1
|
Van Doorn CE, Zelows MM, Jaramillo AA. Pituitary adenylate cyclase-activating polypeptide plays a role in neuropsychiatric and substance use disorders: sex-specific perspective. Front Neurosci 2025; 19:1545810. [PMID: 39975969 PMCID: PMC11835941 DOI: 10.3389/fnins.2025.1545810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 01/15/2025] [Indexed: 02/21/2025] Open
Abstract
The neuropeptide pituitary adenylate cyclase-activating peptide (PACAP) plays a pivotal role in regulating stress, fear, and anxiety responses. Genetic and molecular studies investigating PACAP demonstrate sex-dimorphic characteristics, with females exhibiting increased reactivity of PACAP signaling in neuropsychiatric disorders. Studies expand the role of PACAP to substance use disorders (SUD) by demonstrating modulation of PACAP can lead to neurobiological changes induced by nicotine, ethanol, stimulants and opioids. Given that females with SUD exhibit distinct drug use, relapse, and withdrawal sensitivity relative to males, we hypothesize that the PACAP system contributes to these sex-specific differences. Therefore, we review the role of PACAP in SUD by characterizing the role of PACAP at the molecular, brain regional, and behavioral levels relevant to the addiction cycle. We present literature linking PACAP to neuropsychiatric disorders, which demonstrate the intricate role of PACAP within neuronal signaling and pathways modulating addiction. We hypothesize that females are more particularly susceptible to PACAP-related changes during the intoxication and withdrawal phases of the addiction cycle. Altogether understanding the sex-specific differences in the PACAP system offers a foundation for future studies aimed at developing tailored interventions for addressing SUD.
Collapse
Affiliation(s)
| | | | - Anel A. Jaramillo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
2
|
Rees TA, Labastida-Ramírez A, Rubio-Beltrán E. Calcitonin/PAC 1 receptor splice variants: a blind spot in migraine research. Trends Pharmacol Sci 2023; 44:651-663. [PMID: 37543479 PMCID: PMC10529278 DOI: 10.1016/j.tips.2023.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/08/2023] [Accepted: 07/08/2023] [Indexed: 08/07/2023]
Abstract
The neuropeptides calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating polypeptide (PACAP) and their receptors are linked to migraine neurobiology. Recent antimigraine therapeutics targeting the signaling of these neuropeptides are effective; however, some patients respond suboptimally, indicating an incomplete understanding of migraine pathophysiology. The CGRP- and PACAP-responsive receptors can be differentially spliced. It is known that receptor splice variants can have different pathophysiological effects in other receptor-mediated pain pathways. Despite considerable knowledge on the structural and pharmacological differences of the CGRP- and PACAP-responsive receptor splice variants and their expression in migraine-relevant tissues, their role in migraine is rarely considered. Here we shine a spotlight on the calcitonin and PACAP (PAC1) receptor splice variants and examine what implications they may have for drug activity and design.
Collapse
Affiliation(s)
- Tayla A Rees
- School of Biological Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.
| | - Alejandro Labastida-Ramírez
- Headache Group, Wolfson Center for Age Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Eloisa Rubio-Beltrán
- Headache Group, Wolfson Center for Age Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
3
|
Winters SJ, Moore JP. PACAP: A regulator of mammalian reproductive function. Mol Cell Endocrinol 2020; 518:110912. [PMID: 32561449 PMCID: PMC7606562 DOI: 10.1016/j.mce.2020.110912] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/14/2020] [Accepted: 06/06/2020] [Indexed: 12/19/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is an ancestral molecule that was isolated from sheep hypothalamic extracts based on its action to stimulate cAMP production by pituitary cell cultures. PACAP is one of a number of ligands that coordinate with GnRH to control reproduction. While initially viewed as a hypothalamic releasing factor, PACAP and its receptors are widely distributed, and there is growing evidence that PACAP functions as a paracrine/autocrine regulator in the CNS, pituitary, gonads and placenta, among other tissues. This review will summarize current knowledge concerning the expression and function of PACAP in the hypothalamic-pituitary-gonadal axis with special emphasis on its role in pituitary function in the fetus and newborn.
Collapse
Affiliation(s)
- Stephen J Winters
- Division of Endocrinology, Metabolism and Diabetes, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| | - Joseph P Moore
- Division of Endocrinology, Metabolism and Diabetes, University of Louisville School of Medicine, Louisville, KY, 40202, USA; Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| |
Collapse
|
4
|
Circulating PACAP peptide and PAC1R genotype as possible transdiagnostic biomarkers for anxiety disorders in women: a preliminary study. Neuropsychopharmacology 2020; 45:1125-1133. [PMID: 31910434 PMCID: PMC7235237 DOI: 10.1038/s41386-020-0604-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/30/2019] [Accepted: 12/30/2019] [Indexed: 01/04/2023]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP, gene Adcyap1) is a neuropeptide and hormone thought to play a critical role in stress response (Stroth et al., Ann NY Acad Sci 1220:49-59, 2011; Hashimoto et al., Curr Pharm Des 17:985-989, 2011). Research in humans implicates PACAP as a useful biomarker for the severity of psychiatric symptoms in response to psychological stressors, and work in rodent models suggests that PACAP manipulation exerts downstream effects on peripheral hormones and behaviors linked to the stress response, providing a potential therapeutic target. Prior work has also suggested a potential sex difference in PACAP effects due to differential estrogen regulation of this pathway. Therefore, we examined serum PACAP and associated PAC1R genotype in a cohort of males and females with a primary diagnosis of generalized anxiety disorder (GAD) and nonpsychiatric controls. We found that, while circulating hormone levels were not associated with a GAD diagnosis overall (p = 0.19, g = 0.25), PACAP may be associated with GAD in females (p = 0.04, g = 0.33). Additionally, among patients with GAD, the risk genotype identified in the PTSD literature (rs2267735, CC genotype) was associated with higher somatic anxiety symptom severity in females but lower somatic anxiety symptom severity in males (-3.27, 95%CI [-5.76, -0.77], adjusted p = 0.03). Taken together, the associations between the risk genotype, circulating PACAP, and somatic anxiety severity were stronger among females than males. These results indicate a potential underlying biological etiology for sex differences in stress-related anxiety disorders that warrants further study.
Collapse
|
5
|
Reglodi D, Cseh S, Somoskoi B, Fulop BD, Szentleleky E, Szegeczki V, Kovacs A, Varga A, Kiss P, Hashimoto H, Tamas A, Bardosi A, Manavalan S, Bako E, Zakany R, Juhasz T. Disturbed spermatogenic signaling in pituitary adenylate cyclase activating polypeptide-deficient mice. Reproduction 2017; 155:129-139. [PMID: 29101268 DOI: 10.1530/rep-17-0470] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/18/2017] [Accepted: 11/03/2017] [Indexed: 12/20/2022]
Abstract
PACAP is a neuropeptide with diverse functions in various organs, including reproductive system. It is present in the testis in high concentrations, and in addition to the stage-specific expression within the seminiferous tubules, PACAP affects spermatogenesis and the functions of Leydig and Sertoli cells. Mice lacking endogenous PACAP show reduced fertility, but the possibility of abnormalities in spermatogenic signaling has not yet been investigated. Therefore, we performed a detailed morphological analysis of spermatozoa, sperm motility and investigated signaling pathways that play a role during spermatogenesis in knockout mice. No significant alterations were found in testicular morphology or motility of sperm in homozygous and heterozygous PACAP-deficient mice in spite of the moderately increased number of severely damaged sperms. However, we found robust changes in mRNA and/or protein expression of several factors that play an important role in spermatogenesis. Protein kinase A expression was markedly reduced, while downstream phospho-ERK and p38 were elevated in knockout animals. Expression of major transcription factors, such as Sox9 and phospho-Sox9, was decreased, while that of Sox10, as a redundant factor, was increased in PACAP-deficient mice. The reduced phospho-Sox9 expression was partly due to increased expression and activity of phosphatase PP2A in knockout mice. Targets of Sox transcription factors, such as collagen type IV, were reduced in knockout mice. In summary, our results show that lack of PACAP leads to disturbed signaling in spermatogenesis, which could be a factor responsible for reduced fertility in PACAP knockout mice, and further support the role of PACAP in reproduction.
