1
|
Boutin L, Roger E, Gayat E, Depret F, Blot-Chabaud M, Chadjichristos CE. The role of CD146 in renal disease: from experimental nephropathy to clinics. J Mol Med (Berl) 2024; 102:11-21. [PMID: 37993561 DOI: 10.1007/s00109-023-02392-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/10/2023] [Accepted: 10/24/2023] [Indexed: 11/24/2023]
Abstract
Vascular endothelial dysfunction is a major risk factor in the development of renal diseases. Recent studies pointed out a major interest for the inter-endothelial junction protein CD146, as its expression is modulated during renal injury. Indeed, some complex mechanisms involving this adhesion molecule and its multiple ligands are observed in a large number of renal diseases in fundamental or clinical research. The purpose of this review is to summarize the most recent literature on the role of CD146 in renal pathophysiology, from experimental nephropathy to clinical trials.
Collapse
Affiliation(s)
- Louis Boutin
- FHU PROMICE AP-HP, Saint Louis and DMU Parabol, Critical Care Medicine and Burn Unit, AP-HP, Department of Anesthesiology, University Paris Cité, 75010, Paris, France
- INSERM, UMR-942, MASCOT, Cardiovascular Markers in Stress Condition, University Paris Cité, 75010, Paris, France
- INSERM, UMR-S1155, Bâtiment Recherche, Tenon Hospital, 4 rue de la Chine, 75020, Paris, France
| | - Elena Roger
- INSERM, UMR-S1155, Bâtiment Recherche, Tenon Hospital, 4 rue de la Chine, 75020, Paris, France
- Faculty of Medicine, Sorbonne University, 75013, Paris, France
| | - Etienne Gayat
- FHU PROMICE AP-HP, Saint Louis and DMU Parabol, Critical Care Medicine and Burn Unit, AP-HP, Department of Anesthesiology, University Paris Cité, 75010, Paris, France
- INSERM, UMR-942, MASCOT, Cardiovascular Markers in Stress Condition, University Paris Cité, 75010, Paris, France
| | - François Depret
- FHU PROMICE AP-HP, Saint Louis and DMU Parabol, Critical Care Medicine and Burn Unit, AP-HP, Department of Anesthesiology, University Paris Cité, 75010, Paris, France
- INSERM, UMR-942, MASCOT, Cardiovascular Markers in Stress Condition, University Paris Cité, 75010, Paris, France
| | | | - Christos E Chadjichristos
- INSERM, UMR-S1155, Bâtiment Recherche, Tenon Hospital, 4 rue de la Chine, 75020, Paris, France.
- Faculty of Medicine, Sorbonne University, 75013, Paris, France.
| |
Collapse
|
2
|
Sugiyama-Nakagiri Y, Yamashita S, Taniguchi Y, Shimono C, Sekiguchi K. Laminin fragments conjugated with perlecan's growth factor-binding domain differentiate human induced pluripotent stem cells into skin-derived precursor cells. Sci Rep 2023; 13:14556. [PMID: 37666868 PMCID: PMC10477235 DOI: 10.1038/s41598-023-41701-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 08/30/2023] [Indexed: 09/06/2023] Open
Abstract
Deriving stem cells to regenerate full-thickness human skin is important for treating skin disorders without invasive surgical procedures. Our previous protocol to differentiate human induced pluripotent stem cells (iPSCs) into skin-derived precursor cells (SKPs) as a source of dermal stem cells employs mouse fibroblasts as feeder cells and is therefore unsuitable for clinical use. Herein, we report a feeder-free method for differentiating iPSCs into SKPs by customising culture substrates. We immunohistochemically screened for laminins expressed in dermal papillae (DP) and explored the conditions for inducing the differentiation of iPSCs into SKPs on recombinant laminin E8 (LM-E8) fragments with or without conjugation to domain I of perlecan (PDI), which binds to growth factors through heparan sulphate chains. Several LM-E8 fragments, including those of LM111, 121, 332, 421, 511, and 521, supported iPSC differentiation into SKPs without PDI conjugation. However, the SKP yield was significantly enhanced on PDI-conjugated LM-E8 fragments. SKPs induced on PDI-conjugated LM111-E8 fragments retained the gene expression patterns characteristic of SKPs, as well as the ability to differentiate into adipocytes, osteocytes, and Schwann cells. Thus, PDI-conjugated LM-E8 fragments are promising agents for inducing iPSC differentiation into SKPs in clinical settings.
Collapse
Affiliation(s)
| | - Shiho Yamashita
- Kao Corporation, 2602, Akabane Ichikai-Machi, Haga-gun, Tochigi, 321-3497, Japan
| | - Yukimasa Taniguchi
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Chisei Shimono
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Kiyotoshi Sekiguchi
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
3
|
Chaudhary PK, Kim S, Kim S. Shedding Light on the Cell Biology of Platelet-Derived Extracellular Vesicles and Their Biomedical Applications. Life (Basel) 2023; 13:1403. [PMID: 37374185 DOI: 10.3390/life13061403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/01/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
EVs are membranous subcellular structures originating from various cells, including platelets which consist of biomolecules that can modify the target cell's pathophysiological functions including inflammation, cell communication, coagulation, and metastasis. EVs, which are known to allow the transmission of a wide range of molecules between cells, are gaining popularity in the fields of subcellular treatment, regenerative medicine, and drug delivery. PEVs are the most abundant EVs in circulation, being produced by platelet activation, and are considered to have a significant role in coagulation. PEV cargo is extremely diverse, containing lipids, proteins, nucleic acids, and organelles depending on the condition that induced their release and can regulate a wide range of biological activities. PEVs, unlike platelets, can overcome tissue barriers, allowing platelet-derived contents to be transferred to target cells and organs that platelets cannot reach. Their isolation, characterization, and therapeutic efficacy, on the other hand, are poorly understood. This review summarizes the technical elements of PEV isolation and characterization methods as well as the pathophysiological role of PEVs, including therapeutic potential and translational possibility in diverse disciplines.
Collapse
Affiliation(s)
- Preeti Kumari Chaudhary
- Laboratory of Veterinary Pathology and Platelet Signaling, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Sanggu Kim
- Laboratory of Veterinary Pathology and Platelet Signaling, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Soochong Kim
- Laboratory of Veterinary Pathology and Platelet Signaling, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
4
|
McKee KK, Yurchenco PD. Dual transgene amelioration of Lama2-null muscular dystrophy. Matrix Biol 2023; 118:1-15. [PMID: 36878377 PMCID: PMC10771811 DOI: 10.1016/j.matbio.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/14/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Null mutations of the Lama2-gene cause a severe congenital muscular dystrophy and associated neuropathy. In the absence of laminin-α2 (Lmα2) there is a compensatory replacement by Lmα4, a subunit that lacks the polymerization and α-dystroglycan (αDG)-binding properties of Lmα2. The dystrophic phenotype in the dy3K/dy3K Lama2-/- mouse were evaluated with transgenes driving expression of two synthetic laminin-binding linker proteins. Transgenic muscle-specific expression of αLNNd, a chimeric protein that enables α4-laminin polymerization, and miniagrin (mag), a protein that increases laminin binding to the receptor αDG, separately improved median mouse survival two-fold. The double transgenes (DT) improved mean survival three-fold with increases in overall body weight, muscle size, and grip strength, but, given absence of neuronal expression, did not prevent hindlimb paresis. Muscle improvements included increased myofiber size and number and reduced fibrosis. Myofiber hypertrophy with increased mTOR and Akt phosphorylation were characteristics of mag-dy3K/dy3K and DT-dy3K/dy3K muscle. Elevations of matrix-bound α4-, β1 and γ1 laminin subunits were detected in muscle extracts and immunostained sections in response to DT expression. Collectively, these findings reveal a complimentary polymerization and αDG-binding benefit to Lama2-/- mouse muscle largely mediated through modified laminin-411.
Collapse
Affiliation(s)
- Karen K McKee
- Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Peter D Yurchenco
- Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
5
|
Huang WY, Otaka A, Fujita S, Yamaoka T. Bioactive peptide-bearing polylactic acid fibers as a model of the brain tumor-stimulating microenvironment. Polym J 2023. [DOI: 10.1038/s41428-022-00743-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
6
|
Nirwane A, Yao Y. Cell-specific expression and function of laminin at the neurovascular unit. J Cereb Blood Flow Metab 2022; 42:1979-1999. [PMID: 35796497 PMCID: PMC9580165 DOI: 10.1177/0271678x221113027] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/08/2022] [Accepted: 06/19/2022] [Indexed: 11/17/2022]
Abstract
Laminin, a major component of the basal lamina (BL), is a heterotrimeric protein with many isoforms. In the CNS, laminin is expressed by almost all cell types, yet different cells synthesize distinct laminin isoforms. By binding to its receptors, laminin exerts a wide variety of important functions. However, due to the reciprocal and cell-specific expression of laminin in different cells at the neurovascular unit, its functions in blood-brain barrier (BBB) maintenance and BBB repair after injury are not fully understood. In this review, we focus on the expression and functions of laminin and its receptors in the neurovascular unit under both physiological and pathological conditions. We first briefly introduce the structures of laminin and its receptors. Next, the expression and functions of laminin and its receptors in the CNS are summarized in a cell-specific manner. Finally, we identify the knowledge gap in the field and discuss key questions that need to be answered in the future. Our goal is to provide a comprehensive overview on cell-specific expression of laminin and its receptors in the CNS and their functions on BBB integrity.
Collapse
Affiliation(s)
- Abhijit Nirwane
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Yao Yao
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
7
|
Chaudhary PK, Kim S, Kim S. An Insight into Recent Advances on Platelet Function in Health and Disease. Int J Mol Sci 2022; 23:ijms23116022. [PMID: 35682700 PMCID: PMC9181192 DOI: 10.3390/ijms23116022] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
Platelets play a variety of roles in vascular biology and are best recognized as primary hemostasis and thrombosis mediators. Platelets have a large number of receptors and secretory molecules that are required for platelet functionality. Upon activation, platelets release multiple substances that have the ability to influence both physiological and pathophysiological processes including inflammation, tissue regeneration and repair, cancer progression, and spreading. The involvement of platelets in the progression and seriousness of a variety of disorders other than thrombosis is still being discovered, especially in the areas of inflammation and the immunological response. This review represents an integrated summary of recent advances on the function of platelets in pathophysiology that connects hemostasis, inflammation, and immunological response in health and disease and suggests that antiplatelet treatment might be used for more than only thrombosis.
Collapse
|
8
|
Ljubimov VA, Ramesh A, Davani S, Danielpour M, Breunig JJ, Black KL. Neurosurgery at the crossroads of immunology and nanotechnology. New reality in the COVID-19 pandemic. Adv Drug Deliv Rev 2022; 181:114033. [PMID: 34808227 PMCID: PMC8604570 DOI: 10.1016/j.addr.2021.114033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/19/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022]
Abstract
Neurosurgery as one of the most technologically demanding medical fields rapidly adapts the newest developments from multiple scientific disciplines for treating brain tumors. Despite half a century of clinical trials, survival for brain primary tumors such as glioblastoma (GBM), the most common primary brain cancer, or rare ones including primary central nervous system lymphoma (PCNSL), is dismal. Cancer therapy and research have currently shifted toward targeted approaches, and personalized therapies. The orchestration of novel and effective blood-brain barrier (BBB) drug delivery approaches, targeting of cancer cells and regulating tumor microenvironment including the immune system are the key themes of this review. As the global pandemic due to SARS-CoV-2 virus continues, neurosurgery and neuro-oncology must wrestle with the issues related to treatment-related immune dysfunction. The selection of chemotherapeutic treatments, even rare cases of hypersensitivity reactions (HSRs) that occur among immunocompromised people, and number of vaccinations they have to get are emerging as a new chapter for modern Nano neurosurgery.
