M Navratil
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | | | |
Collapse
|
38
|
Jones BW, Hinkle PM. β-Arrestin Mediates Desensitization and Internalization but Does Not Affect Dephosphorylation of the Thyrotropin-releasing Hormone Receptor. J Biol Chem 2005; 280:38346-54. [PMID: 16183993 DOI: 10.1074/jbc.m502918200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The G protein-coupled thyrotropin-releasing hormone (TRH) receptor is phosphorylated and binds to beta-arrestin after agonist exposure. To define the importance of receptor phosphorylation and beta-arrestin binding in desensitization, and to determine whether beta-arrestin binding and receptor endocytosis are required for receptor dephosphorylation, we expressed TRH receptors in fibroblasts from mice lacking beta-arrestin-1 and/or beta-arrestin-2. Apparent affinity for [(3)H]MeTRH was increased 8-fold in cells expressing beta-arrestins, including a beta-arrestin mutant that did not permit receptor internalization. TRH caused extensive receptor endocytosis in the presence of beta-arrestins, but receptors remained primarily on the plasma membrane without beta-arrestin. beta-Arrestins strongly inhibited inositol 1,4,5-trisphosphate production within 10 s. At 30 min, endogenous beta-arrestins reduced TRH-stimulated inositol phosphate production by 48% (beta-arrestin-1), 71% (beta-arrestin-2), and 84% (beta-arrestins-1 and -2). In contrast, receptor phosphorylation, detected by the mobility shift of deglycosylated receptor, was unaffected by beta-arrestins. Receptors were fully phosphorylated within 15 s of TRH addition. Receptor dephosphorylation was identical with or without beta-arrestins and almost complete 20 min after TRH withdrawal. Blocking endocytosis with hypertonic sucrose did not alter the rate of receptor phosphorylation or dephosphorylation. Expressing receptors in cells lacking Galpha(q) and Galpha(11) or inhibiting protein kinase C pharmacologically did not prevent receptor phosphorylation or dephosphorylation. Overexpression of dominant negative G protein-coupled receptor kinase-2 (GRK2), however, retarded receptor phosphorylation. Receptor activation caused translocation of endogenous GRK2 to the plasma membrane. The results show conclusively that receptor dephosphorylation can take place on the plasma membrane and that beta-arrestin binding is critical for desensitization and internalization.
Collapse
MESH Headings
- Alkaline Phosphatase/metabolism
- Animals
- Arrestins/chemistry
- Arrestins/metabolism
- Arrestins/physiology
- CHO Cells
- COS Cells
- Calcium Channels/metabolism
- Cell Line
- Cell Membrane/metabolism
- Chlorocebus aethiops
- Cricetinae
- DNA, Complementary/metabolism
- Dose-Response Relationship, Drug
- Endocytosis
- Fibroblasts/metabolism
- G-Protein-Coupled Receptor Kinase 2
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- GTP-Binding Proteins/metabolism
- Glycosylation
- Green Fluorescent Proteins/metabolism
- Immunoblotting
- Immunoglobulin G/chemistry
- Immunoprecipitation
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate Receptors
- Inositol Phosphates/chemistry
- Inositol Phosphates/metabolism
- Kinetics
- Mice
- Mice, Knockout
- Mutation
- Phosphates/chemistry
- Phosphorylation
- Plasmids/metabolism
- Protein Binding
- Protein Kinase C/antagonists & inhibitors
- Protein Kinase C/metabolism
- Protein Structure, Tertiary
- Protein Transport
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Thyrotropin-Releasing Hormone/chemistry
- Receptors, Thyrotropin-Releasing Hormone/physiology
- Sucrose/chemistry
- Sucrose/pharmacology
- Time Factors
- Transfection
- beta-Adrenergic Receptor Kinases/metabolism
- beta-Arrestin 1
- beta-Arrestin 2
- beta-Arrestins
Collapse
Affiliation(s)
- Brian W Jones
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | |
Collapse
|
39
|