Collapse
Affiliation(s)
- D Reglodi
- Department of AnatomyMTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs, Pecs, Hungary
| | - S Cseh
- Department and Clinic of ReproductionUniversity of Veterinary Medicine, Budapest, Hungary
| | - B Somoskoi
- Department and Clinic of ReproductionUniversity of Veterinary Medicine, Budapest, Hungary
| | - B D Fulop
- Department of AnatomyMTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs, Pecs, Hungary
| | - E Szentleleky
- Department of AnatomyHistology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - V Szegeczki
- Department of AnatomyHistology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - A Kovacs
- Department of AnatomyMTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs, Pecs, Hungary
| | - A Varga
- Department of AnatomyMTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs, Pecs, Hungary
| | - P Kiss
- Department of AnatomyMTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs, Pecs, Hungary
| | - H Hashimoto
- Laboratory of Molecular NeuropharmacologyGraduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan.,Molecular Research Center for Children's Mental DevelopmentUnited Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, Japan.,Division of BioscienceInstitute for Datability Science, Osaka University, Suita, Osaka, Japan
| | - A Tamas
- Department of AnatomyMTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs, Pecs, Hungary
| | - A Bardosi
- MVZ für HistologieZytologie und Molekulare Diagnostik, Trier, Germany
| | - S Manavalan
- Department of Basic SciencesNational University of Health Sciences, Pinellas Park, Florida, USA
| | - E Bako
- Cell Biology and Signalling Research Group of the Hungarian Academy of SciencesDepartment of Medical Chemistry, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - R Zakany
- Department of AnatomyHistology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - T Juhasz
- Department of AnatomyHistology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
6
|
Sundrum T, Walker CS. Pituitary adenylate cyclase-activating polypeptide receptors in the trigeminovascular system: implications for migraine. Br J Pharmacol 2017; 175:4109-4120. [PMID: 28977676 DOI: 10.1111/bph.14053] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/24/2017] [Accepted: 09/11/2017] [Indexed: 12/13/2022] Open
Abstract
The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) has been implicated in a wide range of functions including vasodilatation, neuroprotection, nociception and neurogenic inflammation. PACAP activates three distinct receptors, the PAC1 receptor, which responds to PACAP, and the VPAC1 and VPAC2 receptors, which respond to both PACAP and vasoactive intestinal polypeptide. The trigeminovascular system plays a key role in migraine and contains the trigeminal nerve, which is the major conduit of craniofacial pain. PACAP is expressed throughout the trigeminovascular system and in higher brain regions involved in processing pain. Evidence from human clinical studies suggests that PACAP may act outside the blood-brain barrier in the pathogenesis of migraine. However, the precise mechanisms involved remain unclear. PACAP potentially induces migraine attacks by activating different receptors in different cell types and tissues. This complexity prompted this review of PACAP receptor pharmacology, expression and function in the trigeminovascular system. Current evidence suggests that the PAC1 receptor is the likely pathophysiological target of PACAP in migraine. However, multiple PACAP receptors are expressed in key parts of the trigeminovascular system and further work is required to determine their contribution to PACAP physiology and the pathology of migraine. LINKED ARTICLES This article is part of a themed section on Molecular Pharmacology of GPCRs. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.21/issuetoc.
Collapse
Affiliation(s)
- Tahlia Sundrum
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Christopher S Walker
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
7
|
Chen W, Deng W, Goldys EM. Light-Triggerable Liposomes for Enhanced Endolysosomal Escape and Gene Silencing in PC12 Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2017. [PMID: 28624212 PMCID: PMC5423320 DOI: 10.1016/j.omtn.2017.04.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Liposomes are an effective gene and/or drug delivery system, widely used in biomedical applications including gene therapy and chemotherapy. Here, we designed a photo-responsive liposome (lipVP) loaded with a photosensitizer verteporfin (VP). This photosensitizer is clinically approved for photodynamic therapy (PDT). LipVP was employed as a DNA carrier for pituitary adenylyl cyclase-activating polypeptide (PACAP) receptor 1 (PAC1R) gene knockdown in PC12 cells. This has been done by incorporating PAC1R antisense oligonucleotides inside the lipVP cavity. Cells that have taken up the lipVP were exposed to light from a UV light source. As a result of this exposure, reactive oxygen species (ROS) were generated from VP, destabilizing the endolysosomal membranes and enhancing the liposomal release of antisense DNA into the cytoplasm. Endolysosomal escape of DNA was documented at different time points based on quantitative analysis of colocalization between fluorescently labeled DNA and endosomes and lysosomes. The released antisense oligonucleotides were found to silence PAC1R mRNA. The efficiency of this photo-induced gene silencing was demonstrated by a 74% ± 5% decrease in PAC1R fluorescence intensity. Following the light-induced DNA transfer into cells, cell differentiation with exposure to two kinds of PACAP peptides was observed to determine the cell phenotypic change after PAC1R gene knockdown.
Collapse
Affiliation(s)
- Wenjie Chen
- ARC Centre of Excellence for Nanoscale BioPhotonics, Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109, Australia
| | - Wei Deng
- ARC Centre of Excellence for Nanoscale BioPhotonics, Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109, Australia.
| | - Ewa M Goldys
- ARC Centre of Excellence for Nanoscale BioPhotonics, Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
8
|
Pecoraro V, Sardone LM, Chisari M, Licata F, Li Volsi G, Perciavalle V, Ciranna L, Costa L. A subnanomolar concentration of Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) pre-synaptically modulates glutamatergic transmission in the rat hippocampus acting through acetylcholine. Neuroscience 2016; 340:551-562. [PMID: 27816700 DOI: 10.1016/j.neuroscience.2016.10.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 10/16/2016] [Accepted: 10/25/2016] [Indexed: 12/16/2022]
Abstract
The neuropeptide PACAP modulates synaptic transmission in the hippocampus exerting multiple effects through different receptor subtypes: the underlying mechanisms have not yet been completely elucidated. The neurotransmitter acetylcholine (ACh) also exerts a well-documented modulation of hippocampal synaptic transmission and plasticity. Since PACAP was shown to stimulate ACh release in the hippocampus, we tested whether PACAP acting through ACh might indirectly modulate glutamate-mediated synaptic transmission at a pre- and/or at a post-synaptic level. Using patch clamp on rat hippocampal slices, we tested PACAP effects on stimulation-evoked AMPA receptor-mediated excitatory post-synaptic currents (EPSCsAMPA) in the CA3-CA1 synapse and on spontaneous miniature EPSCs (mEPSCs) in CA1 pyramidal neurons. A subnanomolar dose of PACAP (0.5nM) decreased EPSCsAMPA amplitude, enhanced EPSC paired-pulse facilitation (PPF) and reduced mEPSC frequency, indicating a pre-synaptic decrease of glutamate release probability: these effects were abolished by simultaneous blockade of muscarinic and nicotinic ACh receptors, indicating the involvement of endogenous ACh. The effect of subnanomolar PACAP was abolished by a PAC1 receptor antagonist but not by a VPAC receptor blocker. At a higher concentration (10nM), PACAP inhibited EPSCsAMPA: this effect persisted in the presence of ACh receptor antagonists and did not involve any change in PPF or in mEPSC frequency, thus was not mediated by ACh and was exerted post- synaptically on CA1 pyramidal neurons. We suggest that a high-affinity PAC1 receptor pre-synaptically modulates hippocampal glutamatergic transmission acting through ACh. Therefore, administration of PACAP at very low doses might be envisaged in cognitive diseases with reduced cholinergic transmission.
Collapse
Affiliation(s)
- Valeria Pecoraro
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández de Elche, San Juan de Alicante, Spain
| | - Lara Maria Sardone
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Italy
| | - Mariangela Chisari
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Italy
| | - Flora Licata
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Italy
| | - Guido Li Volsi
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Italy
| | - Vincenzo Perciavalle
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Italy
| | - Lucia Ciranna
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Italy.
| | - Lara Costa
- Department of Clinical and Experimental Medicine, University of Messina, Italy
| |
Collapse
|
9
|
Shen S, Gehlert DR, Collier DA. PACAP and PAC1 receptor in brain development and behavior. Neuropeptides 2013; 47:421-30. [PMID: 24220567 DOI: 10.1016/j.npep.2013.10.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 10/12/2013] [Accepted: 10/13/2013] [Indexed: 10/26/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) act through three class B G-protein coupled receptors, PAC1, VPAC1 and VPAC2, initiating multiple signaling pathways. In addition to natural peptides ligands, a number of synthetic peptides and a small molecular antagonist have been generated. Genetically modified animals have been produced for the neuropeptides and receptors. Neuroanatomical, electrophysiological, behavioral and pharmacological characterization of the mutants and transgenic mice uncovered diverse roles of PACAP-PAC1-VAPC2 signaling in peripheral tissues and in the central nervous system. Human genetic studies suggest that the PACAP-PAC1-VPAC2 signaling can be associated with psychiatric illness via mechanisms of not only loss-of-function, but also gain-of-function. For example, a duplication of chromosome 7q36.3 (encoding the VPAC2 receptor) was shown to be associated with schizophrenia, and high levels of PACAP-PAC1 signaling are associated with posttraumatic stress disorder. Whereas knockout animals are appropriate to address loss-of-function of human genetics, transgenic mice overexpressing human transgenes in native environment using artificial chromosomes are particularly valuable and essential to address the consequences of gain-of-function. This review focuses on role of PACAP and PAC1 receptor in brain development, behavior of animals and potential implication in human neurodevelopmental disorders. It also encourages keeping an open mind that alterations of VIP/PACAP signaling may associate with psychiatric illness without overt neuroanatomic changes, and that tuning of VIP/PACAP signaling may represent a novel avenue for the treatment of the psychiatric illness.
Collapse
Affiliation(s)
- Sanbing Shen
- Regenerative Medicine Institute, School of Medicine, National University of Ireland (NUI) Galway, Galway, Ireland.
| | | | | |
Collapse
|
10
|
Blechman J, Levkowitz G. Alternative Splicing of the Pituitary Adenylate Cyclase-Activating Polypeptide Receptor PAC1: Mechanisms of Fine Tuning of Brain Activity. Front Endocrinol (Lausanne) 2013; 4:55. [PMID: 23734144 PMCID: PMC3659299 DOI: 10.3389/fendo.2013.00055] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 04/24/2013] [Indexed: 12/11/2022] Open
Abstract
Alternative splicing of the precursor mRNA encoding for the neuropeptide receptor PAC1/ADCYAP1R1 generates multiple protein products that exhibit pleiotropic activities. Recent studies in mammals and zebrafish have implicated some of these splice isoforms in control of both cellular and body homeostasis. Here, we review the regulation of PAC1 splice variants and their underlying signal transduction and physiological processes in the nervous system.