Collapse
Affiliation(s)
- Vladimir A Ljubimov
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | | | | | - Moise Danielpour
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Joshua J Breunig
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Keith L Black
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
9
|
Kang M, Yao Y. Laminin regulates oligodendrocyte development and myelination. Glia 2021; 70:414-429. [PMID: 34773273 DOI: 10.1002/glia.24117] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 11/08/2022]
Abstract
Oligodendrocytes are the cells that myelinate axons and provide trophic support to neurons in the CNS. Their dysfunction has been associated with a group of disorders known as demyelinating diseases, such as multiple sclerosis. Oligodendrocytes are derived from oligodendrocyte precursor cells, which differentiate into premyelinating oligodendrocytes and eventually mature oligodendrocytes. The development and function of oligodendrocytes are tightly regulated by a variety of molecules, including laminin, a major protein of the extracellular matrix. Accumulating evidence suggests that laminin actively regulates every aspect of oligodendrocyte biology, including survival, migration, proliferation, differentiation, and myelination. How can laminin exert such diverse functions in oligodendrocytes? It is speculated that the distinct laminin isoforms, laminin receptors, and/or key signaling molecules expressed in oligodendrocytes at different developmental stages are the reasons. Understanding molecular targets and signaling pathways unique to each aspect of oligodendrocyte biology will enable more accurate manipulation of oligodendrocyte development and function, which may have implications in the therapies of demyelinating diseases. Here in this review, we first introduce oligodendrocyte biology, followed by the expression of laminin and laminin receptors in oligodendrocytes and other CNS cells. Next, the functions of laminin in oligodendrocyte biology, including survival, migration, proliferation, differentiation, and myelination, are discussed in detail. Last, key questions and challenges in the field are discussed. By providing a comprehensive review on laminin's roles in OL lineage cells, we hope to stimulate novel hypotheses and encourage new research in the field.
Collapse
Affiliation(s)
- Minkyung Kang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Yao Yao
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
10
|
Taniguchi Y, Nagano C, Sekiguchi K, Tashiro A, Sugawara N, Sakaguchi H, Umeda C, Aoto Y, Ishiko S, Rossanti R, Sakakibara N, Horinouchi T, Yamamura T, Kondo A, Nagai S, Nagase H, Iijima K, Miner JH, Nozu K. Clear Evidence of LAMA5 Gene Biallelic Truncating Variants Causing Infantile Nephrotic Syndrome. KIDNEY360 2021; 2:1968-1978. [PMID: 35419533 PMCID: PMC8986055 DOI: 10.34067/kid.0004952021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/15/2021] [Indexed: 02/04/2023]
Abstract
Background Pathogenic variants in single genes encoding podocyte-associated proteins have been implicated in about 30% of steroid-resistant nephrotic syndrome (SRNS) patients in children. However, LAMA5 gene biallelic variants have been identified in only seven patients so far, and most are missense variants of unknown significance. Furthermore, no functional analysis had been conducted for all but one of these variants. Here, we report three patients with LAMA5 gene biallelic truncating variants manifesting infantile nephrotic syndrome, and one patient with SRNS with biallelic LAMA5 missense variants. Methods We conducted comprehensive gene screening of Japanese patients with severe proteinuria. With the use of targeted next-generation sequencing, 62 podocyte-related genes were screened in 407 unrelated patients with proteinuria. For the newly discovered LAMA5 variants, we conducted in vitro heterotrimer formation assays. Results Biallelic truncating variants in the LAMA5 gene (NM_005560) were detected in three patients from two families. All patients presented with proteinuria within 6 months of age. Patients 1 and 2 were siblings possessing a nonsense variant (c.9232C>T, p.[Arg3078*]) and a splice site variant (c.1282 + 1G>A) that led to exon 9 skipping and a frameshift. Patient 3 had a remarkable irregular contour of the glomerular basement membrane. She was subsequently found to have a nonsense variant (c.8185C>T, p.[Arg2720*]) and the same splice site variant in patients 1 and 2. By in vitro heterotrimer formation assays, both truncating variants produced smaller laminin α5 proteins that nevertheless formed trimers with laminin β1 and γ1 chains. Patient 4 showed SRNS at the age of 8 years, and carried compound heterozygous missense variants (c.1493C>T, p.[Ala498Val] and c.8399G>A, p.[Arg2800His]). Conclusions Our patients showed clear evidence of biallelic LAMA5 truncating variants causing infantile nephrotic syndrome. We also discerned the clinical and pathologic characteristics observed in LAMA5-related nephropathy. LAMA5 variant screening should be performed in patients with congenital/infantile nephrotic syndrome.
Collapse
Affiliation(s)
- Yukimasa Taniguchi
- Division of Matrixome Research and Application, Osaka University, Osaka, Japan
| | - China Nagano
- Department of Pediatrics, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Kiyotoshi Sekiguchi
- Division of Matrixome Research and Application, Osaka University, Osaka, Japan
| | - Atsushi Tashiro
- Department of Pediatrics, Japan Community Health Care Organization Chukyo Hospital, Aichi, Japan
| | - Noriko Sugawara
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Haruhide Sakaguchi
- Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan
| | - Chisato Umeda
- Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuya Aoto
- Department of Pediatrics, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Shinya Ishiko
- Department of Pediatrics, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Rini Rossanti
- Department of Pediatrics, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Nana Sakakibara
- Department of Pediatrics, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Tomoko Horinouchi
- Department of Pediatrics, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Tomohiko Yamamura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Atsushi Kondo
- Department of Pediatrics, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Sadayuki Nagai
- Department of Pediatrics, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Hiroaki Nagase
- Department of Pediatrics, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Kazumoto Iijima
- Hyogo Prefectural Kobe Children’s Hospital, Hyogo, Japan,Department of Advanced Pediatric Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Jeffrey H. Miner
- Division of Nephrology, Washington University School of Medicine, St. Louis, Missouri
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Hyogo, Japan
| |
Collapse
|
11
|
Iwamuro M, Shiraha H, Oyama A, Uchida D, Horiguchi S, Okada H. Laminin-411 and -511 Modulate the Proliferation, Adhesion, and Morphology of Gastric Cancer Cells. Cell Biochem Biophys 2021; 79:407-418. [PMID: 33629255 DOI: 10.1007/s12013-021-00972-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2021] [Indexed: 11/24/2022]
Abstract
Laminins (Ln), a type of extracellular matrix glycoprotein, are key regulators of cellular behavior. Recent work revealed that in various tumor cell lines, laminin isoforms influence specific responses, such as cell anchorage, survival, proliferation, migration, organization, and specialization. The contribution of laminin isoforms to the function of gastric cancer cells, however, remain unclear. Here, we revealed that in gastric cancer, laminin isoforms Ln411, Ln421, Ln511, and Ln521 promote cellular proliferation; Ln511 and Ln521 increase cell cytoplasmic volume; Ln511 hampers invadopodia formation in some cells, Ln511 enables prompt adhesion of cells to plates, and Ln411 and Ln511 do not alter the gastric cancer stem cell markers CD44 and Lgr5. These results indicate that Ln411 and Ln511 dynamically modulate the proliferation, adhesion, and morphology of gastric cancer cells in different ways that are independent of stem cell properties. In particular, Ln511 showed a high affinity for gastric cancer cells. Our observations broaden the possible options for controlling cancer cell progression and metastasis by modulating laminin-integrin interactions.
Collapse
Affiliation(s)
- Masaya Iwamuro
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan.
| | - Hidenori Shiraha
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Atsushi Oyama
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Daisuke Uchida
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Shigeru Horiguchi
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Hiroyuki Okada
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| |
Collapse
|
12
|
Li L, Song J, Chuquisana O, Hannocks MJ, Loismann S, Vogl T, Roth J, Hallmann R, Sorokin L. Endothelial Basement Membrane Laminins as an Environmental Cue in Monocyte Differentiation to Macrophages. Front Immunol 2020; 11:584229. [PMID: 33193400 PMCID: PMC7662115 DOI: 10.3389/fimmu.2020.584229] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/08/2020] [Indexed: 12/01/2022] Open
Abstract
Monocyte differentiation to macrophages is triggered by migration across the endothelial barrier, which is constituted by both endothelial cells and their underlying basement membrane. We address here the role of the endothelial basement membrane laminins (laminins 411 and 511) in this monocyte to macrophage switch. Chimeric mice carrying CX3CR1-GFP bone marrow were employed to track CCL2-induced monocyte extravasation in a cremaster muscle model using intravital microscopy, revealing faster extravasation in mice lacking endothelial laminin 511 (Tek-cre::Lama5−/−) and slower extravasation in mice lacking laminin 411 (Lama4−/−). CX3CR1-GFPlow extravasating monocytes were found to have a higher motility at laminin 511 low sites and to preferentially exit vessels at these sites. However, in vitro experiments reveal that this is not due to effects of laminin 511 on monocyte migration mode nor on the tightness of the endothelial barrier. Rather, using an intestinal macrophage replenishment model and in vitro differentiation studies, we demonstrate that laminin 511, together with the attached endothelium, promote monocyte differentiation to macrophages. Macrophage differentiation is associated with a change in integrin profile, permitting differentiating macrophages to distinguish between laminin 511 high and low areas and to preferentially migrate across laminin 511 low sites. These studies highlight the endothelial basement membrane as a critical site for monocyte differentiation to macrophages, which may be relevant to the differentiation of other cells at vascular niches.
Collapse
Affiliation(s)
- Lixia Li
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Interfaculty Centre, University of Muenster, Muenster, Germany
| | - Jian Song
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Interfaculty Centre, University of Muenster, Muenster, Germany
| | - Omar Chuquisana
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Interfaculty Centre, University of Muenster, Muenster, Germany
| | - Melanie-Jane Hannocks
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Interfaculty Centre, University of Muenster, Muenster, Germany
| | - Sophie Loismann
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Interfaculty Centre, University of Muenster, Muenster, Germany
| | - Thomas Vogl
- Cells-in-Motion Interfaculty Centre, University of Muenster, Muenster, Germany.,Institute of Immunology, University of Muenster, Muenster, Germany
| | - Johannes Roth
- Cells-in-Motion Interfaculty Centre, University of Muenster, Muenster, Germany.,Institute of Immunology, University of Muenster, Muenster, Germany
| | - Rupert Hallmann
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Interfaculty Centre, University of Muenster, Muenster, Germany
| | - Lydia Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Interfaculty Centre, University of Muenster, Muenster, Germany
| |
Collapse
|
13
|
Wang Z, Xu Q, Zhang N, Du X, Xu G, Yan X. CD146, from a melanoma cell adhesion molecule to a signaling receptor. Signal Transduct Target Ther 2020; 5:148. [PMID: 32782280 PMCID: PMC7421905 DOI: 10.1038/s41392-020-00259-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/14/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022] Open
Abstract
CD146 was originally identified as a melanoma cell adhesion molecule (MCAM) and highly expressed in many tumors and endothelial cells. However, the evidence that CD146 acts as an adhesion molecule to mediate a homophilic adhesion through the direct interactions between CD146 and itself is still lacking. Recent evidence revealed that CD146 is not merely an adhesion molecule, but also a cellular surface receptor of miscellaneous ligands, including some growth factors and extracellular matrixes. Through the bidirectional interactions with its ligands, CD146 is actively involved in numerous physiological and pathological processes of cells. Overexpression of CD146 can be observed in most of malignancies and is implicated in nearly every step of the development and progression of cancers, especially vascular and lymphatic metastasis. Thus, immunotherapy against CD146 would provide a promising strategy to inhibit metastasis, which accounts for the majority of cancer-associated deaths. Therefore, to deepen the understanding of CD146, we review the reports describing the newly identified ligands of CD146 and discuss the implications of these findings in establishing novel strategies for cancer therapy.
Collapse
Affiliation(s)
- Zhaoqing Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Qingji Xu
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Nengwei Zhang
- Department of Gastrointestinal Hepatobiliary Tumor Surgery, Beijing Shijitan Hospital, Capital Medical University, 100038, Beijing, China
| | - Xuemei Du
- Departments of Pathology, Beijing Shijitan Hospital, Capital Medical University, 100038, Beijing, China
| | - Guangzhong Xu
- Department of Gastrointestinal Hepatobiliary Tumor Surgery, Beijing Shijitan Hospital, Capital Medical University, 100038, Beijing, China
| | - Xiyun Yan
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
- College of Life Science, University of Chinese Academy of Sciences, 100049, Beijing, China.