Elliott C, Müller J, Miklis M, Bhat R, Schulze-Lefert P, Panstruga R. Conserved extracellular cysteine residues and cytoplasmic loop-loop interplay are required for functionality of the heptahelical MLO protein. Biochem J 2005; 385:243-54. [PMID: 15352871 PMCID: PMC1134693 DOI: 10.1042/bj20040993] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We performed a structure-function analysis of the plasma membrane-localized plant-specific barley (Hordeum vulgare) MLO (powdery-mildew-resistance gene o) protein. Invariant cysteine and proline residues, located either in extracellular loops or transmembrane domains that have been conserved in MLO proteins for more than 400 million years, were found to be essential for MLO functionality and/or stability. Similarly to many metazoan G-protein-coupled receptors known to function as homo- and hetero-oligomers, FRET (fluorescence resonance energy transfer) analysis revealed evidence for in planta MLO dimerization/oligomerization. Domain-swap experiments with closely related wheat and rice as well as diverged Arabidopsis MLO isoforms demonstrated that the identity of the C-terminal cytoplasmic tail contributes to MLO activity. Likewise, analysis of a progressive deletion series revealed that integrity of the C-terminus determines both MLO accumulation and functionality. A series of domain swaps of cytoplasmic loops with the wheat (Triticum aestivum) orthologue, TaMLO-B1, provided strong evidence for co-operative loop-loop interplay either within the protein or between MLO molecules. Our data indicate extensive intramolecular co-evolution of cytoplasmic domains in the evolutionary history of the MLO protein family.
Collapse
Affiliation(s)
- Candace Elliott
- *The Sainsbury Laboratory, John Innes Centre, Colney, Norwich, NR4 7UH, U.K
| | - Judith Müller
- †Max-Planck-Institut für Züchtungsforschung, Department of Plant Pathogen Interactions, Carl-von-Linné-Weg 10, D-50829 Köln, Germany
| | - Marco Miklis
- †Max-Planck-Institut für Züchtungsforschung, Department of Plant Pathogen Interactions, Carl-von-Linné-Weg 10, D-50829 Köln, Germany
| | - Riyaz A. Bhat
- †Max-Planck-Institut für Züchtungsforschung, Department of Plant Pathogen Interactions, Carl-von-Linné-Weg 10, D-50829 Köln, Germany
| | - Paul Schulze-Lefert
- †Max-Planck-Institut für Züchtungsforschung, Department of Plant Pathogen Interactions, Carl-von-Linné-Weg 10, D-50829 Köln, Germany
| | - Ralph Panstruga
- †Max-Planck-Institut für Züchtungsforschung, Department of Plant Pathogen Interactions, Carl-von-Linné-Weg 10, D-50829 Köln, Germany
- To whom correspondence should be addressed (email )
| |
Collapse
|
40
|
Koushik K, Bandi N, Sundaram S, Kompella UB. Evidence for LHRH-receptor expression in human airway epithelial (Calu-3) cells and its role in the transport of an LHRH agonist. Pharm Res 2005; 21:1034-46. [PMID: 15212170 DOI: 10.1023/b:pham.0000029294.70707.74] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE To determine whether LHRH-receptor is expressed in Calu-3, a human bronchial epithelial cell line, and to further determine whether this receptor plays a role in the transport of deslorelin, an LHRH agonist. METHODS Using cultured monolayers of Calu-3 grown at air-interface, the presence and localization of LHRH-receptors in Calu-3 cells was determined using immunochemical methods. To determine the mechanisms of deslorelin transport, the directionality [apical-basolateral (A-B) and basolateral-apical (B-A)] of deslorelin transport across Calu-3 monolayers and the effects of temperature (37 degrees C and 4 degrees C) and an energy depletor (2,4-dinitrophenol) were investigated. To determine the role of LHRH-receptor in deslorelin transport across Calu-3 monolayers, the influence of an LHRH-receptor antisense oligonucleotide on the LHRH-receptor expression and deslorelin transport was studied. Also, the effect of a competing LHRH agonist, buserelin, on deslorelin transport was determined. RESULTS Immunofluorescence studies indicated the predominance of LHRH-receptor in Calu-3 cells at the apical and lateral surfaces. Western blot and RT-PCR studies further confirmed the expression of LHRH-receptor in Calu-3 cells. Deslorelin transport across Calu-3 monolayers was vectorial, with the cumulative A-B transport (1.79 +/- 0.29%) at the end of 240 min being higher than the B-A transport (0.34 +/- 0.11%). Low temperature as well as 2,4-dinitrophenol abolished this directionality. LHRH-receptor antisense oligonucleotide decreased the receptor expression at the mRNA and protein level and reduced the A-B deslorelin transport by 55 +/- 4%, without affecting the B-A transport, suggesting a role for LHRH-receptor in the vectorial transport of deslorelin. In addition, buserelin reduced the A-B deslorelin transport by 56 +/- 5% without affecting the B-A transport. CONCLUSIONS Taken together, our results provide evidence that deslorelin is transported across the respiratory epithelium via the LHRH-receptor.