Collapse
Affiliation(s)
- Janna Blechman
- Department of Molecular Cell Biology, Weizmann Institute of ScienceRehovot, Israel
| | - Gil Levkowitz
- Department of Molecular Cell Biology, Weizmann Institute of ScienceRehovot, Israel
- *Correspondence: Gil Levkowitz, Department of Molecular Cell Biology, Weizmann Institute of Science, P. O. Box 26, Rehovot 76100, Israel. e-mail:
| |
Collapse
|
11
|
Thomas RL, Crawford NM, Grafer CM, Halvorson LM. Pituitary Adenylate Cyclase–Activating Polypeptide (PACAP) in the Hypothalamic–Pituitary–Gonadal Axis. Reprod Sci 2012; 20:857-71. [DOI: 10.1177/1933719112466310] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Robin L. Thomas
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, USA
| | - Natalie M. Crawford
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, USA
| | - Constance M. Grafer
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, USA
| | - Lisa M. Halvorson
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, USA
| |
Collapse
|
12
|
Furness SGB, Wootten D, Christopoulos A, Sexton PM. Consequences of splice variation on Secretin family G protein-coupled receptor function. Br J Pharmacol 2012; 166:98-109. [PMID: 21718310 DOI: 10.1111/j.1476-5381.2011.01571.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The Secretin family of GPCRs are endocrine peptide hormone receptors that share a common genomic organization and are the subject of a wide variety of alternative splicing. All GPCRs contain a central seven transmembrane domain responsible for transducing signals from the outside of the cell as well as extracellular amino and intracellular carboxyl termini. Members of the Secretin receptor family have a relatively large N-terminus and a variety of lines of evidence support a common mode of ligand binding and a common ligand binding fold. These receptors are best characterized as coupling to intracellular signalling pathways via G(αs) and G(αq) but are also reported to couple to a multitude of other signalling pathways. The intracellular loops are implicated in regulating the interaction between the receptor and heterotrimeric G protein complexes. Alternative splicing of exons encoding both the extracellular N-terminal domain as well as the extracellular loops of some family members has been reported and as expected these splice variants display altered ligand affinity as well as differential activation by endogenous ligands. Various forms of alternative splicing have also been reported to alter intracellular loops 1 and 3 as well as the C-terminus and as one might expect these display differences in signalling bias towards downstream effectors. These diverse pharmacologies require that the physiological role of these splice variants be addressed but should provide unique opportunities for drug design and development.
Collapse
|
13
|
Harmar AJ, Fahrenkrug J, Gozes I, Laburthe M, May V, Pisegna JR, Vaudry D, Vaudry H, Waschek JA, Said SI. Pharmacology and functions of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide: IUPHAR review 1. Br J Pharmacol 2012; 166:4-17. [PMID: 22289055 DOI: 10.1111/j.1476-5381.2012.01871.x] [Citation(s) in RCA: 336] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are members of a superfamily of structurally related peptide hormones that includes glucagon, glucagon-like peptides, secretin, gastric inhibitory peptide (GIP) and growth hormone-releasing hormone (GHRH). VIP and PACAP exert their actions through three GPCRs - PAC(1) , VPAC(1) and VPAC(2) - belonging to class B (also referred to as class II, or secretin receptor-like GPCRs). This family comprises receptors for all peptides structurally related to VIP and PACAP, and also receptors for parathyroid hormone, corticotropin-releasing factor, calcitonin and related peptides. PAC(1) receptors are selective for PACAP, whereas VPAC(1) and VPAC(2) respond to both VIP and PACAP with high affinity. VIP and PACAP play diverse and important roles in the CNS, with functions in the control of circadian rhythms, learning and memory, anxiety and responses to stress and brain injury. Recent genetic studies also implicate the VPAC(2) receptor in susceptibility to schizophrenia and the PAC(1) receptor in post-traumatic stress disorder. In the periphery, VIP and PACAP play important roles in the control of immunity and inflammation, the control of pancreatic insulin secretion, the release of catecholamines from the adrenal medulla and as co-transmitters in autonomic and sensory neurons. This article, written by members of the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification (NC-IUPHAR) subcommittee on receptors for VIP and PACAP, confirms the existing nomenclature for these receptors and reviews our current understanding of their structure, pharmacology and functions and their likely physiological roles in health and disease. More detailed information has been incorporated into newly revised pages in the IUPHAR database (http://www.iuphar-db.org/DATABASE/FamilyMenuForward?familyId=67).
Collapse
|
14
|
Shneider Y, Shtrauss Y, Yadid G, Pinhasov A. Differential expression of PACAP receptors in postnatal rat brain. Neuropeptides 2010; 44:509-14. [PMID: 20971507 DOI: 10.1016/j.npep.2010.09.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 09/13/2010] [Accepted: 09/14/2010] [Indexed: 12/22/2022]
Abstract
Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) is a multi-functional neuropeptide that acts through activation of three common G-protein coupled receptors (VPAC1, VPAC2 and PAC1). In this study, we have investigated the gene expression profile of PAC1 isoforms (Hop1, Hip, Hip-Hop) and VPAC1, VPAC2 receptors in distinct brain regions during different stages of rat postnatal development. Using quantitative real time PCR approach we found that PAC1 isoforms were highly expressed in the cortex of newborns with marked decrease in expression during later stages of development. In contrast, mRNA levels of VPAC1, VPAC2 receptors were markedly lower in newborns in comparison to later developmental stages. Expression of PAC1 isoforms predominated in the hippocampus, while expression of VPAC1 was more prominent in the cortex and VPAC2 in the striatum and hippocampus. In addition we found that during early stages of postnatal development the expression of PAC1 receptor in the hippocampus was significantly higher in females than in males. No sex dependent differences in expression were observed for the VPAC1 and VPAC2 receptors. In summary, differential expression of PAC1, VPAC1 and VPAC2 receptors during postnatal development as well as gender dependent differences of PAC1 receptor expression in the hippocampus, will contribute to our understanding of the role of PACAP/VIP signaling system in normal brain development and function.
Collapse
Affiliation(s)
- Yevgenia Shneider
- Department of Molecular Biology, Ariel University Center of Samaria, Ariel, Israel
| | | | | | | |
Collapse
|
15
|
Yu R, Li J, Wang J, Liu X, Huang L, Ding Y, Chen J. The functional recombinant first extracellular (EC1) domain of PACAP receptor PAC1 normal form (PAC1-EC1(N)) recognizes selective ligands and stimulates the proliferation of PAC1-CHO cells. Neurosci Lett 2010; 480:73-7. [DOI: 10.1016/j.neulet.2010.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 05/26/2010] [Accepted: 06/02/2010] [Indexed: 11/16/2022]
|
16
|
Vaudry D, Falluel-Morel A, Bourgault S, Basille M, Burel D, Wurtz O, Fournier A, Chow BKC, Hashimoto H, Galas L, Vaudry H. Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol Rev 2009; 61:283-357. [PMID: 19805477 DOI: 10.1124/pr.109.001370] [Citation(s) in RCA: 848] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a 38-amino acid C-terminally alpha-amidated peptide that was first isolated 20 years ago from an ovine hypothalamic extract on the basis of its ability to stimulate cAMP formation in anterior pituitary cells (Miyata et al., 1989. PACAP belongs to the vasoactive intestinal polypeptide (VIP)-secretin-growth hormone-releasing hormone-glucagon superfamily. The sequence of PACAP has been remarkably well conserved during evolution from protochordates to mammals, suggesting that PACAP is involved in the regulation of important biological functions. PACAP is widely distributed in the brain and peripheral organs, notably in the endocrine pancreas, gonads, respiratory and urogenital tracts. Characterization of the PACAP precursor has revealed the existence of a PACAP-related peptide, the activity of which remains unknown. Two types of PACAP binding sites have been characterized: type I binding sites exhibit a high affinity for PACAP and a much lower affinity for VIP, whereas type II binding sites have similar affinity for PACAP and VIP. Molecular cloning of PACAP receptors has shown the existence of three distinct receptor subtypes: the PACAP-specific PAC1-R, which is coupled to several transduction systems, and the PACAP/VIP-indifferent VPAC1-R and VPAC2-R, which are primarily coupled to adenylyl cyclase. PAC1-Rs are particularly abundant in the brain, the pituitary and the adrenal gland, whereas VPAC receptors are expressed mainly in lung, liver, and testis. The development of transgenic animal models and specific PACAP receptor ligands has strongly contributed to deciphering the various actions of PACAP. Consistent with the wide distribution of PACAP and its receptors, the peptide has now been shown to exert a large array of pharmacological effects and biological functions. The present report reviews the current knowledge concerning the pleiotropic actions of PACAP and discusses its possible use for future therapeutic applications.