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
14
|
Arreguin AJ, Colognato H. Brain Dysfunction in LAMA2-Related Congenital Muscular Dystrophy: Lessons From Human Case Reports and Mouse Models. Front Mol Neurosci 2020; 13:118. [PMID: 32792907 PMCID: PMC7390928 DOI: 10.3389/fnmol.2020.00118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/09/2020] [Indexed: 12/26/2022] Open
Abstract
Laminin α2 gene (LAMA2)-related Congenital Muscular Dystrophy (CMD) was distinguished by a defining central nervous system (CNS) abnormality—aberrant white matter signals by MRI—when first described in the 1990s. In the past 25 years, researchers and clinicians have expanded our knowledge of brain involvement in LAMA2-related CMD, also known as Congenital Muscular Dystrophy Type 1A (MDC1A). Neurological changes in MDC1A can be structural, including lissencephaly and agyria, as well as functional, including epilepsy and intellectual disability. Mouse models of MDC1A include both spontaneous and targeted LAMA2 mutations and range from a partial loss of LAMA2 function (e.g., dy2J/dy2J), to a complete loss of LAMA2 expression (dy3K/dy3K). Diverse cellular and molecular changes have been reported in the brains of MDC1A mouse models, including blood-brain barrier dysfunction, altered neuro- and gliogenesis, changes in synaptic plasticity, and decreased myelination, providing mechanistic insight into potential neurological dysfunction in MDC1A. In this review article, we discuss selected studies that illustrate the potential scope and complexity of disturbances in brain development in MDC1A, and as well as highlight mechanistic insights that are emerging from mouse models.
Collapse
Affiliation(s)
- Andrea J Arreguin
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States.,Medical Scientist Training Program (MSTP), Stony Brook University, Stony Brook, NY, United States
| | - Holly Colognato
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
15
|
Lin Q, Qu M, Patra HK, He S, Wang L, Hu X, Xiao L, Fu Y, Gong T, He Q, Zhang L, Sun X, Zhang Z. Mechanistic and therapeutic study of novel anti-tumor function of natural compound imperialine for treating non-small cell lung cancer. JOURNAL OF ETHNOPHARMACOLOGY 2020; 247:112283. [PMID: 31605736 DOI: 10.1016/j.jep.2019.112283] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/26/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bulbus Fritillaria cirrhosa D. Don (BFC) is a Chinese traditional herbal medicine that has long been used as an indispensable component in herbal prescriptions for bronchopulmonary diseases due to its well-established strong anti-inflammation and pulmonary harmonizing effects. Interestingly, there are few case reports in traditional Chinese medicine available where they found it to contribute in anti-tumor therapies. Imperialine is one of the most favored active substances extracted from BFC and has been widely recognized as an anti-inflammatory agent. AIM OF THE STUDY The aim of the current work is to provide first-hand evidences both in vitro and in vivo showing that imperialine exerts anti-cancer effects against non-small cell lung cancer (NSCLC), and to explore the molecular mechanism of this anti-tumor activity. It is also necessary to examine its systemic toxicity, and to investigate how to develop strategies for feasible clinical translation of imperialine. MATERIALS AND METHODS To investigate anti-NSCLC efficacy of imperialine using both in vitro and in vivo methods where A549 cell line were chosen as in vitro model NSCLC cells and A549 tumor-bearing mouse model was constructed for in vivo study. The detailed underlying anti-cancer mechanism has been systematically explored for the first time through a comprehensive set of molecular biology methods mainly including immunohistochemistry, western blot and enzyme-linked immunosorbent assays. The toxicity profile of imperialine treatments were evaluated using healthy nude mice by examining hemogram and histopathology. An imperialine-loaded liposomal drug delivery system was developed using thin film hydration method to evaluate target specific delivery. RESULTS The results showed that imperialine could suppress both NSCLC tumor and associated inflammation through an inflammation-cancer feedback loop in which NF-κB activity was dramatically inhibited by imperialine. The NSCLC-targeting liposomal system was successfully developed for targeted drug delivery. The developed platform could favorably enhance imperialine cellular uptake and in vivo accumulation at tumor sites, thus improving overall anti-tumor effect. The toxicity assays revealed imperialine treatments did not significantly disturb blood cell counts in mice or exert any significant damage to the main organs. CONCLUSIONS Imperialine exerts anti-cancer effects against NSCLC both in vitro and in vivo, and this previously unknown function is related to NF-κB centered inflammation-cancer feedback loop. Imperialine mediated anti-cancer activity is not through cytotoxicity and exhibit robust systemic safety. Furthermore, the liposome-based system we commenced would dramatically enhance therapeutic effects of imperialine while exhibiting extremely low side effects both on cellular and in NSCLC model. This work has identified imperialine as a promising novel anti-cancer compound and offered an efficient target-delivery solution that greatly facilitate practical use of imperialine.
Collapse
Affiliation(s)
- Qing Lin
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Pharmaceutics, College of Polymer Science and Engineering, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China; Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, United Kingdom
| | - Mengke Qu
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Pharmaceutics, College of Polymer Science and Engineering, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China
| | - Hirak K Patra
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, United Kingdom; Department of Clinical and Experimental Medicine, Linkoping University, Linkoping, 58185, Sweden; Wolfson College, University of Cambridge, Cambridge, CB3 9BB, United Kingdom
| | - Shanshan He
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Pharmaceutics, College of Polymer Science and Engineering, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China
| | - Luyao Wang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Pharmaceutics, College of Polymer Science and Engineering, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China
| | - Xun Hu
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Pharmaceutics, College of Polymer Science and Engineering, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China; CQ MEDVT CO., LTD, Chongqing, 401122, PR China
| | - Linyu Xiao
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Pharmaceutics, College of Polymer Science and Engineering, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China
| | - Yu Fu
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Pharmaceutics, College of Polymer Science and Engineering, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China
| | - Tao Gong
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Pharmaceutics, College of Polymer Science and Engineering, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China
| | - Qin He
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Pharmaceutics, College of Polymer Science and Engineering, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China
| | - Ling Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Pharmaceutics, College of Polymer Science and Engineering, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China.
| | - Xun Sun
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Pharmaceutics, College of Polymer Science and Engineering, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Pharmaceutics, College of Polymer Science and Engineering, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China
| |
Collapse
|
16
|
Lin Q, Qu M, Zhou B, Patra HK, Sun Z, Luo Q, Yang W, Wu Y, Zhang Y, Li L, Deng L, Wang L, Gong T, He Q, Zhang L, Sun X, Zhang Z. Exosome-like nanoplatform modified with targeting ligand improves anti-cancer and anti-inflammation effects of imperialine. J Control Release 2019; 311-312:104-116. [PMID: 31484040 DOI: 10.1016/j.jconrel.2019.08.037] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/26/2019] [Accepted: 08/31/2019] [Indexed: 12/20/2022]
Abstract
Currently, most anti-cancer therapies are still haunted by serious and deleterious adverse effects. Here, we report a highly biocompatible tumor cell-targeting delivery systems utilizing exosome-like vesicles (ELVs) that delivers a low-toxicity anti-cancer agent imperialine against non-small cell lung cancer (NSCLC). First, we introduced a novel micelle-aided method to efficiently load imperialine into intact ELVs. Then, integrin α3β1-binding octapeptide cNGQGEQc was modified onto ELV platform for tumor targeting as integrin α3β1 is overexpressed on NSCLC cells. This system not only significantly improved imperialine tumor accumulation and retention, but also had extremely low systemic toxicity both in vitro and in vivo. Our discoveries offer new ways to utilize ELV more efficiently for both drug loading and targeting. The solid pharmacokinetics improvement and extraordinary safety of this system also highlight possibilities of alternative long course cancer therapies using similar strategies.
Collapse
Affiliation(s)
- Qing Lin
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, College of Polymer Science and Engineering, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China; Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Mengke Qu
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, College of Polymer Science and Engineering, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Bingjie Zhou
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, College of Polymer Science and Engineering, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Hirak K Patra
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK; Department of Clinical and Experimental Medicine, Linkoping University, Linkoping 58185, Sweden; Wolfson College, University of Cambridge, Cambridge CB3 9BB, United Kingdom
| | - Zihan Sun
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, College of Polymer Science and Engineering, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Qiong Luo
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, College of Polymer Science and Engineering, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Wenyu Yang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, College of Polymer Science and Engineering, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Yongcui Wu
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, College of Polymer Science and Engineering, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Yu Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, College of Polymer Science and Engineering, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Lin Li
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, College of Polymer Science and Engineering, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Lang Deng
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, College of Polymer Science and Engineering, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Leilei Wang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, College of Polymer Science and Engineering, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Tao Gong
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, College of Polymer Science and Engineering, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Qin He
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, College of Polymer Science and Engineering, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Ling Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, College of Polymer Science and Engineering, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China.
| | - Xun Sun
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, College of Polymer Science and Engineering, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, College of Polymer Science and Engineering, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| |
Collapse
|
17
|
Nirwane A, Yao Y. Laminins and their receptors in the CNS. Biol Rev Camb Philos Soc 2019; 94:283-306. [PMID: 30073746 DOI: 10.1111/brv.12454] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 01/24/2023]
Abstract
Laminin, an extracellular matrix protein, is widely expressed in the central nervous system (CNS). By interacting with integrin and non-integrin receptors, laminin exerts a large variety of important functions in the CNS in both physiological and pathological conditions. Due to the existence of many laminin isoforms and their differential expression in various cell types in the CNS, the exact functions of each individual laminin molecule in CNS development and homeostasis remain largely unclear. In this review, we first briefly introduce the structure and biochemistry of laminins and their receptors. Next, the dynamic expression of laminins and their receptors in the CNS during both development and in adulthood is summarized in a cell-type-specific manner, which allows appreciation of their functional redundancy/compensation. Furthermore, we discuss the biological functions of laminins and their receptors in CNS development, blood-brain barrier (BBB) maintenance, neurodegeneration, stroke, and neuroinflammation. Last, key challenges and potential future research directions are summarized and discussed. Our goals are to provide a synthetic review to stimulate future studies and promote the formation of new ideas/hypotheses and new lines of research in this field.
Collapse
Affiliation(s)
- Abhijit Nirwane
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 240 W Green Street, Athens, GA 30602, U.S.A
| | - Yao Yao
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 240 W Green Street, Athens, GA 30602, U.S.A
| |
Collapse
|
18
|
Segarra M, Aburto MR, Cop F, Llaó-Cid C, Härtl R, Damm M, Bethani I, Parrilla M, Husainie D, Schänzer A, Schlierbach H, Acker T, Mohr L, Torres-Masjoan L, Ritter M, Acker-Palmer A. Endothelial Dab1 signaling orchestrates neuro-glia-vessel communication in the central nervous system. Science 2018; 361:361/6404/eaao2861. [PMID: 30139844 DOI: 10.1126/science.aao2861] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 07/05/2018] [Indexed: 12/17/2022]
Abstract
The architecture of the neurovascular unit (NVU) is controlled by the communication of neurons, glia, and vascular cells. We found that the neuronal guidance cue reelin possesses proangiogenic activities that ensure the communication of endothelial cells (ECs) with the glia to control neuronal migration and the establishment of the blood-brain barrier in the mouse brain. Apolipoprotein E receptor 2 (ApoER2) and Disabled1 (Dab1) expressed in ECs are required for vascularization of the retina and the cerebral cortex. Deletion of Dab1 in ECs leads to a reduced secretion of laminin-α4 and decreased activation of integrin-β1 in glial cells, which in turn control neuronal migration and barrier properties of the NVU. Thus, reelin signaling in the endothelium is an instructive and integrative cue essential for neuro-glia-vascular communication.