Collapse
Affiliation(s)
- Kavitha Koushik
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | | | | | | |
Collapse
|
41
|
Rutherford C, Ord-Shrimpton FU, Sands WA, Pediani JD, Benovic JL, McGrath JC, Palmer TM. Phosphorylation-independent internalisation and desensitisation of the human sphingosine-1-phosphate receptor S1P3. Cell Signal 2004; 17:997-1009. [PMID: 15894172 DOI: 10.1016/j.cellsig.2004.11.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Accepted: 11/22/2004] [Indexed: 11/24/2022]
Abstract
Here we demonstrate that phosphorylation of the sphingosine-1-phosphate (S1P) receptor S1P(3) is increased specifically in response to S1P. Truncation of the receptor's carboxyl-terminal domain revealed that the presence of a serine-rich stretch of residues between Leu332 and Val352 was essential to observe this effect. Although agonist-occupied wild-type (WT) S1P(3) could be phosphorylated in vitro by G-protein-coupled receptor kinase 2 (GRK2), a role of S1P(3) phosphorylation in controlling S1P(3)-G(q/11) coupling was excluded since A) a phosphorylation-resistant S1P(3) mutant desensitised in a manner indistinguishable from the WT receptor and was phosphorylated to a greater extent than the WT receptor by GRK2 in vitro, and B) co-expression with GRK2 or GRK3 failed to potentiate S1P(3) phosphorylation. S1P(3) phosphorylation was also not required for receptor sequestration away from the cell surface. Together, these data suggest that S1P(3) function is not subject to conventional regulation by GRK phosphorylation and that novel aspects of S1P(3) function distinct from classical G-protein coupling and receptor internalisation may be controlled its carboxyl-terminal domain.
Collapse
Affiliation(s)
- Claire Rutherford
- Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Scotland, UK
| | | | | | | | | | | | | |
Collapse
|
42
|
Saito Y, Tetsuka M, Li Y, Kurose H, Maruyama K. Properties of rat melanin-concentrating hormone receptor 1 internalization. Peptides 2004; 25:1597-604. [PMID: 15476926 DOI: 10.1016/j.peptides.2004.03.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2004] [Accepted: 03/03/2004] [Indexed: 11/19/2022]
Abstract
Melanin-concentrating hormone (MCH) is a neuropeptide that plays an important role in several physiological processes. It activates two G protein-coupled receptors (GPCRs), MCH1R and MCH2R, of which MCH1R seems to be a key regulator of food intake. By using HEK293T cells stably transfected with Flag-tagged rat MCH1R, we investigated the mechanism underlying the MCH-induced internalization pathway, which is important for the desensitization or regulation of the receptor response. Quantitative analysis by flow cytometry indicated that the rate of MCH1R internalization progressed in a rapid and time-dependent manner during the first 30 min, and was partly inhibited by pretreatment with the selective protein kinase C (PKC) inhibitor Go6850. Overexpression of dominant-negative beta-arrestin-2 (284-409) or dynamin I-K44A significantly prevented MCH-induced internalization of MCH1R, while overexpression of dominant-negative beta-arrestin-1-V53D had no effect. A triple-substituted mutant at Thr317, Ser325 and Thr342 to Ala residue in the C-terminus significantly prevented MCH-induced receptor internalization. Similar extents of internalization prevention were noted with the deletion mutants DeltaThr342 and DeltaGlu346, lacking 11 and 7 residues in the C-terminal tail, respectively. Our data suggest that MCH1R undergoes rapid MCH-induced internalization through a PKC-, beta-arrestin-2- and dynamin I-dependent pathway and that a portion of the C-terminal tail plays an important role in the internalization process.