Collapse
Affiliation(s)
- David Vaudry
- Institut National de la Santé et de la Recherche Médicale U413, European Institute for Peptide Research (Institut Fédératif de Recherches Multidisciplinaires sur les Peptides 23), Mont-Saint-Aignan, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Dickson L, Finlayson K. VPAC and PAC receptors: From ligands to function. Pharmacol Ther 2008; 121:294-316. [PMID: 19109992 DOI: 10.1016/j.pharmthera.2008.11.006] [Citation(s) in RCA: 282] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Accepted: 11/18/2008] [Indexed: 02/03/2023]
Abstract
Vasoactive intestinal peptide (VIP) and the pituitary adenylate cyclase activating polypeptides (PACAPs) share 68% identity at the amino acid level and belong to the secretin peptide family. Following the initial discovery of VIP almost four decades ago a substantial amount of knowledge has been presented describing the mechanisms of action, distribution and pleiotropic functions of these related peptides. It is now known that the physiological actions of these widely distributed peptides are produced through activation of three common G-protein coupled receptors (VPAC(1), VPAC(2) and PAC(1)R) which preferentially stimulate adenylate cyclase and increase intracellular cAMP, although stimulation of other intracellular messengers, including calcium and phospholipase D, has been reported. Using a range of in vitro and in vivo approaches, including cell-based functional assays, transgenic animals and rodent models of disease, VPAC/PAC receptor activation has been associated with numerous physiological processes (e.g. control of circadian rhythms) and clinical conditions (e.g. pulmonary hypertension), which underlies on-going research efforts and makes these peptides and their cognate receptors attractive targets for the pharmaceutical industry. However, despite the considerable interest in VPAC/PAC receptors and the processes which they mediate, there is still a paucity of selective and available, non-peptide ligands, which has hindered further advances in this field both at the basic research and clinical level. This review summarises the current knowledge of VIP/PACAP and the VPAC/PAC receptors with regard to their distribution, pharmacology, signalling pathways, splice variants and finally, the utility of animal models in exploring their physiological roles.
Collapse
Affiliation(s)
- Louise Dickson
- Centre for Integrative Physiology, University of Edinburgh, EH8 9XD, UK
| | | |
Collapse
|
18
|
Agonistic Behavior of PACAP6-38 on Sensory Nerve Terminals and Cytotrophoblast Cells. J Mol Neurosci 2008; 36:270-8. [DOI: 10.1007/s12031-008-9089-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 04/21/2008] [Indexed: 11/26/2022]
|
19
|
Cardoso JCR, Vieira FA, Gomes AS, Power DM. PACAP, VIP and their receptors in the metazoa: insights about the origin and evolution of the ligand-receptor pair. Peptides 2007; 28:1902-19. [PMID: 17826180 DOI: 10.1016/j.peptides.2007.05.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 05/15/2007] [Accepted: 05/21/2007] [Indexed: 11/23/2022]
Abstract
The evolution, function and interaction of ligand-receptor pairs are of major pharmaceutical interest. Comparative sequence analysis approaches using data from phylogenetically distant organisms can provide insights into their origin and possible physiological roles. The present review focuses on the pituitary adenylate cyclase-activating polypeptide (PACAP), vasoactive intestinal polypeptide (VIP) and their receptors in the metazoa. A PACAP-like peptide is present in tunicates and chordates while VIP- and PACAP/VIP-specific receptors have only been isolated in the latter phyla. The apparently disparate evolution of the ligands and their specific receptors raises questions about their evolution during the metazoan radiation and also about how the ligands may have acquired new functions.
Collapse
Affiliation(s)
- João C R Cardoso
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, Faro 8005-139, Portugal.
| | | | | | | |
Collapse
|
20
|
Ushiyama M, Ikeda R, Sugawara H, Yoshida M, Mori K, Kangawa K, Inoue K, Yamada K, Miyata A. Differential intracellular signaling through PAC1 isoforms as a result of alternative splicing in the first extracellular domain and the third intracellular loop. Mol Pharmacol 2007; 72:103-11. [PMID: 17442841 DOI: 10.1124/mol.107.035477] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP), a pleiotropic neuropeptide, performs a variety of physiological functions. The PACAP-specific receptor PAC1 has several variants that result mainly from alternative splicing in the mRNA regions encoding the first extracellular (EC1) domain and the third intracellular cytoplasmic (IC3) loop. The effects on downstream signaling produced by combinations of alternative splicing events in the EC1 domain and IC3 loop have not yet been clarified. In this study, we have used semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR) to examine the tissue distributions of four PAC1 isoforms in mice. We then established cell lines constitutively expressing each of the PAC1 isoforms and characterized the binding properties of each isoform to PACAP-38, vasoactive intestinal polypeptide (VIP), and the PAC1-specific agonist maxadilan, as well as the resulting effects on two major intracellular signaling pathways: cAMP production and changes in the intracellular calcium concentration. The results demonstrate that the variants of the IC3 loop affect the binding affinity of the ligands for the receptor, whereas the variants of the EC1 domain primarily affect the intracellular signaling downstream of PAC1. Accordingly, this study indicates that the combination of alternative splicing events in the EC1 domain and the IC3 loop create a variety of PAC1 isoforms, which in turn may contribute to the functional pleiotropism of PACAP. This study not only contributes to the understanding of the multiple functions of PACAP but also helps to elucidate the relationship between the structures and functions of G-protein-coupled receptors.
Collapse
MESH Headings
- Alternative Splicing
- Animals
- CHO Cells
- Calcium/metabolism
- Cricetinae
- Cricetulus
- Cyclic AMP/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Microscopy, Confocal
- Polymerase Chain Reaction
- Protein Isoforms
- Protein Structure, Tertiary
- RNA, Messenger/analysis
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/chemistry
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/genetics
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/physiology
- Signal Transduction/physiology
- Vasoactive Intestinal Peptide/pharmacology
Collapse
Affiliation(s)
- Mina Ushiyama
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Mustafa T, Grimaldi M, Eiden LE. The hop cassette of the PAC1 receptor confers coupling to Ca2+ elevation required for pituitary adenylate cyclase-activating polypeptide-evoked neurosecretion. J Biol Chem 2007; 282:8079-91. [PMID: 17213203 PMCID: PMC4183215 DOI: 10.1074/jbc.m609638200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have identified the single PAC1 receptor variant responsible for Ca2+ mobilization from intracellular stores and influx through voltage-gated Ca2+ channels in bovine chromaffin cells and the domain of this receptor variant that confers coupling to [Ca2+]i elevation. This receptor (bPAC1hop) contains a 28-amino acid "hop" insertion in the third intracellular loop, with a full-length 171-amino acid N terminus. Expression of the bPAC1hop receptor in NG108-15 cells, which lack endogenous PAC1 receptors, reconstituted high affinity PACAP binding and PACAP-dependent elevation of both cAMP and intracellular Ca2+ concentrations ([Ca2+]i). Removal of the hop domain and expression of this receptor (bPAC1null) in NG108-15 cells reconstituted high affinity PACAP binding and PACAP-dependent cAMP generation but without a corresponding [Ca2+]i elevation. PC12-G cells express sufficient levels of PAC1 receptors to provide PACAP-saturable coupling to adenylate cyclase and to drive PACAP-dependent differentiation but do not express PAC1 receptors at levels found in postmitotic neuronal and endocrine cells and do not support PACAP-mediated neurosecretion. Expression of bPAC1hop, but not bPAC1(null), at levels comparable with those of bPAC1hop in bovine chromaffin cells resulted in acquisition by PC12-G cells of PACAP-dependent [Ca2+]i increase and extracellular Ca2+ influx. In addition, PC12-G cells expressing bPAC1hop acquired the ability to release [3H]norepinephrine in a Ca2+ influx-dependent manner in response to PACAP. Expression of PACAP receptors in neuroendocrine rather than nonneuroendocrine cells reveals key differences between PAC1hop and PAC1null coupling, indicating an important and previously unrecognized role of the hop cassette in PAC1-mediated Ca2+ signaling in neuroendocrine cells.
Collapse
Affiliation(s)
- Tomris Mustafa
- Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, Bethesda, Maryland 20892
| | - Maurizio Grimaldi
- Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, Bethesda, Maryland 20892
- Laboratory of Neuropharmacology, Department of Biochemistry, Drug Discovery Division, Southern Research Institute, Birmingham, Alabama 35205
| | - Lee E. Eiden
- Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, Bethesda, Maryland 20892
- To whom correspondence should be addressed: Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, National Institutes of Mental Health, Bldg. 49, Rm. 5A-68, 9000 Rockville Pike, Bethesda, MD 20892. Tel.: 301-496-4110; Fax: 301-496-1748;
| |
Collapse
|
22
|
El Zein N, Badran BM, Sariban E. The neuropeptide pituitary adenylate cyclase activating protein stimulates human monocytes by transactivation of the Trk/NGF pathway. Cell Signal 2007; 19:152-62. [PMID: 16914291 DOI: 10.1016/j.cellsig.2006.05.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Revised: 05/17/2006] [Accepted: 05/17/2006] [Indexed: 11/18/2022]
Abstract
Transactivation is a process whereby stimulation of G-protein-coupled receptors (GPCR) activates signaling from receptors tyrosine kinase (RTK). In neuronal cells, the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) acting through the GPCR VPAC-1 exerts trophic effects by transactivating the RTK TrkA receptor for the nerve growth factor (NGF). Both PACAP and NGF have pro-inflammatory activities on monocytes. We have tested the possibility that in monocytes, PACAP, as reported in neuronal cells, uses NGF/TrkA signaling pathway. In these cells, PACAP increases TrkA tyrosine phosphorylations through a PI-3kinase dependent but phospholipase C independent pathway. K252a, an inhibitor of TrkA decreases PACAP-induced Akt and ERK phosphorylation and calcium mobilisation resulting in decreases in intracellular H2O2 production and membrane upregulation of CD11b expression, both functions being inhibited after anti-NGF or anti-TrkA antibody treatment. K252a also inhibits PACAP-associated NF-KB activity. Monocytes increase in NGF production is seen after micromolar PACAP exposure while nanomolar treatment which desensitizes cells to high dose of PACAP prevents PACAP-induced TrkA phosphorylation, H2O2 production and CD11b expression. Finally, NGF-dependent ERK activation and H2O2 production is pertussis toxin sensitive. Altogether these data indicate that in PACAP-activated monocytes some pro-inflammatory activities occur through transactivation mechanisms involving VPAC-1, NGF and TrkA-associated tyrosine kinase activity.