Collapse
Affiliation(s)
- Marta Segarra
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences, University of Frankfurt, D-60438 Frankfurt am Main, Germany
| | - Maria R Aburto
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences, University of Frankfurt, D-60438 Frankfurt am Main, Germany.,Focus Program Translational Neurosciences, University of Mainz, D-55131 Mainz, Germany
| | - Florian Cop
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences, University of Frankfurt, D-60438 Frankfurt am Main, Germany
| | - Cecília Llaó-Cid
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences, University of Frankfurt, D-60438 Frankfurt am Main, Germany
| | - Ricarda Härtl
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences, University of Frankfurt, D-60438 Frankfurt am Main, Germany
| | - Miriam Damm
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences, University of Frankfurt, D-60438 Frankfurt am Main, Germany.,Focus Program Translational Neurosciences, University of Mainz, D-55131 Mainz, Germany
| | - Ioanna Bethani
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences, University of Frankfurt, D-60438 Frankfurt am Main, Germany
| | - Marta Parrilla
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences, University of Frankfurt, D-60438 Frankfurt am Main, Germany.,Max Planck Institute for Brain Research, D-60438 Frankfurt am Main, Germany
| | - Dewi Husainie
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences, University of Frankfurt, D-60438 Frankfurt am Main, Germany.,Max Planck Institute for Brain Research, D-60438 Frankfurt am Main, Germany
| | - Anne Schänzer
- Institute of Neuropathology, University of Giessen, D-35392 Giessen, Germany
| | - Hannah Schlierbach
- Institute of Neuropathology, University of Giessen, D-35392 Giessen, Germany
| | - Till Acker
- Institute of Neuropathology, University of Giessen, D-35392 Giessen, Germany
| | - Laura Mohr
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences, University of Frankfurt, D-60438 Frankfurt am Main, Germany
| | - Laia Torres-Masjoan
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences, University of Frankfurt, D-60438 Frankfurt am Main, Germany
| | - Mathias Ritter
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences, University of Frankfurt, D-60438 Frankfurt am Main, Germany
| | - Amparo Acker-Palmer
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences, University of Frankfurt, D-60438 Frankfurt am Main, Germany. .,Focus Program Translational Neurosciences, University of Mainz, D-55131 Mainz, Germany.,Max Planck Institute for Brain Research, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
19
|
Genderen AM, Jansen J, Cheng C, Vermonden T, Masereeuw R. Renal Tubular- and Vascular Basement Membranes and their Mimicry in Engineering Vascularized Kidney Tubules. Adv Healthc Mater 2018; 7:e1800529. [PMID: 30091856 DOI: 10.1002/adhm.201800529] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/18/2018] [Indexed: 01/09/2023]
Abstract
The high prevalence of chronic kidney disease leads to an increased need for renal replacement therapies. While there are simply not enough donor organs available for transplantation, there is a need to seek other therapeutic avenues as current dialysis modalities are insufficient. The field of regenerative medicine and whole organ engineering is emerging, and researchers are looking for innovative ways to create (part of) a functional new organ. To biofabricate a kidney or its functional units, it is necessary to understand and learn from physiology to be able to mimic the specific tissue properties. Herein is provided an overview of the knowledge on tubular and vascular basement membranes' biochemical components and biophysical properties, and the major differences between the two basement membranes are highlighted. Furthermore, an overview of current trends in membrane technology for developing renal replacement therapies and to stimulate kidney regeneration is provided.
Collapse
Affiliation(s)
- Anne Metje Genderen
- Division of PharmacologyUtrecht Institute for Pharmaceutical Sciences 3584 CG Utrecht The Netherlands
| | - Jitske Jansen
- Division of PharmacologyUtrecht Institute for Pharmaceutical Sciences 3584 CG Utrecht The Netherlands
| | - Caroline Cheng
- Regenerative Medicine Center UtrechtUniversity Medical Center Utrecht 3584 CT Utrecht The Netherlands
- Department of Nephrology and HypertensionUniversity Medical Center Utrecht 3508 GA Utrecht The Netherlands
- Department of Experimental CardiologyErasmus Medical Center 3015 GD Rotterdam The Netherlands
| | - Tina Vermonden
- Division of PharmaceuticsUtrecht Institute for Pharmaceutical Sciences 3584 CG Utrecht The Netherlands
| | - Rosalinde Masereeuw
- Division of PharmacologyUtrecht Institute for Pharmaceutical Sciences 3584 CG Utrecht The Netherlands
| |
Collapse
|
20
|
|
21
|
Sato-Nishiuchi R, Li S, Ebisu F, Sekiguchi K. Recombinant laminin fragments endowed with collagen-binding activity: A tool for conferring laminin-like cell-adhesive activity to collagen matrices. Matrix Biol 2017; 65:75-90. [PMID: 28801205 DOI: 10.1016/j.matbio.2017.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/21/2017] [Accepted: 08/01/2017] [Indexed: 01/21/2023]
Abstract
Laminins are major components of basement membranes that sustain a wide variety of stem cells. Among 15 laminin isoforms, laminin-511 and its E8 fragment (LM511E8) have been shown to strongly promote the adhesion and proliferation of human pluripotent stem cells. The aim of this study was to endow the cell-adhesive activity of laminin-511 on collagen matrices, thereby fabricating collagen-based culture scaffolds for stem cells with defined composition. To achieve this goal, we utilized the collagen-binding domain (CBD) of fibronectin to immobilize LM511E8 on collagen matrices. CBD was attached to the N-termini of individual laminin chains (α5E8, β1E8, γ1E8), producing LM511E8s having one, two, or three CBDs. While LM511E8 did not bind to collagen, CBD-attached LM511E8s (CBD-LM511E8s) exhibited significant collagen-binding activity, dependent on the number of attached CBDs. Human iPS cells were cultured on collagen-coated plates preloaded with CBD-LM511E8s. Although iPS cells did not attach or grow on collagen, they robustly proliferated on CBD-LM511E8-loaded collagen matrices, similar to the case with LM511E8-coated plates. Importantly, iPS cells proliferated and yielded round-shaped colonies even on collagen gels preloaded with CBD-LM511E8s. These results demonstrate that CBD-attached laminin E8 fragments are promising tools for fabrication of collagen-based matrices having the cell-adhesive activity of laminins.
Collapse
Affiliation(s)
- Ryoko Sato-Nishiuchi
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Shaoliang Li
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Fumi Ebisu
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, Suita, Osaka, Japan; Division of Research and Development, Matrixome Inc., Suita, Osaka, Japan
| | - Kiyotoshi Sekiguchi
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, Suita, Osaka, Japan; Division of Research and Development, Matrixome Inc., Suita, Osaka, Japan.
| |
Collapse
|
22
|
Contribution of the Microenvironmental Niche to Glioblastoma Heterogeneity. BIOMED RESEARCH INTERNATIONAL 2017. [PMID: 28630875 PMCID: PMC5467280 DOI: 10.1155/2017/9634172] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Glioblastoma is the most aggressive cancer of the brain. The dismal prognosis is largely attributed to the heterogeneous nature of the tumor, which in addition to intrinsic molecular and genetic changes is also influenced by the microenvironmental niche in which the glioma cells reside. The cancer stem cells (CSCs) hypothesis suggests that all cancers arise from CSCs that possess the ability to self-renew and initiate tumor formation. CSCs reside in specialized niches where interaction with the microenvironment regulates their stem cell behavior. The reciprocal interaction between glioma stem cells (GSCs) and cells from the microenvironment, such as endothelial cells, immune cells, and other parenchymal cells, may also promote angiogenesis, invasion, proliferation, and stemness of the GSCs and be likely to have an underappreciated role in their responsiveness to therapy. This crosstalk may also promote molecular transition of GSCs. Hence the inherent plasticity of GSCs can be seen as an adaptive response, changing according to the signaling cue from the niche. Given the association of GSCs with tumor recurrence and treatment sensitivity, understanding this bidirectional crosstalk between GSCs and its niche may provide a framework to identify more effective therapeutic targets and improve treatment outcome.
Collapse
|
23
|
Taniguchi Y, Li S, Takizawa M, Oonishi E, Toga J, Yagi E, Sekiguchi K. Probing the acidic residue within the integrin binding site of laminin-511 that interacts with the metal ion-dependent adhesion site of α6β1 integrin. Biochem Biophys Res Commun 2017; 487:525-531. [PMID: 28412362 DOI: 10.1016/j.bbrc.2017.04.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 04/11/2017] [Indexed: 11/18/2022]
Abstract
Laminins are major cell-adhesive proteins of basement membranes that interact with integrins in a divalent cation-dependent manner. Laminin-511 consists of α5, β1, and γ1 chains, of which three laminin globular domains of the α5 chain (α5/LG1-3) and a Glu residue in the C-terminal tail of chain γ1 (γ1-Glu1607) are required for binding to integrins. However, it remains unsettled whether the Glu residue in the γ1 tail is involved in integrin binding by coordinating the metal ion in the metal ion-dependent adhesion site of β1 integrin (β1-MIDAS), or by stabilizing the conformation of α5/LG1-3. To address this issue, we examined whether α5/LG1-3 contain an acidic residue required for integrin binding that is as critical as the Glu residue in the γ1 tail; to achieve this, we undertook exhaustive alanine substitutions of the 54 acidic residues present in α5/LG1-3 of the E8 fragment of laminin-511 (LM511E8). Most of the alanine mutants possessed α6β1 integrin binding activities comparable with wild-type LM511E8. Alanine substitution for α5-Asp3198 and Asp3219 caused mild reduction in integrin binding activity, and that for α5-Asp3218 caused severe reduction, possibly resulting from conformational perturbation of α5/LG1-3. When α5-Asp3218 was substituted with asparagine, the resulting mutant possessed significant binding activity to α6β1 integrin, indicating that α5-Asp3218 is not directly involved in integrin binding through coordination with the metal ion in β1-MIDAS. Given that substitution of γ1-Glu1607 with glutamine nullified the binding activity to α6β1 integrin, these results, taken together, support the possibility that the critical acidic residue coordinating the metal ion in β1-MIDAS is Glu1607 in the γ1 tail, but no such residue is present in α5/LG1-3.
Collapse
Affiliation(s)
- Yukimasa Taniguchi
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shaoliang Li
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mamoru Takizawa
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Eriko Oonishi
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Junko Toga
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Emiko Yagi
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kiyotoshi Sekiguchi
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
24
|
Ansa-Addo EA, Thaxton J, Hong F, Wu BX, Zhang Y, Fugle CW, Metelli A, Riesenberg B, Williams K, Gewirth DT, Chiosis G, Liu B, Li Z. Clients and Oncogenic Roles of Molecular Chaperone gp96/grp94. Curr Top Med Chem 2017; 16:2765-78. [PMID: 27072698 DOI: 10.2174/1568026616666160413141613] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 09/07/2015] [Accepted: 01/17/2016] [Indexed: 12/18/2022]
Abstract
As an endoplasmic reticulum heat shock protein (HSP) 90 paralogue, glycoprotein (gp) 96 possesses immunological properties by chaperoning antigenic peptides for activation of T cells. Genetic studies in the last decade have unveiled that gp96 is also an essential master chaperone for multiple receptors and secreting proteins including Toll-like receptors (TLRs), integrins, the Wnt coreceptor, Low Density Lipoprotein Receptor-Related Protein 6 (LRP6), the latent TGFβ docking receptor, Glycoprotein A Repetitions Predominant (GARP), Glycoprotein (GP) Ib and insulin-like growth factors (IGF). Clinically, elevated expression of gp96 in a variety of cancers correlates with the advanced stage and poor survival of cancer patients. Recent preclinical studies have also uncovered that gp96 expression is closely linked to cancer progression in multiple myeloma, hepatocellular carcinoma, breast cancer and inflammation-associated colon cancer. Thus, gp96 is an attractive therapeutic target for cancer treatment. The chaperone function of gp96 depends on its ATPase domain, which is structurally distinct from other HSP90 members, and thus favors the design of highly selective gp96-targeted inhibitors against cancer. We herein discuss the strategically important oncogenic clients of gp96 and their underlying biology. The roles of cell-intrinsic gp96 in T cell biology are also discussed, in part because it offers another opportunity of cancer therapy by manipulating levels of gp96 in T cells to enhance host immune defense.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Zihai Li
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29466, USA.
| |
Collapse
|
25
|
Di Russo J, Hannocks MJ, Luik AL, Song J, Zhang X, Yousif L, Aspite G, Hallmann R, Sorokin L. Vascular laminins in physiology and pathology. Matrix Biol 2017; 57-58:140-148. [DOI: 10.1016/j.matbio.2016.06.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/28/2016] [Indexed: 12/11/2022]
|
26
|
Di Russo J, Luik AL, Yousif L, Budny S, Oberleithner H, Hofschröer V, Klingauf J, van Bavel E, Bakker EN, Hellstrand P, Bhattachariya A, Albinsson S, Pincet F, Hallmann R, Sorokin LM. Endothelial basement membrane laminin 511 is essential for shear stress response. EMBO J 2016; 36:183-201. [PMID: 27940654 PMCID: PMC5239996 DOI: 10.15252/embj.201694756] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 11/09/2022] Open
Abstract
Shear detection and mechanotransduction by arterial endothelium requires junctional complexes containing PECAM-1 and VE-cadherin, as well as firm anchorage to the underlying basement membrane. While considerable information is available for junctional complexes in these processes, gained largely from in vitro studies, little is known about the contribution of the endothelial basement membrane. Using resistance artery explants, we show that the integral endothelial basement membrane component, laminin 511 (laminin α5), is central to shear detection and mechanotransduction and its elimination at this site results in ablation of dilation in response to increased shear stress. Loss of endothelial laminin 511 correlates with reduced cortical stiffness of arterial endothelium in vivo, smaller integrin β1-positive/vinculin-positive focal adhesions, and reduced junctional association of actin-myosin II In vitro assays reveal that β1 integrin-mediated interaction with laminin 511 results in high strengths of adhesion, which promotes p120 catenin association with VE-cadherin, stabilizing it at cell junctions and increasing cell-cell adhesion strength. This highlights the importance of endothelial laminin 511 in shear response in the physiologically relevant context of resistance arteries.