Collapse
Affiliation(s)
- Yumiko Saito
- Department of Pharmacology, Saitama Medical School, Saitama 390-0452, Japan.
| | | | | | | | | |
Collapse
|
43
|
Cook LB, Hinkle PM. Fate of internalized thyrotropin-releasing hormone receptors monitored with a timer fusion protein. Endocrinology 2004; 145:3095-100. [PMID: 15117874 DOI: 10.1210/en.2004-0304] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Trafficking of TRH receptors was studied in a stable HEK293 cell line expressing receptor fused to a Timer protein (TRHR-Timer) that spontaneously changes from green to red over 10 h. Cells expressing TRHR-Timer responded to TRH with an 11-fold increase in inositol phosphate formation, increased intracellular free calcium, and internalization of 75% of bound [(3)H][N(3)-methyl-His(2)]TRH within 10 min. After a 20-min exposure to TRH at 37 C, 75-80% of surface binding sites disappeared as receptors internalized. When TRH was removed and cells incubated in hormone-free medium, approximately 75% of [(3)H][N(3)-methyl-His(2)]TRH binding sites reappeared at the surface over the next 2 h with or without cycloheximide. Trafficking of TRHR-Timer was monitored microscopically after addition and withdrawal of TRH. In untreated cells, both new (green) and old (red) receptors were seen at the plasma membrane, and TRH caused rapid movement of young and old receptors into cytoplasmic vesicles. When TRH was withdrawn, some TRHR-Timer reappeared at the plasma membrane after several hours, but much of the internalized receptor remained intracellular in vesicles that condensed to larger structures in perinuclear regions deeper within the cell. Strikingly, receptors that moved to the plasma membrane were generally younger (more green) than those that underwent endocytosis. There was no change in the red to green ratio over the course of the experiment in cells exposed to vehicle. The results indicate that, after agonist-driven receptor internalization, the plasma membrane is replenished with younger receptors, arising either from an intracellular pool or preferential recycling of younger receptors.
Collapse
Affiliation(s)
- Laurie B Cook
- Department of Pharmacology and Physiology, Box 711, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | |
Collapse
|
44
|
Yin D, Gavi S, Wang HY, Malbon CC. Probing receptor structure/function with chimeric G-protein-coupled receptors. Mol Pharmacol 2004; 65:1323-32. [PMID: 15155825 DOI: 10.1124/mol.65.6.1323] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Owing its name to an image borrowed from Greek mythology, a chimera is seen to represent a new entity created as a composite from existing creatures or, in this case, molecules. Making use of various combinations of three basic domains of the receptors (i.e., exofacial, transmembrane, and cytoplasmic segments) that couple agonist binding into activation of effectors through heterotrimeric G-proteins, molecular pharmacology has probed the basic organization, structure/function relationships of this superfamily of heptahelical receptors. Chimeric G-protein-coupled receptors obviate the need for a particular agonist ligand when the ligand is resistant to purification or, in the case of orphan receptors, is not known. Chimeric receptors created from distant members of the heptahelical receptors enable new strategies in understanding how these receptors transduce agonist binding into receptor activation and may be able to offer insights into the evolution of G-protein-coupled receptors from yeast to humans.