Collapse
Affiliation(s)
- Nabil El Zein
- Laboratory of Pediatric Oncology, Hôpital des Enfants, 1020 Brussels, Belgium
| | | | | |
Collapse
|
23
|
Pilzer I, Gozes I. VIP provides cellular protection through a specific splice variant of the PACAP receptor: a new neuroprotection target. Peptides 2006; 27:2867-76. [PMID: 16905223 DOI: 10.1016/j.peptides.2006.06.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Accepted: 06/19/2006] [Indexed: 11/28/2022]
Abstract
Vasoactive intestinal peptide (VIP) was known to provide neuroprotection. Three VIP receptors have been cloned: VPAC1, VPAC2 and PAC1. A specific splice variant of PAC1 in the third cytoplasmatic loop, hop2, was implicated in VIP-related neuroprotection. We aimed to clone the hop2 splice variant, examine its affinity to VIP and investigate whether it mediates the VIP-related neuroprotective activity. The PAC1 cDNA was cloned from rat cerebral astrocytes. Using genetic manipulation the hop2 splice variant was obtained, then inserted into an expression vector and transfected into COS-7 cells that were used for binding assays. Results showed that VIP bound the cloned hop2 splice variant. Stearyl-neurotensin(6-11) VIP(7-28) (SNH), an antagonist for VIP, was also found to bind hop2. In addition, VIP protected COS-7 cells expressing hop2 from oxidative stress. Parallel assays demonstrated that VIP increased cAMP accumulation in COS-7 cells expressing hop2. These results support the hypothesis that hop2 mediates the cytoprotective effects attributed to VIP.
Collapse
Affiliation(s)
- Inbar Pilzer
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | |
Collapse
|
24
|
Drescher MJ, Drescher DG, Khan KM, Hatfield JS, Ramakrishnan NA, Abu-Hamdan MD, Lemonnier LA. Pituitary adenylyl cyclase-activating polypeptide (PACAP) and its receptor (PAC1-R) are positioned to modulate afferent signaling in the cochlea. Neuroscience 2006; 142:139-64. [PMID: 16876955 DOI: 10.1016/j.neuroscience.2006.05.065] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Revised: 05/02/2006] [Accepted: 05/09/2006] [Indexed: 10/24/2022]
Abstract
Pituitary adenylyl cyclase-activating polypeptide (PACAP), via its specific receptor pituitary adenylyl cyclase-activating polypeptide receptor 1 (PAC1-R), is known to have roles in neuromodulation and neuroprotection associated with glutamatergic and cholinergic neurotransmission, which, respectively, are believed to form the primary basis for afferent and efferent signaling in the organ of Corti. Previously, we identified transcripts for PACAP preprotein and multiple splice variants of its receptor, PAC1-R, in microdissected cochlear subfractions. In the present work, neural localizations of PACAP and PAC1-R within the organ of Corti and spiral ganglion were examined, defining sites of PACAP action. Immunolocalization of PACAP and PAC1-R in the organ of Corti and spiral ganglion was compared with immunolocalization of choline acetyltransferase (ChAT) and synaptophysin as efferent neuronal markers, and glutamate receptor 2/3 (GluR2/3) and neurofilament 200 as afferent neuronal markers, for each of the three cochlear turns. Brightfield microscopy giving morphological detail for individual immunolocalizations was followed by immunofluorescence detection of co-localizations. PACAP was found to be co-localized with ChAT in nerve fibers of the intraganglionic spiral bundle and beneath the inner and outer hair cells within the organ of Corti. Further, evidence was obtained that PACAP is expressed in type I afferent axons leaving the spiral ganglion en route to the auditory nerve, potentially serving as a neuromodulator in axonal terminals. In contrast to the efferent localization of PACAP within the organ of Corti, PAC1-R immunoreactivity was co-localized with afferent dendritic neuronal marker GluR2/3 in nerve fibers passing beneath and lateral to the inner hair cell and in fibers at supranuclear and basal sites on outer hair cells. Given the known association of PACAP with catecholaminergic neurotransmission in sympathoadrenal function, we also re-examined the issue of whether the organ of Corti receives adrenergic innervation. We now demonstrate the existence of nerve fibers within the organ of Corti which are immunoreactive for the adrenergic marker dopamine beta-hydroxylase (DBH). DBH immunoreactivity was particularly prominent in nerve fibers both at the base and near the cuticular plate of outer hair cells of the apical turn, extending to the non-sensory Hensen's cell region. Evidence was obtained for limited co-localization of DBH with PAC1-R and PACAP. In the process of this investigation, we obtained evidence that efferent and afferent nerve fibers, in addition to adrenergic nerve fibers, are present at supranuclear sites on outer hair cells and distributed within the non-sensory epithelium of the apical cochlear turn for rat, based upon immunoreactivity for the corresponding neuronal markers. Overall, PACAP is hypothesized to act within the organ of Corti as an efferent neuromodulator of afferent signaling via PAC1-R that is present on type I afferent dendrites, in position to afford protection from excitotoxicity. Additionally, PACAP/PAC1-R may modulate secretion of catecholamines from adrenergic terminals within the organ of Corti.
Collapse
Affiliation(s)
- M J Drescher
- Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University School of Medicine, 261 Lande Medical Research Building, 540 East Canfield Avenue, Detroit, MI 48201, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Abu-Hamdan MD, Drescher MJ, Ramakrishnan NA, Khan KM, Toma VS, Hatfield JS, Drescher DG. Pituitary Adenylyl Cyclase-Activating Polypeptide (PACAP) and its receptor (PAC1-R) in the cochlea: Evidence for specific transcript expression of PAC1-R splice variants in rat microdissected cochlear subfractions. Neuroscience 2006; 140:147-61. [PMID: 16626868 DOI: 10.1016/j.neuroscience.2006.01.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Revised: 12/28/2005] [Accepted: 01/06/2006] [Indexed: 11/26/2022]
Abstract
Pituitary adenylyl cyclase-activating polypeptide (PACAP) is a neuropeptide originally isolated from the hypothalamus, named for its high potency in stimulating adenylyl cyclase in pituitary cells. PACAP acts through the specific receptor PAC1-R to modulate the action of neurotransmitters, and additionally, to regulate cell viability via autocrine/intracrine mechanisms. Evidence has now been obtained that PACAP and multiple splice variants of PAC1-R are expressed in the rat cochlea. mRNA for PACAP precursor protein is found by reverse transcription-polymerase chain reaction (RT-PCR) in microdissected cochlear lateral wall, organ of Corti, and spiral ganglion subfractions. A specific pattern of expression of mRNA for PAC1-R splice variants, which mediate the response to PACAP, has been revealed by RT-PCR and cloning for the cochlear subfractions. Transcript for the short form of PAC1-R is found in all three subfractions. Four additional splice variants -- hop1, hop2, hip, and a novel hop1 splice variant -- are expressed in the lateral wall. For the amino terminus splice region of PAC1-R, a new splice variant has been detected in the organ of Corti, representing a deletion of the first 7 of 21 amino acids detected in the PAC1-R very-short sequence. Overall, from message determinations in cochlear subfractions, there are five PAC1-R splice variants in the lateral wall, two in the organ of Corti and one in the spiral ganglion, indicating multiple possible responses to PACAP and/or mechanisms to modulate the response to PACAP in the cochlea. The variety of PAC1-R splice variants expressed may reflect the diversity in cell function between subfractions that is modulated by PACAP. The neuropeptide and its specific receptor have been immunolocalized in the lateral wall, the source of the largest number of cochlear PAC1-R splice variants. The receptor was targeted by primary antibodies which would elicit immunoreactivity for all splice variants of PAC1-R detected with RT-PCR, and evidence has been obtained with Western blot analysis suggesting that PAC1-R is glycosylated in vivo. Within the lateral wall, PACAP and PAC1-R were immunolocalized primarily to the stria vascularis, with immunoreactivity for both neuropeptide and receptor increasing from the basal to apical cochlear turns. Within the stria, PACAP immunoreactivity was localized to the basolateral extensions of marginal cells, while PAC1-R was clearly associated with tight junctions between the marginal cells close to the endolymphatic compartment. In addition, evidence was obtained that PAC1-R was associated with endothelial cells of the capillaries in the stria vascularis. The large number of splice variants expressed, coupled to the specificity in linkage between PAC1-R splice variants and G-protein-coupled second messenger pathways, could provide a mechanism to closely modulate tight junction integrity in the stria vascularis, impacting the endolymphatic potential.