Collapse
Affiliation(s)
- Jacopo Di Russo
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Anna-Liisa Luik
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Lema Yousif
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Sigmund Budny
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Hans Oberleithner
- Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany.,Institute of Physiology II, University of Muenster, Muenster, Germany
| | - Verena Hofschröer
- Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany.,Institute of Physiology II, University of Muenster, Muenster, Germany
| | - Juergen Klingauf
- Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany.,Institute of Medical Physics, University of Muenster, Muenster, Germany
| | - Ed van Bavel
- Biomedical Engineering and Physics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Erik Ntp Bakker
- Biomedical Engineering and Physics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Per Hellstrand
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | | | - Frederic Pincet
- Laboratoire de Physique Statistique, École Normale Superieure - PSL Research University, Paris, France.,CNRS UMR8550, Sorbonne Universités - UPMC Univ Paris 06, Université Paris, Paris, France
| | - Rupert Hallmann
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Lydia M Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany .,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| |
Collapse
|
27
|
Kanazawa E, Nakashima A, Yonemoto K, Otsuka M, Yoshioka N, Kuramoto T, Mitao H, Imaishi H, Komai K, Ushijima K. Injury to the endometrium prior to the frozen-thawed embryo transfer cycle improves pregnancy rates in patients with repeated implantation failure. J Obstet Gynaecol Res 2016; 43:128-134. [DOI: 10.1111/jog.13182] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/19/2016] [Accepted: 08/21/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Emiko Kanazawa
- Department of Obstetrics and Gynecology; Kurume University School of Medicine; Fukuoka Japan
| | - Akira Nakashima
- Department of Obstetrics and Gynecology; Kurume University School of Medicine; Fukuoka Japan
| | - Koji Yonemoto
- Biostatistics Center; Kurume University; Fukuoka Japan
| | | | | | | | - Hiroshi Mitao
- Department of Obstetrics and Gynecology; Kurume University School of Medicine; Fukuoka Japan
| | - Hiroto Imaishi
- Department of Obstetrics and Gynecology; Kurume University School of Medicine; Fukuoka Japan
| | - Kan Komai
- Department of Obstetrics and Gynecology; Kurume University School of Medicine; Fukuoka Japan
| | - Kimio Ushijima
- Department of Obstetrics and Gynecology; Kurume University School of Medicine; Fukuoka Japan
| |
Collapse
|
28
|
Rogers RS, Nishimune H. The role of laminins in the organization and function of neuromuscular junctions. Matrix Biol 2016; 57-58:86-105. [PMID: 27614294 DOI: 10.1016/j.matbio.2016.08.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/10/2016] [Accepted: 08/17/2016] [Indexed: 01/11/2023]
Abstract
The synapse between motor neurons and skeletal muscle is known as the neuromuscular junction (NMJ). Proper alignment of presynaptic and post-synaptic structures of motor neurons and muscle fibers, respectively, is essential for efficient motor control of skeletal muscles. The synaptic cleft between these two cells is filled with basal lamina. Laminins are heterotrimer extracellular matrix molecules that are key members of the basal lamina. Laminin α4, α5, and β2 chains specifically localize to NMJs, and these laminin isoforms play a critical role in maintenance of NMJs and organization of synaptic vesicle release sites known as active zones. These individual laminin chains exert their role in organizing NMJs by binding to their receptors including integrins, dystroglycan, and voltage-gated calcium channels (VGCCs). Disruption of these laminins or the laminin-receptor interaction occurs in neuromuscular diseases including Pierson syndrome and Lambert-Eaton myasthenic syndrome (LEMS). Interventions to maintain proper level of laminins and their receptor interactions may be insightful in treating neuromuscular diseases and aging related degeneration of NMJs.
Collapse
Affiliation(s)
- Robert S Rogers
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas, USA.
| | - Hiroshi Nishimune
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas, USA.
| |
Collapse
|
29
|
Ma NKL, Lim JK, Leong MF, Sandanaraj E, Ang BT, Tang C, Wan ACA. Collaboration of 3D context and extracellular matrix in the development of glioma stemness in a 3D model. Biomaterials 2015; 78:62-73. [PMID: 26684838 DOI: 10.1016/j.biomaterials.2015.11.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/19/2015] [Accepted: 11/24/2015] [Indexed: 12/21/2022]
Abstract
A hierarchy of cellular stemness exists in certain cancers, and any successful strategy to treat such cancers would have to eliminate the self-renewing tumor-initiating cells at the apex of the hierarchy. The cellular microenvironment, in particular the extracellular matrix (ECM), is believed to have a role in regulating stemness. In this work, U251 glioblastoma cells are cultured on electrospun polystyrene (ESPS) scaffolds coated with an array of 7 laminin isoforms to provide a 3D model for stem cell-related genes and proteins expression studies. We observed collaboration between 3D context and laminins in promoting glioma stemness. Depending on the laminin isoform presented, U251 cells cultured on ESPS scaffolds (3D) exhibited increased expression of stemness markers compared to those cultured on tissue culture polystyrene (2D). Our results indicate the influence of 3D (versus 2D) context on integrin expression, specifically, the upregulation of the laminin-binding integrins alpha 6 and beta 4. By a colony forming assay, we showed enhanced clonogenicity of cells grown on ESPS scaffolds in collaboration with laminins 411, 421, 511 and 521. Evaluation of patient glioma databases demonstrated significant enrichment of integrin and ECM pathway networks in tumors of worse prognosis, consistent with our observations. The present results demonstrate how 3D versus 2D context profoundly affects ECM signaling, leading to stemness.
Collapse
Affiliation(s)
- Nina K L Ma
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Jia Kai Lim
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Meng Fatt Leong
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore; School of Applied Science, Temasek Polytechnic, Singapore 529757, Singapore
| | - Edwin Sandanaraj
- Department of Research, National Neuroscience Institute, Singapore 308433, Singapore; Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore 117609, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Beng Ti Ang
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore 117609, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Department of Neurosurgery, National Neuroscience Institute, Singapore 308433, Singapore; Duke-National University of Singapore Graduate Medical School, Singapore 169857, Singapore
| | - Carol Tang
- Department of Research, National Neuroscience Institute, Singapore 308433, Singapore; Duke-National University of Singapore Graduate Medical School, Singapore 169857, Singapore; Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore 169610, Singapore
| | - Andrew C A Wan
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore.
| |
Collapse
|
30
|
Identification of molecular determinants of primary and metastatic tumour re-initiation in breast cancer. Nat Cell Biol 2015; 17:651-64. [PMID: 25866923 PMCID: PMC4609531 DOI: 10.1038/ncb3148] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 03/03/2015] [Indexed: 12/12/2022]
Abstract
Through in vivo selection of multiple ER-negative human breast cancer populations for enhanced tumour-forming capacity, we have derived subpopulations that generate tumours more efficiently than their parental populations at low cell numbers. Tumorigenic-enriched subpopulations exhibited increased expression of LAMA4, FOXQ1 and NAP1L3—genes that are also expressed at greater levels by independently derived metastatic subpopulations. These genes promote metastatic efficiency. FOXQ1 promotes LAMA4 expression, and LAMA4 enhances clonal expansion following substratum detachment in vitro, tumour re-initiation in multiple organs, and disseminated metastatic cell proliferation and colonization. The promotion of cancer cell proliferation and tumour re-initiation by LAMA4 requires β1-integrin. Increased LAMA4 expression marks the transition of human pre-malignant breast lesions to malignant carcinomas, and tumoral LAMA4 overexpression predicts reduced relapse-free survival in ER-negative patients. Our findings reveal common features that govern primary and metastatic tumour re-initiation and identify a key molecular determinant of these processes.
Collapse
|
31
|
Michaelis UR. Mechanisms of endothelial cell migration. Cell Mol Life Sci 2014; 71:4131-48. [PMID: 25038776 PMCID: PMC11113960 DOI: 10.1007/s00018-014-1678-0] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/23/2014] [Accepted: 07/07/2014] [Indexed: 01/13/2023]
Abstract
Cell migration plays a central role in a variety of physiological and pathological processes during our whole life. Cellular movement is a complex, tightly regulated multistep process. Although the principle mechanisms of migration follow a defined general motility cycle, the cell type and the context of moving influences the detailed mode of migration. Endothelial cells migrate during vasculogenesis and angiogenesis but also in a damaged vessel to restore vessel integrity. Depending on the situation they migrate individually, in chains or sheets and complex signaling, intercellular signals as well as environmental cues modulate the process. Here, the different modes of cell migration, the peculiarities of endothelial cell migration and specific guidance molecules controlling this process will be reviewed.
Collapse
Affiliation(s)
- U Ruth Michaelis
- Institut für Kardiovaskuläre Physiologie, Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany,
| |
Collapse
|
32
|
Mikheev AM, Mikheeva SA, Trister AD, Tokita MJ, Emerson SN, Parada CA, Born DE, Carnemolla B, Frankel S, Kim DH, Oxford RG, Kosai Y, Tozer-Fink KR, Manning TC, Silber JR, Rostomily RC. Periostin is a novel therapeutic target that predicts and regulates glioma malignancy. Neuro Oncol 2014; 17:372-82. [PMID: 25140038 DOI: 10.1093/neuonc/nou161] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 07/10/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Periostin is a secreted matricellular protein critical for epithelial-mesenchymal transition and carcinoma metastasis. In glioblastoma, it is highly upregulated compared with normal brain, and existing reports indicate potential prognostic and functional importance in glioma. However, the clinical implications of periostin expression and function related to its therapeutic potential have not been fully explored. METHODS Periostin expression levels and patterns were examined in human glioma cells and tissues by quantitative real-time PCR and immunohistochemistry and correlated with glioma grade, type, recurrence, and survival. Functional assays determined the impact of altering periostin expression and function on cell invasion, migration, adhesion, and glioma stem cell activity and tumorigenicity. The prognostic and functional relevance of periostin and its associated genes were analyzed using the TCGA and REMBRANDT databases and paired recurrent glioma samples. RESULTS Periostin expression levels correlated directly with tumor grade and recurrence, and inversely with survival, in all grades of adult human glioma. Stromal deposition of periostin was detected only in grade IV gliomas. Secreted periostin promoted glioma cell invasion and adhesion, and periostin knockdown markedly impaired survival of xenografted glioma stem cells. Interactions with αvβ3 and αvβ5 integrins promoted adhesion and migration, and periostin abrogated cytotoxicity of the αvβ3/β5 specific inhibitor cilengitide. Periostin-associated gene signatures, predominated by matrix and secreted proteins, corresponded to patient prognosis and functional motifs related to increased malignancy. CONCLUSION Periostin is a robust marker of glioma malignancy and potential tumor recurrence. Abrogation of glioma stem cell tumorigenicity after periostin inhibition provides support for exploring the therapeutic impact of targeting periostin.