Collapse
Affiliation(s)
- Dezhong Yin
- Department of Molecular Pharmacology, University Medical Center, Stony Brook University, Stony Brook, New York, USA
| | | | | | | |
Collapse
|
45
|
Pfleger KDG, Kroeger KM, Eidne KA. Receptors for hypothalamic releasing hormones TRH and GnRH: oligomerization and interactions with intracellular proteins. Semin Cell Dev Biol 2004; 15:269-80. [PMID: 15125890 DOI: 10.1016/j.semcdb.2003.12.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Studies of TRH and GnRH receptors have revealed much information about the roles of G-proteins and beta-arrestins, as well as receptor residues important for signaling, desensitization and internalization. However, the proteins involved are only just beginning to be identified and characterized. Additional complexity now exists with the observation that these receptors form oligomers in live cells. Indeed, hetero-oligomerization of TRH receptor subtypes 1 and 2 potentially alters interactions with intracellular regulatory proteins. Knowledge of proteins that interact with TRH or GnRH receptors will increase our understanding of receptor function and provide potential drug targets for a range of receptor-associated conditions.
Collapse
Affiliation(s)
- Kevin Donald George Pfleger
- Molecular Endocrinology Research Group/7TM Receptor Laboratory, Western Australian Institute for Medical Research, Centre for Medical Research, Sir Charles Gairdner Hospital, University of Western Australia, Nedlands, Perth, 6009, Australia
| | | | | |
Collapse
|
46
|
Pawson AJ, Maudsley SR, Lopes J, Katz AA, Sun YM, Davidson JS, Millar RP. Multiple determinants for rapid agonist-induced internalization of a nonmammalian gonadotropin-releasing hormone receptor: a putative palmitoylation site and threonine doublet within the carboxyl-terminal tail Are critical. Endocrinology 2003; 144:3860-71. [PMID: 12933659 DOI: 10.1210/en.2003-0028] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The chicken GnRH receptor (cGnRH-R) differs from all mammalian GnRH-Rs in possessing a cytoplasmic carboxyl-terminal tail. We have previously demonstrated that the cGnRH-R undergoes more rapid agonist-induced internalization than the mammalian GnRH-Rs and requires the carboxyl-terminal tail for this process. To investigate the structural determinants mediating this rapid internalization, a series of mutant receptors was generated, including progressive truncations of the tail and substitution of serine and threonine residues with alanine. Truncation of the carboxyl-terminal tail to position 366 and then to position 356 resulted in a progressive attenuation of the rate and total extent of receptor internalization. However, truncation between positions 356 and 346 did not alter the kinetics of internalization further, whereas a further truncation to position 337 resulted in an additional marked reduction of internalization. We show that the membrane-proximal Cys(328) and the Thr(369)Thr(370) doublet located in the distal carboxyl terminus play a critical role in mediating rapid internalization. We demonstrate that the cGnRH-R, when expressed in both COS-7 and HEK 293 cells, preferentially undergoes rapid agonist-induced internalization in a caveolae-like, dynamin-dependent manner. These conclusions are based on our observation that pretreatments with filipin and methyl-beta-cyclodextrin, agents that disrupt lipid rafts such as caveolae, and coexpression of dominant-negative dynamin-1 (K44A) and caveolin-1 (Delta 1-81) mutants, effectively inhibited rapid agonist-induced internalization. Furthermore, cGnRH-Rs appeared to be mobilized to the beta-arrestin- and clathrin-coated, vesicle-mediated endocytic pathway upon beta-arrestin overexpression.