Collapse
Affiliation(s)
- M D Abu-Hamdan
- Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University School of Medicine, 261 Lande Medical Research Building, 540 East Canfield Avenue, Detroit, MI 48201, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Lutz EM, Ronaldson E, Shaw P, Johnson MS, Holland PJ, Mitchell R. Characterization of novel splice variants of the PAC1 receptor in human neuroblastoma cells: consequences for signaling by VIP and PACAP. Mol Cell Neurosci 2005; 31:193-209. [PMID: 16226889 DOI: 10.1016/j.mcn.2005.09.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2004] [Revised: 08/24/2005] [Accepted: 09/12/2005] [Indexed: 10/25/2022] Open
Abstract
Expression of VPAC and PAC1 receptor isoforms was determined in six neuroblastoma cell lines as well as in human embryonic and adult brain using reverse transcriptase PCR and quantitative PCR. PAC1 receptor splice variants missing a 21 amino acid sequence in the amino terminal domain were found to be the major receptor variants in the neuroblastoma cell lines and also were highly expressed in embryonic brain compared to adult brain. In four of the neuroblastoma cell lines, VIP and PACAP stimulated cyclic AMP production with different potencies and levels of maximal stimulation. High potency and greatest maximal stimulation of cyclic AMP for each peptide were recorded in SH-SY5Y cells, indicating the presence of high affinity VIP and PACAP receptors. Further characterization of specific VPAC and PAC1 receptor isoforms was carried out in the SH-SY5Y cell line, where along with known PAC1 receptor splice variants and the VPAC2 receptor, a number of novel PAC1 receptor splice variants were identified. The comparatively low level expression of the VPAC2 receptor along with the poor responsiveness of SH-SY5Y cells to the VPAC2 receptor-specific agonist Ro 25-1553 indicated that this receptor did not contribute significantly to the observed VIP responses. When the individual PAC1 receptor isoforms were expressed in COS 7 cells, the ability of VIP to activate cyclic AMP production was increased more than 50-fold at the majority of the PAC1 receptor variants lacking the 21 amino acid amino terminal domain sequence compared to those with the complete domain. Smaller changes were seen in the potency of PACAP-38. Similar trends were seen with inositol phosphate responses, where in each case agonist potencies were lower than for cyclic AMP production. The results of this study show that the combination of different amino terminal and intracellular loop 3 splicing variants in the PAC1 receptor dictates the ability of agonists, particularly VIP, to activate signaling pathways. VIP has considerably greater potency at most PAC1 receptors with the short amino terminal domain, and these therefore may mediate physiological effects of both VIP and PACAP. Furthermore, there may be a phenotypic switch in the expression of different PAC1 receptor amino terminal splice variants between embryonic and mature nervous system, indicating that regulation of this event may have an important role in VIP/PACAP function, particularly in the developing nervous system.
Collapse
Affiliation(s)
- E M Lutz
- Molecular Signalling Group, Department of Bioscience, University of Strathclyde, Royal College, 204 George St., Glasgow G1 1XW, UK.
| | | | | | | | | | | |
Collapse
|
27
|
Fradinger EA, Tello JA, Rivier JE, Sherwood NM. Characterization of four receptor cDNAs: PAC1, VPAC1, a novel PAC1 and a partial GHRH in zebrafish. Mol Cell Endocrinol 2005; 231:49-63. [PMID: 15713535 DOI: 10.1016/j.mce.2004.12.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2004] [Revised: 11/17/2004] [Accepted: 12/08/2004] [Indexed: 11/26/2022]
Abstract
To understand the role of growth hormone-releasing hormone (GHRH) and pituitary adenylate cyclase-activating polypeptide (PACAP) and to examine the functional significance of the co-expression of GHRH and PACAP in fish, their receptors were characterized in zebrafish. Three cDNAs encoding the PAC(1) receptor, the VPAC(1) receptor, and the partial GHRH receptor were identified from zebrafish. Functional expression of the PAC(1) and VPAC(1) receptors revealed that both are potently coupled to the adenylyl cyclase pathway, but only the PAC(1) receptor is coupled to the phospholipase C pathway. Transcripts for all three receptors were widely distributed, often in an overlapping pattern in the adult zebrafish. Also, one splice variant of the partial GHRH receptor and three splice variants of the PAC(1) receptor were identified from adult zebrafish. The long GHRH receptor transcript contained a 27 amino acid insert in transmembrane domain 5 encoding a premature stop codon leading to a truncated receptor protein. For the PAC(1) receptor, two of the splice variants corresponded to the hop1 and hop2 variants characterized in mammals. The third splice variant identified from the gill encoded a novel 107 bp insert containing a premature stop codon. Therefore, PACAP and GHRH have widespread, overlapping target sites suggesting a coordinated role for these hormones in evolution.
Collapse
MESH Headings
- Adenylyl Cyclases/metabolism
- Animals
- Base Sequence
- Codon, Nonsense
- DNA, Complementary
- Growth Hormone-Releasing Hormone/genetics
- Growth Hormone-Releasing Hormone/physiology
- Molecular Sequence Data
- RNA Splicing
- RNA, Messenger/analysis
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/physiology
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I
- Receptors, Vasoactive Intestinal Peptide/genetics
- Receptors, Vasoactive Intestinal Peptide/physiology
- Receptors, Vasoactive Intestinal Polypeptide, Type I
- Sequence Alignment
- Tissue Distribution
- Type C Phospholipases/metabolism
- Zebrafish
Collapse
Affiliation(s)
- Erica A Fradinger
- Department of Biology (EAF, JAT, NMS), University of Victoria, P.O. Box 3020 STN CSC, Victoria, BC, Canada V8W 3N5
| | | | | | | |
Collapse
|
28
|
Stamm S, Ben-Ari S, Rafalska I, Tang Y, Zhang Z, Toiber D, Thanaraj TA, Soreq H. Function of alternative splicing. Gene 2004; 344:1-20. [PMID: 15656968 DOI: 10.1016/j.gene.2004.10.022] [Citation(s) in RCA: 666] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Revised: 09/10/2004] [Accepted: 10/21/2004] [Indexed: 02/06/2023]
Abstract
Alternative splicing is one of the most important mechanisms to generate a large number of mRNA and protein isoforms from the surprisingly low number of human genes. Unlike promoter activity, which primarily regulates the amount of transcripts, alternative splicing changes the structure of transcripts and their encoded proteins. Together with nonsense-mediated decay (NMD), at least 25% of all alternative exons are predicted to regulate transcript abundance. Molecular analyses during the last decade demonstrate that alternative splicing determines the binding properties, intracellular localization, enzymatic activity, protein stability and posttranslational modifications of a large number of proteins. The magnitude of the effects range from a complete loss of function or acquisition of a new function to very subtle modulations, which are observed in the majority of cases reported. Alternative splicing factors regulate multiple pre-mRNAs and recent identification of physiological targets shows that a specific splicing factor regulates pre-mRNAs with coherent biological functions. Therefore, evidence is now accumulating that alternative splicing coordinates physiologically meaningful changes in protein isoform expression and is a key mechanism to generate the complex proteome of multicellular organisms.
Collapse
Affiliation(s)
- Stefan Stamm
- Institute for Biochemistry, University of Erlangen, Fahrstrasse 17, 91054 Erlangen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Delgado M, Pozo D, Ganea D. The significance of vasoactive intestinal peptide in immunomodulation. Pharmacol Rev 2004; 56:249-90. [PMID: 15169929 DOI: 10.1124/pr.56.2.7] [Citation(s) in RCA: 299] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
First identified by Said and Mutt some 30 years ago, the vasoactive intestinal peptide (VIP) was originally isolated as a vasodilator peptide. Subsequently, its biochemistry was elucidated, and within the 1st decade, their signature features as a neuropeptide became consolidated. It did not take long for these insights to permeate the field of immunology, out of which surprising new attributes for VIP were found in the last years. VIP is rapidly transforming into something more than a mere hormone. In evolving scientifically from a hormone to a novel agent for modifying immune function and possibly a cytokine-like molecule, VIP research has engaged many physiologists, molecular biologists, biochemists, endocrinologists, and pharmacologists and it is a paradigm to explore mutual interactions between neural and neuroendocrine links in health and disease. The aim of this review is firstly to update our knowledge of the cellular and molecular events relevant to VIP function on the immune system and secondly to gather together recent data that support its role as a type 2 cytokine. Recognition of the central functions VIP plays in cellular processes is focusing our attention on this "very important peptide" as exciting new candidates for therapeutic intervention and drug development.