Collapse
Affiliation(s)
- Andrei M Mikheev
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M, S.N.E., C.A.P., R.G.O., J.R.S., R.C.R.); Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington (A.D.T.); Division of Medical Genetics, Department of Internal Medicine, University of Washington School of Medicine, Seattle, Washington (M.J.T); Department of Bioengineering, University of Washington School of Medicine, Seattle, Washington (S.F., D.-H.K.); Department of Radiology, University of Washington School of Medicine, Seattle, Washington (K.R.T.-F.); Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M., S.F., D.-H.K., R.C.R.); Sage Bionetworks, Seattle, Washington (A.D.T.); Neuropathology Service, Department of Pathology, Stanford University School of Medicine, Stanford, California (D.E.B.); Laboratory of Immunology, IRCCS San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy (B.C.); Case Western Reserve School of Medicine, Cleveland, Ohio (Y.K.); Neuroscience Associates, Boise, Idaho (T.C.M.)
| | - Svetlana A Mikheeva
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M, S.N.E., C.A.P., R.G.O., J.R.S., R.C.R.); Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington (A.D.T.); Division of Medical Genetics, Department of Internal Medicine, University of Washington School of Medicine, Seattle, Washington (M.J.T); Department of Bioengineering, University of Washington School of Medicine, Seattle, Washington (S.F., D.-H.K.); Department of Radiology, University of Washington School of Medicine, Seattle, Washington (K.R.T.-F.); Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M., S.F., D.-H.K., R.C.R.); Sage Bionetworks, Seattle, Washington (A.D.T.); Neuropathology Service, Department of Pathology, Stanford University School of Medicine, Stanford, California (D.E.B.); Laboratory of Immunology, IRCCS San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy (B.C.); Case Western Reserve School of Medicine, Cleveland, Ohio (Y.K.); Neuroscience Associates, Boise, Idaho (T.C.M.)
| | - Andrew D Trister
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M, S.N.E., C.A.P., R.G.O., J.R.S., R.C.R.); Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington (A.D.T.); Division of Medical Genetics, Department of Internal Medicine, University of Washington School of Medicine, Seattle, Washington (M.J.T); Department of Bioengineering, University of Washington School of Medicine, Seattle, Washington (S.F., D.-H.K.); Department of Radiology, University of Washington School of Medicine, Seattle, Washington (K.R.T.-F.); Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M., S.F., D.-H.K., R.C.R.); Sage Bionetworks, Seattle, Washington (A.D.T.); Neuropathology Service, Department of Pathology, Stanford University School of Medicine, Stanford, California (D.E.B.); Laboratory of Immunology, IRCCS San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy (B.C.); Case Western Reserve School of Medicine, Cleveland, Ohio (Y.K.); Neuroscience Associates, Boise, Idaho (T.C.M.)
| | - Mari J Tokita
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M, S.N.E., C.A.P., R.G.O., J.R.S., R.C.R.); Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington (A.D.T.); Division of Medical Genetics, Department of Internal Medicine, University of Washington School of Medicine, Seattle, Washington (M.J.T); Department of Bioengineering, University of Washington School of Medicine, Seattle, Washington (S.F., D.-H.K.); Department of Radiology, University of Washington School of Medicine, Seattle, Washington (K.R.T.-F.); Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M., S.F., D.-H.K., R.C.R.); Sage Bionetworks, Seattle, Washington (A.D.T.); Neuropathology Service, Department of Pathology, Stanford University School of Medicine, Stanford, California (D.E.B.); Laboratory of Immunology, IRCCS San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy (B.C.); Case Western Reserve School of Medicine, Cleveland, Ohio (Y.K.); Neuroscience Associates, Boise, Idaho (T.C.M.)
| | - Samuel N Emerson
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M, S.N.E., C.A.P., R.G.O., J.R.S., R.C.R.); Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington (A.D.T.); Division of Medical Genetics, Department of Internal Medicine, University of Washington School of Medicine, Seattle, Washington (M.J.T); Department of Bioengineering, University of Washington School of Medicine, Seattle, Washington (S.F., D.-H.K.); Department of Radiology, University of Washington School of Medicine, Seattle, Washington (K.R.T.-F.); Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M., S.F., D.-H.K., R.C.R.); Sage Bionetworks, Seattle, Washington (A.D.T.); Neuropathology Service, Department of Pathology, Stanford University School of Medicine, Stanford, California (D.E.B.); Laboratory of Immunology, IRCCS San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy (B.C.); Case Western Reserve School of Medicine, Cleveland, Ohio (Y.K.); Neuroscience Associates, Boise, Idaho (T.C.M.)
| | - Carolina A Parada
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M, S.N.E., C.A.P., R.G.O., J.R.S., R.C.R.); Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington (A.D.T.); Division of Medical Genetics, Department of Internal Medicine, University of Washington School of Medicine, Seattle, Washington (M.J.T); Department of Bioengineering, University of Washington School of Medicine, Seattle, Washington (S.F., D.-H.K.); Department of Radiology, University of Washington School of Medicine, Seattle, Washington (K.R.T.-F.); Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M., S.F., D.-H.K., R.C.R.); Sage Bionetworks, Seattle, Washington (A.D.T.); Neuropathology Service, Department of Pathology, Stanford University School of Medicine, Stanford, California (D.E.B.); Laboratory of Immunology, IRCCS San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy (B.C.); Case Western Reserve School of Medicine, Cleveland, Ohio (Y.K.); Neuroscience Associates, Boise, Idaho (T.C.M.)
| | - Donald E Born
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M, S.N.E., C.A.P., R.G.O., J.R.S., R.C.R.); Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington (A.D.T.); Division of Medical Genetics, Department of Internal Medicine, University of Washington School of Medicine, Seattle, Washington (M.J.T); Department of Bioengineering, University of Washington School of Medicine, Seattle, Washington (S.F., D.-H.K.); Department of Radiology, University of Washington School of Medicine, Seattle, Washington (K.R.T.-F.); Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M., S.F., D.-H.K., R.C.R.); Sage Bionetworks, Seattle, Washington (A.D.T.); Neuropathology Service, Department of Pathology, Stanford University School of Medicine, Stanford, California (D.E.B.); Laboratory of Immunology, IRCCS San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy (B.C.); Case Western Reserve School of Medicine, Cleveland, Ohio (Y.K.); Neuroscience Associates, Boise, Idaho (T.C.M.)
| | - Barbara Carnemolla
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M, S.N.E., C.A.P., R.G.O., J.R.S., R.C.R.); Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington (A.D.T.); Division of Medical Genetics, Department of Internal Medicine, University of Washington School of Medicine, Seattle, Washington (M.J.T); Department of Bioengineering, University of Washington School of Medicine, Seattle, Washington (S.F., D.-H.K.); Department of Radiology, University of Washington School of Medicine, Seattle, Washington (K.R.T.-F.); Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M., S.F., D.-H.K., R.C.R.); Sage Bionetworks, Seattle, Washington (A.D.T.); Neuropathology Service, Department of Pathology, Stanford University School of Medicine, Stanford, California (D.E.B.); Laboratory of Immunology, IRCCS San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy (B.C.); Case Western Reserve School of Medicine, Cleveland, Ohio (Y.K.); Neuroscience Associates, Boise, Idaho (T.C.M.)
| | - Sam Frankel
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M, S.N.E., C.A.P., R.G.O., J.R.S., R.C.R.); Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington (A.D.T.); Division of Medical Genetics, Department of Internal Medicine, University of Washington School of Medicine, Seattle, Washington (M.J.T); Department of Bioengineering, University of Washington School of Medicine, Seattle, Washington (S.F., D.-H.K.); Department of Radiology, University of Washington School of Medicine, Seattle, Washington (K.R.T.-F.); Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M., S.F., D.-H.K., R.C.R.); Sage Bionetworks, Seattle, Washington (A.D.T.); Neuropathology Service, Department of Pathology, Stanford University School of Medicine, Stanford, California (D.E.B.); Laboratory of Immunology, IRCCS San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy (B.C.); Case Western Reserve School of Medicine, Cleveland, Ohio (Y.K.); Neuroscience Associates, Boise, Idaho (T.C.M.)
| | - Deok-Ho Kim
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M, S.N.E., C.A.P., R.G.O., J.R.S., R.C.R.); Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington (A.D.T.); Division of Medical Genetics, Department of Internal Medicine, University of Washington School of Medicine, Seattle, Washington (M.J.T); Department of Bioengineering, University of Washington School of Medicine, Seattle, Washington (S.F., D.-H.K.); Department of Radiology, University of Washington School of Medicine, Seattle, Washington (K.R.T.-F.); Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M., S.F., D.-H.K., R.C.R.); Sage Bionetworks, Seattle, Washington (A.D.T.); Neuropathology Service, Department of Pathology, Stanford University School of Medicine, Stanford, California (D.E.B.); Laboratory of Immunology, IRCCS San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy (B.C.); Case Western Reserve School of Medicine, Cleveland, Ohio (Y.K.); Neuroscience Associates, Boise, Idaho (T.C.M.)
| | - Rob G Oxford
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M, S.N.E., C.A.P., R.G.O., J.R.S., R.C.R.); Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington (A.D.T.); Division of Medical Genetics, Department of Internal Medicine, University of Washington School of Medicine, Seattle, Washington (M.J.T); Department of Bioengineering, University of Washington School of Medicine, Seattle, Washington (S.F., D.-H.K.); Department of Radiology, University of Washington School of Medicine, Seattle, Washington (K.R.T.-F.); Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M., S.F., D.-H.K., R.C.R.); Sage Bionetworks, Seattle, Washington (A.D.T.); Neuropathology Service, Department of Pathology, Stanford University School of Medicine, Stanford, California (D.E.B.); Laboratory of Immunology, IRCCS San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy (B.C.); Case Western Reserve School of Medicine, Cleveland, Ohio (Y.K.); Neuroscience Associates, Boise, Idaho (T.C.M.)
| | - Yoshito Kosai
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M, S.N.E., C.A.P., R.G.O., J.R.S., R.C.R.); Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington (A.D.T.); Division of Medical Genetics, Department of Internal Medicine, University of Washington School of Medicine, Seattle, Washington (M.J.T); Department of Bioengineering, University of Washington School of Medicine, Seattle, Washington (S.F., D.-H.K.); Department of Radiology, University of Washington School of Medicine, Seattle, Washington (K.R.T.-F.); Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M., S.F., D.-H.K., R.C.R.); Sage Bionetworks, Seattle, Washington (A.D.T.); Neuropathology Service, Department of Pathology, Stanford University School of Medicine, Stanford, California (D.E.B.); Laboratory of Immunology, IRCCS San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy (B.C.); Case Western Reserve School of Medicine, Cleveland, Ohio (Y.K.); Neuroscience Associates, Boise, Idaho (T.C.M.)
| | - Kathleen R Tozer-Fink
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M, S.N.E., C.A.P., R.G.O., J.R.S., R.C.R.); Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington (A.D.T.); Division of Medical Genetics, Department of Internal Medicine, University of Washington School of Medicine, Seattle, Washington (M.J.T); Department of Bioengineering, University of Washington School of Medicine, Seattle, Washington (S.F., D.-H.K.); Department of Radiology, University of Washington School of Medicine, Seattle, Washington (K.R.T.-F.); Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M., S.F., D.-H.K., R.C.R.); Sage Bionetworks, Seattle, Washington (A.D.T.); Neuropathology Service, Department of Pathology, Stanford University School of Medicine, Stanford, California (D.E.B.); Laboratory of Immunology, IRCCS San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy (B.C.); Case Western Reserve School of Medicine, Cleveland, Ohio (Y.K.); Neuroscience Associates, Boise, Idaho (T.C.M.)
| | - Thomas C Manning
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M, S.N.E., C.A.P., R.G.O., J.R.S., R.C.R.); Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington (A.D.T.); Division of Medical Genetics, Department of Internal Medicine, University of Washington School of Medicine, Seattle, Washington (M.J.T); Department of Bioengineering, University of Washington School of Medicine, Seattle, Washington (S.F., D.-H.K.); Department of Radiology, University of Washington School of Medicine, Seattle, Washington (K.R.T.-F.); Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M., S.F., D.-H.K., R.C.R.); Sage Bionetworks, Seattle, Washington (A.D.T.); Neuropathology Service, Department of Pathology, Stanford University School of Medicine, Stanford, California (D.E.B.); Laboratory of Immunology, IRCCS San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy (B.C.); Case Western Reserve School of Medicine, Cleveland, Ohio (Y.K.); Neuroscience Associates, Boise, Idaho (T.C.M.)