Collapse
Affiliation(s)
- Adam J Pawson
- Human Reproductive Sciences Unit, Medical Research Council, Edinburgh, United Kingdom EH16 4SB
| | | | | | | | | | | | | |
Collapse
|
47
|
Gray JA, Bhatnagar A, Gurevich VV, Roth BL. The interaction of a constitutively active arrestin with the arrestin-insensitive 5-HT(2A) receptor induces agonist-independent internalization. Mol Pharmacol 2003; 63:961-72. [PMID: 12695524 DOI: 10.1124/mol.63.5.961] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
5-HT(2A) serotonin receptors are unusual among G-protein coupled receptors in that they can be internalized and desensitized, in some cell types, in an arrestin-independent manner. The molecular basis of the arrestin-insensitivity of 5-HT(2A) receptors is unknown but is probably caused, in part, by the apparent lack of agonist-induced 5-HT(2A) receptor phosphorylation. Because the arrestin-insensitivity of 5-HT(2A) receptors is cell-type selective, we used a "constitutively active" arrestin mutant that can interact with agonist-activated but nonphosphorylated receptors. We show here that this "constitutively active" arrestin mutant (Arr2-R169E) can force 5-HT(2A) receptors to be regulated by arrestins. Cotransfection of 5-HT(2A) receptors with Arr2-R169E induced agonist-independent 5-HT(2A) receptor internalization, and a constitutive translocation of the Arr2-R169E mutant to the plasma membrane, whereas wild-type Arrestin-2 had no effect. Additionally, Arr2-R169E, unlike wild-type arrestin-2, induced a significant decrease in efficacy of agonist-induced phosphoinositide hydrolysis with an unexpected increase in agonist potency. Radioligand binding assays demonstrated that the fraction of receptors in the high-affinity agonist binding-state increased with expression of Arr2-R169E, indicating that Arr2-R169E stabilizes the agonist-high affinity state of the 5-HT(2A) receptor (R*). Intriguingly, the agonist-independent interaction of Arr2-R169E with 5-HT(2A) receptors was inhibited by inverse agonist treatment and is thus probably caused by the high level of 5-HT(2A) receptor constitutive activity. This is the first demonstration that a constitutively active arrestin mutant can both induce agonist-independent internalization and stabilize the agonist-high affinity state of an arrestin-insensitive G protein coupled receptor.
Collapse
Affiliation(s)
- John A Gray
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4935, USA
| | | | | | | |
Collapse
|
48
|
Abstract
CK2 (formerly termed "casein kinase 2") is a ubiquitous, highly pleiotropic and constitutively active Ser/Thr protein kinase whose implication in neoplasia, cell survival, and virus infection is supported by an increasing number of arguments. Here an updated inventory of 307 CK2 protein substrates is presented. More than one-third of these are implicated in gene expression and protein synthesis as being either transcriptional factors (60) or effectors of DNA/RNA structure (50) or translational elements. Also numerous are signaling proteins and proteins of viral origin or essential to virus life cycle. In comparison, only a minority of CK2 targets (a dozen or so) are classical metabolic enzymes. An analysis of 308 sites phosphorylated by CK2 highlights the paramount relevance of negatively charged side chains that are (by far) predominant over any other residues at positions n+3 (the most crucial one), n+1, and n+2. Based on this signature, it is predictable that proteins phosphorylated by CK2 are much more numerous than those identified to date, and it is possible that CK2 alone contributes to the generation of the eukaryotic phosphoproteome more so than any other individual protein kinase. The possibility that CK2 phosphosites play some global role, e.g., by destabilizing alpha helices, counteracting caspase cleavage, and generating adhesive motifs, will be discussed.