Collapse
Affiliation(s)
- Mario Delgado
- Instituto de Parasitologia y Biomedicina "Lopez Neyra," Calle Ventanilla 11, Granada 18001, Spain.
| | | | | |
Collapse
|
30
|
Li M, Funahashi H, Mbikay M, Shioda S, Arimura A. Pituitary adenylate cyclase activating polypeptide-mediated intracrine signaling in the testicular germ cells. Endocrine 2004; 23:59-75. [PMID: 15034198 DOI: 10.1385/endo:23:1:59] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Revised: 01/26/2004] [Accepted: 01/26/2004] [Indexed: 11/11/2022]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is found not only in the brain, but is also abundantly expressed in the testicular germ cells. However, the physiological role of testicular PACAP remains unknown. Autoradiographic studies showed a considerable number of PACAP-specific binding sites in the seminiferous tubules. Immunohistochemistry demonstrated PAC1-receptor (R)-like immunoreactivity (li) in the cytoplasm of round spermatids, aggregated in the acrosome and coexpressed with PACAP-li. Spermatid-enriched fractions were examined for the subcellular localization of PACAP binding sites and PAC1-R-li. The highest levels of PACAP binding sites and PAC1-R-li were found in the cytosolic, followed by the nuclear, and the lowest levels in the membrane fraction. The testicular cytosolic PAC1-R-like protein showed a specific competitive inhibition in the radio-receptor assay for PACAP38 and 27, with a Ki of 0.069 nM and 0.179 nM, respectively. The addition of PACAP to the cytosol of spermatids only slightly activated adenylate cyclase, while it markedly stimulated the expression and activation of ERK-type mitogen-activated protein kinase (MAPK). In the PAC1-R-like protein-depleted cytosol, a PAC1-R-specific agonist, maxadilan, did not activate MAPK, but PACAP and VIP still did. Because VPAC2-R, which binds both PACAP and VIP, is expressed in the testis, the findings suggest that cytosolic VPAC2-R-like proteins are also present and coupled to MAPK. The MAPK activation does not seem to require a heterotrimeric G-protein. Because PACAP and its receptors are coexpressed in the cytoplasm of spermatids, endogenous PACAP may directly interact with the cytosolic PAC1-R-like protein without the ligand being released into the extracellular space. This possibility is supported by the observation that cytosolic endogenous PACAP in spermatids was co-immunoprecipitated with the cytosolic PAC1-R. This mechanism may be called "intracrine," and its physiological significance is discussed.
Collapse
Affiliation(s)
- Min Li
- U.S.-Japan Biomedical Research Laboratories, Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | | | | | | | | |
Collapse
|
31
|
Li M, Arimura A. Neuropeptides of the pituitary adenylate cyclase-activating polypeptide/vasoactive intestinal polypeptide/growth hormone-releasing hormone/secretin family in testis. Endocrine 2003. [PMID: 12721498 DOI: 10.1385/endo: 20: 3: 201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mammalian testicular development and the maintenance of spermatogenesis are hormone-dependent processes that are controlled by the pituitary gonadotropins and testosterone. Recent studies have demonstrated the presence of many neuropeptides and their receptors in the testis, suggesting that these peptides operate as local regulators of testicular germ cell development and function. Among these testicular neuropeptides, the peptides that belong to the pituitary adenylate cyclase-activating polypeptide (PACAP) family, particularly growth hormone-releasing hormone and secretin, appear to show some unique common features in terms of intratesticular localization and the time of expression during the spermatogenic cycle. However, their precise physiologic roles and mechanisms of action remain unknown. This review analyzes the available information on the functional interactions among the testicular cells that appear to be mediated by locally produced neuropeptides, with a special emphasis on the peptides of the PACAP family.
Collapse
Affiliation(s)
- Min Li
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA.
| | | |
Collapse
|
32
|
Abstract
During the past decade, proof of the principle that peptide receptors can be used successfully for in vivo targeting of human cancers has been provided. The molecular basis for targeting rests on the in vitro observation that peptide receptors can be expressed in large quantities in certain tumors. The clinical impact is at the diagnostic level: in vivo receptor scintigraphy uses radiolabeled peptides for the localization of tumors and their metastases. It is also at the therapeutic level: peptide receptor radiotherapy of tumors emerges as a serious treatment option. Peptides linked to cytotoxic agents are also considered for therapeutic applications. The use of nonradiolabeled, noncytotoxic peptide analogs for long-term antiproliferative treatment of tumors appears promising for only a few tumor types, whereas the symptomatic treatment of neuroendocrine tumors by somatostatin analogs is clearly successful. The present review summarizes and critically evaluates the in vitro data on peptide and peptide receptor expression in human cancers. These data are considered to be the molecular basis for peptide receptor targeting of tumors. The paradigmatic peptide somatostatin and its receptors are extensively reviewed in the light of in vivo targeting of neuroendocrine tumors. The role of the more recently described targeting peptides vasoactive intestinal peptide, gastrin-releasing peptide, and cholecystokinin/gastrin is discussed. Other emerging and promising peptides and their respective receptors, including neurotensin, substance P, and neuropeptide Y, are introduced. This information relates to established and potential clinical applications in oncology.
Collapse
Affiliation(s)
- Jean Claude Reubi
- Division of Cell Biology and Experimental Cancer Research, Institute of Pathology, University of Berne, CH-3010 Berne, Switzerland
| |
Collapse
|
33
|
Li M, Arimura A. Neuropeptides of the pituitary adenylate cyclase-activating polypeptide/vasoactive intestinal polypeptide/growth hormone-releasing hormone/secretin family in testis. Endocrine 2003; 20:201-14. [PMID: 12721498 DOI: 10.1385/endo:20:3:201] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2002] [Revised: 11/25/2002] [Accepted: 12/09/2002] [Indexed: 12/12/2022]
Abstract
Mammalian testicular development and the maintenance of spermatogenesis are hormone-dependent processes that are controlled by the pituitary gonadotropins and testosterone. Recent studies have demonstrated the presence of many neuropeptides and their receptors in the testis, suggesting that these peptides operate as local regulators of testicular germ cell development and function. Among these testicular neuropeptides, the peptides that belong to the pituitary adenylate cyclase-activating polypeptide (PACAP) family, particularly growth hormone-releasing hormone and secretin, appear to show some unique common features in terms of intratesticular localization and the time of expression during the spermatogenic cycle. However, their precise physiologic roles and mechanisms of action remain unknown. This review analyzes the available information on the functional interactions among the testicular cells that appear to be mediated by locally produced neuropeptides, with a special emphasis on the peptides of the PACAP family.
Collapse
Affiliation(s)
- Min Li
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA.
| | | |
Collapse
|
34
|
Bouschet T, Perez V, Fernandez C, Bockaert J, Eychene A, Journot L. Stimulation of the ERK pathway by GTP-loaded Rap1 requires the concomitant activation of Ras, protein kinase C, and protein kinase A in neuronal cells. J Biol Chem 2003; 278:4778-85. [PMID: 12473665 DOI: 10.1074/jbc.m204652200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The small GTPases Ras or Rap1 were suggested to mediate the stimulatory effect of some G protein-coupled receptors on ERK activity in neuronal cells. Accordingly, we reported here that pituitary adenylate cyclase-activating polypeptide (PACAP), whose G protein-coupled receptor triggers neuronal differentiation of the PC12 cell line via ERK1/2 activation, transiently activated Ras and induced the sustained GTP loading of Rap1. Ras mediated peak stimulation of ERK by PACAP, whereas Rap1 was necessary for the sustained activation phase. However, PACAP-induced GTP-loading of Rap1 was not sufficient to account for ERK activation by PACAP because 1) PACAP-elicited Rap1 GTP-loading depended only on phospholipase C, whereas maximal stimulation of ERK by PACAP also required the activity of protein kinase A (PKA), protein kinase C (PKC), and calcium-dependent signaling; and 2) constitutively active mutants of Rap1, Rap1A-V12, and Rap1B-V12 only minimally stimulated the ERK pathway compared with Ras-V12. The effect of Rap1A-V12 was dramatically potentiated by the concurrent activation of PKC, the cAMP pathway, and Ras, and this potentiation was blocked by dominant-negative mutants of Ras and Raf. Thus, this set of data indicated that GPCR-elicited GTP loading of Rap1 was not sufficient to stimulate efficiently ERK in PC12 cells and required the permissive co-stimulation of PKA, PKC, or Ras.
Collapse
Affiliation(s)
- Tristan Bouschet
- UPR 9023 CNRS, CCIPE-141, Rue de la Cardonille, 34094 Montpellier Cedex, France
| | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Molecular Pharmacology and Structure-Function Analysis of PACAP/Vip Receptors. PITUITARY ADENYLATE CYCLASE-ACTIVATING POLYPEPTIDE 2003. [DOI: 10.1007/978-1-4615-0243-2_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
37
|
The Biological Significance of PACAP and PACAP Receptors in Human Tumors: From Cell Lines to Cancers. PITUITARY ADENYLATE CYCLASE-ACTIVATING POLYPEPTIDE 2003. [DOI: 10.1007/978-1-4615-0243-2_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
Moretti C, Mencacci C, Frajese GV, Cerilli M, Frajese G. Growth hormone-releasing hormone and pituitary adenylate cyclase-activating polypeptide in the reproductive system. Trends Endocrinol Metab 2002; 13:428-35. [PMID: 12431839 DOI: 10.1016/s1043-2760(02)00632-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Growth hormone-releasing hormone (GHRH) and pituitary adenylate cyclase-activating polypeptide (PACAP) are both members of the glucagon superfamily that, with gonadotropins, act at central and peripheral levels as paracrine and autocrine coregulators of reproductive function. GHRH and PACAP are ancient peptides. Their original forms (both 27 amino acids long) were encoded by a single ancestral gene, several duplications of which led to the genes that encode the neuropeptides of the glucagon superfamily. In the male and female reproductive tracts, GHRH and PACAP interact with a subset of G protein-coupled receptors that are structurally similar to the PACAP receptor and variants of the vasoactive intestinal peptide receptor, and share several biological actions. These are related mainly to the modulation of cAMP-dependent and other signal transduction pathways in several cells of the pituitary-gonadal axis. The recent discovery that antagonists of GHRH and PACAP suppress the growth of human cancer cell lines that are derived from reproductive tissues indicates the potential importance of these peptides as local regulators of cell division, cell cycle arrest, differentiation and cell death.