| | - John R Silber
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M, S.N.E., C.A.P., R.G.O., J.R.S., R.C.R.); Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington (A.D.T.); Division of Medical Genetics, Department of Internal Medicine, University of Washington School of Medicine, Seattle, Washington (M.J.T); Department of Bioengineering, University of Washington School of Medicine, Seattle, Washington (S.F., D.-H.K.); Department of Radiology, University of Washington School of Medicine, Seattle, Washington (K.R.T.-F.); Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M., S.F., D.-H.K., R.C.R.); Sage Bionetworks, Seattle, Washington (A.D.T.); Neuropathology Service, Department of Pathology, Stanford University School of Medicine, Stanford, California (D.E.B.); Laboratory of Immunology, IRCCS San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy (B.C.); Case Western Reserve School of Medicine, Cleveland, Ohio (Y.K.); Neuroscience Associates, Boise, Idaho (T.C.M.)
| | - Robert C Rostomily
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M, S.N.E., C.A.P., R.G.O., J.R.S., R.C.R.); Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington (A.D.T.); Division of Medical Genetics, Department of Internal Medicine, University of Washington School of Medicine, Seattle, Washington (M.J.T); Department of Bioengineering, University of Washington School of Medicine, Seattle, Washington (S.F., D.-H.K.); Department of Radiology, University of Washington School of Medicine, Seattle, Washington (K.R.T.-F.); Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington (A.M.M., S.A.M., S.F., D.-H.K., R.C.R.); Sage Bionetworks, Seattle, Washington (A.D.T.); Neuropathology Service, Department of Pathology, Stanford University School of Medicine, Stanford, California (D.E.B.); Laboratory of Immunology, IRCCS San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy (B.C.); Case Western Reserve School of Medicine, Cleveland, Ohio (Y.K.); Neuroscience Associates, Boise, Idaho (T.C.M.)
| |
Collapse
|
33
|
Ishikawa T, Wondimu Z, Oikawa Y, Gentilcore G, Kiessling R, Egyhazi Brage S, Hansson J, Patarroyo M. Laminins 411 and 421 differentially promote tumor cell migration via α6β1 integrin and MCAM (CD146). Matrix Biol 2014; 38:69-83. [PMID: 24951930 DOI: 10.1016/j.matbio.2014.06.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/09/2014] [Accepted: 06/12/2014] [Indexed: 12/23/2022]
Abstract
α4-laminins, such as laminins 411 and 421, are mesenchymal laminins expressed by blood and lymphatic vessels and some tumor cells. Laminin-411 promotes migration of leukocytes and endothelial cells, but the effect of this laminin and laminin-421 on tumor cells is poorly understood. In the present study, we demonstrate that laminin-411 and, to a greater extent, laminin-421 significantly promote migration of tumor cells originated from melanomas, gliomas and different carcinomas via α6β1 integrin. In solid-phase binding assays, both laminins similarly bound α6β1 integrin but only laminin-421, among several laminin isoforms, readily bound MCAM (CD146), a cell-surface adhesion molecule strongly associated with tumor progression. Accordingly, a function-blocking mAb to MCAM inhibited tumor cell migration on laminin-421 but not on laminins 411 or 521. In tumor tissues, melanoma cells co-expressed MCAM, laminin α4, β1, β2 and γ1 chains, and integrin α6 and β1 chains. The present data highlight the novel role of α4-laminins in tumor cell migration and identify laminin-421 as a primary ligand for MCAM and a putative mediator of tumor invasion and metastasis.
Collapse
Affiliation(s)
- Taichi Ishikawa
- Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Zenebech Wondimu
- Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Yuko Oikawa
- Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Giusy Gentilcore
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Rolf Kiessling
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | - Johan Hansson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Manuel Patarroyo
- Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
34
|
Monoclonal antibodies to human laminin α4 chain globular domain inhibit tumor cell adhesion and migration on laminins 411 and 421, and binding of α6β1 integrin and MCAM to α4-laminins. Matrix Biol 2014; 36:5-14. [DOI: 10.1016/j.matbio.2014.03.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 03/17/2014] [Accepted: 03/19/2014] [Indexed: 12/23/2022]
|
35
|
Proregenerative properties of ECM molecules. BIOMED RESEARCH INTERNATIONAL 2013; 2013:981695. [PMID: 24195084 PMCID: PMC3782155 DOI: 10.1155/2013/981695] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/04/2013] [Accepted: 08/07/2013] [Indexed: 12/27/2022]
Abstract
After traumatic injuries to the nervous system, regrowing axons encounter a complex microenvironment where mechanisms that promote regeneration compete with inhibitory processes. Sprouting and axonal regrowth are key components of functional recovery but are often counteracted by inhibitory molecules. This review covers extracellular matrix molecules that support neuron axonal outgrowth.
Collapse
|
36
|
Ding H, Helguera G, Rodríguez JA, Markman J, Luria-Pérez R, Gangalum P, Portilla-Arias J, Inoue S, Daniels-Wells TR, Black K, Holler E, Penichet ML, Ljubimova JY. Polymalic acid nanobioconjugate for simultaneous immunostimulation and inhibition of tumor growth in HER2/neu-positive breast cancer. J Control Release 2013; 171:322-9. [PMID: 23770212 DOI: 10.1016/j.jconrel.2013.06.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/02/2013] [Accepted: 06/03/2013] [Indexed: 12/17/2022]
Abstract
Breast cancer remains the second leading cause of cancer death among women in the United States. Breast cancer prognosis is particularly poor in case of tumors overexpressing the oncoprotein HER2/neu. A new nanobioconjugate of the Polycefin(TM) family of anti-cancer drugs based on biodegradable and non-toxic polymalic acid (PMLA) was engineered for a multi-pronged attack on HER2/neu-positive breast cancer cells. An antibody-cytokine fusion protein consisting of the immunostimulatory cytokine interleukin-2 (IL-2) genetically fused to an antibody specific for human HER2/neu [anti-HER2/neu IgG3-(IL-2)] was covalently attached to the PMLA backbone to target HER2/neu expressing tumors and ensure the delivery of IL-2 to the tumor microenvironment. Antisense oligonucleotides (AON) were conjugated to the nanodrug to inhibit the expression of vascular tumor protein laminin-411 in order to block tumor angiogenesis. It is shown that the nanobioconjugate was capable of specifically binding human HER2/neu and retained the biological activity of IL-2. We also showed the uptake of the nanobioconjugate into HER2/neu-positive breast cancer cells and enhanced tumor targeting in vivo. The nanobioconjugate exhibited marked anti-tumor activity manifested by significantly longer animal survival and significantly increased anti-HER2/neu immune response in immunocompetent mice bearing D2F2/E2 murine mammary tumors that express human HER2/neu. The combination of laminin-411 AON and antibody-cytokine fusion protein on a single polymeric platform results in a new nanobioconjugate that can act against cancer cells through inhibition of tumor growth and angiogenesis and the orchestration of an immune response against the tumor. The present Polycefin(TM) variant may be a promising agent for treating HER2/neu expressing tumors and demonstrates the versatility of the Polycefin(TM) nanobioconjugate platform.
Collapse
Affiliation(s)
- Hui Ding
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Background: Glioma stem-like cell (GSC) properties are responsible for gliomagenesis and recurrence. GSCs are invasive but its mechanism remains to be elucidated. Here, we attempted to identify the molecules that promote invasion in GSCs. Methods: Neurospheres and CD133+ cells were collected from glioblastoma (GBM) specimens and glioma cell lines by sphere-formation method and magnetic affinity cell sorting, respectively. Differential expression of gene candidates, its role in invasion and its signaling pathway were evaluated in glioma cell lines. Results: Neurospheres from surgical specimens attached to fibronectin and laminin, the receptors of which belong to the integrin family. Integrin α3 was overexpressed in CD133+ cells compared with CD133− cells in all the glioma cell lines (4 out of 4). Immunohistochemistry demonstrated the localisation of integrin α3 in GBM cells, including invading cells, and in the tumour cells around the vessels, which is believed to be a stem cell niche. The expression of integrin α3 was correlated with migration and invasion. The invasion activity of glioma cells was linked to the phosphorylation of extracellular signal–regulated kinase (ERK) 1/2. Conclusion: Our results suggest that integrin α3 contributes to the invasive nature of GSCs via ERK1/2, which renders integrin α3 a prime candidate for anti-invasion therapy for GBM.
Collapse
|
38
|
Abstract
Laminins are large molecular weight glycoproteins constituted by the assembly of three disulfide-linked polypeptides, the α, β and γ chains. The human genome encodes 11 genetically distinct laminin chains. Structurally, laminin chains differ by the number, size and organization of a few constitutive domains, endowing the various members of the laminin family with common and unique important functions. In particular, laminins are indispensable building blocks for cellular networks physically bridging the intracellular and extracellular compartments and relaying signals critical for cellular behavior, and for extracellular polymers determining the architecture and the physiology of basement membranes.
Collapse
Affiliation(s)
- Monique Aumailley
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany.
| |
Collapse
|
39
|
Yousif LF, Di Russo J, Sorokin L. Laminin isoforms in endothelial and perivascular basement membranes. Cell Adh Migr 2012; 7:101-10. [PMID: 23263631 DOI: 10.4161/cam.22680] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Laminins, one of the major functional components of basement membranes, are found underlying endothelium, and encasing pericytes and smooth muscle cells in the vessel wall. Depending on the type of blood vessel (capillary, venule, postcapillary venule, vein or artery) and their maturation state, both the endothelial and mural cell phenotype vary, with associated changes in laminin isoform expression. Laminins containing the α4 and α5 chains are the major isoforms found in the vessel wall, with the added contribution of laminin α2 in larger vessels. We here summarize current data on the precise localization of these laminin isoforms and their receptors in the different layers of the vessel wall, and their potential contribution to vascular homeostasis.
Collapse
Affiliation(s)
- Lema F Yousif
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | | | | |
Collapse
|
40
|
Ramadhani D, Tsukada T, Fujiwara K, Horiguchi K, Kikuchi M, Yashiro T. Laminin isoforms and laminin-producing cells in rat anterior pituitary. Acta Histochem Cytochem 2012; 45:309-15. [PMID: 23209340 PMCID: PMC3499700 DOI: 10.1267/ahc.12028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 08/07/2012] [Indexed: 12/31/2022] Open
Abstract
Laminin is a key component of the basement membrane and is involved in the structural scaffold and in cell proliferation and differentiation. Research has identified 19 laminin isoforms, which are assemblies of α, β, and γ chains (eg, the α1, β1, and γ1 chains form the laminin 111 isoform). Although laminin is known to be present in the anterior pituitary, the specific laminin isoforms have not been identified. This study used molecular biological and histochemical techniques-namely, RT-PCR, immunohistochemistry, and in situ hybridization-to identify the laminin isoforms and laminin-producing cells in rat anterior pituitary. RT-PCR showed that laminin α1, α3, and α4 genes were expressed in anterior pituitary. Immunohistochemistry revealed laminin α1 in gonadotrophs and laminin α4 in almost all vascular endothelial cells. Laminin α3 was seen in a subset of vascular endothelial cells. We then performed in situ hybridization to localize β and γ chains in these cells and found that laminin β1, β2, and γ1 were expressed in gonadotrophs and that laminin β1 and γ1 were expressed in endothelial cells. In conclusion, we identified gonadotroph-type (laminin 111 and 121) and vascular-type (laminin 411 and 311) laminin isoforms in rat anterior pituitary.
Collapse
Affiliation(s)
- Dini Ramadhani
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine
| | - Takehiro Tsukada
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine
| | - Ken Fujiwara
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine
| | - Kotaro Horiguchi
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine
| | - Motoshi Kikuchi
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine
| | - Takashi Yashiro
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine
| |
Collapse
|
41
|
|
42
|
Flanagan K, Fitzgerald K, Baker J, Regnstrom K, Gardai S, Bard F, Mocci S, Seto P, You M, Larochelle C, Prat A, Chow S, Li L, Vandevert C, Zago W, Lorenzana C, Nishioka C, Hoffman J, Botelho R, Willits C, Tanaka K, Johnston J, Yednock T. Laminin-411 is a vascular ligand for MCAM and facilitates TH17 cell entry into the CNS. PLoS One 2012; 7:e40443. [PMID: 22792325 PMCID: PMC3391262 DOI: 10.1371/journal.pone.0040443] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 06/07/2012] [Indexed: 12/18/2022] Open
Abstract
TH17 cells enter tissues to facilitate pathogenic autoimmune responses, including multiple sclerosis (MS). However, the adhesion molecules involved in the unique migratory capacity of TH17 cells, into both inflamed and uninflamed tissues remain unclear. Herein, we characterize MCAM (CD146) as an adhesion molecule that defines human TH17 cells in the circulation; following in vitro restimulation of human memory T cells, nearly all of the capacity to secrete IL-17 is contained within the population of cells expressing MCAM. Furthermore, we identify the MCAM ligand as laminin 411, an isoform of laminin expressed within the vascular endothelial basement membranes under inflammatory as well as homeotstatic conditions. Purified MCAM-Fc binds to laminin 411 with an affinity of 27 nM, and recognizes vascular basement membranes in mouse and human tissue. MCAM-Fc binding was undetectable in tissue from mice with targeted deletion of laminin 411, indicating that laminin 411 is a major tissue ligand for MCAM. An anti-MCAM monoclonal antibody, selected for inhibition of laminin binding, as well as soluble MCAM-Fc, inhibited T cell adhesion to laminin 411 in vitro. When administered in vivo, the antibody reduced TH17 cell infiltration into the CNS and ameliorated disease in an animal model of MS. Our data suggest that MCAM and laminin 411 interact to facilitate TH17 cell entry into tissues and promote inflammation.