Collapse
Affiliation(s)
- Flavio Meggio
- Dipartimento di Chimica Biologica and Istituto di Neuroscienze del CNR, Università di Padova and Venetian Institute for Molecular Medicine (VIMM), Padova, Italy
| | | |
Collapse
|
49
|
Hanyaloglu AC, Seeber RM, Kohout TA, Lefkowitz RJ, Eidne KA. Homo- and hetero-oligomerization of thyrotropin-releasing hormone (TRH) receptor subtypes. Differential regulation of beta-arrestins 1 and 2. J Biol Chem 2002; 277:50422-30. [PMID: 12393857 DOI: 10.1074/jbc.m209340200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are regulated by a complex network of mechanisms such as oligomerization and internalization. Using the GPCR subtypes for thyrotropin-releasing hormone (TRHR1 and TRHR2), the aim of this study was to determine if subtype-specific differences exist in the trafficking process. If so, we wished to determine the impact of homo- and hetero-oligomerization on TRHR subtype trafficking as a potential mechanism for the differential cellular responses induced by TRH. Expression of either beta-arrestin 1 or 2 promoted TRHR1 internalization. In contrast, only beta-arrestin 2 could enhance TRHR2 internalization. The preference for beta-arrestin 2 by TRHR2 was supported by the impairment of TRHR2 trafficking in mouse embryonic fibroblasts (MEFs) from either a beta-arrestin 2 knockout or a beta-arrestin 1/2 knockout, while TRHR1 trafficking was only abolished in MEFs lacking both beta-arrestins. The differential beta-arrestin-dependence of TRHR2 was directly measured in live cells using bioluminescence resonance energy transfer (BRET). Both BRET and confocal microscopy were also used to demonstrate that TRHR subtypes form hetero-oligomers. In addition, these hetero-oligomers have altered internalization kinetics compared with the homo-oligomer. The formation of TRHR1/2 heteromeric complexes increased the interaction between TRHR2 and beta-arrestin 1. This may be due to conformational differences between TRHR1/2 hetero-oligomers versus TRHR2 homo-oligomers as a mutant TRHR1 (TRHR1 C335Stop) that does not interact with beta-arrestins, could also enhance TRHR2/beta-arrestin 1 interaction. This study demonstrates that TRHR subtypes are differentially regulated by the beta-arrestins and also provides the first evidence that the interactions of TRHRs with beta-arrestin may be altered by hetero-oligomer formation.
Collapse
Affiliation(s)
- Aylin C Hanyaloglu
- 7TM Receptor Laboratory, Western Australian Institute for Medical Research (WAIMR), University of Western Australia, Centre for Medical Research, Nedlands, Perth, WA 6009, Australia
| | | | | | | | | |
Collapse
|
50
|
Parker MS, Lundell I, Parker SL. Internalization of pancreatic polypeptide Y4 receptors: correlation of receptor intake and affinity. Eur J Pharmacol 2002; 452:279-87. [PMID: 12359268 DOI: 10.1016/s0014-2999(02)02339-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Unlike neuropeptide Y receptors, the pancreatic polypeptide Y4 receptors display considerable differences in sequence and ligand-binding affinity across mammalian species. This could produce different receptor turnover rates in the same cellular membrane environment. Comparing rat, human and guinea-pig Y4 receptors expressed in Chinese hamster ovary (CHO) cells (K(d) with human pancreatic polypeptide 14, 45 and 116 pM, respectively), we indeed found human pancreatic polypeptide internalization in the rank order of receptor affinities. A large fraction of the internalized human pancreatic polypeptide, similar across the Y4 species, was associated with secondary endosomes (density approximately 1.05 in Percoll gradients) and lysosomes (density approximately 1.11). For all Y4 receptors examined, this intake was potently and selectively inhibited by cholesterol-complexing polyene antibiotic filipin III and also by clathrin lattice formation inhibitor, phenylarsine oxide. Internalization differences found across Y4 receptor species to a degree compare with those observed for the cloned guinea-pig neuropeptide Y Y1 and human neuropeptide Y Y5 receptors and, generally, support ligand-binding affinities as important determinants of internalization for neuropeptide receptors.
Collapse
Affiliation(s)
- Michael S Parker
- Department of Microbiology and Molecular Cell Sciences, University of Memphis, Memphis, TN 38152, USA
| | | | | |
Collapse
|