Collapse
MESH Headings
- Animals
- Evolution, Molecular
- Female
- Gene Expression Regulation
- Genital Neoplasms, Female/physiopathology
- Genital Neoplasms, Male/physiopathology
- Gonads/physiology
- Growth Hormone-Releasing Hormone/genetics
- Growth Hormone-Releasing Hormone/metabolism
- Humans
- Hypothalamo-Hypophyseal System/physiology
- Male
- Mammals
- Neuropeptides/genetics
- Neuropeptides/metabolism
- Neurotransmitter Agents/genetics
- Neurotransmitter Agents/metabolism
- Pituitary Adenylate Cyclase-Activating Polypeptide
- Receptors, Neuropeptide/genetics
- Receptors, Neuropeptide/metabolism
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide
- Receptors, Pituitary Hormone/genetics
- Receptors, Pituitary Hormone/metabolism
- Receptors, Pituitary Hormone-Regulating Hormone/genetics
- Receptors, Pituitary Hormone-Regulating Hormone/metabolism
- Reproduction/genetics
- Reproduction/physiology
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Costanzo Moretti
- Dept of Internal Medicine, Unit of Endocrinology, University of Tor Vergata, Via di Tor Vergata 135, 00133 Rome, Italy.
| | | | | | | | | |
Collapse
|
39
|
Ajpru S, McArthur AJ, Piggins HD, Sugden D. Identification of PAC1 receptor isoform mRNAs by real-time PCR in rat suprachiasmatic nucleus. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 105:29-37. [PMID: 12399105 DOI: 10.1016/s0169-328x(02)00387-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The pituitary adenylate cyclase-activating polypeptide (PACAP) has been implicated in the photic resetting of the rodent circadian clock in the suprachiasmatic nucleus (SCN). PACAP can exert its effects via VPAC1, VPAC2 and PAC1 G-protein coupled receptors. PAC1 and VPAC2, but not VPAC1, mRNA is expressed in rat SCN. A variety of PAC1 receptor splice variants have been described showing differences in ligand binding affinity and selectivity, G-protein coupling and ability to activate signal transduction pathways. The present experiments used PCR with isoform specific primers to determine which PAC1 variants are expressed in rat SCN. The PAC1(null) isoform and a variant containing a single 28-amino acid insert in the third intracellular (IC3) loop (hop1/2) were detected. No other IC3 variants (hip, hip-hop), N-terminal variants (PAC1(short), PAC1(very short) and PAC1(3a)) or the variant differing in transmembrane II and IV (PAC1TM4) were detected in SCN obtained at any time of day. A quantitative real-time PCR assay was established which measured combined expression of the PAC1(null/hop) variants in rat SCN during a 12:12-h light:dark (L:D) cycle. There was no significant variation of PAC1 mRNA expression (PAC1(null)+PAC1(hop)) with time of day. Nor was there a significant difference in the proportion of these two variants with time of day. These results indicate that the phase-dependency of the actions of PACAP on SCN firing and circadian behaviour are not mediated by changes in the level of expression of PAC1 receptor mRNA, nor by phase-dependent expression of PAC1 receptor variants with altered ligand binding, G-protein coupling or signalling characteristics.
Collapse
MESH Headings
- Alternative Splicing/genetics
- Animals
- Circadian Rhythm/genetics
- Gene Expression Regulation/physiology
- Male
- Neuropeptides/metabolism
- Pituitary Adenylate Cyclase-Activating Polypeptide
- Protein Isoforms/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I
- Receptors, Pituitary Hormone/genetics
- Receptors, Vasoactive Intestinal Peptide, Type II
- Receptors, Vasoactive Intestinal Polypeptide, Type I
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Suprachiasmatic Nucleus/metabolism
- Time Factors
Collapse
Affiliation(s)
- Supaporn Ajpru
- Endocrinology and Reproduction Research Group, GKT School of Biomedical Sciences, Kings College London, London SE1 1UL, UK
| | | | | | | |
Collapse
|
40
|
Alexandre D, Vaudry H, Grumolato L, Turquier V, Fournier A, Jégou S, Anouar Y. Novel splice variants of type I pituitary adenylate cyclase-activating polypeptide receptor in frog exhibit altered adenylate cyclase stimulation and differential relative abundance. Endocrinology 2002; 143:2680-92. [PMID: 12072402 DOI: 10.1210/endo.143.7.8880] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) exerts its various effects through activation of two types of G protein-coupled receptors, a receptor with high affinity for PACAP named PAC1-R and two receptors exhibiting similar affinity for both PACAP and vasoactive intestinal polypeptide named VPAC1-R and VPAC2-R. Here, we report the characterization of PAC1-R and novel splice variants in the frog Rana ridibunda. The frog PAC1-R has 78% homology with human PAC1-R and is highly expressed in the central nervous system. Two splice variants of the frog receptor that display additional amino acid cassettes in the third intracellular loop were characterized. PAC1-R25 carries a 25-amino acid insertion that matches the hop cassette of the mammalian receptor, whereas PAC1-R41 carries a cassette with no homology to any mammalian PAC1-R variant. A third splice variant of PAC1-R, exhibiting a completely different intracellular C-terminal domain, named PAC1-Rmc has also been identified. Determination of cAMP formation in cells transfected with the cloned receptors showed that PACAP activated PAC1-R, PAC1-R25, and PAC1-R41 with similar potency. In contrast, PACAP failed to stimulate adenylate cyclase in cells transfected with PAC1-Rmc. Fusion of PAC1-R or PAC1-Rmc with the green fluorescent protein revealed that both receptors are expressed and targeted to the plasma membrane in transfected cells. The different PAC1-R variants are highly expressed in the frog brain and spinal cord and to a lesser extent in peripheral tissues, where only certain isoforms could be detected. The present data indicate that in frog, PACAP may act through different PAC1-R splice variants that differ in their G(s) protein coupling and their abundance in various tissues.
Collapse
MESH Headings
- Adenylyl Cyclases/physiology
- Alternative Splicing/genetics
- Amino Acid Sequence
- Animals
- Blotting, Northern
- Blotting, Southern
- Brain Chemistry/genetics
- Cloning, Molecular
- Cyclic AMP/metabolism
- In Situ Hybridization
- Microscopy, Confocal
- Molecular Sequence Data
- Neuropeptides/pharmacology
- Neuropeptides/physiology
- Pituitary Adenylate Cyclase-Activating Polypeptide
- Plasmids/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Rana ridibunda
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I
- Receptors, Pituitary Hormone/drug effects
- Receptors, Pituitary Hormone/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Tissue Distribution
- Transfection
Collapse
Affiliation(s)
- David Alexandre
- European Institute for Peptide Research (IFRMP 23), Laboratory of Cellular and Molecular Neuroendocrinology, Institut National de la Santé et de la Recherche Médicale, University of Rouen, 76821 Mont Saint Aignan, France
| | | | | | | | | | | | | |
Collapse
|
41
|
Schmidt M, Evellin S, Weernink PA, von Dorp F, Rehmann H, Lomasney JW, Jakobs KH. A new phospholipase-C-calcium signalling pathway mediated by cyclic AMP and a Rap GTPase. Nat Cell Biol 2001; 3:1020-4. [PMID: 11715024 DOI: 10.1038/ncb1101-1020] [Citation(s) in RCA: 260] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Stimulation of phosphoinositide-hydrolysing phospholipase C (PLC) generating inositol-1,4,5-trisphosphate is a major calcium signalling pathway used by a wide variety of membrane receptors, activating distinct PLC-beta or PLC-gamma isoforms. Here we report a new PLC and calcium signalling pathway that is triggered by cyclic AMP (cAMP) and mediated by a small GTPase of the Rap family. Activation of the adenylyl cyclase-coupled beta2-adrenoceptor expressed in HEK-293 cells or the endogenous receptor for prostaglandin E1 in N1E-115 neuroblastoma cells induced calcium mobilization and PLC stimulation, seemingly caused by cAMP formation, but was independent of protein kinase A (PKA). We provide evidence that these receptor responses are mediated by a Rap GTPase, specifically Rap2B, activated by a guanine-nucleotide-exchange factor (Epac) regulated by cAMP, and involve the recently identified PLC-epsilon isoform.
Collapse
Affiliation(s)
- M Schmidt
- Institut für Pharmakologie, Universitätsklinikum Essen, 45122 Essen, Germany.
| | | | | | | | | | | | | |
Collapse
|