Collapse
Affiliation(s)
- Ken Flanagan
- Elan Pharmaceuticals, San Francisco, California, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Katagiri F, Ishikawa M, Yamada Y, Hozumi K, Kikkawa Y, Nomizu M. Screening of integrin-binding peptides from the laminin α4 and α5 chain G domain peptide library. Arch Biochem Biophys 2012; 521:32-42. [PMID: 22391228 DOI: 10.1016/j.abb.2012.02.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 02/22/2012] [Accepted: 02/23/2012] [Indexed: 02/09/2023]
Abstract
Laminins, a multifunctional protein family of extracellular matrix, interact with various types of integrin. Here, integrin-mediated cell adhesive peptides have been systematically screened in the laminin α4 and α5 chain G domain peptide library consisting of 211 peptides by both the peptide-coated plastic plates and peptide-conjugated Sepharose bead assays using human dermal fibroblasts. Thirteen peptides promoted cell spreading and the activity was specifically inhibited by EDTA. Cell attachment to 11 peptides was inhibited by anti-integrin β1 antibody. Additionally, cell attachment to the A5G81 (AGQWHRVSVRWG) and A5G84 (TWSQKALHHRVP) peptides was specifically inhibited by anti-integrin α3 and α6 antibodies. These results suggest that the A5G81 and A5G84 peptides promote integrin α3β1- and α6β1-mediated cell attachment. Further, most of the integrin-mediated cell adhesive peptides are located in the loop regions in the G domains, suggesting that structure is important for the integrin specific recognition. Integrin binding peptides are useful for understanding laminin functions and have a potential to use for biomaterials and drug development.
Collapse
Affiliation(s)
- Fumihiko Katagiri
- Laboratory of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Kasprick DS, Kish PE, Junttila TL, Ward LA, Bohnsack BL, Kahana A. Microanatomy of adult zebrafish extraocular muscles. PLoS One 2011; 6:e27095. [PMID: 22132088 PMCID: PMC3223174 DOI: 10.1371/journal.pone.0027095] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Accepted: 10/10/2011] [Indexed: 01/11/2023] Open
Abstract
Binocular vision requires intricate control of eye movement to align overlapping visual fields for fusion in the visual cortex, and each eye is controlled by 6 extraocular muscles (EOMs). Disorders of EOMs are an important cause of symptomatic vision loss. Importantly, EOMs represent specialized skeletal muscles with distinct gene expression profile and susceptibility to neuromuscular disorders. We aim to investigate and describe the anatomy of adult zebrafish extraocular muscles (EOMs) to enable comparison with human EOM anatomy and facilitate the use of zebrafish as a model for EOM research. Using differential interference contrast (DIC), epifluorescence microscopy, and precise sectioning techniques, we evaluate the anatomy of zebrafish EOM origin, muscle course, and insertion on the eye. Immunofluorescence is used to identify components of tendons, basement membrane and neuromuscular junctions (NMJs), and to analyze myofiber characteristics. We find that adult zebrafish EOM insertions on the globe parallel the organization of human EOMs, including the close proximity of specific EOM insertions to one another. However, analysis of EOM origins reveals important differences between human and zebrafish, such as the common rostral origin of both oblique muscles and the caudal origin of the lateral rectus muscles. Thrombospondin 4 marks the EOM tendons in regions that are highly innervated, and laminin marks the basement membrane, enabling evaluation of myofiber size and distribution. The NMJs appear to include both en plaque and en grappe synapses, while NMJ density is much higher in EOMs than in somatic muscles. In conclusion, zebrafish and human EOM anatomy are generally homologous, supporting the use of zebrafish for studying EOM biology. However, anatomic differences exist, revealing divergent evolutionary pressures.
Collapse
Affiliation(s)
- Daniel S. Kasprick
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Phillip E. Kish
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Tyler L. Junttila
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lindsay A. Ward
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Brenda L. Bohnsack
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Alon Kahana
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
45
|
Fujiwara H, Ferreira M, Donati G, Marciano DK, Linton JM, Sato Y, Hartner A, Sekiguchi K, Reichardt LF, Watt FM. The basement membrane of hair follicle stem cells is a muscle cell niche. Cell 2011; 144:577-89. [PMID: 21335239 DOI: 10.1016/j.cell.2011.01.014] [Citation(s) in RCA: 234] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 10/24/2010] [Accepted: 01/10/2011] [Indexed: 12/17/2022]
Abstract
The hair follicle bulge in the epidermis associates with the arrector pili muscle (APM) that is responsible for piloerection ("goosebumps"). We show that stem cells in the bulge deposit nephronectin into the underlying basement membrane, thus regulating the adhesion of mesenchymal cells expressing the nephronectin receptor, α8β1 integrin, to the bulge. Nephronectin induces α8 integrin-positive mesenchymal cells to upregulate smooth muscle markers. In nephronectin knockout mice, fewer arrector pili muscles form in the skin, and they attach to the follicle above the bulge, where there is compensatory upregulation of the nephronectin family member EGFL6. Deletion of α8 integrin also abolishes selective APM anchorage to the bulge. Nephronectin is a Wnt target; epidermal β-catenin activation upregulates epidermal nephronectin and dermal α8 integrin expression. Thus, bulge stem cells, via nephronectin expression, create a smooth muscle cell niche and act as tendon cells for the APM. Our results reveal a functional role for basement membrane heterogeneity in tissue patterning. PAPERCLIP:
Collapse
Affiliation(s)
- Hironobu Fujiwara
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Smith AS, Shah R, Hunt NP, Lewis MP. The Role of Connective Tissue and Extracellular Matrix Signaling in Controlling Muscle Development, Function, and Response to Mechanical Forces. Semin Orthod 2010. [DOI: 10.1053/j.sodo.2010.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
47
|
Germain M, De Arcangelis A, Robinson SD, Baker M, Tavora B, D'Amico G, Silva R, Kostourou V, Reynolds LE, Watson A, Jones JL, Georges-Labouesse E, Hodivala-Dilke K. Genetic ablation of the alpha 6-integrin subunit in Tie1Cre mice enhances tumour angiogenesis. J Pathol 2010; 220:370-81. [PMID: 19967723 DOI: 10.1002/path.2654] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Laminins are expressed highly in blood vessel basement membranes and have been implicated in angiogenesis. alpha6beta1- and alpha6beta4-integrins are major receptors for laminins in endothelial cells, but the precise role of endothelial alpha6-integrin in tumour angiogenesis is not clear. We show that blood vessels in human invasive ductal carcinoma of the breast have decreased expression of the alpha6-integrin-subunit when compared with normal breast tissue. These data suggest that a decrease in alpha6-integrin-subunit expression in endothelial cells is associated with tumour angiogenesis. To test whether the loss of the endothelial alpha6-integrin subunit affects tumour growth and angiogenesis, we generated alpha6fl/fl-Tie1Cre+ mice and showed that endothelial deletion of alpha6-integrin is sufficient to enhance tumour size and tumour angiogenesis in both murine B16F0 melanoma and Lewis cell lung carcinoma. Mechanistically, endothelial alpha6-integrin deficiency elevated significantly VEGF-mediated angiogenesis both in vivo and ex vivo. In particular, alpha6-integrin-deficient endothelial cells displayed increased levels of VEGF-receptor 2 (VEGFR2) and VEGF-mediated downstream ERK1/2 activation. By developing the first endothelial-specific alpha6-knockout mice, we show that the expression of the alpha6-integrin subunit in endothelial cells acts as a negative regulator of angiogenesis both in vivo and ex vivo.
Collapse
Affiliation(s)
- Mitchel Germain
- The Adhesion and Angiogenesis Laboratory, Institute of Cancer, Queen Mary, University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kikkawa Y, Takaki S, Matsuda Y, Okabe K, Taniguchi M, Oomachi K, Samejima T, Katagiri F, Hozumi K, Nomizu M. The Influence of Tribenoside on Expression and Deposition of Epidermal Laminins in HaCaT Cells. Biol Pharm Bull 2010; 33:307-10. [DOI: 10.1248/bpb.33.307] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yamato Kikkawa
- Laboratory of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences
| | - Shu Takaki
- Laboratory of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences
| | - Yuji Matsuda
- Laboratory of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences
| | - Koichi Okabe
- Laboratory of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences
| | | | | | | | - Fumihiko Katagiri
- Laboratory of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences
| | - Kentaro Hozumi
- Laboratory of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences
| | - Motoyoshi Nomizu
- Laboratory of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
49
|
Petrás M, Hutóczki G, Varga I, Vereb G, Szöllosi J, Bognár L, Ruszthi P, Kenyeres A, Tóth J, Hanzély Z, Scholtz B, Klekner A. [Expression pattern of invasion-related molecules in brain tumors of different origin]. Magy Onkol 2009; 53:253-258. [PMID: 19793689 DOI: 10.1556/monkol.53.2009.3.3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Tumor cell invasion into the surrounding brain tissue is mainly responsible for the failure of radical surgical resection and successful treatment, with tumor recurrence as microdisseminated disease. Epidermal growth factor receptors (EGFRs), integrins and their ligands in the extracellular matrix (ECM) predominantly participate in the invasion process, including the cell adhesion to the surrounding microenvironment and cell migration. The extent of infiltration of the surrounding brain tissue by malignant tumors strongly depends on the tumor cell type. Malignant gliomas show much more intensive peritumoral invasion than do metastatic tumors. In this study, the mRNA expression of 29 invasion-related molecules (18 cell membrane receptors or receptor subunits (EGFRs and integrins) and 11 ECM components: collagens, laminins and fibronectin) was investigated by quantitative reverse transcriptase-polymerase chain reaction. Fresh frozen human tissue samples from glioblastoma (GBM) and intracerebral bronchial adenocarcinoma metastases (five pieces from each) were evaluated. Significant differences were established in six of the 29 molecules (ErbB1, 2, 3, integrins alpha3, 7 and beta1). To confirm our results at the protein level, immunohistochemical analysis of nine molecules was performed. The staining intensity differed definitely in the case of ErbB1, 2 and integrins alpha3 and beta1. Determining the differences in invasion-related molecules in tumors of different origin can help identify the exact molecular mechanisms that facilitate peritumoral infiltration by glioblastoma cells. These results should allow the selection of target molecules for potential chemotherapeutic agents directed against highly invasive malignant gliomas.
Collapse
Affiliation(s)
- Miklós Petrás
- Debreceni Egyetem Orvos- és Egészségtudományi Centrum Idegsebészeti Klinika, Debrecen
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW To review the effect of local injury to the endometrium on the implantation rate in IVF-embryo transfer. RECENT FINDINGS In 2003, Barash et al. reported that endometrial sampling of IVF patients using a biopsy catheter substantially increases their chances to conceive at the following IVF-embryo transfer cycle. Such a favorable influence of local injury to the endometrium was later confirmed by Raziel et al. Our previous studies demonstrated that removal of ploys or thickening endometrium 2 weeks before embryo transfer significantly improves the incidence of successful pregnancies in patients undergoing IVF. In 2008, our study suggested that the gene-expression profile of endometria from patients with different pregnancy results are different. SUMMARY Local injury to endometria of IVF patients in controlled ovarian hyperstimulation cycle may increase the incidence of embryo implantation.
Collapse
|